
Int. J. Appl. Comput. Math (2015) 1:369–379
DOI 10.1007/s40819-014-0020-8

ORIGINAL PAPER

Analytical Treatment for Solving a Class of Lane–Emden
Equations

D. Das · D. Ghosh · B. K. Datta · R. K. Bera ·
P. K. Sahu · S. Saha Ray

Published online: 2 December 2014
© Springer India Pvt. Ltd. 2014

Abstract Analytical and numerical results are reported on the approximate solution of the
Lane–Emden equation by Adomian decomposition method. Considering only a few terms of
the series solution, the result has been compared with the exact solution for a particular type
of nonlinearity. The present method performs extremely well in terms of accuracy, efficiency
and simplicity.
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1 Introduction

Recently, a great deal of interest has been focused on Adomian’s decomposition method
(ADM) and its applications to a wide class of physical problems [1–5]. The decomposition
method employed here is adequately discussed in the published literature [6,7], but it still
deserves emphasis to point out the very significant advantages over other methods. The said
method can also be an effective procedure for the analytical solution ofLane–Emden equation.
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The solution obtained by this method is compared with that of exact solution derived from a
particular type of nonlinearity.

First of all, Adomian decomposition method (ADM) will be discussed as given in [3,6,7]
and for the sake of convergence, the analysis given in [9,10] will be followed.

1.1 The Decomposition Method

Let us discuss a brief outline of the Adomian decomposition method, in general. For this, let
us consider an equation in the form

Lu + Ru + Nu = g, (1.1)

where L is an easily or trivially invertible linear operator, R is the remaining linear part and
N represents a non-linear operator.

The general solution of the given equation is decomposed into sum

u =
∞∑

n=0

un, (1.2)

Where u0 is the complete solution of Lu = g. From Eq. (1.1), one can write

Lu = g − Ru − Nu.

Because L is invertible, an equivalent expression is

L−1Lu = L−1g − L−1Ru − L−1Nu.

For initial value problems, we conveniently define L−1 for L = dn
dtn as the n-fold definite

integration operator from 0 to t .

For the operator L = d2

dt2
, for example, we have, L−1Lu = u − u(0) − tu′(0) and

therefore,

u = u(0) + tu′(0) + L−1g − L−1Ru − L−1Nu (1.3)

For boundary value problems (and, if described, for initial value problems as well), if indef-
inite integrations are used, considered constants are evaluated from the given conditions.
Solving for u yields

u = A + Bt + L−1g − L−1Ru − L−1Nu (1.4)

The first three terms in Eq. (1.3) or (1.4) are identified as u0 in the assumed decomposition

method u =
∞∑
n=0

un .

Finally, assuming Nu is analytic, we write Nu =
∞∑
n=0

An(u0, u1, ..., un), where An are

special set of polynomials obtained for the particular non-linearity Nu = f (u) and were
generated by Adomian [3,6,7]. These An polynomials depend, of course, on the particular
non-linearity. The An’s are given as below:
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A0 = f (u0),

A1 = u1
d

du0
f (u0),

A2 = u2
d

du0
f (u0) + u21

2!
d2

du20
f (u0),

A3 = u3
d

du0
f (u0) + u1u2

d2

du20
f (u0) + u33

3!
d3

du30
f (u0), ...

and can be found from the formula (for n ≥ 1).

An =
∞∑

i=1

C(i, n) f i (u0), (1.5)

where the C(i, n) are products (or sums or products) of i components of u, where subscripts
sum to n, divided by the factorial of the number of repeated subscripts [3,6,7].

Recently, the Adomian decomposition method (ADM) is reviewed and a mathematical
model of Adomian polynomials is introduced [6,7].

Therefore, the general solution becomes

u = u0 − L−1R
∞∑

n=0

un − L−1Nu, (1.6)

= u0 − L−1R
∞∑

n=0

un − L−1
∞∑

n=0

An (1.7)

where

u0 = � + L−1g and L� = 0, (1.8)

so that

un+1 = −L−1Run − L−1An, n ≥ 0 (1.9)

Using the known u0, all components u1, u2, ..., un, ... are determinable by using Eq. (1.9).
Substituting these u0, u1, u2, ..., un, ... etc. in Eq. (1.2), u is obtained completely.

Convergence of this method has been rigorously established by Cherruault [8], Abbaoui
and Cherruault [9] and Himoun et al. [10].

2 Analysis

The Lane–Emden equation is one of the basic equations in the theory of stellar structure
and has been the focus of many studies. This non-linear differential equation describes the
temperature variation of a spherical gas cloud under the mutual attraction of its molecules
and subject to the laws of classical thermodynamics [11–13]. It also describes the variation
of density as a function of the radial distance for a polytrope [14]. The Lane–Emden equation
has the general form

y′′ +
(
2

x

)
y′ + f (y) = 0, 0 < x ≤ 1

subject to the initial conditions y(0) = 1, y′(0) = 0,
where the prime (′) denotes differentiation with respect to the independent variable x .
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2.1 Case-1 ( f (y) = yα)

The Lane–Emden equation has the form [15]

y′′ +
(
2

x

)
y′ + yα = 0, 0 < x ≤ 1

y(0) = 1, y′(0) = 0 (2.1)

In Eq. (2.1), y and x are dimensionless variables and α is an index related to the ratio of
specific heats of the gases comprising the star. Hence the parameter α corresponds to the
particular choice of the equation of state.

We first introduce the following change of variables x = z, u = zy = xy into Eq. (2.1),
and it follows that

d2u

dz2
+ z1−αuα = 0

u(0) = 0,
du

dz

∣∣∣∣
z=0

= 1 (2.2)

The Eq. (2.2) can be rewritten in an operator form as [6,7,12]

Lu + z1−αNu = 0, (2.3)

where L is the differential operator d2

dz2
and N (u) represents the non-linear term uα .

Clearly, L is invertible and L−1 means a two-fold integral with respect to z. Generally, this
choice of the highest order derivative for L is the most desirable, because the integrations
are the simplest [6,7].
Operating with L−1 in (2.3), we get

u = u0 − L−1[z1−αNu], (2.4)

where u0 is the solution of the equation Lu = 0 with the given initial conditions.
Assuming the non-linear term Nu is analytic, this is decomposed as

Nu =
∞∑

n=0

An(u0, u1, ...un), (2.5)

where An’s are special set of polynomials, called Adomian’s polynomials, and can be calcu-
lated for all types of non-linearity according to specific algorithms constructed in [6,7].
The Adomian decomposition method (ADM) assumes a series solution for

u(z) =
∞∑

n=0

un(z) (2.6)

The decomposition series (2.6) can be obtained from (2.4) and (2.5) as

u0 = z,

un+1 = −L−1[z1−α An], n ≥ 0, (2.7)

where An’s are the Adomian polynomials.
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We now calculate few An’s for the non-linear term Nu = uα . It follows from [6.7] that

A0 = zα

A1 = − α

3! z
α+2

A2 = α

5! z
α+4 + α(α − 1)

2!(3!)2 zα+4

A3 = −
{

α3

7! + α2(α − 1)

3!5! + α2(α − 1)

(3!) · 14 + α(α − 1)(α − 2)

(3!)4
}
zα+6

... (2.8)

Substituting Eq. (2.8) into (2.7) and performing the necessary integrations, we get

u0 = z

u1 = − z3

3!
u2 = α

5! z
5

u3 = − 1

7!
{
α2 + 5α(α − 1)

3

}
z7

... (2.9)

All components are now determinable and substituting these components in Eq. (2.6), u is
obtained.
We now obtain

u = z − 1

3! z
3 + α

5! z
5 − 1

7!
{
α2 + 5α(α − 1)

3

}
z7 + ... (2.10)

Therefore, in terms of original variable, we finally get the solution as

y = 1 − 1

3! x
2 + α

5! x
4 − 1

7!
{
α2 + 5α(α − 1)

3

}
x6 + ... (2.11)

2.1.1 Verification of the Solution

Verification of the solution for a particular type of non-linearity (taking α = 5) in Eq. (2.1)
and comparison with the decomposition solution.

The above decomposition scheme will now be verified by taking a particular type of
non-linearity u5.
For this purpose we make the substitution

x = exp(−t)

y = 1√
2
u(t) exp(t/2) (2.12)

to eliminate the first-order term in (2.1) and obtain

4
d2u

dt2
− u + u5 = 0. (2.13)
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Now, by writing v = du
dt , so that d2u

dt2
= dv/du, the Eq. (2.13) reduces to the form

4v
dv

du
− u + u5 = 0. (2.14)

This equation can immediately be integrated to give

2v2 − 1

2
u2 + 1

6
u6 = c, (2.15)

where c is an arbitrary constant which can be set equal to zero by applying the given boundary
conditions. For example, Eq. (2.12), for x = 0 corresponds to t → ∞ and hence u and du

dt
must vanish as t → ∞, implying that u = v = 0, as t → ∞. Thus (2.15) becomes

v2 = 1

4
u2 − 1

12
u6,

or, v ≡ du

dt
= 1

2
u

(
1 − 1

3
u4

)1/2

,

which leads to

2
∫

du

u
{
1 − ( 1

3

)
u4

}1/2 = ∫ dt + A (2.16)

where A is a constant. To evaluate the integral (2.16), we substitute u4 = 3cos2 θ and obtain,
sec θ+tan θ = B exp (−t), where B = exp (−A).

Further, using cos θ = u2√
3
and x = exp(−t), we get Bx =

√
3

u2
+ { 3

u4
− 1}1/2,

which can be solved for u to give u = [ 2
√
3Bx

(1+B2x2)
]1/2.

Finally, using (2.12), the solution of (2.1), for α = 5 becomes

y =
[ √

3B(
1 + B2x2

)
]1/2

, (2.17)

where B = 1√
3
can be set after using the boundary condition y = 1, when x = 0. The

solution of (2.1) with these boundary conditions has been used extensively in Astrophysics.

Bx =
√
3

u2
+

{
3

u4
− 1

}1/2

,

= u′ + (
u′2 − 1

)1/2
, where u′ =

√
3

u2

Now
(
u′2 − 1

)1/2 = Bx − u′ (2.18)

Simplify the above Eq. (2.18), we have u2 = 2
√
3Bx

B2x2+1
Therefore,

y =
[

1

1 + 1
3 x

2

]1/2

(2.19)
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Table 1 Comparison of
numerical and exact results for
case 1

x y (ADM) y (EXACT) % ERROR

0.1 0.998337489 0.998337488 0.000001

0.2 0.993399894 0.993399267 0.0000627

0.3 0.985336295 0.985329278 0.0007017

0.4 0.974393227 0.974354703 0.0038524

0.5 0.960911665 0.960768922 0.0142743

0.6 0.945322858 0.944911182 0.0411676

0.7 0.928142974 0.92714554 0.0997434

0.8 0.909966560 0.907841299 0.2125261

0.9 0.891458795 0.887356509 0.4102286

1.0 0.87334656 0.866025403 0.732115767

For comparison with the decomposition solution (2.11), and to stress the point that the
decomposition series is very rapidly convergent and only a few terms of the series solution
(2.11) are sufficient for most purpose, taking α = 5, it follows from (2.11) that

y = 1 − 1

6
x2 + 1

24
x4 − 5

3024
x6 + .... (2.20)

The comparison is recorded in the Table 1.

2.2 Case 2 ( f (y) = ey)

The Lane–Emden equation has the form [16]

y′′ +
(
2

x

)
y′ + ey = 0, 0 < x ≤ 1

y(0) = y′(0) = 0 (2.21)

Equation (2.21) is the Lane–Emden equation that models the non-dimensional density dis-
tribution y(x) in an isothermal gas sphere [16].
We first introduce the following change of variables x = z, u = zy = xy into Eq. (2.21),
and it follows that

d2u

dz2
+ zeu/z = 0

u(0) = 0,
du

dz

∣∣∣∣
z=0

= 0 (2.22)

The Eq. (2.22) can be rewritten in an operator form as [6,7,12]

Lu + zNu = 0, (2.23)

where L is the differential operator d2

dz2
and N (u) represents the non-linear term eu/z .

Operating with L−1 in (2.23), we get

u = u0 − L−1[zNu], (2.24)

where u0 is the solution of the equation Lu = 0 with the given initial conditions.
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Assuming the non-linear term Nu is analytic, this is decomposed as

Nu =
∞∑

n=0

An(u0, u1, ...un), (2.25)

where An’s are special set of polynomials, called Adomian’s polynomials, and can be calcu-
lated for all types of non-linearity according to specific algorithms constructed in [6,7].
The Adomian decomposition method (ADM) assumes a series solution for

u(z) =
∞∑

n=0

un(z) (2.26)

The decomposition series (2.26) can be obtained from (2.24) and (2.25) as

u0 = 0,

un+1 = −L−1[zAn], n ≥ 0,
(2.27)

where An’s are the Adomian polynomials.
We now calculate few An’s for the non-linear term Nu = eu/z . It follows from [6.7] that

A0 = 1

A1 = −1

6
z2

A2 = 1

45
z4

A3 = − 61

22680
z6

... (2.28)

Substituting Eq. (2.28) into (2.27) and performing the necessary integrations, we get

u0 = 0

u1 = − z3

6

u2 = 1

120
z5

u3 = − 1

1890
z7

... (2.29)

All components are now determinable and substituting these components in Eq. (2.26), u is
obtained.
We now obtain

u = −1

6
z3 + 1

120
z5 − 1

1890
z7 + ... (2.30)

Therefore, in terms of original variable, we finally get the solution as

y = −1

6
x2 + 1

120
x4 − 1

1890
x6 + ... (2.31)

Verifying the results obtained by Adomian decomposition method in Eq. (2.31), we can
compare with the results obtained by Variational iteration method (VIM) [17] and it is clear
that both results are same.
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2.3 Case 3 ( f (y) = (y2 − C)3/2)

The Lane–Emden equation has the form [18]

y′′ +
(
2

x

)
y′ + (y2 − C)3/2 = 0, 0 < x ≤ 1

y(0) = 1, y′(0) = 0

(2.32)

Equation (2.32) is considered as “white-dwarf” equation which is introduced by Davis [19]
and Chandrasekhar [11] in his study of the gravitational potential of the degenerate white-
dwarf stars.
We first introduce the following change of variables x = z, u = zy = xy into Eq. (2.32),
and it follows that

d2u

dz2
+ z−2 (

u2 − Cz2
)3/2 = 0

u(0) = 0,
du

dz

∣∣∣∣
z=0

= 1 (2.33)

The Eq. (2.33) can be rewritten in an operator form as [6,7,12]

Lu + z−2Nu = 0, (2.34)

where L is the differential operator d2

dz2
and N (u) represents the non-linear term (u2−Cz2)3/2.

Applying the same procedure, the decomposition series u(z) = ∑∞
n=0 un(z) can be obtained

as

u0 = z,

un+1 = −L−1[z−2An], n ≥ 0, (2.35)

where An’s are the Adomian polynomials.
We now calculate few An’s for the non-linear term Nu = (u2 − Cz2)3/2. It follows from
[6,7] that

A0 = [
(1 − C)z2

]3/2

A1 = 1

2
(1 − C)2z5

A2 = (1 − C)3(19 − 5C)

120
√
1 − C

z7

A3 = − (1 − C)3(619 − 339C)

15120
z9

... (2.36)
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and

u0 = z

u1 = −1

6

[
(1 − C)z2

]3/2

u2 = 1

40
(1 − C)2z5

u3 = − (1 − C)3(19 − 5C)

5040
√
1 − C

z7

... (2.37)

All components are now determinable and substituting these components in decomposition

series u(z) =
∞∑
n=0

un(z).

We now obtain

u = z − 1

6
(1 − C)3/2z3 + 1

40
(1 − C)2z5 − (1 − C)3(19 − 5C)

5040
√
1 − C

z7 + ... (2.38)

Therefore, in terms of original variable, we finally get the solution as

y = 1 − 1

6
(1 − C)3/2x2 + 1

40
(1 − C)2x4 − (1 − C)3(19 − 5C)

5040
√
1 − C

x6 + ... (2.39)

It is more interesting to point out that if C = 0, then the white-dwarf equation change to
Lane–Emden equation of index 3.

3 Conclusion

The advantage of this global methodology lies on the fact that it not only leads to an analytical
continuous approximation which is very rapidly convergent [2,4,6,20], but also shows the
dependence, giving insight into the character and behavior of the solution just as in a closed
form solution [3,4,6]. The present analysis exhibits the applicability of the decomposition
method to solve Lane–Emden equation in the form of a power series. Furthermore, this
method does not require any transformation technique for linearization, and discretization
of the variables and it does not make closure approximation of a smallness assumptions.
Finally, we point out that, if the conditions on one variable are better known than the others,
we consider the appropriate operator equation which can yield the solution without suffering
transitional difficulty. This technique may be applied to the non-linear partial differential
equations such as KdV equation, Burgers equation, and many other important nonlinear
equations which will be considered in subsequent papers.
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