
Int. J. Appl. Comput. Math (2016) 2:41–56
DOI 10.1007/s40819-015-0044-8

ORIGINAL PAPER

Profit Maximization Solid Transportation Problem with
Trapezoidal Interval Type-2 Fuzzy Numbers

Bimal Sinha1 · Amrit Das1 · Uttam Kumar Bera1

Published online: 19 April 2015
© Springer India Pvt. Ltd. 2015

Abstract This paper proposes a new concept on transportation problem in which, we maxi-
mize the profit andminimize the transportation timewhile transporting an amount of quantity
from a source to the destination. Here, we design two transportation models, in both the mod-
els; we maximize the profit and minimize the time of transportation. Here model-I having
the unit purchase cost, unit selling price, unit transportation cost and transportation time as
trapezoidal interval type-2 fuzzy number, while in model-II all the parameters are trapezoidal
interval type-2 fuzzy number. To reduce these model-I and model-II into crisp equivalent, we
use the expected value of a trapezoidal interval type-2 fuzzy number. Then the crisp equiva-
lent problems are solved by employing the Interactive fuzzy satisficing method and LINGO
13.0 software to get the optimal solution. A numerical example is provided to demonstrate
the models.

Keywords Profit maximization · Solid transportation problem · Type-2 fuzzy number

Introduction

In today’s highly competitive market, how and when to send the products to the customers
becoming more challenging as they want in a cost effective manner. Transportation models
provide a powerful framework to meet this challenge. The transportation problem was first
developed by Hitchcock [1]. When different modes oftransportation are available, then we
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must transport goods from sources to destinations by different ways in a cost effectivemanner
and also within the time, for this solid transportation problem is suitable. Shell [2] first stated
the solid transportation problem and Haley [3] developed a solution procedure of the solid
transportation problem. Fuzzy linear programming technique was applied to multi objective
solid transportation problem by Bit et al. [4]. As a result of this an efficient solution was
obtained.

Type-2 fuzzy sets are proposed by Zadeh et al. [5] as the generalization of type-1 fuzzy
sets. Type-2 fuzzy sets are described by both primary and secondary membership to provide
more degrees of freedom and flexibility and they are three dimensional. Therefore type-
2 fuzzy sets have the advantage of modelling uncertainty more accurately compared with
type-1 fuzzy sets. However, when the type-2 fuzzy sets are employed to solve the problems,
computational burden is heavy [6]. Hence interval type-2 fuzzy sets are extensively utilized
with some relative representations such as vertical slice representation, wavy-slice repre-
sentation to reduce dimensions, which are extremely useful for computation and theoretical
studies [7]. Interval type-2 fuzzy sets can be viewed as a special case of general type-2 fuzzy
sets that all the values of secondary membership are equal to 1. Hence it not only repre-
sents uncertainty better than type-1 fuzzy sets do, also reduces the computation compared to
type-2 fuzzy sets. Mendel et al. [6] proposed some definitions of interval type-2 fuzzy sets.
Mitchell [8] and Zeng and Li [9] designed method to calculate the similarity among interval
type-2 fuzzy sets. To reduce limitations in these methods, Wu and Mendel [10] developed a
new method named vector similarity method (VSM) to transform interval type-2 fuzzy sets
into word more effectively. Ondrej and Milos [11] employed interval type-2 fuzzy sets to
develop a fuzzy voter design for fault tolerant systems. Shu and Liang [12] proposed a new
approach based on interval type-2 fuzzy logic systems to analyze and estimate the network
lifetime for wireless sensor networks. Wu and Mendel [13] defined linguistic weighted aver-
age and employed it to deal with hierarchical multi- criteria decision making problems. Han
and Mendel [14] employed interval type-2 fuzzy numbers in choosing logistic location and
the result has been proved to be more satisfying. Chen and Lee [15] proposed the defini-
tion of possibility degree of trapezoidal interval type-2 fuzzy numbers and some arithmetic
operations.

In-spite of rapid developments of transportation models there are still some gaps, these
are summarize as follows,

• Profitmaximizationwith timeminimization in a singlemathematical formulation perhaps
not available in literature as per our knowledge.

• Solid transportation problems (STP) with interval type-2 fuzzy variables are also
rare.

• As per literature survey, use of an interactive method to solve a STP is not there.

All these important issues, that missed by the previous researchers lead us to investigate
the present study by considering all the above mentioned lacunas.

In this paper, we have considered the uncertainties in the multi-objective solid transporta-
tion problems as fuzzy. Models in fuzzy environment, we consider unit transportation cost,
time of transportation, unit selling price, unit cost price, demand and source capacity as
trapezoidal interval type-2 fuzzy number and expected value technique is being applied to
covert the fuzzy models in crisp environment. Later, Interactive fuzzy satisficing method has
been applied to solve the designed problems also a numerical example has been given to
demonstrate the models.
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Preliminaries

Interval Type-2 Fuzzy Set

Definition 1 [6]: Let Ã be a type-2 fuzzy set, then Ã can be expressed as Ã ={(
(x, u), μ Ã (x, u)

) |∀x ∈ X,∀u ∈ Jx ⊆ [0, 1] , 0 ≤ μ Ã (x, u) ≤ 1
}
, where X is the uni-

verse of discourse and μ Ã denotes the membership function of Ã. Ã can be expressed as
Ã = ∫

x∈X
∫
u∈Jx

μ Ã (x, u) /(x, u), u ∈ Jx ⊆ [0, 1].
Definition 2 [6]: For a type-2 fuzzy set Ã, if all μ Ã (x, u) = 1 then Ã is called an interval
type-2 fuzzy set, i.e., Ã = ∫

x∈X
∫
u∈Jx

1/(x, u), u ∈ Jx ⊆ [0, 1].
Definition 3 [6]: Uncertainty in the primary memberships of a type-2 fuzzy set, Ã consists
of a bounded region that we call the footprint of uncertainty (FOU ). It is the union of all
primary memberships i.e., FOU ( Ã) = ∪x∈X Jx .

FOU is characterized by the upper membership function (UMF) and the lower mem-
bership function (LMF), and are denoted by μ̄ Ã and μ

Ã
.

Definition 4 [15]: An interval type-2 fuzzy number is called a trapezoidal interval type-2
fuzzy number where the UMF and LMF are both trapezoidal fuzzy numbers, i.e.,

A = (AU , AL) =
((

aU1 , aU2 , aU3 , aU4 ; H1(A
U ), H2(A

U )
)
,

(
aL1 , aL2 , aL3 , aL4 ; H1(A

L), H2(A
L)
))

(1)

where Hj (AL) and Hj (AU )( j = 1, 2) denote membership values of the corresponding ele-
ments aLj+1 and a

U
j+1 respectively. Figure 1 gives the pictorial representation of an trapezoidal

interval type-2 fuzzy number.

Defuzzification of Trapezoidal Interval Type-2 Fuzzy Number [16]

Let us consider a trapezoidal interval type-2 fuzzy number A, given by Eq. (1). The expected
value of A is defined as follows:

E (A) = 1

2

(
1

4

4∑

i=1

(aLi + aUi )

)

× 1

4

(
2∑

i=1

(
Hi (A

L) + Hi (A
U )

)
)

(2)

Assuming that A1 and A2 are two trapezoidal interval type-2 fuzzy numbers, then we have
A1 > A2 if and only if E(A1) > E(A2).

When aLi = aUi (i = 1, 2, 3, 4) and H1(AL) = H2(AL) = H1(AU ) = H1(AU ), the

trapezoidal interval type-2 fuzzy number reduces to trapezoidal fuzzy number, just as Á =
(aL1 , aL2 , aL3 , aL4 ). The expected value of Á is E( Á) = (

aL1 + aL2 + aL3 + aL4
)
/4.

The Arithmetic Operations of Interval Type-2 Fuzzy Set [15]

Suppose A1 and A2 are two trapezoidal interval type-2 fuzzy numbers:

A1 =
(
AU
1 , AL

1

)
=

((
aU11, a

U
12, a

U
13, a

U
14; H1

(
AU
1

)
, H2

(
AU
1

))
,

(
aL11, a

L
12, a

L
13, a

L
14; H1

(
AL
1

)
, H2

(
AL
1

)))
(3)
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Fig. 1 Trapezoidal Interval Type-2 Fuzzy Number

A2 =
(
AU
2 , AL

2

)
=

((
aU21, a

U
22, a

U
23, a

U
24; H1

(
AU
2

)
, H2

(
AU
2

))
,

(
aL21, a

L
22, a

L
23, a

L
24; H1

(
AL
2

)
, H2

(
AL
2

)))
(4)

(1) A1 + A2 =
(
AU
1 , AL

1

)
+

(
AU
2 , AL

2

)

=

⎛

⎜
⎜
⎜
⎝

(
aU11 + aU21, a

U
12 + aU22, a

U
13 + aU23, a

U
14 + aU24;min

(
H1

(
AU
1

)
, H1

(
AU
2

))
,

min
(
H2

(
AU
1

)
, H2

(
AU
2

)))
,

(
aL11 + aL21, a

L
12 + aL22, a

L
13 + aL23, a

L
14 + aL24;min

(
H1

(
AL
1

)
, H1

(
AL
2

))
,

min
(
H2

(
AL
1

)
, H2

(
AL
2

)))

⎞

⎟
⎟
⎟
⎠

.

(2) A1 − A2 =
(
AU
1 , AL

1

)
−

(
AU
2 , AL

2

)

=

⎛

⎜
⎜
⎜
⎝

(
aU11 − aU21, a

U
12 − aU22, a

U
13 − aU23, a

U
14 − aU24;

min
(
H1

(
AU
1

)
, H1

(
AU
2

))
,min

(
H2

(
AU
1

)
, H2

(
AU
2

)))
,

(
aL11 − aL21, a

L
12 − aL22, a

L
13 − aL23, a

L
14 − aL24;

min
(
H1

(
AL
1

)
, H1

(
AL
2

))
,min

(
H2

(
AL
1

)
, H2

(
AL
2

)))

⎞

⎟
⎟
⎟
⎠

.

(3) A1 × A2 =
(
AU
1 , AL

1

)
×

(
AU
2 , AL

2

)

=

⎛

⎜
⎜
⎜
⎝

(
aU11 × aU21, a

U
12 × aU22, a

U
13 × aU23, a

U
14 × aU24;

min
(
H1

(
AU
1

)
, H1

(
AU
2

))
,min

(
H2

(
AU
1

)
, H2

(
AU
2

)))
,

(
aL11 × aL21, a

L
12 × aL22, a

L
13 × aL23, a

L
14 × aL24;

min
(
H1

(
AL
1

)
, H1

(
AL
2

))
,min

(
H2

(
AL
1

)
, H2

(
AL
2

)))

⎞

⎟
⎟
⎟
⎠

.

(4) k A1 =
((

kaU11, ka
U
12, ka

U
13, ka

U
14; H1

(
AU
2

)
, H2

(
AU
2

))
,

(
kaL11, ka

L
12, ka

L
13, ka

L
14; H1

(
AL
2

)
, H2

(
AL
2

)))
.

(5)
1

k
A1 =

((
1

k
aU11,

1

k
aU12,

1

k
aU13,

1

k
aU14; H1

(
AU
1

)
, H2

(
AU
1

))
,

(
1

k
aL11,

1

k
aL12,

1

k
aL13,

1

k
aL14; H1

(
AL
1

)
, H2

(
AL
1

)))
.
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Several drawbacks are found in the above arithmetic operations as shown below:
In addition and subtraction it is unreasonable to pick up the minimum membership of upper
and lower membership function respectively, because it ignores the influence of larger mem-
bership function

Example 1 Let A1 = ((1, 5, 8, 12; 0.7, 0.8), (3, 5, 7, 10; 0.5, 0.6)) and A2 = ((2, 5, 7, 8;
0.6, 0.7), (3, 4, 6, 7; 0.3, 0.5)), then we can get,

A1 + A2 = ((3, 10, 15, 20; 0.6, 0.7), (6, 9, 13, 17; 0.3, 0.5)) .

A1 − A2 = ((−1, 0, 1, 4; 0.6, 0.7), (0, 1, 1, 0; 0.3, 0.5)) .

In this way, the impact of the second trapezoidal interval fuzzy number’s membership has
been neglected.
The reciprocal influence of different trapezoidal interval type-2 fuzzy number is not taken
into consideration in the multiplication operation, and the outcome prove to be true only
when all the elements of UMF and LMF are larger than zero.

Example 2 Le A1 = ((−4,−3, 1, 3; 0.7, 0.7), (−3,−2, 1, 2; 0.6, 0.5)) and A2 = ((−3,
−2, 0, 1; 0.5, 0.8), (−2,−1,−1, 0; 0.4, 0.6)) be two trapezoidal interval type-2 fuzzy num-
bers, based on the given operation, it can be computed that

A1 × A2 = ((12, 6, 0, 3, 0.5, 0.7), (6, 2,−1, 0, 0.4, 0.5)) .

Obviously, the outcome is wrong.
The effect of value on the membership value of the element is ignored.

Example 3 Let A1 = (
(1, 2, 3, 4; 0.5, 0.8), (2, 3, 4, 6; 0.4, 0.5)) then 2A1 = (

(2, 4, 6, 8;
0.5, 0.8), (4, 6, 8, 12; 0.4, 0.5))
To address the drawbacks mentioned above, the improved arithmetic operations are defined
as follows:

Let us consider two trapezoidal interval type-2 fuzzy numbers A1 and A2 given by Eqs.
(3) and (4). Then,

1) A1 + A2 =
(
AU
1 , AL

1

)
+

(
AU
2 , AL

2

)
=

((
aU11 + aU21, a

U
12 + aU22, a

U
13 + aU23, a

U
14 + aU24;

H1

(
AU
1

)
+ H1

(
AU
2

)
− H1

(
AU
1

)
· H1

(
AU
2

)
, H2

(
AU
1

)
+ H2

(
AU
2

)

−H2

(
AU
1

)
· H2

(
AU
2

))
,
(
aL11 + aL21, a

L
12 + aL22, a

L
13 + aL23, a

L
14 + aL24; H1

(
AL
1

)

+H1

(
AL
2

)
− H1

(
AL
1

)
· H1

(
AL
2

)
, H2

(
AL
1

)
+ H2

(
AL
2

)
− H2

(
AL
1

)
· H2

(
AL
2

)))
.

2) A1 − A2 =
((

aU11 − aU24, a
U
12 − aU23, a

U
13 − aU22, a

U
14 − aU21; H1

(
AU
1

)
+ H1

(
AU
2

)

−H1

(
AU
1

)
· H1

(
AU
2

)
, H2

(
AU
1

)
+ H2

(
AU
2

)
− H2

(
AU
1

)
· H2

(
AU
2

))
,

(
aL11 − aL24, a

L
12 − aL23, a

L
13 − aL22, a

L
14 − aL21; H1

(
AL
1

)
+ H1

(
AL
2

)

−H1

(
AL
1

)
· H1

(
AL
2

)
, H2

(
AL
1

)
+ H2

(
AL
2

)
− H2

(
AL
1

)
· H2

(
AL
2

)))
.

3) A1 × A2 =
(
AU
1 , AL

1

)
×

(
AU
2 , AL

2

)

=
((

xU11, x
U
12, x

U
13, x

U
14; H1

(
AU
1

) · H1
(
AU
2

)
, H2

(
AU
1

) · H2
(
AU
2

))
,

(
x L11, x

L
12, x

L
13, x

L
14; H1

(
AL
1

) · H1
(
AL
2

)
, H2

(
AL
1

) · H2
(
AL
2

))

)

.
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where xT1i = min
(
aT1i a

T
2i , a

T
1i a

T
2(5−i), a

T
1(5−i)a

T
2i , a

T
1(5−i)a

T
2(5−i)

)
, T ∈ {U, L} , i ∈ {1, 2} and

xT1 j = max
(
aT1(5− j)a

T
2(5− j), a

T
1(5− j)a

T
2 j , a

T
1 j a

T
2(5− j), a

T
1 j a

T
2 j

)
, T ∈ {U, L} , i ∈ {3, 4}.

4) λA1 =
⎛

⎝

(
λaU11, λa

U
12, λa

U
13, λa

U
14; 1 − (

1 − H1
(
AU
1

))λ
, 1 − (

H2
(
AU
1

))λ)
,

(
λaL11, λa

L
12, λa

L
13, λa

L
14; 1 − (

1 − H1
(
AL
1

))λ
, 1 − (

H2
(
AL
1

))λ)

⎞

⎠.

3) Aλ
1 =

⎛

⎝

(
aU11

)λ
,
(
aU12

)λ
,
(
aU13

)λ
,
(
aU14

)λ ; (H1
(
AU
1

))λ
,
(
H2

(
AU
1

))λ
,

((
aL11

)λ
,
(
aL12

)λ
,
(
aL13

)λ ; (H1
(
AL
1

))λ
,
(
H2

(
AL
1

))λ)

⎞

⎠.

Interactive Fuzzy Satisficing Method [17,18]

Step-1: Each individual objective function fi (x) under the given constraints is considered
and its minimum value f min

i and maximum value f max
i for i = 1, 2, . . . .k are determined.

Step-2: Depending upon these maximum and minimum values, Decision maker (DM) spec-
ifies lower limit Li and upper limit Ui of μ fi (x) where f min

i ≤ Li ≤ Ui ≤ f max
i for

i = 1, 2, . . . , k.
Step-3: DM constructs membership functionμ fi (x) for each of the objective functions fi (x)
as in case (a) and in case (b).

Case (a): Membership function μ fi (x) for minimization type objective function is:

μ fi (x) =
⎧
⎨

⎩

1 for Li < fi (x)
1 − fi (x)−Li

Ui−Li
for Li ≤ fi (x) ≤ Ui

0 for fi (x) > Ui

(5)

Case (b): Membership function μ fi (x) for maximization type objective function is:

μ fi (x) =
⎧
⎨

⎩

0 for fi (x) < Li

1 − Ui− fi (x)
Ui−Li

for Li ≤ fi (x) ≤ Ui

1 for fi (x) > Ui

(6)

Step-(3): solve the following problem.

Minimize v

subject to, μ̄i − μ fi (x) ≤ v,

∀ i = 1, 2, . . . , k and x ∈ X

⎫
⎬

⎭
(7)

where decision maker updates reference membership levels μ̄i , ∀i = 1, 2, . . . , k through
interaction.
Step-(4): It should be noted that if an optimal solution x∗ to the problem in step-(3) is unique
then x∗ is an M-Pareto optimal solution. The uniqueness of x∗ can be tested by solving the
M-Pareto optimality test problem (below)

Maximize
k∑

i=1
εi

subject to, μ fi (x) − εi = μ fi (x∗),
x ∈ X, ε̄ = (ε2, ε2, . . . .εk)

T ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
(8)
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For the optimal solution x̄, ε̄ to problem on step-(4):

(i) If ε̄ = 0 then x∗ is an M-Pareto optimal solution of the problem defined in step-3.
(ii) If ε̄ 	= 0 then not x∗ but x̄ is an M-Pareto optimal solution of the problem defined in

step-4.

M-Pareto optimal solution: x∗ ∈ X is said to be an M-Pareto optimal solution if and
only if there does not exist another x ∈ X such that μi (zi (x)) ≥ μi (zi (x∗)) for all i and
μ j

(
z j (x)

) ≥ μ j
(
z j (x∗)

)
at least one j .

Model Formulation and Crisp Equivalences of the Models

The following notations and assumptions are used throughout the model.

Notations

• M : Number of plants of the transportation problem.
• N : Number of destinations of the transportation problem.
• K : Number of conveyances of the transportation problem.
• c̃i jk : Fuzzy unit transport cost to transport the commodity from i th plant to j th destination

by kth conveyance.
• t̃i jk : Transportation time to transport the commodity from i th plant to j th destination by

kth conveyance.
• xi jk : Unknown quantity which is to transport the commodity from i th plant to j th desti-

nation by kth conveyance (decision variable).
• ãi : Fuzzy amount of homogenous product available at the i th plant.
• b̃ j : Fuzzy demand at the j th destination.
• ẽk : Fuzzy amount of product which can be carried by the kth conveyance.
• s̃ j : The fuzzy selling price at j th destination.
• p̃i : The fuzzy purchase cost at i th plant.
• s j : The crisp selling price at j th destination.
• pi : The crisp purchase cost at i th source.
• b j : Crisp demand at the j th destination.
• ai : Crisp amount of homogenous product available at the i th source.
• ek : Crisp amount of product which can be carried by the kth conveyance.

Assumptions

• The models are unbalanced problems.
• If the unknown quantity which is to be transported from i th source to j th destination by

different mode of kth conveyances is xi jk > 0 then for the convenience of medelling we
define yi jk as follows:

yi jk =
{
1 for xi jk > 0
0 otherwise

123



48 Int. J. Appl. Comput. Math (2016) 2:41–56

Model-I: Selling Price, Purchase Cost, Unit Transportation Cost, Time are
Trapezoidal Interval Type-2 Fuzzy Numbers and Source, Demands and
Conveyance Capacities are Crisp

Max f1 =
M∑

i=1

N∑

j=1

K∑

k=1

(
s̃ j − p̃i − c̃i jk

)
xi jk (9)

Min f2 =
M∑

i=1

N∑

j=1

K∑

k=1

t̃i jk yi jk (10)

subject to,
N∑

j=1

K∑

k=1

xi jk ≤ ai (11)

M∑

i=1

K∑

k=1

xi jk ≥ b j (12)

M∑

i=1

N∑

j=1

xi jk ≤ ek (13)

xi jk ≥ 0,∀i, j, k (14)

Crisp Transformation of the Fuzzy Model-I

In model-1, selling price, purchase cost, unit transportation cost and time are trapezoidal
interval type-2 fuzzy numbers. To convert the interval type-2 fuzzy numbers into its equivalent
crisp number by finding the expectations. Therefore the type-2 fuzzy model-1 converted to
its crisp model in the following way.
The first objective function i.e., profit maximizing objective function given by Eq. (9) in
model-I become,

Max f1 =
M∑

i=1

N∑

j=1

K∑

k=1

(
s̃ j − p̃i − c̃i jk

)
xi jk

=
M∑

i=1

N∑

j=1

K∑

k=1

((
sUj , sLj

)
−

(
pUi , pLi

)
−

(
cUi jk, c

L
i jk

))
xi jk

=
M∑

i=1

N∑

j=1

K∑

k=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

((
sUj1, s

U
j2, s

U
j3, s

U
j4; H1

(
sUj

)
, H2

(
sUj

))
,

(
sLj1, s

L
j2, s

L
j3, s

L
j4; H1

(
sLj

)
, H2

(
sLj

)))
−

((
pUi1, p

U
i2, p

U
i3, p

U
i4; H1

(
pUi

)
, H2

(
pUi

))
,

(
pLi1, p

L
i2, p

L
i3, p

L
i4; H1

(
pLi

)
, H2

(
pLi

)))−
((

cUi jk1, c
U
i jk2, c

U
i jk3, c

U
i jk4; H1

(
cUi jk

)
, H2

(
cUi jk

))
,

(
cLi jk1, c

L
i jk2, c

L
i jk3, c

L
i jk4; H1

(
cLi jk

)
, H2

(
cLi jk

)))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

xi jk
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=
M∑

i=1

N∑

j=1

K∑

k=1

1

8

((
sUj1 − pUi4 − cUi jk4

)
+

(
sUj2 − pUi3 − cUi jk3

)
+

(
sUj3 − pUi2 − cUi jk2

)

+
(
sUj4 − pUi1 − cUi jk1

)
+

(
sLj1 − pLi4 − cLi jk4

)
+

(
sLj2 − pLi3 − cLi jk3

)

+
(
sLj3 − pLi2 − cLi jk2

)
+

(
sLj4 − pLi1 − cLi jk1

))

×1

4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

((
H1

(
sUj

)
+ H1

(
pUi

) − H1

(
sUj

)
H1

(
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(
cUi jk

)

−
(
H1

(
sUj

)
+ H1

(
pUi

) − H1

(
sUj

)
H1

(
pUi

))
H1

(
cUi jk

))

+
((

H2

(
sUj

)
+ H2

(
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) − H2

(
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)
H2

(
pUi

)) + H2

(
cUi jk

)

−
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(
sUj

)
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(
pUi

) − H2

(
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)
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(
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))
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(
cUi jk

))

+
((

H1

(
sLj

)
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(
pLi

) − H1

(
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)
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(
pLi

)) + H1

(
cLi jk

)

−
(
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(
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)
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(
pLi
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(
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(
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))
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(
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(
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)) + H2

(
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)

−
(
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(
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)
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(
pLi

) − H2

(
sLj

)
H2

(
pLi

))
H2

(
cLi jk

))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

And the second objective function of model-I given by Eq. (10), which minimize the total
transportation time transforms as,

Min f2 =
M∑

i=1

N∑

j=1

K∑

k=1

t̃i jk yi jk =
M∑

i=1

N∑

j=1

K∑

k=1

(
tUi jk, t

L
i jk

)
yi jk

=
M∑

i=1

N∑

j=1

K∑

k=1

((
tUi jk1, t

U
i jk2, t

U
i jk3, t

U
i jk4; H1

(
tUi jk

)
, H2

(
tUi jk

)
,

(
t Li jk1, t

L
i jk2, t

L
i jk3, t

L
i jk4; H1

(
t Li jk

)
, H2

(
t Li jk

)))
yi jk

=
M∑

i=1

N∑

j=1

K∑

k=1

(
1

8

(
tUi jk1 + tUi jk2 + tUi jk3 + tUi jk4 + t Li jk1 + t Li jk2 + t Li jk3 + t Li jk4

)

× 1

4

(
H1

(
tUi jk

)
+ H2

(
tUi jk

)
+ H1

(
t Li jk

)
+ H2

(
t Li jk

)))
yi jk

Model-II: Selling Price, Purchase Cost, Unit Transportation Cost, Time, Source,
Demands and Conveyance Capacities are Trapezoidal Interval Type-2 Fuzzy
Numbers

We formulate a MOSTP with M plants, N customers and K conveyances and all suplies,
demands, conveyances capacities, unit transportation cost, unit purchase cost, unit selling
price, time at each customer as trapezoidal interval type-2 fuzzy number as follows:

Max f1 =
M∑

i=1

N∑

j=1

K∑

k=1

(
s̃ j − p̃i − c̃i jk

)
xi jk (15)
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Min f2 =
M∑

i=1

N∑

j=1

K∑

k=1

t̃i jk yi jk (16)

subject to the constraints Eqs. (11)–(14) where ai , b j and ek are fuzzy in nature for all i, j, k.

Crisp Transformation of the Fuzzy Model-II

In model-2, all the parameters are trapezoidal interval type-2 fuzzy numbers. To convert the
interval type-2 fuzzy numbers into its equivalent crisp number by finding the expectations.
Therefore the type-2 fuzzy model -1 converted to its crisp model in the following way.
In model-II, both the objective functions Eqs. (15) and (16) are same as in model-I given by
Eqs. (9) and (10). Therefor the crisp conversions for these two objective functions are same
as of model-I (c.f. “Crisp Transformation of the Fuzzy Model-I” section).
And the fuzzy based inequality constraints are reduced as follows:

N∑

j=1

K∑

k=1

xi jk ≤ ãi (17)

Now using Eq. (2) i.e., taking expectation on both side of Eq. (17) we get,

E

⎛

⎝
N∑

j=1

K∑

k=1

xi jk

⎞

⎠ ≤ E (ãi ) (18)

⇒
N∑

j=1

K∑

k=1

xi jk .E (1) ≤ E (ãi ) (19)

since E (1) = 1, therefore the Eq. (19) become,

⇒
N∑

j=1

K∑

k=1

xi jk ≤ E (ãi )

⇒
N∑

j=1

K∑

k=1

xi jk ≤ E
((

aUi1, a
U
i2, a

U
i3, a

U
i4; H1

(
aUi

)
, H2

(
aUi

))
,

(
aLi1, a

L
i2, a

L
i3, a

L
i4; H1

(
aLi

)
, H2

(
aLi

)))

⇒
N∑

j=1

K∑

k=1

xi jk ≤ 1

8

(
aUi1 + aUi2 + aUi3 + aUi4 + aLi1 + aLi2 + aLi3 + aLi4

)

×1

4

(
H1

(
aUi

)
+ H2

(
aUi

)
+ H1

(
aLi

)
+ H2

(
aLi

))

In the same way the other two fuzzy based inequality constraints of model-II converts to its
equivalent form given by Eqs. (20) and (21) below.

N∑

j=1

K∑

k=1

xi jk ≥ 1

8

(
bUj1 + bUj2 + bUj3 + bUj4 + bLj1 + bLj2 + bLj3 + bLj4

)

×1

4

(
H1

(
bUj

)
+ H2

(
bUj

)
+ H1

(
bLj

)
+ H2

(
bLj

))
(20)
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M∑

i=1

N∑

j=1

xi jk ≤ 1

8

(
eUk1 + eUk2 + eUk3 + eUk4 + eLk1 + eLk2 + eLk3 + eLk4

)

×1

4

(
H1

(
eUk

)
+ H2

(
eUk

)
+ H1

(
eLk

)
+ H2

(
eLk

))
(21)

Numerical Illustration

To solve the proposed model-I and model-II, we use the following numerical data given by
the Table 1 and Table 2 respectively.

Optimal Results of Model-I and Model-II

With the data given by the Tables 1 and 2, both the model-I and model-II are solved by
employing the Interactive fuzzy satisficing technique and results are obtained which are
presented in Tables 3 and 4 respectively.

Discussion and Managerial Insight

From theTable 4, it observed that, the objective value f1 and f2 for themodel-II is greater than
the objective value ofmodel-I. For profitmaximization problem themaximumobjective value
gives the maximum profit, which implies the model-II gives the maximum profit compare
to the model-I. So it is clear that for a profit maximization solid transportation problem the
profit become maximum when the parameters of transportation are fuzzy in nature.

This present investigation in field of transporting amount from its source point to the
different destinations using different mode of transportation, reveals that the model-II is
more acceptable compare to the model-I. In model-II, we have all the parameters as interval
type-2 fuzzy numberwhereas inmodel-I the parameters of the objective functions are interval
type-2 fuzzy in nature and the capacities of source, demand and conveyance considered as
crisp. In real life the uncertainty occurs often is transportation system. In such situation the
decision makers (DM) will be profitable by the present investigation.

Comparison with Earlier Work

As per literature survey solid transportation problem with profit maximization case is very
rare. Also in most of the previous work researcher have investigated cost minimization. But
in our investigation, we havemaximize the profit. These two things are opposite to each other.
So comparison between this two is not likely. Another thing, in our research we have attempt
for the first time a profit maximizing and time minimizing solid transportation problem with
trapezoidal interval type-2 fuzzy sets. Ultimately this work is totally a new investigation
towards this fields as per our knowledge.

Conclusions and Future Scope

In this paper, we formulate a solid transportation problem with supply, demand, conveyance
capacity, unit selling price, unit purchase cost, unit transportation cost and time of transporta-
tion are all considered as trapezoidal interval type-2 fuzzy numbers. And most important fact
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Table 2 Inputs for different parameters of solid transportation problem, model-I and model-II

Model-I Model-II

Crisp source capacity Fuzzy source capacity

a1 = 32 a2 = 29 ã1 = ((60, 50, 60, 50; 0.98, 0.99), (70, 60, 50, 80; 0.97, 0.98))
ã2 = ((80, 95, 70, 90; 0.96, 0.99), (90, 80, 100, 110; 0.97, 0.99))

Crisp demand capacity Fuzzy demand capacity

b1 = 17 b2 = 18 b̃1 = ((90, 50, 70, 70; 0.95, 0.98), (90, 80, 80, 90; 0.97, 0.99))
b̃2 = ((70, 70, 60, 90; 0.94, 0.99), (60, 70, 80, 50; 0.96, 0.97))

Crisp conveyance capacity Fuzzy conveyance capacity

e1 = 12 e2 = 11 e3 = 12 ẽ1 = ((60, 50, 40, 40; 0.92, 0.93), (40, 40, 70, 50; 0.91, 0.99))
ẽ2 = ((30, 40, 40, 50; 0.90, 0.98), (40, 40, 30, 50; 0.98, 0.99))
ẽ3 = ((50, 60, 60, 70; 0.95, 0.99), (50, 60, 60, 70; 0.94, 0.99))

Table 3 Iterations for the both
models

Iterations μ̄1 μ̄2 f1 f2

Iterations for the model-I

1 1 0.6 3533 8.8

2 0.6 0.5 3394 9

3 0.9 0.1 3494.111 11.7

Iterations for the model-II

1 1 0.6 14361.64 16.39997

2 0.8 0.7 14506.81 14.59997

3 0.9 0.7 14573.84 14.89999

Table 4 Optimal results for the
model-I and model-II (M-Pareto
optimal solution)

Model-I Model-II

ε1 0.3803696 0.1805434

ε2 0.7907322 0.3394468

f1 3368.872 14798.75

f2 8.1 12.7

x111 0 47.55247

x211 12 0

x121 0 0

x221 0 0

x112 1.512847 6.821629

x212 3.485153 8.575894

x122 0 0

x222 6 24.60248

x113 0 5.623468

x213 0 10.22678

x123 12 0

x223 0 44.14782
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about this problem is that, it is having two objective functions, one is to maximize the profit
while the other is to minimize the transportation time. The transportation problem so formu-
lated is being solved by employing the Interactive Fuzzy Satisficing Method. In the present
study the problems were solved using LINGO 13.0 software.
The main aspects of this research in the field of solid transportation problem can be summa-
rized as follows.

• As far as known, it is being the first attempt to formulate such type of a solid transportation
problem involving profit maximization and time minimization.

• Solution is based on an interactive satisficing method, which is a new approach for
solution of such type of problems.

• Interval type-2 fuzzy values give more precise values than the general type-1 fuzzy
values. Thus DM is able to take more appropriate precise decisions with the help of
present analysis.

From here, one can think of applying this concept and formulate new solid transportation
such as, to maximize profit, minimize transportation time and having budget constraint,
deteriorating item, price discount and also one can consider the safety factor and so on.
Also this model can be solved in various environments like rough environment, fuzzy rough
environment, intuitionistic fuzzy environment etc.

Appendix

Defuzzification of Trapezoidal Interval Type-2 Fuzzy Number

A trapezoidal interval type-2 fuzzy number, denoted by A, is expressed as follows:

A =
(
AU , AL

)
=

((
aU1 , aU2 , aU3 , aU4 ; H1

(
AU

)
, H2

(
AU

))
,

(
aL1 , aL2 , aL3 , aL4 ; H1

(
AL

)
, H2

(
AL

)))
,

then the expected value of A defined as follows:

E (A) = 1

2

(
1

4

4∑

i=1

(
aLi + aUi

)
)

× 1

4

(
2∑

i=1

(
Hi

(
AL

)
+ Hi

(
AU

))
)

Proof Let us consider a trapezoidal fuzzy number, as Á = (aL1 , aL2 , aL3 , aL4 ). Then the
expected value of Á is E( Á) = (

aL1 + aL2 + aL3 + aL4
)
/4 .

Now, ( Á) =
(
aL1 + aL2 + aL3 + aL4

)
/4. (when only one trapezoidal number is considered)

= 1

2

[
1

4
.2

(
aL1 + aL2 + aL3 + aL4

)
.
1

4
.4

= 1

2

[
1

4

(
2aL1 + 2aL2 + 2aL3 + 2aL4

)]
.
1

4
.(1 + 1 + 1 + 1)

= 1

2

[
1

4

(
aL1 + aU1 + aL2 + aU2 + aL3 + aU3 + aL4 + aU4

)]
.
1

4
.
(
H1(A

L ) + H1(A
U )

+H2(A
L ) + H2(A

U )
)
(when two different trapezoidal numbers are considered)
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= 1

2

(
1

4

∑4

i=1

(
aLi + aUi

))
× 1

4

(∑2

i=1

(
Hi

(
AL

)
+ Hi

(
AU

)))

[since aLi 	= aUi (i = 1, 2, 3, 4)) and H1

(
AL

)
	= H2

(
AL

)
	= H1

(
AU

)
	= H1

(
AU

)]

Defuzzification of Triangular Interval Type-2 Fuzzy Number

A triangular interval type-2 fuzzy number, denoted by A, is expressed as follows:

A = (AU , AL) = ((aU1 , aU2 , aU3 ; H1(A
U )), (aL1 , aL2 , aL3 ; H1(A

L))),

then the expected value of A defined as follows:

E (A) = 1

8

⎛

⎝
∑

i=1,3

(
aLi + aUi

)
+ 2

(
aL2 + aU2

)
⎞

⎠ × 1

2

(
H1

(
AL

)
+ H1

(
AU

))

Proof Let us consider a triangular fuzzy number, as Á = (
aL1 , aL2 , aL3

)
. Then the expected

value of Á is E( Á) = (aL1 + 2aL2 + aL3 )/4 .

Now, ( Á) =
(
aL1 + 2aL2 + aL3

)
/4. (when only one triangular number is considered)

= 1

8

[
2
(
aL1 + 2aL2 + aL3

)
.
1

2
.2

= 1

8

[(
2aL1 + 4aL2 + 2aL3

)]
.
1

4
.(1 + 1)

= 1

8

[(
aL1 + aU1 + 2aL2 + 2aU2 + aL3 + aU3

)]
.
1

2

(
H1

(
AL

)

+H1

(
AU

))
(when two different trapezoidal numbers are considered)

= 1

8

(∑

i=1,3

(
aLi + aUi

)
+ 2

(
aL2 + aU2

))
× 1

2

(
H1

(
AL

)
+ H1

(
AU

))

[since aLi 	= aUi (i = 1, 2, 3)) and H1

(
AL

)
	= H1

(
AU

)]
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