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Abstract This paper deals with the unsteady flow of an incompressible fractional Maxwell
fluid filled in the annular region between two infinite coaxial circular cylinders. The motion
of the fluid is due to the inner cylinder that applies a time dependent torsional shear to the
fluid and outer cylinder which is moving at a constant velocity. The velocity field and shear
stress are determined by the Laplace and finite Hankel transforms. The obtained solutions are
presented in terms of the generalized G and R functions. Solutions for Ordinary Maxwell fluid
and Newtonian fluid are also obtained by imposing appropriate limits. Finally, the influence
of different values of parameters, constants and fractional coefficient, as well as a comparison
between the velocity field and shear stress are also analyzed using graphical illustration.

Keywords Velocity field · Shear stress · Fractional calculus · Hankel transform ·
Laplace transform

Introduction

Study of the fluid motion in cylindrical domains is not only of fundamental theoretical interest
but it also has many applications in the food industry, oil exploitation, chemistry and bio-
engineering.

The non-Newtonian fluids, such as lava, gums, slurries, emulsions, blood etc, are very
frequently encountered in many different fields such as food industries, chemical engineer-
ing, biomedicine etc. and also are relevant to many other industrial processes. Hence, it
is necessary to study the non-Newtonian fluid flows. Typical non-Newtonian characteristics
include shear thinning, viscoelasticity, viscoplasticity and shear thickening behavior. Because
of these complex behaviors, there are various models suggested in the literatures for non-
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Newtonian fluids such as rate type [1], differential type [2] and integral type. These fluids
have non-linear relationship between shear stress and the rate of strain.

For non-Newtonian fluids, the first exact solutions corresponding to motion of second
grade fluids in cylindrical domains seem to be those of [3]. Similarly, [4] and [5] proposed
first exact solutions for Maxwell fluids and Oldroyd-B fluids respectively. The first exact
solution for motion of non-Newtonian fluids that applies a constant shear stress to the fluid
are those of [6] and [7] for second-grade fluids. Exact solutions for Taylor–Couette flow
of a fractional second grade fluid in an annulus due to a time-dependent couple have been
obtained by [8]. [9] worked on unsteady rotating flows of a viscoelastic fluid with the fractional
Maxwell model between coaxial cylinders. The velocity field and the associated tangential
stress corresponding to the rotational flow of a generalized second grade fluid within an
infinite circular cylinder have been obtained by [10]. Various other studies have been done
recently on non-Newtonian fluids [11–18].

Fractional calculus approach is very important in describing viscoelasticity [19–21]. The
starting point of the fractional derivative model of viscoelastic fluid is usually a classical
differential equation. This is being modified by replacing the time derivative of an integer
order by the so-called Riemann–Liouville fractional calculus operators. Hence, many exact
solutions for non-Newtonian fluids with fractional derivatives have been established [22–29]
due to the importance of viscoelasticity.

The aim of this paper is to provide exact solutions for the velocity field and shear stress
corresponding to the unsteady flow of an incompressible fractional Maxwell fluid in annular
region between two infinitely long coaxial circular cylinders. At time t = 0+, the inner
cylinder applies a time dependent torsional shear to the fluid and outer cylinder is moving
at a constant velocity. This solution is obtained using finite Hankel and Laplace transform
methods and the result is presented in terms of the generalized-G and R functions. The
solution of ordinary Maxwell fluids and Newtonian fluids are obtained by limiting cases of
α → 1 and α → 1, λ → 0 respectively.

Governing Equations

Let us consider an incompressible fractional Maxwell fluid with velocity V and extra stress
S as in the form of

V = V (r, t) = w(r, t)eθ , S = S(r, t), (1)

where eθ is the unit vector in the θ direction of the cylindrical coordinates.
At time t = 0, the fluid is at rest in an annular region between two infinite coaxial circular
cylinders. At time t = 0+, the inner cylinder applies a time dependent torsional shear to the
fluid and outer cylinder is moving at a constant velocity. For these flows, the constraint of
incompressibility is automatically satisfied. Initially the fluid is at rest, hence

V (r, 0) = 0, S(r, 0) = 0. (2)

For such flows the constraint of incompressibility is automatically satisfied, while the gov-
erning equations [30] are

(
1 + λDα

t

) ∂w(r, t)

∂t
= υ

(
∂2

∂r2 + 1

r

∂

∂r
− 1

r2

)
w(r, t), r ∈ (R1, R2), t > 0, (3)

(
1 + λDα

t

)
τ(r, t) = μ

(
∂

∂r
− 1

r

)
w(r, t), r ∈ (R1, R2), t > 0, (4)
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where τ(r, t) = Srθ (r, t) is the non-trivial shear stress, λ is relaxation time, μ is the dynamic
viscosity, ρ is the constant density of the fluid, υ = μ

ρ
is the kinematic viscosity and Dα

t is
the Caputo fractional derivative of order α as defined by [31]

Dα
t f (t) =

⎧
⎨

⎩

1
	(1−α)

d
dt

t∫

0

f (τ )
(t−τ)α

dτ, 0 ≤ α < 1;
d
dt f (t), α = 1,

(5)

where 	(.) is the Gamma function.
For α → 1 when Dα

t f (t) → d f (t)/dt, Eqs. (3) and (4) are reduced to the governing
equations for an Ordinary Maxwell fluid.

Flow Through the Annular Region

Let us consider an incompressible fractional Maxwell fluid at rest in the annular region
between two infinite coaxial circular cylinders. Also, consider that radius of inner and outer
cylinders are R1 and R2(> R1) respectively. At time t = 0+, the outer cylinder moving at a
constant velocity and the inner cylinder begins to rotate about its axis with a time dependent
torque per unit length 2π R1τ(R1, t) [30], where

τ(R1, t) = f1

λ
Rα,−1

(
− 1

λ
, t

)
; 0 < α < 1, (6)

where f1 is a constant and generalized R functions are defined by [32]

Ra,b(d, t) = L−1
{

qb

qa − d

}
=

∞∑

n=0

dnt (n+1)a−b−1

	[(n + 1)a − b] ;

Re(a − b) > 0, Re(q) > 0,

∣∣∣∣
d

qa

∣∣∣∣ < 1. (7)

The governing equations are given by Eqs. (3) and (4), while appropriate initial and boundary
conditions are

w(r, 0) = ∂w(r, 0)

∂t
= 0, τ (r,0) = 0, r ∈ (R1, R2], (8)

and

(
1 + λDα

t

)
τ(r, t)

∣∣r=R1 = μ

(
∂

∂r
− 1

r

)
w(r, t)

∣∣r=R1 = f1,

w(R2, t) = f2, t > 0, (9)

where f2 is the constant velocity of outer cylinder. Eq. (6) is the solution of Eq. (9). To solve
this problem we use Laplace and Hankel transform methods.

Calculation of the Velocity Field

Applying Laplace transform of Eq. (3) and using the initial conditions as given in Eq. (8),
we obtain

(
q + λqα+1) w(r, q) = υ

(
∂2

∂r2 + 1

r

∂

∂r
− 1

r2

)
w(r, q), r ∈ (R1, R2). (10)
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where w(r, q) =
∞∫

0
e−qtw(r, t)dt is the Laplace transform of function w(r, t) and q is the

transform parameter.
Applying Laplace transform of Eq. (9), we obtain

(
∂

∂r
− 1

r

)
w(r, q)

∣
∣r=R1 = f1

μq
;

w(R2, q) = f2

q
. (11)

The Hankel transform method with respect to r is used and defined as follows

wH (rn, q) =
R2∫

R1

rw(r, q)B(r, rn)dr, (12)

where
B(r, rn) = J1(rrn)Y2(R1rn) − J2(R1rn)Y1(rrn), (13)

rn being the positive roots of the transcendental equation B(R2, r) = 0. The inverse Hankel
transform as defined by [30], is given below

w(r, q) = π2

2

∞∑

n=1

r2
n J 2

1 (R2rn)B(r, rn)

J 2
2 (R1rn) − J 2

1 (R2rn)
wH (rn, q). (14)

Multiplying both sides of Eq. (10) by r B(r, rn), then integrating with respect to r from R1

to R2 and taking into account the conditions Eq. (11) and the equality

R2∫

R1

r

(
∂2

∂r2 + 1

r

∂

∂r
− 1

r2

)
w(r, q)B(r, rn)dr

= −r2
n wH (rn, q) + 2

πrn

(
∂

∂r
− 1

r

)
w(r, q)

∣∣r=R1 + R2rnw(R2, q)[Y2(R1rn)J2(R2rn)

−J2(R1rn)Y2(R2rn)]
= −r2

n wH (rn, q) + 2

πrn

f1

μq
+ R2rn f2

q
[Y2(R1rn)J2(R2rn) − J2(R1rn)Y2(R2rn)], (15)

we obtain

wH (rn, q)

= 2 f1υ

πμrn

1

q(q + λqα+1 + υr2
n )

+υ R2rn f2[Y2(R1rn)J2(R2rn) − J2(R1rn)Y2(R2rn)] 1

q(q + λqα+1 + υr2
n )

. (16)
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Rewriting Eq. (16) into a suitable equivalent form, we obtain below

wH (rn, q)

= 2 f1

πμr3
n

1

q
− 2 f1(1 + λqα)

πμr3
n (q + λqα+1 + υr2

n )

+ f2 R2

rn
[Y2(R1rn)J2(R2rn) − J2(R1rn)Y2(R2rn)]

[
1

q
− (1 + λqα)

(q + λqα+1 + υr2
n )

]
.

(17)

Applying inverse Hankel transform to Eq. (17) and taking into account the following result

R2∫

R1

(
r2 − R2

2

)
B(r, rn)dr = 4

πr3
n

(
R2

R1

)2

, (18)

we obtain

w(r, q)

= f1

2μ

(
R1

R2

)2
(

r − R2
2

r

)
1

q
− π f1

μ

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

rn[J 2
2 (R1rn) − J 2

1 (R2rn)]
(1 + λqα)

(q + λqα+1 + υr2
n )

+ π2

2
R2 f2

∞∑

n=1

rn J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)] [Y2(R1rn)J2(R2rn) − J2(R1rn)Y2(R2rn)]

×
[

1

q
− (1 + λqα)

(q + λqα+1 + υr2
n )

]
. (19)

Applying Inverse-Laplace transform of Eq. (19) and taking into account the following result
[32]

Ga,b,c(d, t) = L−1
{

qb

(qa − d)c

}

=
∞∑

j=0

dj	(c + j)

	(c)	( j + 1)

t (c+ j)a−b−1

	[(c + j)a − b] ;

Re(ac − b) > 0, Re(q) > 0,

∣∣∣∣
d

qa

∣∣∣∣ < 1, (20)

we obtain

w(r, t)

= f1

2μ

(
R1

R2

)2
(

r − R2
2

r

)

− π f1

μλ

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

rn[J 2
2 (R1rn) − J 2

1 (R2rn)]
∞∑

k=0

(−υr2
n

λ

)k

× [
Gα,−k−1,k+1(−λ−1, t) + λGα,α−k−1,k+1(−λ−1, t)

]

+ π2

2
R2 f2

∞∑

n=1

rn J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)] [Y2(R1rn)J2(R2rn) − J2(R1rn)Y2(R2rn)]

×
[

1 − 1

λ

∞∑

k=0

(−υr2
n

λ

)k {
Gα,−k−1,k+1(−λ−1, t) + λGα,α−k−1,k+1(−λ−1, t)

}
]

.

(21)
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Fig. 1 Profiles of the velocity w(r,t) and shear stress τ (r, t) given by Eqs. (21) and (25) for R1 = 0.3, R2 =
0.5, f1 = −3, f2 = −2, υ = 0.015, μ = 1.01, λ = 5, α = 0.5 and different values of t

Calculation of the shear stress

Applying Laplace transform to Eq. (4), we obtain

τ(r, q) = μ
1

(1 + λqα)

(
∂

∂r
− 1

r

)
w(r, q). (22)

Substitute Eq. (19) in Eq. (22), we obtain

τ(r, q) = f1

(
R1

r

)2 1

q(1 + λqα)
+ π f1

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)]
1

(q + λqα+1 + υr2
n )

−π2

2
μR2 f2

∞∑

n=1

r2
n J 2

1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)] [Y2(R1rn)J2(R2rn)
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Fig. 2 Profiles of the velocity w(r,t) and shear stress τ (r, t) given by Eqs. (21) and (25) for R1 = 0.3, R2 =
0.5, f1 = −3, f2 = −2, t = 6s, υ = 0.015, μ = 1.01, α = 0.5 and different values of λ

−J2(R1rn)Y2(R2rn)]
×

[
1

q(1 + λqα)
− 1

(q + λqα+1 + υr2
n )

]
, (23)

where
B(r, rn) = J2(rrn)Y2(R1rn) − J2(R1rn)Y2(rrn). (24)

Applying inverse Laplace transform to Eq. (23) and using Eq. (20), we obtain

τ(r, t) = f1

(
R1

r

)2 1

λ
Rα,−1(−λ−1, t)

+π f1

λ

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)]
∞∑

k=0

(−υr2
n

λ

)k

Gα,−k−1,k+1(−λ−1, t)
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Fig. 3 Profiles of the velocity w(r,t) and shear stress τ (r, t) given by Eqs. (21) and (25) for R1 = 0.3, R2 =
0.5, f1 = −3, f2 = −2, t = 6s, υ = 0.015, μ = 1.01, λ = 5 and different values of α

−π2

2

μR2 f2

λ

∞∑

n=1

r2
n J 2

1 (R2rn)B(r, rn)

[J 2
2 (R1rn)− J 2

1 (R2rn)]
[Y2(R1rn)J2(R2rn) − J2(R1rn)Y2(R2rn)]

×
[

Rα,−1(−λ−1, t) −
∞∑

k=0

(−υr2
n

λ

)k

Gα,−k−1,k+1(−λ−1, t)

]

. (25)

Limiting Cases

Ordinary Maxwell Fluid

Applying α → 1 into Eqs. (21) and (25), we obtain the velocity field
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Fig. 4 Profiles of the velocity w(r,t) and shear stress τ (r, t) given by Eqs. (21) and (25) for R1 = 0.3, R2 =
0.5, f1 = −3, f2 = −2, t = 6s, υ = 0.015, λ = 5, α = 0.5 and different values of μ

wM (r, t)

= f1

2μ

(
R1

R2

)2
(

r − R2
2

r

)

− π f1

μλ

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

rn[J 2
2 (R1rn) − J 2

1 (R2rn)]
∞∑

k=0

(−υr2
n

λ

)k

× [
G1,−k−1,k+1(−λ−1, t) + λG1,−k,k+1(−λ−1, t)

]

+π2

2
R2 f2

∞∑

n=1

rn J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)] [Y2(R1rn)J2(R2rn) − J2(R1rn)Y2(R2rn)]

×
[

1 − 1

λ

∞∑

k=0

(−υr2
n

λ

)k {
G1,−k−1,k+1(−λ−1, t) + λG1,−k,k+1(−λ−1, t)

}
]

, (26)

and its associated shear stress corresponding to ordinary Maxwell fluid performing the same
motion
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Fig. 5 Profiles of the velocity w(r,t) and shear stress τ (r, t) given by Eqs. (21) and (25) for R1 = 0.3, R2 =
0.5, f2 = −2, t = 6s, υ = 0.015, μ = 1.01, λ = 5, α = 0.5 and different values of f1

τM (r, t) = f1

(
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r

)2 (
1 − e−t/λ)

+ π f1

λ

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)]
∞∑

k=0

(−υr2
n

λ

)k

G1,−k−1,k+1(−λ−1, t)

−π2

2

μR2 f2

λ

∞∑

n=1

r2
n J 2

1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)] [Y2(R1rn)J2(R2rn)
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×
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(
1 − e−t/λ) −

∞∑
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. (27)
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Fig. 6 Profiles of the velocity w(r,t) and shear stress τ (r, t) given by Eqs. (21) and (25) for R1 = 0.3, R2 =
0.5, f1 = −3, t = 6s, υ = 0.015, μ = 1.01, λ = 5, α = 0.5 and different values of f2

Newtonian Fluid

Applying λ → 0 into Eqs. (26) and (27) and taking into account the following result

lim
λ→0

1

λm
G1,b,m(−λ−1, t) = t−b−1

	(−b)
, b < 0,

we obtain the corresponding solutions for the Newtonian fluid, as follows

wN (r, t) = f1

2μ

(
R1

R2

)2
(

r − R2
2

r

)

− π f1

μ

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

rn[J 2
2 (R1rn) − J 2

1 (R2rn)]e−υr2
n t

+ π2

2
R2 f2

∞∑

n=1

rn J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)] [Y2(R1rn)J2(R2rn)

−J2(R1rn)Y2(R2rn)]
(

1 − e−υr2
n t

)
, (28)
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Fig. 7 Profiles of the velocity w(r,t) and shear stress τ (r, t) corresponding to the Fractional Maxwell , ordinary
Maxwell and Newtonian fluids, for R1 = 0.3, R2 = 0.5, f1 = −3, f2 = −2, t = 6 s, υ = 0.015, μ =
1.01, λ = 6 and α = 0.2

and

τN (r, t) = f1

(
R1

r

)2

+ π f1

∞∑

n=1

J 2
1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)]e−υr2
n t

−π2

2
μR2 f2

∞∑

n=1

r2
n J 2

1 (R2rn)B(r, rn)

[J 2
2 (R1rn) − J 2

1 (R2rn)] [Y2(R1rn)J2(R2rn)

−J2(R1rn)Y2(R2rn)]
(

1 − e−υr2
n t

)
. (29)

Conclusions and Numerical Results

The purpose of this paper is to establish exact solutions for the velocity field and shear
stress corresponding to the unsteady flow of an incompressible fractional Maxwell fluid flow
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in the annular region. Where, the motion is produced by the inner cylinder that applies a
time dependent torsional shear to the fluid and outer cylinder which is moving at a constant
velocity. The solution is obtained by finite Hankel and Laplace transform methods and the
result is presented under series form in terms of the generalized G and R functions. The
similar solutions for Ordinary Maxwell and Newtonian fluids are also obtained as limiting
cases of the solution for fractional Maxwell fluid. The velocity field and shear stress are
also analyzed using graphical illustration for various parameters, constants and fractional
coefficients and a comparison between models of the velocity field and shear stress are also
analyzed using graphical illustration.

As shown in below diagrams, the velocity w(r, t) and the shear stress τ(r, t) given by
Eqs. (21) and (25) have been drawn against r for different values of the time t, f1, f2 and
other relevant parameters. It can be clearly seen from the figures that the velocity component
w is decreasing function of r and the shear stress component τ is increasing function of r . The
motion of the fluid is relatively higher and shear stress lower in the neighborhood of the inner
cylinder for given boundary conditions and f1 < 0, f2 < 0. Figures 1a and b are showing
the effect of different values of time on the fluid motion. It can be seen that the velocity and
the shear stress are the decreasing function of time t . The influence of relaxation time λ and
fractional parameter α on the fluid motion is shown in Figs. 2 and 3. Both parameters have
opposite effect on the fluid motion. The velocity and the shear stress are increasing function
of λ and decreasing function of α. Figures 4a and b are showing the effect of different values
of dynamic viscosity on the fluid motion. The results indicate that the velocity and the shear
stress are increasing function of dynamic viscosity. Figures 5 and 6 are showing the behavior
of f1 and f2 on the fluid motion for their different values. Figure 7 is showing a comparison
diagram of the velocity w(r, t) and the shear stress τ(r, t) among three models (Fractional
Maxwell fluid, Ordinary Maxwell fluid and Newtonian fluid) for same values of the common
material constants and time t. The velocity in the neighborhood of inner cylinders is swiftest
for fractional Maxwell fluid while it is slowest for the Ordinary Maxwell fluid. Similarly,
shear stress on the whole flow domains highest for fractional Maxwell fluid while it is slowest
for the Newtonian fluid.

In all of above, the root rn has been approximated by (2n−1)π
2(R2−R1)

.
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