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Abstract In this paper classical Lie group of transformations are used to obtain an exact par-
ticular solution to the equations of non-idealmagnetogasdynamics,which exhibits space-time
dependence. Appropriate canonical variables are characterized that transform the governing
system to an equivalent autonomous form, the autonomous system is solved explicitly to
obtain exact particular solution of the original system. The particular solution to the gov-
erning system, which exhibits space-time dependence, is used to study the evolutionary
behaviour of the weak discontinuities.
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Introduction

The investigation of the exact particular solutions of the nonlinear system of partial dif-
ferential equations (PDEs) plays important role to provide useful information towards our
understanding of the complex physical phenomenon involved. Special exact solutions of the
system of nonlinear PDEs are of great interest; these solutions play a major role in designing,
analyzing and testing numerical methods for solving special initial and/or boundary-value
problems. Lie’s method provide an efficient way of finding exact particular solutions of non-
linear PDEs (see Ames [1], Bluman and Cole [2] and Bluman andKumei [3]). Using classical
or non-classical Lie-symmetries we are able to obtain a large class of similarity solutions to
the nonlinear evolution equations. Besides similarity methods, another use of Lie symme-
tries admitted by given PDEs consists in introducing some invertible point transformations
that map the original system to an equivalent one, admitting special solutions [4]. Using this
procedure, Donato and Oliveri [5] obtained exact solutions to axisymmetric MHD equations,
Pandey et al. [6] and Pandey [7] obtained exact solutions of magnetogasdynamic equations
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and perfect gas involving shocks, Raja Sekhar and Sharma obtained similarity solutions of
the modified shallow water equations and discussed Riemann problem in the case of ideal
magnetogasdynamics (see, [8] and [9]). In [10] various classes of exact solutions to ideal
magnetogasdynamic equation of a perfect gases are determined by introducing some trans-
formations, referred to as substitution principle, that map the given equations to an equivalent
form. In [11] new similarity solutions of the Boiti–Leon–Pempinelli system are obtained.
For non-ideal and magnetogasdynamic flows the author refers to the research papers [12,13]
and [14], and for nonlinear wave propagation in quasilinear hyperbolic systems, the reader
is refer to the book by Sharma [15].

In present paper, we have used Lie’s method to obtain exact solution to the equations of
non-ideal magnetogasdynamics. The Lie group of transformations admitted by the govern-
ing system are obtained using the procedure outlined in [2] and [3]. The symmetries at hand
enables us to reduce the governing system to an equivalent form through the use appropriate
canonical variables. The equivalent system is then solved which yield exact particular solu-
tion, that exhibits space-time dependence, to the original system [4]. The exact particular
solution of the governing system, which exhibits space-time dependence, is used to study the
evolution of the weak discontinuities. The influence of magnetic field strength and the van
der Waals excluded volume on the evolution of the discontinuity wave are studied in detail.

Basic Equations and Lie Group Analysis

Assuming the electrical conductivity to be infinite and the direction of magnetic field orthog-
onal to the trajectories of the gas particles, the basic equations for the one-dimensional
cylindrically symmetric motion in magnetogasdynamics, can be written in the form

ρt + uρx + ρux + ρu

x
= 0,

ut + uux + ρ−1(px + hx ) = 0,

pt + upx + ρa2
(
ux + u

x

)
= 0,

ht + uhx + 2hux + 2hu

x
= 0,

(1)

where ρ is the density, u the particle velocity in the x-direction being radial in cylindrically
symmetric flows, p the pressure, h the magnetic pressure defined as h = μH2/2 with μ as

magnetic permeability and H the axial magnetic field; the entity a =
(

γ p

ρ(1 − bρ)

)1/2

is the

equilibrium speed of sound with γ as the specific heats ratio lying in the region 1 < γ < 2
and b is the van der Waals excluded volume. The equation of state is given by

p(1 − bρ) = ρRT,

where R and T are respectively the gas constant and the temperature. Equations (1) are a
quasilinear system of first order PDEs with two independent variables and four dependent
variables. In order to determine a similarity solution, we seek a one parameter Lie group of
transformation

t∗ = t + εξ1(x, t, ρ, u, p, h) + O(ε2), x∗ = x + εξ2(x, t, ρ, u, p, h) + O(ε2),

ρ∗ = ρ + εφ1(x, t, ρ, u, p, h) + O(ε2), u∗ = u + εφ2(x, t, ρ, u, p, h) + O(ε2), (2)

p∗ = p + εφ3(x, t, ρ, u, p, h) + O(ε2), h∗ = h + εφ4(x, t, ρ, u, p, h) + O(ε2),
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where the infinitesimals ξ1, ξ2, φ1, φ2, φ3 and φ4 are to be determined in such a way the
system (1), are invariant with respect to the transformations (2). We introduce the notation
x1 = t, x2 = x, u1 = ρ, u2 = u, u3 = p, u4 = h and Pi

j = ∂ui
∂x j

, where i = 1, 2, 3, 4 and
j = 1, 2. The system (1) which can be represented as

Gr (x j , ui , P
i
j ) = 0, r = 1, 2, 3, 4 (3)

is said to be invariant under the infinitesimal group of transformations (2) if and only if

YGr = 0, whenGr = 0, r = 1, 2, 3, 4 (4)

where Y is the extended infinitesimal operator of the group of transformations (2) and is
given by

Y = ξ j ∂

∂x j
+ ηi

∂

∂ui
+ β i

j
∂

∂Pi
j

, (5)

with ξ1 = ξ1, ξ2 = ξ2, η1 = φ1, η2 = φ2, η3 = φ3, η4 = φ4 and

β i
j = ∂ηi

∂x j
+ ∂ηi

∂uk
Pk
j − ∂ξ l

∂x j
Pi
l − ∂ξ l

∂xn
Pi
l P

n
j , (6)

where i = 1, 2, 3, 4; j = 1, 2; k = 1, 2, 3, 4; l = 1, 2; and n = 1, 2, 3, 4. Here repeated
indices imply summation convention.
Equation (4) implies

ξ j ∂Gr

∂x j
+ ηi

∂Gr

∂ui
+ β i

j
∂Gr

∂Pi
j

= 0 when Gr = 0, r = 1, 2, 3, 4. (7)

Substitution of β i
j from (6) into (7) yields an identity in Pk

j and Pi
l P

n
j ; hence we equate to

zero the coefficients of Pk
j and Pi

l P
n
j to obtain a system of first-order linear partial differential

equations in the infinitesimals ξ1, ξ2, φ1, φ2, φ3 and φ4. This system, called the system of
determining equations of the group of transformations, is solved to find the invariance group
of transformations.

We apply the abovementioned procedure to the system (1); it is found that a one-parameter
Lie group of transformations that leaves the system (1) invariant has the following infinites-
imal operators,

X1 = 2x
∂

∂x
+ t

∂

∂t
+ u

∂

∂u
+ 2p

∂

∂p
+ 2h

∂

∂h
,

X2 = x
∂

∂x
+ u

∂

∂u
+ 2p

∂

∂p
+ 2h

∂

∂h
,

X3 = ∂

∂t
.

For the above infinitesimal generators we have the following commutator table:

X1 X2 X3

X1 0 0 −X3
X2 0 0 0
X3 X3 0 0
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Exact Solutions

The knowledge of the Lie point symmetries admitted by a system of PDEs may be employed
to characterize classes of invariant solutions.But, onemay look for the introduction of suitable
transformations allowingone tomap the given systemofPDEs to an equivalent form forwhich
classes of exact solutions may be found. Let us now consider the infinitesimal generators
X1 and X2 admitted by the system (1), from the commutator table it can be verified that the
infinitesimal generators X1 and X2 commute, that is,

[X1, X2] = X1 X2 − X2X1 = 0,

which means that the operators X1 and X2 generates a 2-dimensional abelian sub-algebra.
Since the system is invariant under the group generated by X1, we introduce a set of canonical
variables, defined by,

X1τ̃ = 1, X1η̃ = 0, X1 S̃ = 0, X1Ũ = 0, X1 P̃ = 0, X1 R̃ = 0. (8)

The characteristic conditions associated with (8) yield the following transformations of vari-
ables

τ̃ = ln t, η̃ = x

t2
, S̃ = ρ, Ũ = u

1

t
, P̃ = p

1

t2
, R̃ = h

1

t2
. (9)

We now express X2 in terms of the new variables, and choose a second set of canonical
variables τ, η, S, U, P and R, allowing one to express the generator as translation in η to
obtain following transformation in the flow variables :

τ = ln t, η = ln
x

t2
, ρ = S(τ, η), u = x

t
U (τ, η), p = x2

t2
P(τ, η),

h = x2

t2
R(τ, η), (10)

to the following autonomous form, (see [4,6]):

∂S

∂τ
+ (U − 2)

∂S

∂η
+ S

∂U

∂η
+ 2SU = 0,

S
∂U

∂τ
+ S(U − 2)

∂U

∂η
+ ∂P

∂η
+ ∂R

∂η
+ 2P + 2R + 2SU (U − 1) = 0,

∂P

∂τ
+ (U − 2)

∂P

∂η
+ γ P

1 − bS

(
∂U

∂η
+ 2U

)
+ 2P(U − 1) = 0,

∂R

∂τ
+ (U − 2)

∂R

∂η
+ 2R

(
∂U

∂η
+ 2U

)
+ 2R(U − 1) = 0.

(11)

It may be noted that unlike the original system (1), the autonomous system (11) can be solved
completely when U ≡ constant. Thus, when U = U0, the first third and the fourth of the
equations (11) yield

S = S̃0(ζ ) exp(−2U0τ), P = P̃0(ζ )
exp(2(U0 − 1)τ )

(exp(2U0τ) − bS0(ζ ))γ
,

R = R̃0(ζ ) exp((2 − 6U0)τ ), (12)

where S̃0(ζ ), P̃0(ζ ) and R̃0(ζ ) are arbitrary function of ζ defined by

ζ = τ − 1

U0 − 2
η.

123



Int. J. Appl. Comput. Math (2015) 1:257–265 261

Using (12) into the second of the equations (11)we get the following compatibility condition:

exp(2(U0 − 1)τ )

(exp(2U0τ) − bS̃0(ζ ))γ

{
− 1

(U0 − 2)
P̃ ′
0(ζ )

+P̃0(ζ )

(
2 − γ bS̃′

0(ζ )

(U0 − 2)(exp(2U0τ) − bS̃0(ζ ))γ

)}

− exp((2 − 6U0)τ )

(
1

(U0 − 2)
R̃′
0(ζ ) + 2R̃0(ζ )

)
2S̃0U0(U0 − 1) = 0. (13)

Particular solution:When S̃0(ζ ) = constant (say, S0) and U0 = 1, we have from (13)

P̃ ′
0(ζ ) + 2 P̃0(ζ ) = 0 and R̃′

0(ζ ) + 2R̃0(ζ ) = 0,

which on solving gives

P̃0(ζ ) = P0 exp (−2ζ ) , R̃0(ζ ) = R0 exp (−2ζ ) , (14)

where P0 and R0 are arbitrary constant. Thus, in view of the equations (10), (12) and (14),
the solution of the system (1) can be expressed as follows (in dimensionless form ):

ρ(t, x) = ρ̂

(
t

t0

)−2

, u(t, x) = x

t
, p(x, t) = p̂(

(t/t0)2 − bρ̂
)γ , h = ĥ

(
t

t0

)−4

, (15)

where ρ̂, p̂ and ĥ are some reference constant values. In the absence of real gas i.e., b = 0,
the solution obtained here is same as that obtained in [5] and [10]. In the above particular
solution, the particle velocity exhibits linear dependence on the spatial coordinate, such a
state has been discussed by Pert [16], Sharma et al. [17] and Clarke [18]; Pert showed that
such a form of the velocity distribution is useful in modelling the free expansion of polytropic
gases, and it is attained in the limit of large time.

Evolution of the Weak Discontinuity

The governing system (1) can be written in the form

Vt + AVx = B, (16)

where V = (ρ, u, p, h)tr , B = (−ρu/x, 0,−γ pu/x, 2hu/x)tr

A =

⎛
⎜⎜⎝
u ρ 0 0
0 u ρ−1 ρ−1

0 ρa2 u 0
0 2h 0 u

⎞
⎟⎟⎠ .

The matrix A has the following eigenvalues

λ(1) = u + C, λ(2) = u (double root), λ(3) = u − C (17)

with the corresponding left and right eigenvectors may be written as follows:
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(a) (b)

(c)

Fig. 1 Evolution of C1 discontinuity wave influenced by the van der Waals excluded volume b, b = 0.1
(dashed line), b = 0.8 (dotted line). a discussed the behaviour when π0 > 0, b when −πc ≤ π0 < 0, while
c when π0 < −πc < 0

l(1) = (0, ρC, 1, 1), d(1) = (
ρC−1, 1, ρa2C−1, 2hC−1)tr ,

l(2,1) = (a2, 0,−1, 0), d(2,1) = (1, 0, 0, 0)tr ,

l(2,2) = (
0, 0,−2h, ρa2

)
, d(2,2) = (0, 0, 1,−1)tr ,

l(3) = (0,−ρC, 1, 1), d(3) = (−ρC−1, 1,−ρa2C−1,−2hC−1)tr ,

(18)

where a = (γ p/ρ)1/2 is the sound speed,C = (a2 + k2)
1/2

the magneto-acoustic speed
with, k = (2h/ρ)1/2 as the Alfven speed.
Let us consider that the C1 discontinuity is propagating along the characteristic curve deter-
mined by dx/dt = λ(1) originating from the point (x0, t0), then the transport equation for
the C1 discontinuity is given by (see [19–21] and [22])

l(1)
{
d�

dt
+ (Vx + �)

(
∇λ(1)

)
�

}
+

((
∇l(1)

)
�

)tr dV
dt

+
(
l(1)�

) ((
∇λ(1)

)
Vx + λ(1)

x

)

−
(
∇

(
l(1)B

))
� = 0, (19)

where �, which denotes the jump in Ux across the C1 discontinuity, is collinear to the right
eigenvector d(1), that is, � = π̃(t)d(1) with π̃(t) as the amplitude of the C1 wave. Using
(16), (17), (18), and (15) in (19), we obtain the following transport equation for the wave
amplitude:
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(c)

(a) (b)

Fig. 2 Evolution ofC1 discontinuity wave influenced by the magnetic field ĥ, ĥ = 0.1 (dashed line), ĥ = 0.8
(dotted line). a discussed the behaviour when π0 > 0, b when −πc ≤ π0 < 0, while c when π0 < −πc < 0

dπ

dτ
+ �1(τ )π2 + �2(τ, x)π = 0,

dx

dτ
= x

τ
+ f1(τ ), (20)

where π, τ,�1 and �2 are dimensionless quantities defined by π = π̃ t0, τ = t/t0,

�1(τ ) = γ (γ + 1) p̂τ 8(τ 2 − bρ̂)−(γ+1) + 6ĥ(τ 2 − bρ̂)

2γ p̂τ 6(τ 2 − bρ̂)−γ + 4ĥτ 2 − 2b p̂ĥ
,

�2(τ, x) = − 1

2x
f1(τ ) + f2(τ )

f3(τ )
,

f1(τ ) =
√

γ p̂τ 6
(
τ 2 − bρ̂

)−(γ+1) + 2ĥ

ρ̂τ 2
,

f2(τ ) = 6ĥ − γ p̂τ 8
(
τ 2 − bρ̂

)−(γ+2)
(
2γ − 7 − 2bρ̂

τ 2

)
,

f3(τ ) = τ
(
2ĥ + γ p̂τ 6

(
τ 2 − bρ̂

)−(γ+1)
)

.

The transport equations (20) has a solution of the form π(τ) = π0K1(τ )/(1+π0K2(τ )),

where K1(τ ) = exp(− ∫ τ

1 �2(x(s), s)ds) and K2(τ ) = ∫ τ

1 �1(s
′
)ds

′
(
∫ s

′
1 −�2(x(s), s)ds)

ds
′
. Both the integrals are finite and continuous in [1,∞) for the functions �1 and �2. It

then follows that an expansion wave (that is, π0 > 0) decays and dies out eventually; the
corresponding situation is illustrated by the curves in Fig. 1(a) and Fig 2(a), which shows
that the real gas and the magnetic field effects serve to enhance the decaying rate. However,
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a compression wave (that is, π0 < 0) culminates into a shock in a finite time only when
the magnitude of the initial amplitude is greater than a critical value πc. The corresponding
situation is illustrated by curves in the Fig. 1(b), Fig 1(c), Fig. 2(b) and Fig. 2(c). It is shown
that the real gas effects serves to hasten the onset of the shock that however the magnetic
field resists the shock formation in the sense that the effect of magnetic field is to enhance
the shock formation time (see, Fig. 1(c) and 2(c)). The computed results are in agreement
with the analytical results (see, Courant and Friedrichs [23]).

Conclusion

Exact particular solution to the equations of non-ideal magnetogasdynamics are obtained
using the invariance of the system under one parameter Lie group of continuous transfor-
mations with commuting generators. The solution obtained is used to study the evolutionary
behaviour of the C1 discontinuity waves. The effect of van-der Waals excluded volume
and the magnetic field strength on the behaviour of these discontinuity waves is studied in
detail and some interesting out comes are obtained such as, an increase in the van der Waals
excluded volume serves to hasten the onset of a shock wave while the magnetic field strength
has an opposite effect in the shock formation i.e., an increase in the magnetic field strength
delays the shock formation time. However, when (π0 > 0) and −πc ≤ π0 < 0 in both the
cases the wave decays eventually and an increase in b and ĥ enhances the decaying of the
weak discontinuities. To the best of my knowledge such a study in the case of non-ideal
magnetogasdynamics has not be done previously.
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