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Abstract This article deals with an economic order quantity model for non-instantaneous
deteriorating items with price and advertisement dependent demand pattern. The salvage
value for deteriorating items is considered in this model. Shortages are allowed and partially
backlogged. The backlogging rate depends upon the waiting time for the next replenishment.
A mathematical model is framed to obtain the optimal replenishment policy which aids the
retailer to minimize the total inventory cost. The necessary and sufficient condition for the
existence and uniqueness of the optimal solution are also derived with useful theoretical
results. Numerical examples are provided to illustrate the results obtained. Sensitivity analy-
ses are carried out. The managerial implications and the effects of key parameters are studied
to analyze the behavior of the model.

Keywords Inventory · Non-instantaneous deterioration · Partial backlogging · Price and
advertisement dependent demand

Introduction

Deterioration is defined as decay, damage or spoilage such that the items are not in a con-
dition of being used for its original purpose. Foodstuffs, medicine, volatile liquids, blood,
grains, gasoline are examples of deteriorating items. The problem of managing deteriorating
inventory has received considerable attention in recent years. Ghare and Schrader [1] made
the first attempt to describe the optimal ordering policies for such items having constant rate
of deterioration. Covert and Philip [2] formulated an economic order quantity (EOQ) model
for item with Weibull distribution deterioration. Philip [3] generalized this model by taking
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three parameter Weibull distributions. Goyal and Giri [4] gave a detailed review of deteri-
orating inventory literature. Chung et al. [5] gave a note on EOQ models for deteriorating
items under stock dependent selling rate. Dye and Ouyang [6] developed an EOQ model
for perishable items under stock dependent selling rate and time-dependent partial backlog-
ging. Jaggi and Aggarwal [7] developed an EOQ model for deteriorating items with salvage
values. Recently, Annadurai [8] derived an optimal replenishment policy for decaying items
with shortages and salvage value. Teng et al. [9] described an optimal replenishment pol-
icy for deteriorating items with time varying demand and partial backlogging. Skouri and
Papachristos [10] developed an optimal stopping and restarting production times for an EOQ
model with deteriorating items and time dependent partial backlogging. Musa and Sani [11]
developed inventory ordering policies of delayed deteriorating items under permissible delay
in payments. Duan et al. [12] presented inventory models for perishable items with inventory
level dependent demand rate. Cheng et al. [13] gave the optimal policy for deteriorating items
with trapezoidal type demand and partial backlogging.

The above said researchers assumed that the deterioration of the items in inventory starts
from the instant of their arrival. But items such as fruits, vegetables, fish, meat etc., remain
fresh for a certain period. During that period, the items do not deteriorate. Wu et al. [14]
defined the phenomenon as “non-instantaneous deterioration”. In this direction, Ouyang
et al. [15] gave a study on an inventory model for non-instantaneous deteriorating items
with permissible delay in payments. Chung [16] derived a complete proof on the solution
procedure for non-instantaneous deteriorating items with permissible delay in payments.
Geetha and Uthayakumar [17] developed an economic design of an inventory policy for non-
instantaneous deteriorating items under permissible delay in payments. Liao [18] discussed
an EOQ model with non-instantaneous receipt and exponentially deteriorating items under
two level trade credits.

All these models and many more treated the demand rate as constant or time-dependent.
In real-life situation, lower selling price exposures demand and its effectiveness, while high
selling prices decline demand records to zero. Due to the reason, researchers considered the
demand as a function of the selling price. Yang [19] developed pricing strategy for deteriorat-
ing items using quantity discount when demand is price sensitive. Ray et al. [20] developed
joint pricing and inventory policies for make-to-stock products with deterministic price sen-
sitive demand. Teng and Chang [21] formulated an economic production quantity models for
deteriorating items with price and stock dependent demand. You and Hseih [22] developed
an EOQmodel with stock and price sensitive demand. Mukhopadhyay et al. [23] established
the joint pricing and ordering policy for a deteriorating inventory. Palanivel and Uthayaku-
mar [24] derived a finite horizon EOQ model for non-instantaneous deteriorating items with
price and advertisement dependent demand and partial backlogging under inflation. Khouja
and Robbins [25] were derived the model with linking advertising and quantity decisions in
the single period inventory. Mondal et al. [26] investigated the finite replenishment inven-
tory model for defective items incorporating marketing decisions with variable production
cost. Recently, Shah et al. [27] obtained an optimizing inventory and marketing policy for
non-instantaneous deteriorating items with generalized type deterioration and holding cost
rates.

However, we must acknowledge that consumption rate is also dependent on selling price
in a practical environment. In addition to the selling price, the other marketing parameter,
which affects the demand, is advertisement. It is commonly seen that a product is promoted
through advertisements in well-known print or electronic media or by other means to attract
customers. The purpose of this type of advertisement is to raise the demand for the product.
Hence, in this article, we developed an EOQ model for non-instantaneous deteriorating
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items with price and advertisement dependent demand pattern. Shortages are allowed and
are partially backlogged in this model. Some useful theoretical results have been derived
to characterize the optimal solutions. Numerical examples are provided to demonstrate the
developedmodel and the solution procedure. Sensitivity analysis of the optimal solution with
respect to major parameters of the system is carried out, and their results, with managerial
implications, are discussed.

Notations and Assumptions

Notations

The following notations are used throughout this paper:

k ordering cost per order ($/order)
h unit stock holding cost (($/unit /unit time)
c unit purchasing cost ($/unit)
s shortage cost for backlogged item($/unit /unit time)
π the unit cost of lost sales
θ the deterioration rate, where 0 ≤ θ ≤ 1
δ the backlogging parameter which is a positive constant, where 0 ≤ δ ≤ 1
γ salvage value parameter 0 ≤ γ ≤ 1, associated with deteriorated units during

the cycle time
Im the maximum inventory level for each replenishment cycle
S the maximum amount of demand backlogged per cycle
T inventory cycle length (decision variable)
td the length of time in which the product has no deterioration
t1 the time at which the inventory level falls to zero (decision variable)
I (t) inventory level at time t
I1 (t) the inventory level at time t, 0 ≤ t ≤ td
I2 (t) the inventory level at time t, td ≤ t ≤ t1
I3 (t) the inventory level at time t, t1 ≤ t ≤ T
TC (t1, T ) the total annual inventory cost per unit time of inventory system
Q the retailer’s order quantity

Assumptions

To develop the mathematical model, the following assumptions are being made.

i. A single item is considered in the inventory system.
ii. The demand rate D is a deterministic function of selling price p, and advertisement cost

AC per unit item i.e. D (AC , p) = Aη
Cap

−b, a > 0, b > 1, 0 ≤ η < 1, a is the scaling
factor, b is the index of price elasticity and η is the shape parameter.

iii. Replenishment occurs instantaneously at an infinite rate and the lead time is negligible.
iv. Shortages are allowed to occur and are partially backlogged. During the stock-out period,

the backlogging rate is variable and is dependent on the length of the waiting time for
the next replenishment. So, the backlogging rate for negative inventory is denoted as
B (t) = 1

1+δ(T−t) , where δ is the backlogging parameter 0 ≤ δ ≤ 1, the remaining

fraction 1 − B (t) is lost.
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Fig. 1 Graphical representation of the inventory system

v. It is assumed that during certain period of time the product has no deterioration (i.e.,
fresh product time). After this period, a constant fraction, θ (0 ≤ θ ≤ 1) of the on-hand
inventory deteriorates and there is no repair or replacement for the deteriorated units.

vi. The salvage value γ , where 0 ≤ γ ≤ 1, is associated with deteriorated units during the
cycle time.

Mathematical Model

In this section, themathematicalmodeling of the inventory systemwith the above assumptions
is given. The retailer orders and receives Q units of a single product from the supplier at
the beginning of the cycle at time t = 0. During the time [0, td ], there was no deterioration
occurring. Therefore the inventory level decreases owing to demand alone. The inventory
level is depleted gradually to zero due to demand and deterioration in the time interval [td , t1].
At time t = t1 the inventory level reaches zero. Thereafter, shortages are allowed to occur
and the demand during the period [t1, T ] is partially backlogged. This model is demonstrated
in Fig. 1.
Hence the change of inventory level I (t)with respect to time can be given by the differential
equation

d I (t)

dt
=

⎧
⎨

⎩

−D i f 0 ≤ t ≤ td ,
−D − θ I (t) i f td ≤ t ≤ t1,

−D
1+δ(T−t) i f t1 ≤ t ≤ T,

(1)

with the boundary condition I (0) = Im, I (t1) = 0.
The solution of Eq. (1) is

I (t) =
⎧
⎨

⎩

I1 (t) i f 0 ≤ t ≤ td ,
I2 (t) i f td ≤ t ≤ t1,
I3 (t) i f t1 ≤ t ≤ T,

123



Int. J. Appl. Comput. Math (2016) 2:171–193 175

where

I1 (t) = D

θ

[
eθ(t1−td ) − θ (t − td) − 1

]
, (2)

I2 (t) = D

θ

[
eθ(t1−t) − 1

]
(3)

I3 (t) = D

δ
[ln [1 + δ (T − t)] − ln [1 + δ (T − t1)]] (4)

At t = td , I1 (td) = I2 (td), the maximum inventory level for each cycle is obtained by

Im = Dtd + D

θ

[
eθ(t1−td ) − 1

]
(5)

The maximum amount of demand backlogged per cycle is given by

S = −I3 (t) = D

δ
[ln [1 + δ (T − t1)]] (6)

From Eqs. (5) and (6), we can obtain the order quantity per cycle as

Q = Im + S = Dtd + D

θ

[
eθ(t1−td ) − 1

]
+ D

δ
[ln [1 + δ (T − t1)]] (7)

The total annual inventory cost which is a function of t1 and T is given by (see Appendix 1)

TC (t1, T ) = D

T

{
k

D
+

(
h + (c − γ ) θ

θ

) [

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

]

+
(
s + πδ

δ

) [

(T − t1) − ln [1 + δ (T − t1)]

δ

]}

(8)

Theoretical Results and Optimal Solutions

In this section, we shall determine the optimal shortage point and the optimal replenishment
cycle time that minimizes the total cost per unit time as follows. The necessary conditions
for the total cost per unit time TC (t1, T ) to be minimum are

∂TC (t1, T )

∂t1
= 0 and

∂TC (t1, T )

∂T
= 0

which give

∂TC (t1, T )

∂t1
= D

T

{(
h + (c − γ ) θ

θ

) [
(θ td + 1) eθ(t1−td ) − 1

]

+
(
s + πδ

δ

)[
1

1 + δ (T − t1)
− 1

]}

= 0 (9)

∂TC (t1, T )

∂T
= D

T 2

{(
s + πδ

δ

) [
(T − t1) (δt1 − 1)

1 + δ (T − t1)
+ ln [1 + δ (T − t1)]

δ

]

−
(
h + (c − γ ) θ

θ

) [

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

]

− k

D

}

= 0

(10)
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For notational convenience, let

U =
(
s + πδ

δ

)

> 0 and V =
(
h + (c − γ ) θ

θ

)

> 0,

then Eqs. (9) and (10) becomes

T = t1 + V
[
(θ td + 1) eθ(t1−td ) − 1

]

δ
[
U − V

[
(θ td + 1) eθ(t1−td ) − 1

]] (11)

and

U

[
(T − t1) (δt1 − 1)

1 + δ (T − t1)
+ ln [1 + δ (T − t1)]

δ

]

− V

[

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

]

− k

D
= 0 (12)

respectively. Substituting Eq. (11) in (12) we have
(
1 − δt1

δ

)

V
[
(θ td + 1) eθ(t1−td ) − 1

]
+ U

δ

(

ln

[
U

U − V
(
eθ t1 − 1

)

])

− V

[

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

]

− k

D
= 0 (13)

Now we give the following results.

Theorem 1 (a) If
(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

− V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
≤ 0,

then the solution of (t1, T )which satisfies Eqs. (11) and (12) not only exists but also is unique.
(b) If

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

− V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
> 0,

then the solution of (t1, T ) which satisfies Eqs. (11) and (12) does not exist.

Proof of Part (a) By assumptions and notations, we have T > t1. Hence from Eq. (11), we
get

V
[
(θ td + 1) eθ(t1−td ) − 1

]

δ
[
U − V

[
(θ td + 1) eθ(t1−td ) − 1

]] > 0.

Because the numerator part:

V
[
(θ td + 1) eθ(t1−td ) − 1

]
=

(
h + (c − γ )

θ

) [
(θ td + 1) eθ(t1−td ) − 1

]
> 0,
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thus, the denominator part: δ
[
U − V

[
(θ td + 1) eθ(t1−td ) − 1

]]
> 0, or equivalently,

[
U − V

[
(θ td + 1) eθ(t1−td ) − 1

]]
> 0, which implies t1 < td + 1

θ
ln

[
U+V

V (θ td+1)

]
≡ tb1 .

From Eq. (13), we let

F (x) =
(
1 − δx

δ

)

V
[
(θ td + 1) eθ(x−td ) − 1

]
+ U

δ

(

ln

[
U

U − V
(
eθx − 1

)

])

−V

[

eθ(x−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− x

]

− k

D
, x ≥ td (14)

Taking thefirst order derivative of F (x)with respect to x ∈ [
td , tb1

)
,wehave dF(x)

dx > 0.Thus,
F (x) is a strictly increasing function with respect to x in the interval [td , tb1 ). Furthermore,
by using assumption, we have,

F (td) =
(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

−V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
≤ 0

and it can be shown that limx→tb1− F (x) = +∞. Therefore, by using intermediate value

theorem, there exists a unique t∗1 ∈ [td , tb1 ) such that F
(
t∗1

) = 0, which implies t∗1 is the
unique solution of Eq. (14). Once we obtain the value t∗1 , the value of T (denoted by T ∗) can
be found using Eq. (11) and is given by

T ∗ = t∗1 + V
[
(θ td + 1) eθ(t1−td ) − 1

]

δ
[
U − V

[
(θ td + 1) eθ(t1−td ) − 1

]] .

Proof of Part (b) If

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

−V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
> 0,

then from Eq. (14) we have, F (td) > 0. Since F (x) is a strictly increasing function of
x ∈ [

td , tb1
)
, which implies F (x) > 0 for all x ∈ [

td , tb1
)
. Thus we cannot find a value

t1 ∈ [
td , tb1

)
such that F (t1) = 0.

Theorem 2 (a) If

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

−V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
≤ 0,

then the total cost TC (t1, T ) is convex and reaches its global minimum at the point (t∗1 , T ∗),
where (t∗1 , T ∗) is the point which satisfies the Eqs. (11) and (12).
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(b) If
(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

− V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
> 0,

then the total cost TC (t1, T ) has a minimum value at the point (t∗1 , T ∗), where t∗1 = td and

T ∗ = td + td
[
h + (c − γ ) θ

]

(s + πδ) − δtd
[
h + (c − γ ) θ

] .

Proof of Part (a) Taking the second derivative of TC (t1, T ) with respect to t1 and T , and
then finding the values of these functions at point (t∗1 , T ∗), we obtain

∂2TC (t1, T )

∂t21

∣
∣
∣
∣
∣
(t∗1 ,T ∗)

= D

T ∗

{

θV
[
(θ td + 1) eθ(t∗1−td)

]
+ s + πδ

[
1 + δ

(
T ∗ − t∗1

)]2

}

> 0,

∂2TC (t1, T )

∂T 2

∣
∣
∣
∣
(t∗1 ,T ∗)

= D

T ∗

{
s + πδ

[
1 + δ

(
T ∗ − t∗1

)]2

}

> 0

∂2TC (t1, T )

∂t1∂T

∣
∣
∣
∣
(t∗1 ,T ∗)

= D

T ∗

{
s + πδ

[
1 + δ

(
T ∗ − t∗1

)]2

}

(15)

and

∂2TC (t1, T )

∂t21

∣
∣
∣
∣
∣
(t∗1 ,T ∗)

∂2TC (t1, T )

∂T 2

∣
∣
∣
∣
(t∗1 ,T ∗)

−
[

∂2TC (t1, T )

∂t1∂T

∣
∣
∣
∣
(t∗1 ,T ∗)

]2

=
(

D

T ∗

)2
{

θV
[
(θ td + 1) eθ(t∗1−td)

]
+ s + πδ

[
1 + δ

(
T ∗ − t∗1

)]2

}

> 0. (16)

From Eqs. (15), (16) and Theorem 1, we can see easily that (t∗1 , T ∗) is the global minimum
point of TC (t1, T ).
Proof of Part (b) If

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

− V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
> 0,

then we know that F (x) > 0 for all x ∈ [
td , tb1

)
. Thus,

∂TC (t1, T )

∂T
= D

T 2

{(
1 − δx

δ

)

V
[
(θ td + 1) eθ(x−td ) − 1

]
+U

δ

(

ln

[
U

U − V
(
eθx − 1

)

])

−V

[

eθ(x−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− x

]

− k

D

}

= DF (t1)

T 2 > 0,∀t1 ∈
[
td , t

b
1

)

123



Int. J. Appl. Comput. Math (2016) 2:171–193 179

which implies TC (t1, T ) is a strictly increasing function of T . Thus, TC (t1, T ) has a
minimum value when T is minimum. On the other hand, from Eq. (11), we can see that T
has a minimum value of

td + td
[
h + (c − γ ) θ

]

(s + πδ) − δtd
[
h + (c − γ ) θ

]

as t1 = td . Therefore, TC (t1, T ) has a minimum value at the point (t∗1 , T ∗), where t∗1 = td
and

T ∗ = td + td
[
h + (c − γ ) θ

]

(s + πδ) − δtd
[
h + (c − γ ) θ

] .

This completes the proof. 
�
The optimal order quantity Q (which is denoted by Q∗) and the total annual inventory

cost function TC∗ (
t∗1 , T ∗) can be obtained from

Q∗ = Dtd + D

θ

[
eθ((t∗1−td) − 1

]
+ D

δ

[
ln

[
1 + δ

(
T ∗ − t∗1

)]]

TC
(
t∗1 , T ∗) = D

T

{
k

D
+

(
h + (c − γ ) θ

θ

) [

eθ(t∗1−td)
(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t∗1

]

+
(
s + πδ

δ

) [
(
T ∗ − t∗1

) − ln
[
1 + δ

(
T ∗ − t∗1

)]

δ

]}

where (t∗1 , T ∗) denotes the optimal values of t1 and T . The convexity of the total annual
inventory cost function TC

(
t∗1 , T ∗) can be established graphically (see Appendix 2).

Computational Algorithm to Find the Optimal Values

To find the optimal length of the inventory interval with positive inventory t∗1 and the optimal
length of order cycle T ∗, we follow the decision policy shown in the flowchart representation
(Fig. 2) using the summarized above results.
Let

� =
(
1 − δt1

δ

)

V
[
(θ td + 1) eθ(t1−td ) − 1

]
+ U

δ

(

ln

[
U

U − V
(
eθ t1 − 1

)

])

−V

[

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

]

− k

D

Numerical Examples

In this section we find the optimal solutions to illustrate the solution procedure with the
following numerical examples.

Example 1 Consider an inventory system with the following data:
k = 650, h = 0.5, c = 1.5, γ = 0.08, td = 0.0833, s = 6, δ = 0.1, π = 1.5, θ =
0.1, AC = 150, η = 0.4, a = 40, 000, b = 2.5, p = 20 in appropriate units. We first check
the condition
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Fig. 2 Flowchart representation of optimal decision policy

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

−V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
= −2.8520 < 0

Thus, the optimal length of the inventory interval with positive inventory t∗1 and the optimal
length of order cycle T ∗ can be obtained by solving Eqs. (11) and (12), and are given by
t∗1 = 0.3616 and T ∗ = 0.7205. Hence, the optimal order quantity per cycle is Q∗ = 119.15
and the minimum total cost per unit time is TC∗ (

t∗1 , T ∗) = 1001.02.

Example 2 Let us consider another inventory system with the following data: k = 650, h =
0.5, c = 0.75, γ = 0.1, td = 0.0833, s = 8, δ = 0.1, π = 2, θ = 0.1, AC = 150, η =
0.4, a = 40, 000, b = 2.5, p = 20 in appropriate units. Similarly,wefirst check the condition
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Table 1 Effect of change in various parameters of the inventory model

Changing parameters Change in parameters t∗1 T ∗ Q∗ TC∗ (
t∗1 , T ∗)

k 650 0.3616 0.7205 119.15 1001.02

700 0.4019 0.8224 135.89 968.41

750 0.4476 0.9422 155.50 935.50

800 0.5027 1.0927 180.01 901.06

h 0.5 0.3616 0.7205 119.15 1001.02

0.6 0.2992 0.6119 101.12 1151.20

0.7 0.2564 0.5363 88.60 1213.73

0.8 0.2218 0.4785 79.05 1434.02

c 1.5 0.3616 0.7205 119.15 1001.02

2.0 0.3271 0.6604 109.18 1077.54

2.5 0.2992 0.6119 101.12 1151.20

3.0 0.2760 0.5712 94.38 1223.02

γ 0.02 0.3570 0.7125 117.82 1010.38

0.04 0.3585 0.7151 118.26 1007.26

0.06 0.3601 0.7178 118.71 1004.13

0.08 0.3616 0.7205 119.15 1001.02

td 0.0501 0.3741 0.7979 131.82 935.79

0.0613 0.3696 0.7707 127.39 956.60

0.0729 0.3653 0.7436 122.95 979.52

0.0822 0.3620 0.7228 119.54 998.72

s 5 0.3616 0.7928 130.71 926.14

6 0.3616 0.7205 119.15 1001.02

7 0.3617 0.6689 110.87 1064.23

8 0.3617 0.6303 104.65 1118.35

δ 0.06 0.1187 0.1542 25.60 4223.55

0.07 0.1386 0.1908 31.67 3420.85

0.08 0.1687 0.2468 40.98 2655.74

0.09 0.2214 0.3471 57.64 1910.35

θ 0.2 0.1650 0.2312 38.44 2828.15

0.3 0.1532 0.2032 33.82 3213.55

0.4 0.1448 0.1878 31.28 3475.14

0.5 0.1366 0.1755 29.24 3716.98

AC 100 0.4623 0.9817 137.69 787.35

150 0.3616 0.7205 119.15 1001.02

200 0.3107 0.5960 110.70 1177.03

250 0.2780 0.5186 105.37 1331.90

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

−V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
= −2.9798 < 0
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Table 2 Computational results for various values of the demand D (AC , p)

AC a b η p t∗1 T ∗ Q∗ TC∗ (
t∗1 , T ∗)

100 35,000 2.5 0.4 18 0.3783 0.7623 122.02 955.63

0.45 19 0.3324 0.6485 114.26 1094.03

0.5 20 0.2874 0.5406 106.90 1283.16

150 40,000 2.6 0.4 15 0.2087 0.3603 93.53 1864.26

0.45 16 0.1901 0.3191 90.00 2091.69

0.5 17 0.1715 0.2783 83.16 2384.21

200 45,000 2.7 0.4 13 0.1421 0.2149 79.10 3062.37

0.45 14 0.1325 0.1946 76.42 3374.50

0.5 15 0.1218 0.1721 73.10 3807.49

250 50,000 2.8 0.4 16 0.2960 0.5609 108.30 1241.64

0.45 17 0.2600 0.4766 102.40 1437.79

0.5 18 0.2268 0.4009 96.77 1686.65

Fig. 3 Effect of change in h on the optimal solution

123



Int. J. Appl. Comput. Math (2016) 2:171–193 183

Fig. 4 Effect of change in k on the optimal solution

Thus, the optimal length of the inventory interval with positive inventory t∗1 and the optimal
length of order cycle T ∗ can be obtained by solving Eqs. (11) and (12), and are given by
t∗1 = 0.4369 and T ∗ = 0.7466. Hence, the optimal order quantity per cycle is Q∗ = 124.16
and the minimum total cost per unit time is TC∗ (

t∗1 , T ∗) = 968.31.

Example 3 We consider another inventory system with the following data:
k = 850, h = 3, c = 2.5, γ = 0.08, td = 0.1522, s = 0.5, δ = 0.086, π = 2, θ =
0.2, AC = 150, η = 0.4, a = 40000, b = 2.5, p = 20 in appropriate units. Here we check
the condition

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

−V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
= 7.6604 > 0

Thus, from Theorem 2(b), the optimal length of the inventory interval with positive inventory
t∗1 = td = 0.1522 and the optimal length of the order cycle is T ∗ = 1.0197. Hence, the
optimal order quantity per cycle is Q∗ = 164.10 and the minimum total cost per unit time is
TC∗ (

t∗1 , T ∗) = 879.38.

Example 4 Let us take the data as k = 900, h = 1.5, c = 0.4, γ = 0.09, td = 0.2586, s =
0.4, δ = 0.092, π = 2, θ = 0.2, AC = 150, η = 0.4, a = 40, 000, b = 2.5, p = 20 in
appropriate units. Here we check the condition
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Fig. 5 Effect of change in c on the optimal solution

(
1 − δtd

δ

)

V [(θ td + 1) − 1] + U

δ

(

ln

[
U

U − V
(
eθ td − 1

)

])

−V

[(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− td

]

− k

D
= 3.4699 > 0

Thus, from Theorem 2(b), the optimal length of the inventory interval with positive inventory
t∗1 = td = 0.2586 and the optimal length of the order cycle is T ∗ = 0.9973. Hence, the
optimal order quantity per cycle is Q∗ = 161.49 and the minimum total cost per unit time is
TC∗ (

t∗1 , T ∗) = 936.51.

Sensitivity Analysis

In this section, we study the effect of changes in the major parameters of the system on the
optimal length of inventory interval with positive inventory t∗1 , the optimal length of order
cycle T ∗, the optimal order quantity per cycle Q∗, and the minimum total cost TC∗ (

t∗1 , T ∗)

on the optimal replenishment policy of the Example 1. We change one parameter at a time
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Fig. 6 Effect of change in γ on the optimal solution

keeping the other parameters unchanged. The sensitivity analyses are performed and the
results are summarized in Tables 1 and 2.

It is important to discuss the influence of key model parameters on the optimal solutions.
The effects of changing the parameters are shown graphically in Figs. 3, 4, 5, 6, 7, 8, 9, 10,
11, and 12. Based on these, we have the following inferences.

1. When the rate of ordering cost k increases, there is an increase in the optimal order
quantity Q∗ and decrease in the total cost TC∗.

2. Increasing the rate of holding cost h, the optimal order quantity Q∗ decreases and the
total cost TC∗ increases.

3. There is a negative change in the optimal order quantity Q∗ and a positive change in the
total cost TC∗, when the purchasing cost c increases.

4. When the rate of salvage value γ increases, the optimal order quantity Q∗ increases and
the total cost TC∗ decreases.

5. Increasing the fresh-product time td , decrease the optimal order quantity Q∗ and increases
the total cost TC∗.

6. Changes in the shortage cost s result in a negative change in the optimal order quantity
Q∗ and a positive change in the total cost TC∗.
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Fig. 7 Effect of change in td on the optimal solution

7. Increasing the backlogging parameter δ increases, the optimal order quantity Q∗ and the
cycle length while there is a decrease in the total cost TC∗.

8. When the deterioration rate θ increases, the optimal order quantity Q∗ decreases and the
total cost TC∗increases.

9. When the advertisement cost AC increases, there is a decrease in the optimal order
quantity Q∗ and increase in the total cost TC∗.

Managerial Implications

In this section, we have discussed the managerial insights from the results obtained in the
sensitivity analysis.

(a) Figures 3 and 10 shows that, the optimal length of inventory interval with positive
inventory t∗1 , the optimal length of order cycle T ∗ and the optimal order quantity Q∗
per cycle decrease, while the minimum total cost TC∗ increases with increase in the
value of the parameter h and θ . This shows that from managerial point of view, it is
reasonable that when the holding cost increases, the retailer will shorten the cycle time.
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Fig. 8 Effect of change in s on the optimal solution

If the retailer can effectively reduce the deteriorating rate of the item by improving
equipment of storehouse, the total cost will be lowered.

(b) In Fig. 9, if the backlogging parameter δ is increased then the total cost TC∗ will be
decreased and the optimal order quantity Q∗ increases. That is, in order to minimize
the cost, the retailer should increase the backlogging parameter.

(c) From Fig. 4, we infer that when the ordering cost k increases, the optimal replenishment
cycle time T ∗ significantly increases and the total cost TC∗ decreases. From the man-
agerial view point, if the ordering cost is higher, it is reasonable that the retailer lengths
the cycle time to reduce the frequency of replenishment and can marginally increases
the selling price.

(d) Increasing the salvage value parameter γ decreases the total cost TC∗ of the inventory
system. When the salvage value is incorporated into the deteriorating items, the total
inventory cost can be effectively minimized. The results obtained are shown in Fig. 6.

(e) When the length of fresh product time is decreasing, the total cost TC∗ decreases. Since
the order quantity Q∗ is reduced, automatically the holding cost of the items will also
be reduced. So, the retailer will attain minimum total cost. Figure 7 shows the variation
of the parameter td in the inventory system. Furthermore, if the retailer manages the
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Fig. 9 Effect of change in δ on the optimal solution

non-instantaneous deteriorating items instead of instantaneous deteriorating items then
their total cost will be lowered.

(f) From Table 2, it shows that when the selling price p increases, there is a marginal
increase in the total cost TC∗. The larger the value of p, the smaller value of the optimal
cycle time T ∗ and the optimal order quantity Q∗. That is, from managerial point of
view, when the unit selling price is increasing, the retailer will order less quantity more
frequently.

(g) When the advertisement cost AC is increasing, the total cost TC∗ is highly increasing
and the optimal order quantity Q∗ decreases. Figure 11 shows that the minimum adver-
tisement cost will minimize the total cost of the retailer but more advertisement cost
implies more demand as well as less ordering quantity.

(h) With increase in the value of the parameter a, b, η, from Table 2 we find that, there
is an increase in the total cost TC∗ and decrease in the optimal order quantity Q∗
and the optimal length of the replenishment cycle T ∗. Moreover, for non-instantaneous
deteriorating items, the longer the length of no-deterioration time is, the lower selling
price, while the higher order quantity per replenishment cycle time minimize the total
cost.
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Fig. 10 Effect of change in θ on the optimal solution

Special Cases

The important special cases that influence the optimal value of total cost are described as
follows:

• If we take td = 0 and δ = 0, our model reduces to the EOQmodel for instantaneous dete-
riorating items without any shortages, which becomes the model of Jaggi and Aggarwal
[7].

• If we let γ = 0, td = 0 and δ = 0, then our model reduces to the EOQ model for
instantaneous deteriorating items and complete backlogging. Hence, the derived model
reduces to that of Ghare and Schrader [1].

• Also if δ = 0 in the proposed model, i.e., B (t) = 1, we obtain the EOQ model for
non-instantaneous deteriorating items with completely backlogging.

• When δ → ∞, we have T ≈ t1 from Eq. (11). Thus, the model becomes the case without
shortages.
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Fig. 11 Effect of change in Ac on the optimal solution

Fig. 12 Graphical representation of total cost with respect to changes in major parameters of the inventory
system
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Conclusion

Based on present real-life situations, it is a common belief that a product is promoted through
advertisement to raise the demand from the customers. In this view, we have discussed a real-
istic inventory model for non-instantaneous deteriorating items with price and advertisement
dependent nature of demand. In our study, we have incorporated several realistic features.
First, allowing shortages and time proportional backlogging rate, where the backlogging rate
is considered to be a decreasing function of the waiting time for the next replenishment
is a natural phenomenon. Secondly, incorporating salvage value with the deteriorated units
will lead to minimization of the total cost. Thirdly, demand is considered as a function of
advertisement cost which is an influential factor when determining the optimal replenishment
policy. The necessary and sufficient condition for the existence and uniqueness of the opti-
mal solutions has been derived for the system. Useful theoretical results derived will help the
retailer to determine the optimal replenishment policy under various decision-making situa-
tions. Furthermore, the model proposed here is a general framework that includes numerous
previous models [1,7,8] as special cases. Finally, we provide several numerical examples
to illustrate the results obtained with some managerial insights. The outcome shows that
the retailer can reduce the total inventory cost by ordering lower order quantity, raising the
length of time in which the product has no deterioration or improving storage conditions for
non-instantaneous deteriorating items and increasing the backlogging rate.

Appendix 1

Total Cost Calculations

The total cost of the inventory system per unit time is composed of the following costs:

(a) the ordering cost per order = k
T

(b) the inventory holding cost per unit time

= h

T

{∫ td

0
I1 (t) dt +

∫ t1

td
I2 (t) dt

}

= Dh

T θ

{

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

}

(c) the cost due to deterioration per unit time

= cθ

T

∫ t1

td
I2 (t) dt = cD

T

{

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

}

(d) the shortage cost due to backlogging

= s

T

∫ T

t1
−I3 (t) dt = sD

δT

{

(T − t1) − ln [1 + δ (T − t1)]

δ

}

(e) the opportunity cost due to lost sales

= π

T

∫ T

t1
D [1 − B (T − t)] dt = πD

T

{

(T − t1) − ln [1 + δ (T − t1)]

δ

}
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(f) the salvage value of deteriorated items per unit time

= γ D

T

{

eθ(t1−td )

(

td + 1

θ

)

+ θ t2d
2

− 1

θ
− t1

}

Appendix 2

We can show graphically that, the total cost TC∗ (
t∗1,T∗) is convex. The values given in the

example 1 are plotted and the three dimensional graph obtained is given below.
See Fig. 13.

Fig. 13 Graphical representation of the total cost for Example 1
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