
Int. J. Appl. Comput. Math (2015) 1:381–397
DOI 10.1007/s40819-014-0021-7

ORIGINAL PAPER

A Numerical Method for Singularly Perturbed Second
Order Coupled System of Convection–Diffusion Robin
Type Boundary Value Problems with Discontinuous
Source Term

P. Mahabub Basha · V. Shanthi

Published online: 23 December 2014
© Springer India Pvt. Ltd. 2014

Abstract In this paper, a numerical method for a weakly coupled system of singularly per-
turbed convection–diffusion second order ordinary differential equations with discontinuous
source term subject to Robin type boundary conditions is presented. A fitted mesh method
has been used to obtain the difference scheme to solve the system of equations on a piecewise
uniform Shishkin mesh. An error estimate is derived to show that the method is uniformly
convergent with respect to singular perturbation parameter. Numerical results are provided
to illustrate the theoretical results.
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Introduction

Singular perturbationproblems (SPPs) arise in variousfields of science and engineeringwhich
include fluid mechanics, fluid dynamics, quantum mechanics, control theory, semiconductor
device modeling, chemical reactor theory, elasticity, hydrodynamics, gas porous electrodes
theory, etc. SPPs are characterized by the presence of a small parameter (0 < ε � 1) that
multiplies the highest derivative term. This leads to boundary and/or interior layers in the
solution of such problems.Many researchers have attractedmuch attention on these problems
to obtain good approximate solutions for the past few decades. Since classical numerical
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methods fail to produce good approximations for these equations, it is inevitable to go for non-
classical methods. Many articles have published on non-classical methods which dealt with
single singularly perturbed problems. Since 2003 there has been a surge of interest to develop
robust numerical methods for system of singularly perturbed reaction–convection–diffusion
problems.These systemof equations have applications in electro analytic chemistry, predator-
prey population dynamics, etc. Oseen equations form a convection–diffusion system where
as linearized Navier–Stokes equations yield a reaction–diffusion system at large Reynolds
number.

Some authors have developed robust numericalmethods for systemof singularly perturbed
ordinary differential equations, both convection–diffusion and reaction–diffusion, on smooth
data. A classical finite difference method on Shishkin mesh for a system of singularly per-
turbed reaction–diffusion equations was developed byMatthews et al. [1] on smooth data and
the same was extended for non-smooth case by Tamilselvan et al. [2]. A Schwarz method on
three overlapping subdomains was considered for a system of singularly perturbed reaction-
diffusion equations by Stephens and Madden [3] to get the parameter-uniform convergence.
An upwind finite difference scheme was analyzed by Cen [4] on Shishkin mesh to solve the
system of singularly perturbed convection–diffusion equations. Linβ [5] also analyzed the
upwind finite difference scheme on arbitrary meshes to solve the system of singularly per-
turbed convection–diffusion equations in which he considered systemswith arbitrary number
of equations. Munyakazi and Patidar [6] proposed a fitted operator finite difference method
on uniform mesh to solve the system of singularly perturbed reaction-diffusion equations
and the same idea was extended and proposed a nonstandard finite difference scheme by
Munyakazi [7] for a system of convection–diffusion equations to get the first order uniform
convergence.

In recent years, system of singularly perturbed mixed type boundary value problems have
attracted a lot of attention for many researchers. Mythili Priyadharshini and Ramanujam [8]
have established uniformly-convergent numerical methods for a system of coupled singu-
larly perturbed convection–diffusion equations with mixed type boundary conditions and
Tamilselvan et al. [9] have developed a parameter uniform numerical method for a system
of coupled singularly perturbed convection–diffusion equations with mixed type boundary
conditions on smooth data. Das and Natesan [10] have proposed an efficient numerical
scheme for singularly perturbed system of Robin type reaction–diffusion problems based on
Shishkin mesh using hybrid scheme. Only a few authors have considered non-smooth data
for the numerical solution of coupled system of convection–diffusion equations. Tamilselvan
and Ramanujam [11] have already developed a numerical method for singularly perturbed
system of second order ordinary differential equations of convection–diffusion type with a
discontinuous source term subject to Dirichlet boundary conditions. Motivated by the above
works, we developed a numerical method for a system of two coupled singularly perturbed
convection–diffusion Robin type boundary value problems with discontinuous source term.
This discontinuity gives rise to a weak interior layer in the exact solution of the problem in
addition to the boundary layer at the outflow boundary point.

The contents of the present paper is organized as follows. In “ContinuousProblem” section,
some analytical results of the solution of singularly perturbed Robin type boundary value
problems with discontinuous source term are presented. The numerical method is described
in “Discrete Problem” section. Error analysis of the method is carried out in “Error Analysis”
section. Numerical examples are provided in “Numerical Results” section and conclusions
are given in “Conclusions” section.

Throughout this paper, C denotes a generic positive constant that is independent of the
singular perturbation parameter ε and the dimension N of the discrete problem. Let y : D =
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[a, b] → R. The norm which is suitable for studying the convergence of numerical solution
to the exact solution of a singular perturbation problem is the maximum norm ‖ y ‖D=
sup
x∈D

|y(x)|. Further, |y(x)| means (|y1(x)|, |y2(x)|)T , ‖ y ‖D= max{ ‖ y1 ‖D, ‖ y2 ‖D} and
y ≥ 0 provided y1(0) ≥ 0 and y2(0) ≥ 0.

Continuous Problem

Statement of the Problem

Find y1, y2 ∈ y ≡ C1(Ω) ∩ C2(Ω− ∪ Ω+) such that

P1y(x) ≡ −εy′′
1 (x) − a1(x)y

′
1(x) + b11(x)y1(x) + b12(x)y2(x) = f1(x), x ∈ Ω− ∪ Ω+,

(1)

P2y(x) ≡ −εy′′
2 (x) − a2(x)y

′
2(x) + b21(x)y1(x) + b22(x)y2(x) = f2(x), x ∈ Ω− ∪ Ω+,

(2)

with the boundary conditions

B10y1(0) ≡ β11y1(0) − εβ12y
′
1(0) = p, B11y1(1) ≡ γ11y1(1) + γ12y

′
1(1) = q, (3)

B20y2(0) ≡ β21y2(0) − εβ22y
′
2(0) = r, B21y2(1) ≡ γ21y2(1) + γ22y

′
2(1) = s, (4)

where ε is a small parameter (0 < ε � 1), and assume that

a1(x) ≥ α1 > 0, a2(x) ≥ α2 > 0,

b12(x) ≤ 0, b21(x) ≤ 0,

b11(x) + b12(x) ≥ 0, b21(x) + b22(x) ≥ 0,

|[ f1](d)| ≤ C, |[ f2](d)| ≤ C.

Here Ω = (0, 1),Ω− = (0, d),Ω+ = (d, 1), d ∈ Ω and y = (y1, y2)T . It is also
assumed that the functions ai (x), bi j (x) are sufficiently smooth on Ω,β j2 > 0, 2β j1 +
εβ j2 ≥ 1, γ j2 ≥ 0 and γ j1 − γ j2 ≥ 1, for i, j = 1, 2 and the source terms fi (x), i = 1, 2
are sufficiently smooth on Ω \ {d}; a single discontinuity in fi (x), i = 1, 2 occur at the
point d ∈ Ω; fi (x), i = 1, 2 and their derivatives have jump discontinuity at the same point.
In general, this discontinuity gives rise to weak interior layers in the solution of the problem.
Let α = min{α1, α2}.

The above system can be written in matrix form as

Py ≡
(
P1y
P2y

)
≡

⎛
⎜⎝−ε

d2

dx2
0

0 −ε
d2

dx2

⎞
⎟⎠ y − A(x)y′ + B(x)y = f(x), x ∈ Ω− ∪ Ω+

i.e., Py ≡ −εy′′(x) − A(x)y′(x) + B(x)y(x) = f(x), x ∈ Ω− ∪ Ω+

with the boundary conditions
(
B10y1(0)

B20y2(0)

)
=

(
p

r

)
,

(
B11y1(1)

B21y2(1)

)
=

(
q

s

)
,
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where

A(x) =
(
a1(x) 0
0 a2(x)

)
, B(x) =

(
b11(x) b12(x)
b21(x) b22(x)

)
and f(x) =

(
f1(x)
f2(x)

)
.

The jump at d is denoted in any function w with [w](d) = w(d+) − w(d−).

Analytical Results

In this section,the maximum principle,stability result and derivative estimates are established
for the boundary value problem (BVP) (1)–(4).

Theorem 1 (Maximum principle) Suppose that y(x) = (y1(x), y2(x))T , y1, y2 ∈ y sat-
isfies B j0y j (0) ≥ 0, Bj1y j (1) ≥ 0, f or j = 1, 2,Py(x) ≥ 0, and [y′](d) ≤ 0,∀ x ∈
Ω− ∪ Ω+. Then y(x) ≥ 0,∀ x ∈ Ω.

Proof Define t(x) = (t1(x), t2(x))T as

t1(x) = t2(x) =

⎧⎪⎨
⎪⎩

1

4
− x

8
+ d

8
, x ∈ Ω− ∪ {d},

1

4
− x

4
+ d

4
, x ∈ Ω+ ∪ {1}.

Then t1, t2 ∈ y, Bj0t j (0) ≥ 0, Bj1t j (1) ≥ 0, f or j = 1, 2, Pt(x) ≥ 0 and [t′](d) ≤
0,∀ x ∈ Ω− ∪ Ω+.

Further, define

η = max

{
max
x∈Ω

(−y1
t1

)
,max
x∈Ω

(−y2
t2

)}
.

Assume that the theorem is not true.

Then η > 0 and there exists a point x0 such that

(−y1
t1

)
(x0) = η or

(−y2
t2

)
(x0) = η

or both.
Further, x0 ∈ Ω− ∪ Ω+ or x0 = d. Also (y + ηt)(x) ≥ 0, x ∈ Ω .

Case-(i): (y1 + ηt1)(x0) = 0, for x0 = 0. It implies that (y1 + ηt1) attains a minimum
at x0. Therefore, 0 < B10(y1 + ηt1)(x0) = β11(y1 + ηt1)(x0) − εβ12(y1 + ηt1)′(x0) ≤ 0,
which is a contradiction.

Case-(ii): (y1 + ηt1)(x0) = 0, for x0 ∈ Ω− ∪ Ω+. It implies that (y1 + ηt1) attains
a minimum at x0. Therefore, 0 < P1(y + ηt)(x0) ≡ −ε(y1 + ηt1)′′(x0) − a1(x0)(y1 +
ηt1)′(x0) + b11(x0)(y1 + ηt1)(x0) + b12(x0) (y2 + ηt2)(x0) ≤ 0, which is a contradiction.

Case-(iii): (y1 + ηt1)(x0) = 0, for x0 = d. It implies that (y1 + ηt1) attains a minimum
at x0. Therefore, 0 ≤ [(y1 + ηt1)′](x0) = [y′

1](d) + η[t ′1](d) < 0, which is a contradiction.
Case-(iv): (y1 +ηt1)(x0) = 0, for x0 = 1. It implies that (y1 +ηt1) attains a minimum at

x0. Therefore, 0 < B11(y1 + ηt1)(x0) = γ11(y1 + ηt1)(x0) + γ12(y1 + ηt1)′(x0) ≤ 0, which
is a contradiction.

Case-(v): (y2 + ηt2)(x0) = 0, x0 ∈ Ω− ∪ Ω+. Similar to Case-(ii), it leads to a contra-
diction.

Case-(vi): (y2 + ηt2)(x0) = 0, x0 = d. Similar to Case-(iii), it leads to a contradiction.
Case-(vii): (y2 + ηt2)(x0) = 0, x0 = 0. Similar to Case-(i), it leads to a contradiction.
Case-(viii): (y2 + ηt2)(x0) = 0, x0 = 1. Similar to Case-(iv), it leads to a contradiction.

Hence, y(x) ≥ 0,∀x ∈ Ω . �
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Theorem 2 (Stability result) If y1, y2 ∈ y, then for i = 1, 2,

|yi (x)| ≤ C[max{|B10y1(0)|, |B11y1(1)|, |B20y2(0)|, |B21y2(1)|, ‖P1y‖Ω−∪Ω+ ,

‖P2y‖Ω−∪Ω+], x ∈ Ω.

Proof Let

M = C[max{|B10y1(0)|, |B11y1(1)|, |B20y2(0)|, |B21y1(1)|, ‖P1y‖Ω−∪Ω+ ,

‖P2y‖Ω−∪Ω+}].
Define the functions ω±(x) = (ω±

1 (x), ω±
2 (x))T where

ω±
1 (x) = Mt1(x) ± y1(x), ω±

2 (x) = Mt2(x) ± y2(x).

Since M(2β11+εβ12)±B10y1(0) ≥ 0, M(2β21+εβ22)±B20y2(0) ≥ 0, M(γ11−γ12)±
B11y1(1) ≥ 0 and M(γ21 − γ22) ± B21y2(1) ≥ 0, it is easy to prove that B10ω1

±(0) ≥
0, B11ω1

±(0) ≥ 0, B20ω2
±(0) ≥ 0, B21ω2

±(0) ≥ 0.
Also Pω±(x) ≥ 0 and [ω′](d) ≤ 0, by a proper choice of C.
Therefore, by the maximum principle the required result follows. �

Derivative Estimates

In this section, the derivative estimates for the BVP (1)–(4) are provided.
The sharper bounds on the derivatives of the solution are obtained by decomposing the

solution y into smooth and singular components as y = v + w, where the smooth component
v = (v1, v2)

T and w = (w1, w2)
T . The regular component v can be written in the form

v = v0 + εv1 + ε2v2, where v0 = (v01, v02)
T , v1 = (v11, v12)

T , v2 = (v21, v22)
T are

defined respectively to be the solutions of the problems

−A(x)v′
0 + B(x)v0 = f(x), x ∈ Ω− ∪ Ω+,

(
B11v01(1)

B21v02(1)

)
=

(
B11y1(1)

B21y2(1)

)
;

−A(x)v′
1 + B(x)v1 = v′′

0,

(
B11v11(1)

B21v12(1)

)
= 0;

Pv2 = v′′
1, x �= d,

(
B10v21(0)

B20v22(0)

)
=

(
B1dv21(d)

B2dv22(d)

)
=

(
B11v21(1)

B21v22(1)

)
= 0.

Thus the regular component v is the solution of

Pv = f(x), x ∈ Ω− ∪ Ω+, (5)(
B10v1(0)

B20v2(0)

)
=

(
B10v01(0) + ε(B10v11(0)) + ε2(B10v21(0))

B20v02(0) + ε(B20v12(0)) + ε2(B20v22(0))

)
, (6)

(
B10v1(d)

B20v2(d)

)
=

(
B10v01(d) + ε(B1dv11(d)) + ε2(B10v21(d))

B20v02(d) + ε(B2dv12(d)) + ε2(B20v22(d))

)
, (7)

(
B11v1(1)

B21v2(1)

)
=

(
B11y1(1)

B21y2(1)

)
. (8)
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Further, we decompose the singular component w as w = w1 + w2, where w1 =
(w11, w12)

T , w2 = (w21, w22)
T . Thus w1 = w11 + w21, and w2 = w12 + w22. Note

that w1 is the solution of

Pw1 = 0, x ∈ Ω, (9)(
B10w11(0)
B20w12(0)

)
v =

(
B10y1(0) − B10v1(0)
B20y2(0) − B20v2(0)

)
,

(
B10w11(1)
B20w12(1)

)
= 0, (10)

and w2 is the solution of

Pw2 = 0, x ∈ Ω− ∪ Ω+, (11)(
B11w21(0)
B21w22(0)

)
= 0,

(
B11w21(1)
B21w22(1)

)
= 0, (12)

[w′(d)] = −[v′(d)]. (13)

The following lemma provides the bounds on the derivatives of the regular and singular
components of the solution y and it can be proved by following the procedure adopted in
[8,11–13].

Lemma 1 The solution y can be decomposed into the sum y = v + w, where v and w are
regular and singular components. Further, regular components and their derivatives satisfy
the bounds

‖ v
(k)
j ‖ ≤ C(1 + ε2−k), k = 0, 1, 2, 3, j = 1, 2, x ∈ Ω− ∪ Ω+,

the solution w1 satisfies the bounds

|w(k)
j1 (x)| ≤ Cε−ke−αx/ε, ∀x ∈ Ω, k = 0, 1, 2, 3, j = 1, 2,

and the solution w2 satisfies the bounds

|w j2(x)| ≤ Cε, j = 1, 2

|w(k)
j2 (x)| ≤

{
Cε1−ke−αx/ε, x ∈ Ω−,

Cε1−ke−α(x−d)/ε, x ∈ Ω+ , k = 1, 2, 3, j = 1, 2.

�

Discrete Problem

A fitted mesh method for the BVP (1)–(4) is now described. On Ω− ∪ Ω+ a piecewise
uniform mesh of N mesh intervals is constructed as follows:

The interval Ω
−

is subdivided into two subintervals [0, τ1] and [τ1, d] for some τ1

that satisfies 0 < τ1 ≤ d/2. On each subinterval a uniform mesh with
N

4
mesh-intervals

is placed. The sub-intervals [d, d + τ2] and [d + τ2, 1] on Ω
+
are treated analogously for

some τ2 satisfying 0 < τ2 ≤ (1 − d)/2.
The interior points of the mesh are denoted by

ΩN
ε = {xi : 1 ≤ i ≤ N

2
− 1} ∪ {xi : N

2
+ 1 ≤ i ≤ N − 1}.
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Clearly xN/2 = d and Ω
N
ε = {xi }N0 . The transition parameters τ1 and τ2 are functions

of N and ε and are chosen as

τ1 = min

{
d

2
, (ε/α) ln N

}
and τ2 = min

{
1 − d

2
, (ε/α) ln N

}
,

where α = min{α1, α2}.
The four mesh widths are given by

h1 = 4τ1/N , h2 = 4(d − τ1)/N , h3 = 4τ2/N , h4 = 4(1 − d − τ2)/N .

On the piecewise-uniform mesh Ω
N
ε a standard centered finite difference operator is used.

Then the fitted mesh method for the BVP (1)–(4) is

PN
1 Y(xi ) ≡ −εδ2Y1(xi ) − a1(xi )D

+Y1(xi ) + b11(xi )Y1(xi ) + b12(xi )Y2(xi ) = f1(xi ), (14)

PN
2 Y(xi ) ≡ −εδ2Y2(xi ) − a2(xi )D

+Y2(xi ) + b21(xi )Y1(xi ) + b22(xi )Y2(xi ) = f2(xi ), (15)

BN
10Y1(x0) ≡ β11Y1(x0) − εβ12D

+Y1(x0) = p, (16)

BN
11Y1(xN ) ≡ γ11Y1(xN ) + γ12D

−Y1(xN ) = q, (17)

BN
20Y2(x0) ≡ β21Y2(x0) − εβ22D

+Y2(x0) = r, (18)

BN
21Y2(xN ) ≡ γ21Y2(xN ) + γ22D

−Y2(xN ) = s, (19)

D−Y1(xN/2) = D+Y1(xN/2), D−Y2(xN/2) = D+Y2(xN/2), (20)

where

δ2Y j (xi ) = (D+ − D−)Y j (xi )

(xi+1 − xi−1)/2
, j = 1, 2,

D+Y j (xi ) = Y j (xi+1) − Y j (xi )

xi+1 − xi
, and D−Y j (xi ) = Y j (xi ) − Y j (xi−1)

xi − xi−1
.

The difference operator PN can be defined as

PNY(xi ) ≡
(
PN
1 Y(xi )

PN
2 Y(xi )

)
≡

(−εδ2 0
0 −εδ2

)
Y(xi ) −

(
a1(xi )D+ 0

0 a2(xi )D+
)

Y(xi )

+
(
b11(xi ) b12(xi )
b21(xi ) b22(xi )

)
Y(xi ) = f(xi ).

Analogous to the continuous results stated in Theorems 1 and 2, the following results can be
proved.

Theorem 3 (Discrete maximum principle) For any mesh function �(xi ), assume that
BN
j0� j (x0) ≥ 0, BN

j1� j (xN ) ≥ 0, for j = 1, 2 and PN�(xi ) ≥ 0, for all xi ∈ ΩN
ε

and D+�N/2 − D−�N/2 ≤ 0. Then �(xi ) ≥ 0 for all xi ∈ Ω
N
ε . �

Theorem 4 (Discrete stability result) If Z(xi ) = (Z1(xi ), Z2(xi ))T is any mesh function

then, for all xi ∈ Ω
N
ε , j = 1, 2,

|Z j (xi )| ≤ C[max{|BN
10Z1(x0)|, |BN

11Z1(xN )|, |BN
20Z2(x0)|, |BN

21Z2(xN )|,
‖PN

1 Z(xi )‖Ω−∪Ω+ , ‖PN
2 Z(xi )‖Ω−∪Ω+}].

�
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Error Analysis

If Y(xi ) is the discrete solution, then |Y(d)| ≤ C and it can be decomposed into the sum
Y(xi ) = V(xi ) + W(xi ), where V(xi ) and W(xi ) are regular and singular components
respectively defined as

PNV(xi ) = f(xi ), ∀xi ∈ ΩN
ε \ {d}(

BN
10V1(x0)

BN
20V2(x0)

)
=

(
B10v1(0)

B20v2(0)

)
,

(
BN
1dV1(d)

BN
2dV2(d)

)
=

(
B1dv1(d)

B2dv2(d)

)
,

(
BN
11V1(xN )

BN
21V2(xN )

)
=

(
B11v1(1)

B21v2(1)

)

and PNW(xi ) = 0, ∀xi ∈ ΩN
ε \ {d}(

BN
10W1(x0)

BN
20W2(x0)

)
=

(
B10w1(0)

B20w2(0)

)
,

(
BN
11W1(xN )

BN
21W2(xN )

)
=

(
B11w1(1)

B21w2(1)

)

[DW(d)] = −[DV(d)],
where the jump in the derivative of a mesh function Z at the point xi = d is denoted by

[DZ(d)] = D+Z(d) − D−Z(d).

Analogous to the continuous case W can be decomposed as W = W1 + W2. The error in
the numerical solution can be written as

(Y − y)(xi ) = (V − v)(xi ) + (W − w)(xi ),

where W1 and W2 are defined respectively as the solutions of

PNW1 = 0, ∀xi ∈ ΩN
ε ∪ {d} (21)(

BN
10W11(x0)

BN
20W12(x0)

)
=

(
B10w11(0)

B20w12(0)

)
,

(
BN
11W11(xN )

BN
21W12(xN )

)
= 0 and (22)

PNW2 = 0, ∀xi ∈ ΩN
ε ∪ {d} (23)(

BN
10W21(x0)

BN
20W22(x0)

)
=

(
B10w21(0)

B20w22(0)

)
,

(
BN
11W21(xN )

BN
21W22(xN )

)
= 0 (24)

[DW2] = −[DV(d)] − [DW1(d)]. (25)

Lemma 2 At each mesh point xi ∈ Ω
N
ε , the error of the regular component satisfies the

estimate

|(V − v)(xi )| ≤
(
CN−1(d − xi )

CN−1(d − xi )

)
on Ω−,

|(V − v)(xi )| ≤
(
CN−1(1 − xi )

CN−1(1 − xi )

)
on Ω+,
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Proof

|PN (V − v(xi ))| = |(P − PN )v(xi )|

≤
⎛
⎜⎝

ε

3
(xi+1 − xi−1) ‖ v

(3)
1 ‖ +a1(xi )

2
(xi − xi−1) ‖ v

(2)
1 ‖

ε

3
(xi+1 − xi−1) ‖ v

(3)
2 ‖ +a2(xi )

2
(xi − xi−1) ‖ v

(2)
2 ‖

⎞
⎟⎠

≤
(
CN−1

CN−1

)
.

Let �±(xi ) be the mesh functions defined as

�±(xi ) =
(
CN−1(d − xi )
CN−1(d − xi )

)
± (V − v(xi )).

It is easy to see that BN
j0Φ

±
j (x0) = 0, BN

j1Φ
±
j (xN ) > 0, j = 1, 2,

PN�±(xi ) ≥ 0 and D+�±
N/2 − D−�±

N/2 ≤ 0.

Then by discrete maximum principle, we get �±(xi ) ≥ 0, xi ∈ Ω−, which leads to the
required result.

Similarly the second result can be proved on Ω+. �

Lemma 3 [13] At each mesh point xi ∈ Ω
N
ε , the error of the singular component satisfies

the estimate

|(W1 − w1)(xi )| ≤
(
CN−1 ln N
CN−1 ln N

)
.

We establish the bound forW2 in the following lemma as the jump at x = d in the derivative
of the weak interior layer function w2.

Lemma 4 [11] Let W2 be the solution of (23), then it satisfies the following ε− uniform
bound

|[DW2(d)]| ≤
(
C(1 + ε−1N−1)

C(1 + ε−1N−1)

)
.

Proof At x = d, let D−V(d) = D−(V − v)(d) + D−v(d).

Since ‖ v′ ‖Ω−≤
(
C
C

)
, we have

|D−v(d)| ≤
(
C
C

)

and |D−(V − v)(d)| = | (V − v)(d) − (V − v)(d − h2)

h2
| ≤

(
CN−1

CN−1

)
.

∴ |D−V(d)| ≤
(
C(1 + N−1)

C(1 + N−1)

)
.

Let D+V(d) = D+(V − v)(d) + D+v(d) and ‖ v′ ‖Ω+≤
(
C
C

)
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Using lemma 3.14 of [14],we write

|εD+(V − v)(d)| ≤
(
CN−1

CN−1

)
.

∴ |D+V(d)| ≤
(
Cε−1N−1

Cε−1N−1

)
+

(
C
C

)
=

(
C(1 + ε−1N−1)

C(1 + ε−1N−1)

)
.

On Ω−, |W1(xi )| ≤
(
CN−1

CN−1

)
,

which gives |D−W1(d)| ≤
(
C
C

)
.

On Ω+, D+W1(d) = D+(W1 − w1)(d) + D+w1(d).

Since ‖ w′
1 ‖≤

(
C
C

)
, we have

|D+W1(d)| ≤ |D+(W1 − w1)(d)| +
(
C
C

)
.

It is easy to show that

|D+(W1 − w1)(xi )| ≤
(
C
C

)
,

which implies |D+W1(d)| ≤
(
C
C

)
.

∴ |[DW2(d)]| ≤
(
C(1 + ε−1N−1)

C(1 + ε−1N−1)

)
.

�
Lemma 5 The following ε− uniform bound |W2(xi )| ≤ Cε|[DW2(d)]| is valid, where W2

is the solution of (23).

Proof Define the barrier functions ψ±
j , j = 1, 2 as

ψ±
j (xi ) = Cε|[DWj2(d)]|

α

{
1, xi ≤ d

φ j (xi ), xi ≥ d
± W2 j ,

where φ = (φ1, φ2)
T is the solution of

−εδ2φ(xi ) − αD+ φ(xi ) = 0, xi ∈ ΩN ∩ Ω+,

Bjd φ(d) = 1, Bj1 φ(1) = 0,

D+ φ(xi ) < 0, xi ≥ d.

The remaining proof follows from the procedure given in [13]. �

Lemma 6 At each mesh point xi ∈ Ω
N
ε , the error of the singular component satisfies the

estimate

|(W2 − w2)(xi )| ≤
(
CN−1 ln N
CN−1 ln N

)
.
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Proof Since [v′(d)] + [w′
2(d)] = 0,

[D(W2 − w2)(d)] = [DW2(d)] − [Dw2(d)]
= [v′(d)] − [DV(d)] + [w′

d(d)] − [DW2(d)] − [DW1(d)].

Note that

[v′(d)] − [DV(d)] = v′(d+) − D+v(d) + D−v(d) − v′(d−) + [D(V − v)(d)].

But |[D(V − v)(d)]| ≤
(
Cε−1N−1

Cε−1N−1

)

and |[v′(d)] − [Dv(d)]| ≤
(
CN−1

CN−1

)
.

Hence |[v′(d)] − [DV(d)]| ≤
(
CεN−1

CεN−1

)
.

Similarly,

|[w′
2(d)] − [Dw2(d)]| ≤ |D+W2(d) − w′

2(d+)| + |D−W2(d) − w′
2(d−)|

≤
⎛
⎝Ch3|w(2)

2 (d)| + Ch2|w(2)
2 (d−)|

Ch3|w(2)
2 (d)| + Ch2|w(2)

2 (d−)|

⎞
⎠

≤
(
CN−1 ln N

CN−1 ln N

)
, since

e−α(d−h2)/ε = e
−α

(
d−4d

N

)/
ε

≤ e−αd/2ε.

Also |[Dw1(d)]| ≤
(
C(h3 + h2)|w(2)

1 (d − h2)|
C(h3 + h2)|w(2)

1 (d − h2)|

)

≤
(
C(h3 + h2)ε−2e−α(d−h2)/ε

C(h3 + h2)ε−2e−α(d−h2)/ε

)

≤
(
CN−1 ln N

CN−1 ln N

)
.

By the analysis given in [14], we have

|[D(W1 − w1)(d)]| ≤
(
Cε−1N−1 ln N
Cε−1N−1 ln N

)
,

which implies

|[D(W2 − w2)(d)]| ≤
(
Cε−1N−1 ln N
Cε−1N−1 ln N

)
.
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Using standard truncation error bounds and the bounds on the derivatives of w2, we consider
the truncation error at each of the interval mesh points as follows:

For xi ∈ (0, τ1), |PN (W2 − w2)(xi )| ≤
(
Ch1ε−1τ1

Ch1ε−1τ1

)

≤
(
CN−1 ln N

CN−1 ln N

)
.

For xi ∈ [τ1, d), |PN (W2 − w2)(xi )| ≤
(
C ‖ εw′′

2 ‖(xi−1,xi+1) +C ‖ w′
2 ‖[xi ,xi+1]

C ‖ εw′′
2 ‖(xi−1,xi+1) +C ‖ w′

2 ‖[xi ,xi+1]

)

≤
(
Ce−ατ1/ε

Ce−ατ1/ε

)

≤
(
CN−1

CN−1

)
.

For xi ∈ (d, d + τ2), |PN (W2 − w2)(xi )| ≤
(
Ch3ε−1

Ch3ε−1

)

≤
(
CN−1

CN−1

)
.

For xi ∈ [d + τ2, 1), |PN (W2 − w2)(xi )| ≤
(
C ‖ εw′′

2 ‖(xi−1,xi+1) +C ‖ w′
2 ‖[xi ,xi+1]

C ‖ εw′′
2 ‖(xi−1,xi+1) +C ‖ w′

2 ‖[xi ,xi+1]

)

≤
(
Ce−α(τ1−h3)/ε

Ce−α(τ1−h3)/ε

)

≤
(
CN−1

CN−1

)
.

Combining all these results, we get

|PN (W2 − w2)(xi )| ≤
(
CN−1 ln N
CN−1 ln N

)

and |[D(W2 − w2)(d)]| ≤
(
Cε−1N−1 ln N
Cε−1N−1 ln N

)
.

Choose the barrier function

ψ j (xi ) = CN−1 ln N

{
1, xi ≤ d

φ j , xi ≥ d
+ CN−1 ln N (1 − xi ), j = 1, 2,

where φ j is the solution of the problem

−εδ2φ j − αD+φ j = 0, Bjdφ j (d) = 1, Bj1φ j (1) = 0, j = 1, 2.

Applying discrete maximum principle, we get the required result. �
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Theorem 5 Let y(x) = (y1(x), y2(x))T , x ∈ Ω be the solution of (2.1)-(2.4) and also let

Y(xi ) = (Y1(xi ), Y2(xi ))T , xi ∈ Ω
N
ε be the numerical solution of the problem (3.1)-(3.5).

Then we have

sup
0<ε≤1

‖ Y1 − y1 ‖NΩε
≤ CN−1 ln N ,

and

sup
0<ε≤1

‖ Y2 − y2 ‖NΩε
≤ CN−1 ln N .

Proof Using the Lemmas 2, 3 and 6 in Y−y = V−v+W−w, this theorem can be proved.
�

Numerical Results

In this section, two examples are given to illustrate the computational methods discussed in
this paper.

Consider the singularly perturbed convection–diffusion Robin type BVP with discontin-
uous source term:

Example 1

−εy′′
1 (x) − 2y′

1(x) + 3y1(x) − y2(x) = f1(x), x ∈ Ω− ∪ Ω+,

−εy′′
2 (x) − y′

2(x) − y1(x) + 3y2(x) = f2(x), x ∈ Ω− ∪ Ω+,

3y1(0) − εy′
1(0) = 0, 2y1(1) + y′

1(1) = 1,

3y2(0) − εy′
2(0) = 2, 2y2(1) + y′

2(1) = 2,

where

f1(x) =

⎧⎪⎨
⎪⎩
4, for 0 ≤ x <

1

3
,

2, for
1

3
≤ x ≤ 1.

and

f2(x) =

⎧⎪⎨
⎪⎩
3, for 0 ≤ x <

1

3
,

1, for
1

3
≤ x ≤ 1.

Example 2

−εy′′
1 (x) − 1

3 + x
y′
1(x) + 2y1(x) − y2(x) = f1(x), x ∈ Ω− ∪ Ω+,

−εy′′
2 (x) − 1

3 + x
y′
2(x) − 4y1(x) + 5y2(x) = f2(x), x ∈ Ω− ∪ Ω+,

y1(0) − εy′
1(0) = 2, y1(1) + y′

1(1) = 2,

y2(0) − εy′
2(0) = 2, y2(1) + y′

2(1) = 2,

where

f1(x) =
{ 3 + x

3
, for 0 ≤ x < 0.5,

2 + x, for 0.5 ≤ x ≤ 1.
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Table 1 Maximum point-wise errors EN
1,ε , ε-uniform error EN

1 and ε-uniform order of convergence pN1 for
different values of mesh points N for the solution y1 of Example 1

ε Number of mesh points N

64 128 256 512 1,024 2,048 4,096

2−1 1.83E−02 9.00E−03 4.41E−03 2.13E−03 9.92E−04 4.25E−04 1.42E−04

2−2 2.56E−02 1.28E−02 6.34E−03 3.08E−03 1.44E−03 6.17E−04 2.06E−04

2−3 4.29E−02 2.22E−02 1.11E−02 5.44E−03 2.55E−03 1.10E−03 3.66E−04

2−4 7.89E−02 4.19E−02 2.13E−02 1.06E−02 4.98E−03 2.15E−03 7.18E−04

2−5 1.14E−01 7.26E−02 4.17E−02 2.10E−02 9.98E−03 4.32E−03 1.44E−03

2−6 1.13E−01 7.13E−02 4.20E−02 2.35E−02 1.23E−02 5.75E−03 2.06E−03

2−7 1.13E−01 7.12E−02 4.19E−02 2.35E−02 1.23E−02 5.74E−03 2.05E−03

2−8 1.13E−01 7.12E−02 4.19E−02 2.34E−02 1.22E−02 5.73E−03 2.05E−03

2−9 1.13E−01 7.12E−02 4.19E−02 2.34E−02 1.22E−02 5.73E−03 2.05E−03

2−10 1.13E−01 7.12E−02 4.19E−02 2.34E−02 1.22E−02 5.73E−03 2.05E−03

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−24 1.13E−01 7.12E−02 4.19E−02 2.35E−02 1.23E−02 5.76E−03 2.07E−03

2−25 1.13E−01 7.12E−02 4.19E−02 2.35E−02 1.23E−02 5.76E−03 2.08E−03

EN
1 1.14E−01 7.26E−02 4.20E−02 2.35E−02 1.23E−02 5.78E−03 2.10E−03

pN1 0.65 0.79 0.84 0.94 1.09 1.46 –

Table 2 Maximum point-wise errors EN
2,ε , ε-uniform error EN

2 and ε-uniform order of convergence pN2 for
different values of mesh points N for the solution y2 of Example 1

ε Number of mesh points N

64 128 256 512 1,024 2,048 4,096

2−1 1.13E−02 5.67E−03 2.80E−03 1.36E−03 6.36E−04 2.73E−04 9.10E−05

2−2 1.24E−02 6.22E−03 3.08E−03 1.49E−03 6.99E−04 3.00E−04 9.99E−05

2−3 1.01E−02 5.10E−03 2.53E−03 1.23E−03 5.75E−04 2.47E−04 8.23E−05

2−4 1.54E−02 7.45E−03 3.58E−03 1.75E−03 8.22E−04 3.53E−04 1.18E−04

2−5 2.39E−02 1.43E−02 7.93E−03 3.85E−03 1.79E−03 7.61E−04 2.51E−04

2−6 2.41E−02 1.40E−02 7.89E−03 4.29E−03 2.20E−03 1.02E−03 3.62E−04

2−7 2.96E−02 1.43E−02 7.98E−03 4.30E−03 2.20E−03 1.02E−03 3.60E−04

2−8 3.34E−02 1.65E−02 8.16E−03 4.36E−03 2.22E−03 1.02E−03 3.61E−04

2−9 3.54E−02 1.76E−02 8.64E−03 4.43E−03 2.24E−03 1.03E−03 3.63E−04

2−10 3.64E−02 1.82E−02 8.97E−03 4.52E−03 2.27E−03 1.04E−03 3.66E−04

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−24 3.74E−02 1.88E−02 9.30E−03 4.71E−03 2.38E−03 1.09E−03 3.85E−04

2−25 3.74E−02 1.88E−02 9.30E−03 4.71E−03 2.38E−03 1.09E−03 3.85E−04

EN
2 3.74E−02 1.88E−02 9.30E−03 4.71E−03 2.38E−03 1.09E−03 3.85E−04

pN2 0.99 1.01 0.98 0.98 1.12 1.50 –
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Table 3 Maximum point-wise errors EN
1,ε , ε-uniform error EN

1 and ε-uniform order of convergence pN1 for
different values of mesh points N for the solution y1 of Example 2

ε Number of mesh points N

64 128 256 512 1,024 2,048 4,096

2−1 1.38E−02 6.84E−03 3.36E−03 1.62E−03 7.57E−04 3.25E−04 1.09E−04

2−2 1.72E−02 8.50E−03 4.17E−03 2.02E−03 9.42E−04 4.03E−04 1.35E−04

2−3 1.99E−02 9.85E−03 4.84E−03 2.34E−03 1.09E−03 4.67E−04 1.56E−04

2−4 2.07E−02 1.02E−02 5.03E−03 2.43E−03 1.13E−03 4.86E−04 1.62E−04

2−5 2.70E−02 1.39E−02 6.97E−03 3.40E−03 1.60E−03 6.86E−04 2.29E−04

2−6 4.51E−02 2.42E−02 1.24E−02 6.11E−03 2.88E−03 1.24E−03 4.15E−04

2−7 5.02E−02 2.76E−02 1.61E−02 8.91E−03 4.67E−03 2.23E−03 7.95E−04

2−8 6.98E−02 3.44E−02 1.65E−02 8.74E−03 4.53E−03 2.11E−03 7.51E−04

2−9 8.08E−02 4.10E−02 2.02E−02 9.71E−03 4.52E−03 2.10E−03 7.49E−04

2−10 8.68E−02 4.47E−02 2.23E−02 1.08E−02 5.05E−03 2.15E−03 7.48E−04

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−24 9.33E−02 4.87E−02 2.46E−02 1.21E−02 5.68E−03 2.44E−03 1.07E−03

2−25 9.33E−02 4.87E−02 2.46E−02 1.21E−02 5.68E−03 2.44E−03 8.12E−04

EN
1 9.33E−02 4.87E−02 2.46E−02 1.21E−02 5.68E−03 2.44E−03 1.07E−03

pN1 0.94 0.98 1.03 1.09 1.22 1.20 –

Table 4 Maximum point-wise errors EN
2,ε , ε-uniform error EN

2 and ε-uniform order of convergence pN2 for
different values of mesh points N for the solution y2 of Example 2

ε Number of mesh points N

64 128 256 512 1,024 2,048 4,096

2−1 8.04E−03 3.96E−03 1.94E−03 9.36E−04 4.37E−04 1.87E−04 6.23E−05

2−2 9.98E−03 4.91E−03 2.41E−03 1.16E−03 5.42E−04 2.32E−04 7.75E−05

2−3 1.21E−02 5.96E−03 2.93E−03 1.41E−03 6.60E−04 2.83E−04 9.42E−05

2−4 1.57E−02 7.87E−03 3.90E−03 1.89E−03 8.83E−04 3.79E−04 1.26E−04

2−5 2.41E−02 1.24E−02 6.19E−03 3.02E−03 1.42E−03 6.09E−04 2.03E−04

2−6 4.03E−02 2.14E−02 1.10E−02 5.41E−03 2.55E−03 1.10E−03 3.67E−04

2−7 4.03E−02 2.45E−02 1.42E−02 7.86E−03 4.11E−03 1.96E−03 7.01E−04

2−8 4.03E−02 2.42E−02 1.39E−02 7.68E−03 3.98E−03 1.85E−03 6.60E−04

2−9 4.07E−02 2.42E−02 1.39E−02 7.63E−03 3.95E−03 1.84E−03 6.56E−04

2−10 4.26E−02 2.43E−02 1.39E−02 7.61E−03 3.93E−03 1.83E−03 6.53E−04

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−24 4.53E−02 2.44E−02 1.39E−02 7.61E−03 3.93E−03 1.83E−03 6.51E−04

2−25 4.53E−02 2.44E−02 1.39E−02 7.61E−03 3.93E−03 1.83E−03 6.51E−04

EN
2 4.53E−02 2.45E−02 1.42E−02 7.86E−03 4.11E−03 1.96E−03 7.01E−04

pN2 0.89 0.79 0.85 0.93 1.07 1.49 –
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Fig. 1 Numerical solutions of Example 1 for ε = 2−5 and N = 256
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Fig. 2 Numerical solutions of Example 2 for ε = 2−6 and N = 512

and

f2(x) =
{ 3 + x

2
, for 0 ≤ x < 0.5,

1 + x, for 0.5 ≤ x ≤ 1.

Themaximum errors and the orders of convergence for the solution of the above Example-
1 and Example-2 are presented for various values of ε and N in the Tables 1, 2, 3 and 4 and
Figs. 1 and 2 respectively. For a finite set of values ε = {2−1, 2−2, ..., 2−25}, maximum
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point-wise errors EN
ε are computed as EN

ε = max
x j∈Ω

N
ε

∣∣∣Y N
j − Ỹ 8192

j

∣∣∣ for j=1,2, where Ỹ 8192
j

is the piecewise linear interpolant of the mesh function Y 8192
j onto [0,1]. From these values,

the ε-uniform maximum point-wise difference is calculated by EN
j = max

ε
EN

ε, j , j = 1, 2.

Further, the order of convergence is computed by pNj = log2

(
EN

j

E2N
j

)
, j = 1, 2.

Conclusions

A system of two coupled singularly perturbed convection–diffusion Robin type boundary
value problems with discontinuous source term was examined. A difference scheme using
fitted mesh method on the Shishkin mesh was constructed for solving the problem which
gives ε-uniform convergence. The obtained numerical results are of first order convergence
which support the theoretical results.

Acknowledgments The authors are thankful to the referees for their valuable suggestions and comments,
which improved this paper.
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