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Abstract Product reliability is of significant importance in today’s technological world.
People rely more and more upon the sustained functioning of machinery and complex equip-
ments for purposes such as health, economic welfare, safety, to name just a few. Thus, in
a business arena, it is critical to assess the reliability of new products. In this model, a two
echelon supply chain model with variable setup cost and deterioration cost are analyzed.
The setup cost is directly proportional and the deterioration rate is inversely proportional to
reliability. Algebraical procedure has been employed to obtain the optimal solution of this
model. The objective is to minimize the total cost of the entire system by considering reli-
ability as a decision variable. Some numerical examples, sensitivity analysis, and graphical
representations are considered to illustrate the model.

Keywords Supply chain management · Reliability · Deterioration · Closed-form solution

Introduction

A supply chain management (SCM) involves the movement and storage of rawmaterials and
finished goods from point of origin to point of consumption. SCM obtains its importance in
global market and network economy as organizations rely increasingly on effective supply
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chains or networks. Recently, Cárdenas-Barrón andTreviño-Garza [1] developed an excellent
model for an optimal solution to a three echelon supply chain network. Chung et al. [2]
discussed an inventory model with non-instantaneous receipt and exponentially deteriorating
items for an integrated three layer supply chain system under two levels of trade credit policy.
Taleizadeh and Cárdenas-Barrón [3] developed ametaheuristic algorithm for SCMproblems.

In this direction, Goyal [4] developed a single supplier-single buyer integrated inventory
model. Banerjee [5] derived a joint economic lot size model for the purchaser and the vendor
with lot-for-lot policy. Hill [6] discussed a single-vendor single-buyer integrated production-
inventory model as a general policy. Viswanathan and Piplani [7] explained a coordinating
supply chain inventory through common replenishment epochs. Yang andWee [8] derived an
economic lot size model in an integrated vendor–buyer inventory system without derivatives.
Sarkar and Majumder [9] developed an integrated vendor–buyer supply chain model with
vendor’s setup cost reduction. Sarkar et al. [10] proposed a continuous review inventory
model with setup cost reduction, quality improvement, and a service level constraint. Sarkar
et al. [11] discussed an inventory model with quality improvement and setup cost reduction
under controllable lead time.

KimandHa [12] proposed a just-in-time (JIT) lot sizemodel to enhance the buyer–supplier
linkage.They explained about the single-setupmultiple-delivery (SSMD)policy.Theyproved
that SSMD policy is more effective than single-setup single-delivery (SSSD) policy. Khouja
[13] presented an optimizing inventory decisions in a multi-stage multi-customer supply
chain model. Cárdenas-Barrón [14] discussed a note on optimizing inventory decisions in a
multi-stage multi-customer supply chain model. Cárdenas-Barrón [15] developed an optimal
manufacturing batch-size with rework in a single-stage production system. Cárdenas-Barrón
[16] discussed an algebraical procedure to optimize different types of economic order quan-
tity/economic production quantity (EOQ/EPQ) model with the help of basic algebra.

Yan et al. [17] extended Kim and Ha’s [12] model with a constant deterioration rate.
Widyadana and Wee [18] developed an EPQ model for deteriorating items with preventive
maintenance policy and random machine breakdown. Teng et al. [19] derived an economic
lot size model of the integrated vendor–buyer inventory system without using any derivative.
Teng et al. [20] extended an inventory model for buyer–distributor–vendor supply chain with
backlogging without derivatives. Chung and Cárdenas-Barrón [21] found out a complete
solution procedure for the EOQ and EPQ inventory models with linear and fixed backorder
costs. Sett et al. [22] developed a two-warehouse inventory model with increasing demand
and time varying deterioration. They considered the maximum lifetime of products. Sarkar
and Saren [23] established a partial trade-credit model for retailer with exponentially deteri-
oration. Sarkar et al. [24] considered a deteriorating inventory model with trade-credit policy
for fixed lifetime products.

The process of degradation of items over time is basically perceived as deterioration.
Ghare and Schrader [25] were the first authors to consider exponential deterioration in an
inventory model. Covert and Philip [26] later discussed an EOQ model for deteriorating
items with Weibull distribution. Misra [27] proposed an optimal production lot size model
with deterioration function. Goyal [28] developed an economic ordering policy for dete-
riorating items over an infinite time horizon. Dutta and Pal [29] proposed an order-level
inventory system with a power demand pattern and variable deterioration rate. Raafat [30]
made a literature survey on continuously deteriorating inventory model. The inventory mod-
els with different types of deteriorating rates were extended by Chang and Dye [31], Skouri
and Papachristos [32], Skouri et al. [33], Sarkar [34], Sarkar et al. [35], Sarkar and Sarkar
[36–38], etc.
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Table 1 Comparison between the author’s contributions

Author(s) Name Lot size Number
of deliveries

Reliability Deterioration SSMD

Banerjee [5]
√ √ √

Yang and Wee [8]
√ √ √

Kim and Ha [9]
√ √ √

Cárdenas Barrón [15]
√ √

Yan et al. [17]
√ √ √ √

Teng et al. [19]
√ √

Goyal [28]
√ √ √ √

Skouri and Papachristos [32]
√ √ √

Sarkar et al. [35]
√ √

Sarkar and Sarkar [37]
√ √

Sarkar et al. [39]
√ √

Sarkar [42]
√ √ √ √

This paper
√ √ √ √ √

Reliability is the ability of a system to perform adequately and maintain its function under
routine circumstances. More reliability implies less deteriorating rate of the manufactured
items. Thus, the system has to be more reliable to reduce the production of defective items.
Sarkar et al. [39] explained an economic manufacturing quantity (EMQ) model with optimal
reliability, production lot size, and safety stock. Sarkar [40] explained an inventory model
with reliability in an imperfect production process. Sarkar et al. [41] developed an EMQ
model with price and time dependent demand under the effect of reliability and inflation. See
Table 1 for the contribution of our paper.

Recently, Sarkar [42] developed a SCM model with fixed setup cost and deterioration
cost which is an extension of Yan et al.’s [17] model. This study extends Sarkar’s [42]
model by considering reliability as a decision variable. Setup cost is directly proportional
and the deterioration rate is inversely proportional to the reliability. Therefore, with the
increase in reliability the setup cost increases and the deterioration rate decreases. By using
algebraical procedure, we minimize the total system cost and obtain a closed-form solution.
There is absolutely no need to use calculus. The orientation of the paper is as follows: “Model
Formulation” section contains the model formulation. In “Numerical Examples” section,
the model is illustrated by using numerical examples. Finally-in “Conclusions” section, the
conclusions and the future extensions of the model have been made.

Model Formulation

Following notation are used to develop the model.

Notation

Decision Variables

q Delivery lot size (units)
N Number of deliveries per production-batch, N ≥ 1
R Reliability
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Parameters

S Setup cost for a production batch ($/setup)
So Initial setup cost for a production batch ($/setup)
S1 Variable setup cost for a production batch ($/setup)
A Ordering cost for the buyer ($/order)
Ab Area under the buyer’s inventory level
As Area under the supplier’s inventory level time
D Demand (units/ year)
K Transportation cost per delivery ($/delivery)
d Deterioration rate
M Deterioration cost per unit ($/unit)
HCs Holding cost for the supplier ($/unit/year)
HCb Holding cost for the buyer ($/unit/year)
Q Production lot size per batch-cycle (units)
P Production rate (unit/year)
Vc Unit variable cost for order handling and receiving ($/unit)
T Duration of inventory cycle (year)
λ Proportionality constant
θ Proportionality constant
t1 Production time duration for the supplier (year)
t2 Non-production time duration for the supplier (year)
t3 Duration between the two successive deliveries (year)
TC Total cost of the system ($/year)

We consider the following assumptions to develop the model.

(1) Single type of item is produced by the production-inventory system.
(2) Setup cost S and deterioration cost M depend on the reliability parameter R.
(3) Information regarding the inventory position and demand of the buyer are given to the

supplier.
(4) Production rate is greater than demand, i.e., P > D.
(5) Handling and transportation costs are paid by the buyer.
(6) Shortage and backlogging are not considered.

A SSMD production is considered in this research. The quantity ordered by the buyer is
manufactured at a time and the ready products are delivered after a fixed time interval over
multiple deliveries in an equal amount. The splitting of the order quantity into multiple lots is
consistent with JIT implementation. The average total cost of the production-inventorymodel
is developed for the buyer’s and the supplier’s which is then minimized. Without any loss
of generality, we consider that the products arrive at the exact time when the items from the
previous delivery has just been depleted. Two inventory versus time graphs for the buyer and
the supplier, respectively are shown in Figs. 1 and 2. The total time span T is divided into two
components: t1, the production time duration for the supplier and t2, the non-production time
duration for the supplier. t3 is considered as the time duration between the two successive
deliveries. We now separately calculate the buyer’s and the supplier’s inventory cost.

Inventory Cost for the Buyer

There are three well-known conditions which must prevail for the algebraic method to be
used as an appropriate optimization method to minimize a function comprised by several
functions and each function with one and more variables. These conditions are that:
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Inventory 

Time (T) 

0 

q 

=

Fig. 1 Buyer’s inventory model. Adopted from Sarkar [42]

Inventory 

Time 

= =Prod. time =

=Non- Prod. time

Fig. 2 Supplier’s inventory model. Adopted from Sarkar [42]

(1) Functions must be positive functions;
(2) Product of the functions must be a constant;
(3) When these functions are equalized; the system of equations can be solved.

Let x be the number of deteriorating items during the time span t3, then the delivery lot
size is given by

q = x + Dt3

The delivery lot size q is divided into two components: Dt3 and x . Dt3 is for the con-
sumption and x represents the number of deteriorating items. Since the deterioration rate is
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small, its square and higher powers can be neglected. Hence, during time interval t3, x can
be treated as the deterioration of q units.

Therefore,

q = t3

(
D + dq

2

)
,

(see for instance Yan et al. [17])
and

q = T

N

(
D + dq

2

)
, because

T

N
= t3

Now

q = x + Dt3

implies

1

T
= D

Nq
+ d

2N
(1)

i.e.,

q

2
= Nq

dT
− D

d

Again the total deterioration for the buyer is obtained as

d Ab = Nq − DT

which implies

Ab =
(
Nq − DT

)
d

i.e.,

Ab

T
= q

2
(2)

We consider that the deterioration rate d is inversely proportional to reliability, i.e., d ∝ 1
R

which indicates d = θ
R . Now the relevant costs for the buyer’s are

(1) Ordering cost per unit time = A
T

(2) Holding cost per unit per unit time = HCb Ab
T

(3) Deterioration cost per unit time = MdAb
T = θMAb

RT

(4) Transportation cost and handling cost per unit time = (NK+VcNq)
T

Therefore, the buyer’s total cost function is obtained as

TCb = 1

T

[
A + HCbAb + θM

R
Ab + NK + VcNq

]

Using (1) and (2), the buyer’s total cost function becomes

TCb =
(

D

Nq
+ θ

2N R

) (
A + NK + VcNq

) + q

2

[
HCb + θM

R

]
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Inventory Cost for the Supplier

Suppose y represents the number of deteriorating units for the supplier which can be sym-
bolized as y = d As . y+dqT/2 denotes the total number of deteriorating items for the entire
SCM. We have Q = Nq + y and t1 = Q

P . Considering the initial and the total inventory for
the entire SCM, we obtain

y + dqT

2
= dT

2P

{
2Dq + (

Nq + y
)(
P − D

)}

hence,

As = y

d

= qT

(
D

P
+ N − 1

2
− DN

2P

)
(3)

We consider that the variable setup cost S1 is directly proportional to reliability R, i.e.,
S1 ∝ R. Then S can be written as S = So + λR where S1 = λR. Now the relevant costs for
the supplier’s are

(1) Setup cost per unit time = S
T = So+λR

T

(2) Holding cost per unit per unit time = HCs As
T

(3) Deterioration cost per unit time = θMAs
RT

Now the equation for the supplier’s total cost function can be written as

TCs = 1

T

(
So + λR + HCs As + θM

R
As

)

Using (1) and (3), the supplier’s total cost function is

TCs =
(

D

Nq
+ θ

2N R

) (
So + λR

) + q

(
HCs + θM

R

) (
D

P
+ N − 1

2
− DN

2P

)

Integrated Inventory Cost for the Entire SCM

The total average cost for the entire SCM is TC(q, N , R) = TCb + TCs

TC(q, N , R) =
(

D

Nq
+ θ

2N R

) [
A + (

So + λR
) + NK + VcNq

] + q

2

(
HCb + θM

R

)

+
(
HCs + θM

R

){
(2 − N )D

P
+ N − 1

}
(4)

Minimum Order Quantity

The required ordered quantity that makes the SSDM policy superior to single-delivery policy
is obtained from the savings. Substituting N = 1 in (4) and subtracting that result from (4),
we obtain

SV (q, N , R) =
(
D

q
+ θ

2R

) {
A + (

So + λR
)} (

1 − 1

N

)

+q

2

(
HCs + θM

R

)
(N − 1)

(
D

P
− 1

)
(5)
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We note that as N = 1, the saving vanishes. It can be shown that (5) is concave and
increases at a diminishing rate as the ordered quantity increases which implies that larger
ordered quantity indicates more benefit for the supplier and the buyer over a long term
contract. The minimum ordered quantity that makes the SSMD policy favorable over the
single-delivery policy is obtained by solving SV (q, N , R) ≥ 0 for q .

Therefore, SV (q, N , R) ≥ 0 gives

q2N
(
HCs R + θM

)(
D − P

) + (
A + So + λR

)
P

(
θq + 2RD

) ≥ 0 (6)

The left hand side (LHS) of the inequality is quadratic in q . Considering the equality and
solving for q (suppose, the roots are q1 and q2), the LHS of the inequality gives

q1 = 1

2N (HCs R + θM)(P − D)

{
Pθ

(
A + So + λR

)

+
√[

θ
(
A + So + λR

)
P

]2 − 8NDPR
(
HCs R + θM

)(
D − P

)(
A + So + λR

) }

Since (D−P) is always less than zero therefore, without any loss of generality, q1 acquires
a positive value.

q2 = 1

2N
(
HCs R + θM

)
(P − D)

{
− (

Pθ
(
A + So + λR

))

+
√[

θ
(
A + So + λR

)
P

]2 − 8NDPR
(
HCs R + θM

)(
D − P

)(
A + So + λR

) }

In order to find the nature of the root given by q2, we take into consideration “Descartes’
rule of signs” which indicates that the equation q2N (HCs R + θM)(D − P) + (A + So +
λR)P(θq+2DR) = 0 has only one positive real root given by q1 and hence, q2 is neglected.

From (4), we have

TC(q, N , R) = q

2

[(
HCb + θM

R

)
+

(
HCs + θM

R

) (
(2 − N )D

P
+ N − 1

)
+ Vcθ

R

]

+ 1

q

[
D

N

(
A + So + λR + NK

)] + DVc + θ

2N R

(
A + So + λR + NK

)

[See Appendix A for optimization calculation by calculus.]
When N and R are fixed, TC can be written in the symbolic form as

TC(q) = x1q + x2
q

+ x3 = x1
q

(
q −

√
x2
x1

)2

+ 2
√
x1x2 + x3

where

x1 = 1

2

[(
HCb + θM

R

)
+

(
HCs + θM

R

)(
(2 − N )D

P
+ N − 1

)
+ Vcθ

R

]

x2 =
[
D

N

(
A + So + λR + NK

)]

and

x3 = DVc + θ

2N R

(
A + So + λR + NK

)
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Now the expression f (q) = x1q + x2
q + x3 = (√

x1q
)2 +

(√
x2
q

)2 + x3 =(√
x1q −

√
x2
q

)2 + 2
√
x1x2 + x3 attains its minimum when q =

√
x2
x1
, (See for instance

Sarkar [42]) and the minimum cost is 2
√
x1x2 + x3.

Therefore, TC(q) is the minimum when

q =
√
x2
x1

=
√

2RDP
(
A + So + λR + NK

)
N

[(
PRHCb + θMP

) + (
HCs R + θM

){(
2 − N

)
D + PN − P

} + Vcθ P
]

and the minimum cost is

TC(q) = 2
√
x1x2 + x3

=
[
2

{(
HCb + θM

R

)
+

(
HCs + θM

R

) (
(2 − N )D

P
+ N − 1

)
+ Vcθ

R

}

{
D

N

(
A + So + λR + NK

)} ]1/2
+ DVc + θ

2N R

(
A + So + λR + NK

)
(7)

When q and R are fixed

TC(N ) = N
q

2

(
P − D

P

) (
HCs + θM

R

)
+ 1

N

(
D

q
+ θ

2R

) (
A + So + λR

)

+q

2

[(
HCs + θM

R

) (
2D − P

P

)
+

(
HCb + θM

R

)]

+
(
D

q
+ θ

2R

) (
K + Vcq

)
(8)

which can be written in the symbolic form as

TC(N ) = x4N + x5
N

+ x6

where

x4 = q

2

(
P − D

P

) (
HCs + θM

R

)

x5 =
(
D

q
+ θ

2R

) (
A + So + λR

)

and

x6 = q

2

[(
HCs + θM

R

)(
2D − P

P

)
+

(
HCb + θM

R

)]
+

(
D

q
+ θ

2R

) (
K + Vcq

)
.

TC(N ) is the minimum when

N =
√
x5
x4

=
√

P
(
2RD + θq

)(
A + So + λR

)
q2

(
P − D

)(
HCs R + θM

) (9)
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and the minimum cost is

TC(N ) = 2
√
x4x5 + x6

=
√
2q

(
P − D

P

)(
HCs + θM

R

) (
D

q
+ θ

2R

) (
A + So + λR

)

+q

2

[(
HCs + θM

R

) (
2D − P

P

)
+

(
HCb + θM

R

)]

+
(
D

q
+ θ

2R

) (
K + Vcq

)
(10)

When q and N are fixed

TC(R) = R
λD

Nq
+ 1

R

[
θ

2N

{
A + So + NK + VcNq

} + θMq

2

{
(2 − N )D

P
+ N

}]

+ D

Nq

{
A + So + NK + VcNq

} + θλ

2N

+q

2

[
HCb + HCs

{
(2 − N )D

P
+ N − 1

}]
(11)

The above equation can be written in the form

TC(R) = x7R + x8
R

+ x9

where

x7 = λD

Nq

x8 =
[

θ

2N

{
A + So + NK + VcNq

} + θMq

2

{
(2 − N )D

P
+ N

}]

and

x9 = D

Nq

{
A + So + NK + VcNq

} + θλ

2N

+q

2

[
HCb + HCs

{
(2 − N )D

P
+ N − 1

}]

Therefore, TC(R) is the minimum when

R =
√
x8
x7

=
√

θq
[
P

{
A + So + NK + VcNq

} + MNq
{
(2 − N )D + N P

}]
2PDλ

(12)
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and the minimum cost is

TC(R) = 2
√
x7x8 + x9

=
√
2λD

Nq

[
θ

N

{
A + So + NK + VcNq

} + θMq

{
(2 − N )D

P
+ N

}]

+ D

Nq

{
A + So + NK + VcNq

} + θλ

2N

+q

2

[
HCb + HCs

{
(2 − N )D

P
+ N − 1

}]
(13)

Optimal Interval of the Lot Size

By our assumption N , the number of deliveries per production batch-cycle, must be greater
than or equal to 1 and from the expression for optimum q, N attains its upper bound at
N = 1, i.e.,

q ≤
√

2PDR
(
A + So + λR + K

)
R
{
PHCb + DHCs

} + θ
{
M

(
D + P

) + VcP
}

As N , the number of deliveries per production batch-cycle increases, the corresponding
lot size value q decreases hence, from the equation of optimum lot size, we obtain

q ≥
√

2PDR
(
A + So + λR + NK

)
{
HCbR + θ

(
M + Vc

)}{2D + N
(
P − D

)}N
Solution Procedure

In this model, we obtain the total cost TC , the delivery lot size q , the number of deliveries
per production batch N , and the reliability parameter R. If the value of N , given by (9) is not
an integer, then we choose N in such a way which gives min{TC(N+), TC(N−)} for the
model where N+ and N− represent the closest integers larger or smaller than the optimal N∗.
We then substitute the value of N∗, q∗ and R∗ in TC(q∗, N∗, R∗) and obtain the optimal
minimal cost given by TC .

Numerical Examples

Example 1 The values of the following parameters are to be taken in appropriate units:
P = 13,000 units/year, So = $ 200/batch, HCb = $ 7/unit/year, HCs = $ 6/unit/year, D =
9000 units/year, A = $ 25/order, K = $ 10/delivery, Vc = $ 1/unit, M = $ 10/unit, θ = 0.1,
λ = 90. Then, the optimal solution is {TC = $13873.6/year, N = 12/production batch-cycle,
q = 126.82 units, R = 0.79}. See Figs. 3, 4, 5 for optimality of the cost function.

We compare our model with that of Sarkar [42] by using the same parametric values.

Example 2 The values of the following parameters are to be taken in appropriate units:
P = 10,000 units/year, So = $800/batch, HCb =$ 7/unit/year, HCs =$ 6/unit/year, D =
4800 units/year, A = $25/order, K=$ 50/delivery, Vc =$ 1/unit, M =$ 50/unit, θ = 0.02,
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Fig. 3 Total cost versus lot size and reliability when number of deliveries per production is fixed

Fig. 4 Total cost versus number of deliveries per production and reliability when lot size is fixed

Fig. 5 Total cost versus number of deliveries per production and lot size when reliability is fixed

λ = 250. Then, the optimal solution is {TC = $14,198.2/year, N = 6/production batch-
cycle, q = 246.39 units, R = 0.86}.

(In Sarkar [42] So = C, HCb = HB , HCs = HS, K = F, Vc = V , and M = Cd ).
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Table 2 Sensitivity analysis for
the key parameters

Parameters Changes (in %) Z
(
t∗1 , T ∗)

A −50 −00.53

−25 −00.26

+25 +00.26

+50 +00.52

S0 −50 −04.75

−25 −02.22

+25 +2.00

+50 +03.83

HCb −50 −01.75

−25 −0.83

+25 +0.77

+50 +1.49

HCs −50 −06.60

−25 −03.03

+25 +02.69

+50 +05.13

K −50 −03.01

−25 −01.37

+25 +01.21

+50 +02.30

Vc −50 −32.46

−25 −16.23

+25 +16.23

+50 +32.46

M −50 −01.72

−25 −00.79

+25 +00.69

+50 +01.32

Sensitivity Analysis

We now study the effects of changes in parameters such as A, S0, HCb, HCs, K , Vc, and M
on the total cost. The sensitivity analysis is performed by changing each of the parameters
by −50,−25,+25, and +50% taking one parameter at a time while keeping the remaining
parameters unchanged.

From Table 2, the discussion of sensitivity analysis of the key parameters are as follows:

• If the ordering cost increases, thenmaterial handelling cost, shipping cost, placing order’s
cost increase; as a result the total relevant cost increases. From the above table, we may
conclude that total cost is minor sensitive to changes in ordering cost.

• If the setup cost increases, then the total cost also increases. Negative change in setup
cost reduce more in total cost than the positive change in it.
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• Increasing value of holding cost increases the total cost. From Table 2, we can see that
the negative and positive change in holding cost gives approximately same amount of
change in the total cost function.

• If we increase the transportation cost, then the total cost increases.
• If the unit variable cost for order handling and receiving increases while all the other

parameters remain unchanged, the expected total cost tends to increase. From Table 2, it
can be concluded that the negative and positive change in it gives same amount of change
in total cost. This is the most sensitive cost than others in this model.

• Increase in deterioration cost indicates increase in total deteriorate items. Therefore
increasing deterioration cost increase the total cost.

Conclusions

This paper discussed the effect of reliability on setup cost and deterioration rate. An alge-
braical procedure was used to minimize the cost for the entire SCM model and obtained a
closed-form solution. The main contribution of the model was to obtain the minimum cost
with integer number of deliveries, optimal lot size, and reliability by using algebraical proce-
dure. The proposed procedure for the computation of the total cost of the SCM can be easily
done without any tedious calculation. An illustrative numerical example and a numerical
comparison of this model with that of Sarkar [42] were provided. Some graphical represen-
tations were considered to illustrate the model. We proved that our model gave more savings
than Sarkar [42]. The model is useful where the reduction of setup cost is possible and dete-
rioration is present. This model can be further extended to a multi-item production process
with variable transportation cost, demand, and deterioration rate.

Appendix

Taking fast order partial derivatives of TC(q, N , R) and equating to zero, we obtain

∂TC

∂q
= 1

2

[
Mθ

R
+ Vcθ

R
+ Cb +

(
D(2 − N )

P
+ N − 1

) (
Mθ

R
+ Cs

)]

−D(A + K N + Rλ + S0)

Nq2

= 0

⇒ q =
√

2RDP(A + So + λR + NK )

N
[(
PRHCb + θMP

) + (
HCs R + θM

){(
2 − N

)
D + PN − P

} + Vcθ P
]

∂TC

∂N
= DK

Nq
+ K θ

2N R
+ 1

2
q

(
1 − D

P

) (
Mθ

R
+ Cs

)
− D

(
A + NK + Rλ + S0

)
N 2q

− θ

2N R2

(
A + K N + rλ + S0

) = 0

⇒ N =
√

P
(
2RD + θq

)(
A + So + λR

)
q2

(
P − D

)(
HCs R + θM

)
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∂TC

∂R
= q

2

[
−Mθ

R2 − θM

R2

(
(2 − N )D

P
+ N − 1

)
− Vcθ

R2

]

+ Dλ

Nq
− θ

2N R2

(
A + S0 + NK

) = 0

⇒ R =
√

θq
[
P

{
A + So + NK + VcNq

} + MNq
{(
2 − N

)
D + N P

}]
2PDλ
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