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Abstract In this paper, we produce numerical solution for a coupled system of partial dif-
ferential equations of fractional order (PDEFO) by the help of Bernstein polynomials. This
method reduces the coupled system of PDEFO to a system of algebraic equations which is
simple in handling and gives us good results. The accuracy of the results are examined by
examples.
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Introduction

The applications of fractional calculus can be studied in many scientific disciplines based
on mathematical modeling including physics, aerodynamics, chemistry, signal and image
processing, economics, Economics, and many others [13,16,18–20]. The applications of
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fractional calculus have caught the attention of scientists in different disciplines round the
world, see for examples [1–7,9,11,12,14,15,17,21,22].

Thenumerical solutions ofPDEFO is oneof the important andhot research areawhichhave
got a good attention of the scientists round the world [7–9,11,12,14,17,21,22].We have been
influenced by the recent contributions of the scientists [1,4,6,15,21,22] and have aimed to get
the numerical solution of the following PDEFO by the help of operational matrices of BPs:

⎧
⎨

⎩

K1
∂θ1U (x,t)

∂xθ1
+ K2

∂θ2V (x,t)
∂tθ2

= 0,

K3
∂θ2V (x,t)

∂xθ2
+ K4

∂θ1U (x,t)
∂tθ1

= 0,
(1)

with initial conditions

U (0, t) = f (t), V (0, t) = g(t).

where x, t ∈ [0, 1], θ1, θ2 ∈ (0, 1] and K1, K2, K3, K4, are constants.
In Eq. (2), Dα f (x) is the Caputo fractional derivative [7]:

Dα f (x) =

⎧
⎪⎨

⎪⎩

1
�(n−α)

∫ x
0

f (n)(t)
(x−t)1+α−n dt, n − 1 < α < n, n ∈ N,

dn

dxn
f (x), α = n.

(2)

We give some properties of fractional derivative and integral from the available resources in
[18–20]:

(i) DαC = 0, (C is a constant),

(ii) Dαxβ =
{
0, β ∈ N0, β < �α�

�(β+1)
�(1+β−α)

xβ−α, β ∈ N0, β ≥ �α� or β /∈ N0, β > �α� , (3)

(iii) IαDα f (x) = f (x) −
n−1∑

k=0

f (k)(0+)
xk

k! , n − 1 < α ≤ n, (4)

where Iα is the fractional Riemann–Liouville integral:

Iα f (x) = 1

�(α)

∫ x

0

f (t)

(x − t)1−α
dt, α > 0. (5)

Organization of our Paper In “Bernstein Polynomials and Their Properties” section, we
present BPs and approximation of functions via BPs. In “Operational Matrix for Fractional
Order Derivative of BPs” section, we describe about the operational matrices for fractional
order of BPs. In “Solution of the Coupled System by BPs” section, we develop a numerical
scheme for the coupled system (1). In “Illustrative Examples” section, Illustrative examples
are given in order to demonstrate the effectiveness and accuracy of our method.

Bernstein Polynomials and Their Properties

Definition of Bernstein Polynomials

We considered the Bernstein polynomials of the mth degree on the interval on [0, 1].
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We recall that [9]:

Bi,m(x) =
(
m

i

)

xi (1 − x)m−i , 0 ≤ i ≤ m. (6)

The following Bernstein polynomials satisfy recursive definition:

Bi,m(x) = (1 − x)Bi,m−1(x) + x Bi−1,m−1(x), i = 0, 1 . . . ,m. (7)

By using the binomial expansion of (1 − x)m−i , Bernstein polynomials can be expressed in
terms of linear combination of the basis functions

Bi,m(x) =
(
m

i

)

xi (1 − x)m−i =
(
m

i

)

xi
(
m−i∑

k=0

(−1)k
(
m − i

k

)

xk
)

=
m−i∑

k=0

(−1)k
(
m

i

)(
m − i

k

)

xi+k, i = 0, 1, . . . ,m. (8)

We can show the Bernstein polynomials by Bi,m(x) = Ai+1Tm(x), for i = 0, 1, . . . ,m,
where

Ai+1 =
[

0, 0, . . . , 0, (−1)0
(
m

i

)

, (−1)1
(
m

i

)(
m − i

1

)

, . . . , (−1)m−i
(
m

i

)(
m − i

m − i

)]

,

and

Tm(x) =

⎡

⎢
⎢
⎢
⎣

1
x
...

xm

⎤

⎥
⎥
⎥
⎦

.

Now if we introduce a (m + 1) × (m + 1) matrix A in the form:

A =

⎡

⎢
⎢
⎢
⎣

A1

A2
...

Am+1

⎤

⎥
⎥
⎥
⎦

,

where Ai for i = 1, 2, . . . ,m + 1 represent rows of the square matrix A. Then we have

�(x) = ATm(x), (9)

where�(x) = [
B0,m(x),B1,m(x), . . . ,Bm,m(x)

]T andmatrixA is an upper triangular matrix
given by:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)0
(m
0

)
(−1)1

(m
0

)(m−0
1−0

)
. . . (−1)m−0

(m
0

)(m−0
m−0

)

. . .
...

...
...

0 (−1)0
(m
i

)
. . . (−1)m−i

(m
i

)(m−i
m−i

)

...
. . .

. . .
...

0 . . . 0 (−1)0
(m
m

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and |A| = �m
i=0

(m
i

) 	= 0, so A is an invertible matrix.
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Approximation of Functions by Bernstein Polynomials

A square integrable function F(x) in the interval [0, 1] can be approximated in terms of the
basis of BPs

{
B0,m(x),B1,m(x), . . . ,Bm,m(x)

}
. Therefore, we have:

F(x) ≈
m∑

i=0

ciBi,m(x) = cT�(x), (10)

where cT = [c0, c1, . . . , cm], �T (x) = [
B0,m(x),B1,m(x), . . . ,Bm,m(x)

]
and cT can be

obtained from (10) by the relation

cT
〈
�(x),�(x)

〉
=
〈
F(x),�(x)

〉
, (11)

where

〈
F(x),�(x)

〉
=
∫ 1

0
F(x)�(x)T dx =

[〈
F(x),B0,m

〉
,
〈
F(x),B1,m(x)

〉
, . . . ,

〈
F(x),Bm,m(x)

〉]
,

(12)

and
〈
�(x),�(x)

〉
= Q is known by dual matrix of �(x). For the dual matrix we have the

following relation:

Q =
〈
�(x),�(x)

〉
=
∫ 1

0
�(x)�(x)T dx, (13)

whereQ is a symmetric (m+1)× (m+1) and is an invertible matrix whose entries are given
by the following relation

(Q)i+1, j+1 =
∫ 1

0
Bi,m(x)B j,m(x)dx

=
(
m

i

)(
m

j

)∫ 1

0
(1 − x)2m−(i+ j)xi+ j dx

=
(m
i

)(m
j

)

(2m + 1)
( 2m
i+ j

) i, j = 0, 1, . . . ,m.

ultimately by (11) and (13), we get

cT =
(∫ 1

0
f (x)φ(x)T dx

)

Q−1. (14)

We can also approximate function F(x, t) ∈ L2([0, 1] × [0, 1]) by BPs. The approxima-
tion can be carried out in this way:

F(x, t) =
m∑

j=0

m∑

i=0

ci jBi,m(x)B j,m(t) = �T (x)C�(t), (15)

where C is an (m + 1) × (m + 1) matrix given by

C =

⎡

⎢
⎢
⎢
⎣

c00 c01 . . . c0m
c10 c11 . . . c1m
...

. . .
. . .

...

cm0 cm1 . . . cmm

⎤

⎥
⎥
⎥
⎦

,
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where C can be obtained from (15) by the relation

C = Q−1
(∫ 1

0

∫ 1

0
F(x, t)�(x)�T (t)dxdt

)

Q−1. (16)

Operational Matrix for Fractional Order Derivative of BPs

In this section we get operational matrix for fractional order derivative which is followed by
the definition of fractional order derivative in Caputo’s sense that is for 0 ≤ t ≤ 1

Dα�(t) = 1

�(n − α)

∫ t

0
(t − μ)n−α−1�(n)(μ)dμ = 1

�(n − α)
tn−α−1 ∗ �(n)(t), (17)

where the operator ∗ denotes the convolution product and by (9) and (17) we can get

Dα�(t) = A
1

�(n − α)

(
tn−α−1 ∗ T (n)

m (t)
)

= ADαTm(t) = A
[
Dα1, Dαt, . . . , Dαtm

]T
.

(18)
where Dαt i is as defined in (3). Therefore we can write,

DαTm(t) = HT , (19)

where H is a square diagonal matrix of order (m + 1) × (m + 1) and T is a row matrix of
order (m + 1) × 1. The entries of these matrices are given by

H =
{

�( j+1)
�( j+1−α)

i, j = �α� , . . . ,m and i = j,

0 otherwise,
(20)

and

T =
{
0 i = 0, . . . , �α� − 1,

t i−α i = �α� , . . . ,m.
(21)

Now we approximate t i−α for i = �α� , . . . ,m with BPs by using (10) as

t i−α ≈ WT
i �m(t), (22)

where Wi is a row matrix of order (m + 1) × 1 and can be obtained by the relation

Wi = Q−1
(∫ 1

0
t i−α�m(t)dt

)

= Q−1Wi , (23)

where Wi = [
Wi,0,Wi,1, . . . ,Wi,m

]T
and

Wi, j =
∫ 1

0
t i−αBj,m(t)dt = m!�( j + i − α + 1)

j !�(i + m − α + 2)
, (24)

where i = �α� , . . . ,m and j = 0, 1, . . . ,m. Now we can assume a square matrix V of order
(m + 1) × (m + 1) having zero vectors at first �α� columns and Wi in its i th columns, for
i = �α� + 1, . . . ,m. Consequently we have

Dα�m(t) ≈ Dα�m(t), (25)

where
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Dα ≈ AHV T , (26)

is called the operational matrix of fractional order derivative for BPs.

Solution of the Coupled System by BPs

In this section we develop a numerical scheme for the Coupled System of PDEFO (1) based
on BPs. By the use of (15), we have

U (x, t) = �T (x)C1�(t), (27)

V (x, t) = �T (x)C2�(t), (28)

by the use of (25) and (27) ,(28) we have

∂θ1

∂xθ1
U (x, t) ≈

(
∂θ1

∂xθ1
�(x)

)T

C1�(t) ≈ (Dθ1�(x))T C1�(t) = �(x)T DT
θ1
C1�(t),

(29)

∂θ2

∂xθ2
V (x, t) ≈

(
∂θ2

∂xθ2
�(x)

)T

C2�(t) ≈ (Dθ2�(x))T C2�(t) = �(x)T DT
θ2
C2�(t),

(30)

∂θ1

∂tθ1
U (x, t) ≈ �(x)T C1Dθ1�(t), (31)

∂θ2

∂tθ2
V (x, t) ≈ �(x)T C2Dθ2�(t), (32)

and
U (0, t) = f (t) ≈ FT�(t), (33)

V (0, t) = g(t) ≈ GT�(t), (34)

by the use of (29)–(34), in (1) we have

K1�(x)T DT
θ1
C1�(t) + K2�(x)T C2Dθ2�(t) = 0,

K3�(x)T DT
θ2
C2�(t) + K4�(x)T C1Dθ1�(t) = 0,

(35)

with initial conditions

�(0)T C1�(t) = FT�(t), (36)

�(0)T C2�(t) = GT�(t). (37)

Also, by using Tau method [10] we can generate algebraic equations from (35) to (37) as
follows

∫ 1

0

∫ 1

0
Bi (x)�(x)T

(
K1D

T
θ1
C1 + K2C2Dθ2

)
�(t)B j (t)dxdt = 0,

∫ 1

0

∫ 1

0
Bi (x)�(x)T

(
K3D

T
θ2
C2 + K4C1Dθ1

)
�(t)B j (t)dxdt = 0,

(
�(0)T C1 − FT

)
Q = 0,

(
�(0)T C2 − GT

)
Q = 0,

(38)
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Fig. 1 Error in our approximation for U (x, t), with m = 5 and θ1, θ2 = 1
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Fig. 2 Error in our approximation for V (x, t), with m = 5 and θ1, θ2 = 1

where i = 0, 1, . . . ,m−1 and j = 0, 1, 2, . . . ,m. Solving this system of algebraic equations
for the unknown C1, C2 and putting in (27), (28) giving our required approximations.

Illustrative Examples

In this section, the applications of the prescribed technique are presented.
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Fig. 3 Plot of the approximation solutions u(x, t), with m = 3, θ1 = 1 and θ2 = 0.8, 0.9, 1
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Fig. 4 Plot of the approximation solutions v(x, t), with m = 3, θ1 = 1 and θ2 = 0.8, 0.9, 1

Example 1 Here we consider our coupled system with initial conditions f (t) = sin(t),
g(t) = cos(t) and the constants K1 = 1, K2 = 1, K3 = 1, K4 = −1. Sincewith θ1 = θ2 = 1
our system has the exact solutions forU (x, t) = ex sin(t) and V (x, t) = ex cos(t). In Figs. 1
and 2, we show the errors of obtained results for m = 5 and θ1 = θ2 = 1. So, we can see the
approximate solutions are good agreement with analytical solutions. In [15], this example
has been solved and errors in their approximate solutions for U and V have been recorded
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Fig. 5 Error in our approximation for U (x, t), with m = 3 and θ1, θ2 = 1
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Fig. 6 Error in our approximation for V (x, t), with m = 3 and θ1, θ2 = 1

by 10−3 with m = 5. While in Our results which are based on Bernstein Polynomial, are
better as compared to [15]. In present work, the errors in the approximate solutions for U ,
V are rounded by 10−4 for the same m. Also, Figs. 3 and 4 show the approximate solutions
for θ1 = 1, θ2 = 0.8, 0.9, 1 and m = 3. These figures show that for fixed θ1 = 1, as θ2
approaches close to 1, the approximate solutions approach to the solutions for θ2 = 1 as
expected.
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Fig. 7 Plot of the approximation solutions u(x, t), with m = 3, θ1 = 1 and θ2 = 0.8, 0.9, 1
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Fig. 8 Plot of the approximation solutions v(x, t), with m = 3, θ1 = 1 and θ2 = 0.8, 0.9, 1

Example 2 Here we consider our coupled system with initial conditions f (t) = −t2, g(t) =
0 and the constants K1 = 1, K2 = −1, K3 = 1, K4 = 1. Since with θ1 = θ2 = 1 our
system has the exact solutions for U (x, t) = x2 − t2 and V (x, t) = 2xt . The errors of
approximate solutions with m = 3 and θ1 = θ2 = 1 are shown in Figs. 5 and 6. The results
show the approximate solutions have high accuracy. In [15], this example has been solved
and errors in their approximate solutions for U and V have been approximated by 10−3.
While in Our results which are based on Bernstein Polynomial, are too better as compared to
[15]. In present work, the errors in the approximate solutions forU , V are rounded by 10−15.
Also, Figs. 7 and 8 show the approximate solutions for θ1 = 1, θ2 = 0.8, 0.9, 1 and m = 3.
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Similar to previous example, These figures show that for θ1 = 1, as θ2 approaches close to
1, the approximate solutions approach to the solutions for θ2 = 1 as expected.

Conclusion

In this research work, we have produced amore efficient scheme for the approximate solution
of a coupled system of PDEFO via operational matrices for fractional order based on BPs. In
this method, we get the problem to a system of algebraic equations that can be solved easily.
Numerical examples are simulated to demonstrate the high performance of the proposed
method. We observed that the results are in good agreement with the exact solution with a
low number of approximating term. Also, we saw that the solutions approach to the solutions
for problems as the order of the fractional derivative approaches to 1, for fixed m. This
procedure can be applied to many other linear and nonlinear problems in PDEFO. For the
simulations we used the software Mathematica.
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