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Abstract A finite difference analysis of the entrance region flow of Herschel–Bulkley flu-
ids in concentric annuli with rotating inner wall has been carried out. The analysis is made
for simultaneously developing hydrodynamic boundary layer in concentric annuli with the
inner cylinder assumed to be rotating with a constant angular velocity and the outer cylin-
der being stationary. A finite difference analysis is used to obtain the velocity distributions
and pressure variations along the radial direction. With the Prandtl boundary layer assump-
tions, the continuity and momentum equations are solved iteratively using a finite difference
method. Computational results are obtained for various non-Newtonian flow parameters and
geometrical considerations. A significant asymmetry is found in the entrance region which is
gradually reduced as the flow develops. For smaller values of aspect ratio and higher values
of Herschel–Bulkley number the flow is found to stabilize more gradually. Comparison of
the present results with the results available in literature for various particular cases has been
done and found to be in agreement.

Keywords Concentric annuli · Herschel–Bulkley fluid · Entrance region flow ·
Finite difference method · Rotating wall
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R, Z Dimensionless coordinates in the radial and axial directions, respectively
R1, R2 Radius of the inner and outer cylinders, respectively
Yh Herschel–Bulkley number
Re, Ta Modified Reynolds number and Taylor number respectively
N Aspect ratio of the annulus
u, v, and w Velocity components in z, r, θ directions, respectively
u0 Uniform inlet velocity
U, V, W Dimensionless velocity components
ρ Density of the fluid
μ Apparent viscosity of the model
μr Reference viscosity
μ Dimensionless apparent viscosity
ω Regular angular velocity
�R,�Z Mesh sizes in the radial and axial directions, respectively.

Introduction

The problem of entrance region flow in concentric annuli with rotating inner wall for non-
Newtonian fluids is of practical importance in engineering applications such as the design
of cooling systems for electric machines, compact rotary heat exchangers and combustion
chambers, axial-flow turbo machinery and polymer processing industries. In the nuclear
reactor field, laminar flow conditions occur when the coolant flow rates are reduced during
periods of low power operation. Many important industrial fluids are non-Newtonian in their
flow characteristics and are referred to as rheological fluids. These include blood, various
suspensions such as coalwater or coal-oil slurries, glues, inks, foods, polymer solutions,
paints and many others. The fluid considered here is the Herschel–Bulkley model, which is
the most frequently used one in non-Newtonian fluid flow problems.

The problem of entrance region flow of non-Newtonian fluids in an annular cylinders has
been studied by various authors. Mishra and Kumar [1] studied the flow of the Bingham
plastic in the concentric annulus and obtained the results for boundary layer thickness, centre
core velocity, pressure drop. Batra and Das [2] developed the stress–strain relation for the
Casson fluid in the annular space between two coaxial rotating cylinders where the inner
cylinder is at rest and outer cylinder rotating.Maia andGasparetto [3] applied finite difference
method for the Power-law fluid in the annuli and found difference in the entrance geometries.
Sayed-Ahmed and Hazem [4] applied finite difference method to study the laminar flow of
a power-law fluid in the concentric annulus.

The Herschel–Bulkley model represents the empirical combination of Bingham and
power-law fluids. The constitutive equation for these fluids is given by [5] as

τ = τ0 + k

(
∂u

∂r

)n

(1)

where τ is the shear stress, τ0 is the yield stress, k is the coefficient of fluidity, n is the flow
index of the model.

Manglik and Fang [6] numerically investigated the flow of non-Newtonian fluids through
annuli. The problem of laminar heat transfer convection for Herschel–Bulkley within con-
centric annular ducts has been studied by Vaina et al. [7] with the help of integral transform
method considering the plug flow region. Round and Yu [8] analyzed the developing flows
of Herschel–Bulkley fluids through concentric annuli. Soares et al. [9] has taken up the prob-
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lem of heat transfer in a fully developed flow of Herschel–Bulkley materials through annular
spaces, with insulated outer wall and uniform heat flux at inner wall. Khaled et al. [10]
analyzed the laminar flow of a Herschel–Bulkley fluid over an axisymmetric sudden expan-
sion. Nouar et al. [11] reported the results of numerical analysis of the thermal convection for
Herschel–Bulkley fluids. Numericalmodeling of helical flow of viscoplastic fluid in eccentric
annuli has been done by Hussain and Sharif [12]. The study of heat transfer to viscoplastic
materials flowing axially through concentric annuli has been investigated by Soares et al.
[13]. Kandasamy et al. [14] investigated the entrance region flow of heat transfer in concen-
tric annuli for Herschel–Bulkley fluids and presents the velocity distributions, temperature
and pressure in the entrance region. Poole and Chhabra [15] reported the results of a system-
atic numerical investigation of developing laminar pipe flow of yield stress fluids. Recently,
Pai and Kandasamy [16] have investigated the entrance region flow of Herschel–Bulkley
fluid in an annular cylinder without making prior assumptions on the form of velocity profile
within the boundary layer region.

Further, entropy generation in Non-Newtonian fluids due to heat and mass transfer in the
entrance region of ducts has been investigated by Galanis and Rashidi [17]. Rashidi et al. [18]
analyzed the pulsatile flow through annular space bounded by outer porous cylinder and an
inner cylinder of permeable material. Moreover, Rashidi et al. [19] studied the investigation
of heat transfer in a porous annulus with pulsating pressure gradient by homotopy analysis
method.

In the present work, the problem of entrance region flow of Herschel–Bulkley fluid in
concentric annuli with rotating inner wall has been investigated. The analysis has been car-
ried out under the assumption that the inner cylinder is rotating and the outer cylinder is at
rest. With the prandtl boundary layer assumptions, the equations of conservation of mass and
momentum are discretized and solved using linearized implicit finite difference technique.
The system of non-linear algebraic equations thus obtained has been solved by the Newton-
Raphson iterative method for simultaneous non-linear equations. The development of axial
velocity profile, radial velocity profile, tangential velocity profile and pressure drop in the
entrance region have been determined for different values of non-Newtonian flow character-
istics and geometrical parameters. The effects of these on the velocity profiles and pressure
drop have been discussed.

Formulation of the Problem

The geometry of the problem is shown in Fig. 1. The Herschel–Bulkley fluid enters the
horizontal concentric annuli with inner and outer radii R1 and R2, respectively, from a large
chamber with a uniform flat velocity profile u0 along the axial direction z and with an initial
pressure p0. The inner cylinder rotates with an angular velocity ω and the outer cylinder
is at rest. The flow is steady, laminar, incompressible, axisymmetric with constant physical
properties and the absence of body forces. We consider a cylindrical polar coordinate system
with the origin at the inlet section on the central axis of the annulus, the z-axis along the axial
direction and the radial direction r perpendicular to the z-axis.

Under the above assumptions and with the usual Prandtl boundary layer assumptions [20],
the governing equations in polar coordinate system (r, θ , z) for a Herschel–Bulkley fluid in
the entrance region are:

Continuity equation:
∂(rv)

∂r
+ ∂(ru)

∂z
= 0 (2)
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Fig. 1 Geometry of the problem

r − momentum equation:
w2

r
= 1

ρ

∂p

∂r
(3)

θ − momentum equation: v
∂w

∂r
+ u

∂w

∂z
+ vw

r
= 1

ρr2
∂

∂r

(
r2

(
τ0 + k

[
r

∂

∂r

(w

r

)]n))

(4)

z − momentum equation: v
∂u

∂r
+ u

∂u

∂z
= − 1

ρ

∂p

∂z
+ 1

ρr

∂

∂r

(
r

[
τ0 + k

(
∂u

∂r

)n])
(5)

where u, v, w are the velocity components in z, r, θ directions respectively, ρ is the density
of the fluid and p is the pressure.

The boundary conditions of the problem are given by

for z ≥ 0 and r = R1, v = u = 0 and w = ωR1

for z ≥ 0 and r = R2, v = u = w = 0

for z = 0 and R1 < r < R2, u = u0

at z = 0, p = p0 (6)

Using the boundary conditions (6), the continuity equation (2) can be expressed in the fol-
lowing integral form: ∫ R1

R2

2πrudr = π(R2
2 − R2

1)u0 (7)

Introducing the following dimensionless variables and parameters,

R = r

R2
,U = u

u0
, V = ρvR2

μr
,W = w

ωR1
, N = R1

R2
, P = p − p0

ρu20
, Z = 2z(1 − N )

R2Re

Yh = τ0

k

(
R2

u0

)n

, Ta = 2ω2ρ2R2
1(R2 − R1)

3

μ2
r (R1 + R2)

whereμr = k

(
ωR1

R2

)n

,

Re = 2ρ(R2 − R1)u0
μr

Here Yh is the Hershel–Bulkley number, Re Reynolds number, Ta Taylors number, μr is
know as reference viscosity and N is known as aspect ratio of the annulus.

Equations (2)–(5) and (7) in the dimensionless form are given by

∂V

∂R
+ V

R
+ ∂U

∂Z
= 0 (8)

W 2

R
= Re2(1 − N )

2(1 + N )Ta

∂P

∂R
(9)
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V
∂W

∂R
+U

∂W

∂Z
+ VW

R
= 2

R

(
∂W

∂R
− W

R

)n

+ n

(
∂W

∂R
− W

R

)n−1

(
∂2W

∂R2 − 1

R

∂W

∂R
+ W

R2

)
+ 2Yh

R
(10)

V
∂U

∂R
+U

∂U

∂Z
= −∂P

∂Z
+ 1

R

(
∂U

∂R

)n

+ n

(
∂U

∂R

)n−1
∂2U

∂R2 + Yh
R

(11)

and

2
∫ 1

N
RUdR = (1 − N 2) (12)

The boundary conditions (6) in the dimensionless form are:

for Z ≥ 0 and R = N , V = U = 0 and W = 1

for Z ≥ 0 and R = 1, V = U = W = 0

for Z = 0 and N < R < 1,U = 1

at Z = 0, P = 0 (13)

Numerical Solution

The numerical analysis and the method of solution can be considered as an indirect exten-
sion of the work of [21]. Considering the mesh network of Fig. 2, the following difference
representations are made.

Here�R and�Z represents the grid size along the radial and axial directions respectively.

Vi+1, j+1 = Vi, j+1

(
N + i�R

N + (i + 1)�R

)
− �R

4�Z

(
2N + (2i + 1)�R

N + (i + 1)�R

)
x

(
Ui+1, j+1 +Ui, j+1 −Ui+1, j −Ui, j

)
(14)

W 2
i, j+1

N + i�R
= (1 − N )Re2

2Ta(1 + N )

Pi, j+1 − Pi−1, j+1

�R
(15)

Fig. 2 Grid formation for
finite-difference representations

123



240 Int. J. Appl. Comput. Math (2015) 1:235–249

V i, j

[
Wi+1, j+1 + Wi+1, j − Wi−1, j − Wi−1, j+1

4�R

]
+Ui, j

[
Wi, j+1 − Wi, j

�Z

]

+ Vi, jWi, j

N + i�R
= 2

N + i�R

[
Wi+1, j+1 + Wi+1, j − Wi−1, j − Wi−1, j+1

4�R
− Wi, j

N + i�R

]n

+ n

[
Wi+1, j+1 + Wi+1, j − Wi−1, j − Wi−1, j+1

4�R
− Wi, j

N + i�R

]n−1

∗
(
Wi+1, j+1 + Wi+1, j − 2Wi, j+1 − 2Wi, j + Wi−1, j + Wi−1, j+1

2(�R)2

−Wi+1, j+1 + Wi+1, j − Wi−1, j − Wi−1, j+1

(N + i�R)4�R
+ Wi, j

(N + i�R)2

)
+ 2Yh

N + i�R
(16)

Pi, j+1 +Ui−1, j+1

[
− �Z

2�R
Vi, j − n�Z

2n−1(�R)n+1 (Ui+1, j+1 −Ui−1, j+1)
n−1

]

+Ui, j+1

[
Ui, j + n�Z

2n−2(�R)n+1 (Ui+1, j+1 −Ui−1, j+1)
n−1

]

+Ui+1, j+1

[
�Z

2�R
Vi, j − n�Z

2n−1(�R)n+1 (Ui+1, j+1 −Ui−1, j+1)
n−1

]

− �Z

N + i�R

(
Ui+1, j+1 −Ui−1, j+1

2�R

)n

= Pi, j +U 2
i, j + Yh(�Z)

N + i�R
(17)

where i = 0 at R = N and i = m at R = 1.
The application of trapezoidal rule to equation (12) gives

�R

2
(NU0, j +Um, j ) + �R

m−1∑
i=1

Ui, j (N + i�R) =
(
1 − N 2

2

)

The boundary condition (13) gives U0, j = Um, j = 0 and the above equation reduces to

�R
m−1∑
i=1

Ui, j (N + i�R) =
(
1 − N 2

2

)
(18)

The set of difference Eqs.(14)–(18) have been solved by the iterative procedure. Starting at
the j = 0 column (annulus entrance cross section) and applying Eq.(16) for 1 ≤ i ≤ m − 1,
we get a system of non-linear algebraic equations. This system has been solved by using
Newton-Raphson method to obtain the values of the velocity component W at the second
column j = 1. Then applying Eqs. (15) and (17) for 1 ≤ i ≤ m − 1 and Eq.(18), we get a
system of non-linear equations. Again solving this system by Newton-Raphson method, we
obtain the values of the velocity component U and the pressure P at the second column j = 1.
Finally, the values of the velocity component V at the second column j= 1 are obtained from
Eq.(14) by Gauss-Jordan method using the known values of U. Repeating this procedure,
we can advance, column by column, along the axial direction of the annulus until the flow
becomes axially and tangentially fully developed.

Results and Discussion

Numerical calculations have been performed for all admissible values of Herschel–Bulkley
number Yh , flow index n and aspect ratio N. The ratio of Reynolds number to Taylor number
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Fig. 3 Tangential Velocitys for N = 0.3, n = 0.5, �R = 0.1,�Z = 0.02 and Rt = 20
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Fig. 4 Tangential Velocitys for N = 0.3, n = 1, �R = 0.1,�Z = 0.02 and Rt = 20

Rt = Re2/Ta = 20, 10,�Z = 0.02, 0.03 and �R = 0.1, 0.05 have been fixed for N =
0.3 and 0.8 respectively. The velocity profiles and pressure distribution along radial direction
have been plotted for N = 0.3, 0.8; n = 0.5, 1, 1.5 and Yh = 0, 10, 20, 30.

Figures 3–8 show the development of the tangential velocity profile component W for N
= 0.3 and 0.8, for values of n as 0.5, 1, and 1.5 and for different values of Herschel–Bulkley
numbers Yh . The values of tangential velocity decrease from the inner wall to outer wall
of the annulus. It is found that with the increase of aspect ratio N, the tangential velocity
profile increases. That is, the tangential velocity is more when the gap of the annuli is small.
Also, it is observed that the value of W increases with the increasing value of flow index n.
Further, it is found that with the increase of Herschel–Bulkley number, the tangential velocity
profile increases. This means, the tangential velocity tends to increase for the thick viscous
fluids when the inner cylinder is rotating. The effect of the parameter Rt is negligible for the
tangential velocity.

Figures 9–14 show the development of the axial velocity profile component U for N =
0.3 and 0.8 and for the value of n chosen as 0.5, 1, and 1.5, for different values of the
Herschel–Bulkley numbers Yh . It is found that increasing the flow index n, the axial velocity
component U increases at all values of Herschel–Bulkley numbers Yh and the velocity profile
develops faster as n increases. It indicates that the axial velocity is more for shear thinning
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Fig. 5 Tangential Velocitys for N = 0.3, n = 1.5, �R = 0.1,�Z = 0.02 and Rt = 20
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Fig. 6 Tangential Velocitys for N = 0.8, n = 0.5, �R = 0.05,�Z = 0.03 and Rt = 10
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Fig. 7 Tangential Velocitys for N = 0.8, n = 1, �R = 0.05,�Z = 0.03 and Rt = 10

fluids (n > 1) and for shear thickening fluids (n < 1) the axial velocity component is less.
Also, it is observed that the velocity profile takes the parabolic form as n tends to 1 with
Herschel–Bulkley number Yh being zero (Newtonian fluid).
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Fig. 8 Tangential Velocitys for N = 0.8, n = 1.5, �R = 0.05,�Z = 0.03 and Rt = 10
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Fig. 9 Axial Velocity Profiles for N = 0.3, n = 0.5, �R = 0.1,�Z = 0.02 and Rt = 20
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Fig. 10 Axial Velocity Profiles for N = 0.3, n = 1, �R = 0.1,�Z = 0.02 and Rt = 20

The radial velocity profile component V for N = 0.3 and 0.8 when n = 1, at different
sections of the axial direction Z are shown in Figs. 15–16. The values of radial velocity are
negative in the region near the outer wall since it is in the opposite direction to the radial
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Fig. 11 Axial Velocity Profiles for N = 0.3, n = 1.5, �R = 0.1,�Z = 0.02 and Rt = 20
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Fig. 12 Axial Velocity Profiles for N = 0.8, n = 0.5, �R = 0.05,�Z = 0.03 and Rt = 10
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Fig. 13 Axial Velocity Profiles for N = 0.8, n = 1, �R = 0.05,�Z = 0.03 and Rt = 10

coordinate R and it has positive values near the inner wall because it has the same direction of
the radial coordinate. This phenomena is due to the rotation of the inner cylinder of the annuli.
It is noted here that the radial velocity components purely depends on the axial coordinate.
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Fig. 14 Axial Velocity Profiles for N = 0.8, n = 1.5, �R = 0.05,�Z = 0.03 and Rt = 10
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Fig. 15 Radial Velocity Profiles for N = 0.3, �R = 0.1, n = 1 and Rt = 20
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Fig. 16 Radial Velocity Profiles for N = 0.8, �R = 0.05, n = 1 and Rt = 10

Figures 17–22 show the distribution of the pressure P along the radial coordinate R for
N = 0.3 and 0.8 and the value of n = 0.5, 1, and 1.5. It is found that the value of P increases
from a minimum at the inner wall to a maximum at the outer wall for all values of the
parameter n. Further, it is realized that increase in the value of Herschel–Bulkley numbers
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Fig. 17 Pressure Drop for N = 0.3, n = 0.5, �R = 0.1,�Z = 0.02 and Rt = 20
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Fig. 18 Pressure Drop for N = 0.3, n = 1, �R = 0.1,�Z = 0.02 and Rt = 20
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Fig. 19 Pressure Drop for N = 0.3, n = 1.5, �R = 0.1,�Z = 0.02 and Rt = 20

Yh , reduces the pressure drop values P. This is because of the fact that the pressure will tend
to be lower for thick viscous fluids. Moreover, it is observed that the pressure does not vary
so much with respect to the radial coordinate in the region near the outer wall.

The present results are compared with available results in literature for various particular
cases and are found to be in agreement. When the Herschel–Bulkley number Yh = 0, our
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Fig. 20 Pressure Drop for N = 0.8, n = 0.5, �R = 0.05,�Z = 0.03 and Rt = 10
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Fig. 22 Pressure Drop for N = 0.8, n = 1.5, �R = 0.05,�Z = 0.03 and Rt = 10

results match with the results corresponded to power-law fluids given by [4]. In the case of
non-rotating cylinders, the results of axial velocity components in our analysis are matching
with that of the results of [14].
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Conclusions

Numerical results for the entrance region flow in concentric annuli with rotating inner wall
for Herschel–Bulkley fluids were presented. The effects of the parameters n, N and Yh on the
pressure drop, the velocity profiles are studied. Numerical calculations have been performed
for all admissible values ofHerschel–Bulkley numberYh , flow index n and aspect ratioN. The
velocity distribution and pressure distribution along radial direction R have been presented
geometrically. From this study, the following can be concluded.

1. Tangential velocity decrease from the inner wall to outer wall of the annulus and the
tangential velocity is high for thick viscous fluids.

2. Increasing the flow index n, the axial velocity component U increases at all values of
Herschel–Bulkley numbers Yh and the velocity profile develops faster as n increases.

3. Radial velocity is found to be dependent only on the axial coordinate.
4. Pressure increases from a minimum at the inner wall to a maximum at the outer wall for

all values of the flow index n and pressure does not vary so much with respect to the
radial coordinate in the region near the outer wall.
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