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Abstract A doubling transformation ψ(x) = x − λ − b
x−μ , b, λ, μ ∈ R, b > 0, has the

property that for any absolutely integral function F(x) on R we have
∫ ∞
−∞ F(ψ(x)) dx =

∫ ∞
−∞ F(x) dx .Compositions of doubling transformations also satisfy this integral invariance

property. In this paper we give criteria for determining when a given rational function is a
composition of two or more doubling transformations, and use this criteria for giving explicit

families of such transformations such as (x−a)(x+a2)(x−a3)(x+a4)

x(x−a2)(x+a3)
, for a > 1; (x

2−a2)(x2−a8)

x(x+a2)(x−a3)
,

for a > 1; and (x2−a2)(x2−b2)

x(x2−ab)
, for 0 < a < b.

Keywords Doubling transformations · Invariant integrals

Mathematics Subject Classification 26A42 · 26A33 · 26A48 · 26C15

Introduction

Transformations on the real number line of the type

φ(x) = x − λ− b

x − μ
, (1)

with λ,μ, b real numbers with b > 0, called doubling transformations, have the interesting
property that for any absolutely integrable function F(x) on R, we have

∫ ∞

−∞
F(φ(x)) dx =

∫ ∞

−∞
F(x) dx . (2)
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This result can be found for example in Wilson’s Advanced Calculus [4, p. 386]; a proof is
provided in Section “Proof of the Integral Formula” for the reader’s convenience. The name
doubling comes from the fact that φ(x) is a two-to-one function on R − {μ}, and thus the
graph of F(φ(x)) is a doubling of the graph of F(x). By taking compositions of doubling
functions we generate new rational functions satisfying (2). Our interest in this paper is to
characterize all such rational functions. This extends work started by Hagler in [1], [2] and [3]
where doubling transformation were used in the study of orthogonal systems of polynomials
such as those of Jacobi, Hermite and Laguerre.

We shall establish criteria for recognizing when a given rational function is a composition
of n doubling transformations. For example, the following are all examples of compositions
of two doubling transformations,

(x − a)(x + a2)(x − a3)(x + a4)

x(x − a2)(x + a3)
, (a > 1), (3)

(x2 − a2)(x2 − a8)

x(x + a2)(x − a3)
, (a > 1), (4)

(x2 − a2)(x2 − b2)

x(x2 − ab)
, (0 < a < b); (5)

see Examples 9, 10 and 11. Thus, by (2) we obtain integral formulae such as

√
π =

∫ ∞

−∞
e−x2

dx =
∫ ∞

−∞
e
−

[
(x−a)(x+a2)(x−a3)(x+a4)

x(x−a2)(x+a3)

]2

dx,

for a > 1 and

π =
∫ ∞

−∞
dx

1 + x2 =
∫ ∞

−∞
x2(x2 − ab)2 dx

x2(x2 − ab)2 + (x2 − a2)2(x2 − b2)2
,

for 0 < a < b.
In general, for compositions of two doubling transformations we establish the following

characterization.

Theorem 1 A rational function is a composition of two doubling transformations if and only
if it is of the form f2(x − μ) for some real number μ and rational function

f2(x) =
∏4

i=1(x − θ
(2)
i )

x
∏2

i=1(x − θ
(1)
i )

,

where the θ( j)
i are real numbers satisfying

θ
(2)
4 < θ

(1)
2 < θ

(2)
2 < 0 < θ

(2)
3 < θ

(1)
1 < θ

(2)
1 ,

θ
(1)
1 θ

(1)
2 = θ

(2)
1 θ

(2)
2 = θ

(2)
3 θ

(2)
4 .

Theorem 1 is an immediate consequence of Theorem 7, which establishes both existence
and uniqueness criteria for such decompositions. Similar criteria are established for n = 3
in Section “The case n = 3” and for general n in Section “The General Case”. For n = 3 we
give an explicit family of such functions in Example 12. Writing down explicit families for
n > 3 is more challenging and we have not endeavored to do so at this point.
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Compositions of Doubling Transformations

Suppose that for 1 ≤ k ≤ n, φk is a doubling transformation,

φk(x) = x − λk − bk

x − μk
,

for some λk, bk, μk ∈ R, bk > 0. For any real number μ, let tμ denote the translation
tμ(x) := x − μ, and t−1

μ denote its inverse, t−1
μ (x) = x + μ. Then we have

φn ◦ φn−1 ◦ · · · ◦ φ1 = (φn ◦ t−1
μn
) ◦ (tμn ◦ φn−1 ◦ t−1

μn−1
) ◦ · · · ◦ (

tμ2 ◦ φ1 ◦ t−1
μ1

) ◦ tμ1

= ρn ◦ ρn−1 ◦ · · · ◦ ρ1 ◦ tμ1

say, where ρk is a doubling transformation with pole at 0, 1 ≤ k ≤ n. Thus we have the
following lemma.

Lemma 2 Any function that can be expressed as a composition of doubling transformations
can be expressed in the form f (x −μ) for someμ ∈ R, where f is a composition of doubling
transformations having poles at 0.

Henceforth, we shall assume that the poles μk in all of our doubling transformations are
zero. The φk then take the form

φk(x) := x − λk − bk

x
= (x − αk)(x − βk)

x
, (6)

where αk > 0, βk < 0 are real numbers given by

αk, βk =
λk ±

√
λ2

k + 4bk

2
,

and satisfy the basic relations

αk + βk = λk, (7)

αkβk = −bk . (8)

Set
fn(x) = φn ◦ φn−1 ◦ · · · ◦ φ1(x). (9)

Each φk is strictly increasing on (−∞, 0) and on (0,∞), and is a 2-to-1 mapping on the
extended real number line R ∪ {∞}, where we define φk(0) = ∞, φk(∞) = ∞. Thus fn is
a 2n-to-1 mapping on the extended real number line, strictly increasing on the open intervals
where it is defined, having 2n − 1 distinct real simple poles, and can be expressed in reduced
form as a rational function

fn(x) = pn(x)

qn(x)
,

for some monic polynomials pn(x), qn(x) of degrees 2n , 2n − 1 respectively. The graph of
fn(x) consists of 2n connected components C(n)r , 1 ≤ r ≤ 2n , each containing a unique zero
θ
(n)
r of fn(x). We call C(n)r the component of the graph corresponding to θ(n)r . Thus we have,

pn(x) =
2n
∏

r=1

(x − θ(n)r ).
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Since

fn(x) = φn( fn−1(x)) = fn−1(x)− λn − bn/ fn−1(x),

we see that the poles of fn are just the zeros of fn−1 together with the poles of fn−1.
From this observation and the fact that pn(x), qn(x) are monic, we see that f1(x) = p1(x)

x ,

f2(x) = p2(x)
xp1(x)

, and by induction that,

fn(x) = pn(x)

xp1(x)p2(x) · · · pn−1(x)
.

The zeros of fn(x) can be put into positive-negative pairs inductively as follows. For n = 1
we already have the positive-negative pair (θ(1)1 , θ

(1)
2 ) = (α1, β1). We will use odd subcripts

for the positive zeros and even subscripts for the negative zeros. Suppose that we are given
a pairing of the zeros of fn−1(x), say (θ(n−1)

2k−1 , θ
(n−1)
2k ), 1 ≤ k ≤ 2n−2. Let C(n−1)

2k−1 , C
(n−1)
2k be

the corresponding components of the graph of fn−1(x). Note that C(n−1)
2k−1 lies in the right half-

plane (x > 0), while C(n−1)
2k lies in the left half-plane (x < 0). Since fn(x) = φn( fn−1(x)),

the zeros of fn(x) are just the solutions of the equations fn−1(x) = αn , fn−1(x) = βn .
Let θ(n)2k−1 be the solution of fn−1(x) = αn with (x, αn) on C(n−1)

2k−1 and θ(n)2k the solution of

fn−1(x) = αn with (x, αn) on C(n−1)
2k . Then (θ(n)2k−1, θ

(n)
2k ) is a uniquely defined pair of zeros

of fn(x). Similarly, let (θ2n−1+2k−1, θ2n−1+2k) be the positive negative pair corresponding to
the solutions of fn−1(x) = βn .

In particular, we see that for n = 2,

θ
(2)
4 < θ

(1)
2 < θ

(2)
2 < 0 < θ

(2)
3 < θ

(1)
1 < θ

(2)
1 . (10)

Thus, between any two consecutive zeros of q2(x) = xp1(x) there is a zero of p2(x). Also,
to the right of the largest zero of q2(x) and to the left of the smallest zero of q2(x) there is a
zero of p2(x). Similarly, for n = 3 one obtains from the construction above that,

θ
(3)
8 < θ

(2)
4 < θ

(3)
4 < θ

(1)
2 < θ

(3)
6 < θ

(2)
2 < θ

(3)
2 < 0

0 < θ
(3)
7 < θ

(2)
3 < θ

(3)
3 < θ

(1)
1 < θ

(3)
5 < θ

(2)
1 < θ

(3)
1 , (11)

and we see the same type of splicing of zeros. Continuing this process we have the following
lemma.

Lemma 3 The Splicing Principle. For n ≥ 2, between any two consecutive zeros of qn(x)
(with respect to the standard ordering on R), as well as to the right of the largest zero and to
the left of the smallest zero of qn(x), there is a unique zero of pn(x). Moreover, we have the
following consecutive triples of zeros of qn(x):

θ
(n)
2n−1+2k−1

< θ
(n−1)
2k−1 < θ

(n)
2k−1, θ

(n)
2n−1+2k

< θ
(n−1)
2k < θ

(n)
2k , 1 ≤ k ≤ 2n−2. (12)

The positive-negative pairs can be defined in a purely algebraic manner as follows. They
correspond to the choice of positive-negative signs in the successive applications of the
quadratic formula that one would use for calculating the zeros. For instance,
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θ
(2)
1 =

(
λ1 + α2 +

√
(λ1 + α2)2 + 4b1

)
/2

θ
(2)
2 =

(
λ1 + α2 −

√
(λ1 + α2)2 + 4b1

)
/2

θ
(2)
3 =

(

λ1 + β2 +
√
(λ1 + β2)2 + 4b1

)

/2

θ
(2)
4 =

(

λ1 + β2 −
√
(λ1 + β2)2 + 4b1

)

/2.

Fundamental Relations

As noted above, the zeros of fn(x) are the solutions of the equations fn−1(x) = αn ,
fn−1(x) = βn . We call the former the α zeros of fn(x) and the latter the β zeros of fn(x).
Let

f ∗
n−1(x) := φ∗

n−1 ◦ φn−2 ◦ · · · ◦ φ1(x),

f ∗∗
n−1(x) := φ∗∗

n−1(x) ◦ φn−2 ◦ · · · ◦ φ1(x),

where

φ∗
n−1(x) := x − (λn−1 + αn)− bn−1/x,

φ∗∗
n−1(x) := x − (λn−1 + βn)− bn−1/x .

Let θ∗(n−1)
j , θ∗∗(n−1)

j denote the zeros of f ∗
n−1, f ∗∗

n−1 respectively. Then the alpha zeros of fn

are just the zeros of f ∗
n−1, while the beta zeros of fn are the zeros of f ∗∗

n−1, that is,

θ
(n)
2k−1 = θ

∗(n−1)
2k−1 , θ

(n)
2k = θ

∗(n−1)
2k , (13)

θ
(n)
2n−1+2k−1

= θ
∗∗(n−1)
2k−1 , θ

(n)
2n−1+2k

= θ
∗∗(n−1)
2k . (14)

Because f ∗
n−1(x) and f ∗∗

n−1(x) are functions of type (9), identical to fn−1(x) except for
the value of λn−1, we have

Lemma 4 The Correspondence Principle. Any relationship satisfied by the zeros of fn−1(x)
that has no dependence on λn−1, will be satisfied by the corresponding α-zeros and β-zeros
of fn(x).

As an example of this phenomena we give the most basic such relationship.

Lemma 5 The Basic Relationship. For any n ≥ 1 and any positive-negative pair (θ(n)2k−1,

θ
(n)
2k ) of zeros of fn(x) we have

θ
(n)
2k−1θ

(n)
2k = −b1.

Proof The relationship holds for n = 1 by (8). Since it has no dependence on the λn the
same relationship holds by induction and the Correspondence Principle for all n. 
�

The next lemma provides a more general class of relationships.
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Lemma 6 For any positive integer n, we have

(i)
2n
∑

i=1

θ
(n)
i = λn + 2λn−1 + 22λn−2 + · · · + 2n−1λ1. (15)

(ii)
2n−1
∑

i=1

θ
(n)
i −

2n−1
∑

i=1

θ
(n−1)
i = αn (16)

(iii)
2n−1
∑

i=1

θ
(n)
2n−1+i

−
2n−1
∑

i=1

θ
(n−1)
i = βn . (17)

(iv) − bn =
⎛

⎝
2n−1
∑

i=1

θ
(n)
i −

2n−1
∑

i=1

θ
(n−1)
i

⎞

⎠

⎛

⎝
2n−1
∑

i=1

θ
(n)
2n−1+i

−
2n−1
∑

i=1

θ
(n−1)
i

⎞

⎠ . (18)

When n = 1, the relationship in (iv) is just the basic relationship of Lemma 5.

Proof The proof of (i) is by induction on n the case n = 1 being the identity α1 + β1 = λ1.
Suppose the statement is true for n. Then for n +1 the α-zeros of fn+1(x) are the solutions of
fn(x) = αn+1, that is, the zeros of f ∗

n (x)where f ∗
n (x) is the same as fn(x)with λn replaced

by λn + αn+1. Thus by the induction assumption the sum of the α-zeros is λn + αn+1 +∑n−1
i=1 2iλn−i . Similarly, the sum of the β-zeros of fn+1(x) is λn + βn+1 + ∑n−1

i=1 2iλn−i .
Thus the full sum of zeros of fn+1(x) is

αn+1 + βn+1 + 2λn + 2
n−1∑

i=1

2iλn−i = λn+1 + 2λn + 22λn−1 + · · · + 2nλ1.

The sum in (ii) is just the sum of the α-zeros of fn(x) minus the sum of all the zeros of
fn−1(x), which by (i) equals

∑n−1
i=0 2iλn−i + αn − ∑n−1

i=0 2iλn−i = αn . The proof of (iii)
is identical, using the β-zeros in place of the α-zeros. The identity in (iv) follows from (ii),
(iii) and the fact that αnβn = −bn . 
�

Since the identity in part (iv) of the lemma has no dependence on the λi , one can invoke
the correspondence lemma to produce further relations. We do this in Section “The General
Case”, but first we explore the cases n = 2 and n = 3 in detail.

The case n = 2

Compositions of two doubling transformations are quadrupling transformations, that is,
4-to-1 mappings on the extended real number line. In the notation of the previous section,
any such transformation has the form

f2(x) = φ2 ◦ φ1(x) = p2(x)

xp1(x)
=

∏4
i=1(x − θ

(2)
i )

x
∏2

i=1(x − θ
(1)
i )

, (19)

where, by the Splicing Principle (Lemma 3), Basic Relationship (Lemma 5) and Lemma 6
(iv) and (i), we have
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θ
(2)
4 < θ

(1)
2 < θ

(2)
2 < 0 < θ

(2)
3 < θ

(1)
1 < θ

(2)
1 , (20)

−b1 = θ
(1)
1 θ

(1)
2 = θ

(2)
1 θ

(2)
2 = θ

(2)
3 θ

(2)
4 , (21)

−b2 =
(
θ
(2)
1 + θ

(2)
2 − θ

(1)
1 − θ

(1)
2

) (
θ
(2)
3 + θ

(2)
4 − θ

(1)
1 − θ

(1)
2

)
, (22)

λ1 = θ
(1)
1 + θ

(1)
2 , (23)

λ2 = θ
(2)
1 + θ

(2)
2 + θ

(2)
3 + θ

(2)
4 − 2θ(1)1 − 2θ(1)2 . (24)

Thus, the values λ1, λ2, b1, b2 are uniquely determined by f2(x), and we have established
one direction of the following theorem.

Theorem 7 Let f (x) = p(x)
q(x) be a rational function over R, expressed in reduced form

with q(x) monic. Then f (x) is a composition of two doubling transformations with poles
at zero if and only if p(x) is a monic fourth degree polynomial with distinct real zeros θ(2)i ,

1 ≤ i ≤ 4, q(x) is a third degree polynomial with distinct real zeros 0, θ (1)1 , θ
(1)
2 , and the

zeros of p(x), q(x) can be ordered in such a manner that the relations in (20) and (21) hold
for some b1 ∈ R.

To establish the converse part of the theorem we need the following uniqueness lemma.

Lemma 8 For a given set of values b1, b2, λ1, λ2 ∈ R, with b1 > 0, b2 > 0, the system of
equations (21), (22), (23), (24) has a unique solution θ(1)1 , θ

(1)
2 , θ

(2)
i , 1 ≤ i ≤ 4, satisfying

(20).

Proof The values θ(1)1 , θ
(1)
2 are roots of the quadratic equation x2 − λ1x − b1 = 0, with

θ
(1)
1 > 0 > θ

(1)
2 . Put X = θ

(2)
1 + θ

(2)
2 , Y = θ

(2)
3 + θ

(2)
4 . Then we have

(X − λ1)(Y − λ1) = −b2, X + Y − 2λ1 = λ2, X > Y.

The first two equations give X, Y as zeros of a quadratic equation, and the inequality X > Y
then uniquely determines X, Y . Next, the system

θ
(2)
1 θ

(2)
2 = −b1, θ

(2)
1 + θ

(2)
1 = X, θ

(2)
1 > θ

(2)
2 .

uniquely determines θ(2)1 , θ
(2)
2 , while the system

θ
(2)
3 θ

(2)
4 = −b1, θ

(2)
3 + θ

(2)
4 = Y, θ

(2)
3 > θ

(2)
4 ,

uniquely determines θ(2)3 , θ
(2)
4 . 
�

Proof of Theorem 7 Suppose that f (x) = p(x)
q(x) is a given rational function with p(x) monic

and having zeros θ(2)1 , θ(2)2 , θ(2)3 , θ(2)4 , and q(x) monic with zeros 0, θ(1)1 , θ(1)2 . Suppose also
that the relations in (20) and (21) hold for some b1 ∈ R. Define b2, λ1 and λ2 as in (22), (23)
and (24), and set

φ1(x) := x − λ1 − b1

x
, φ2(x) := x − λ2 − b2

x
.

By (20) we see that b1 > 0 and b2 > 0 and so φ1, φ2 are doubling transformations. The zeros
and poles of φ2 ◦ φ1 satisfy the relations (20), (21), (22), (23) and (24). Thus, by Lemma 8,
the zeros and poles of φ2 ◦ φ1 must be the values θ(1)1 , θ

(1)
2 , θ

(2)
i , 1 ≤ i ≤ 4. Since φ2 ◦ φ1 is

a ratio of monic polynomials, we have φ2 ◦ φ1(x) = f (x). 
�
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In the next three examples, we give families of quadrupling transformations having par-
ticularly nice sets of zeros and poles. The strategy for constructing such examples is to find
a set of real numbers satisfying (20) and (21).

Example 9 Let a > 1. Observing that −a4 < −a3 < −a2 < 0 < a < a2 < a3 we put

θ
(2)
1 = a3, θ

(2)
2 = −a2, θ

(2)
3 = a, θ

(2)
4 = −a4, θ

(1)
1 = a2, θ

(1)
2 = −a3.

Then, with b1 = a5, b2 = −2a3(a − 1)2(a2 + 1), relations (21) and (22) hold. Defining
λ1 = a2 − a3, λ2 = −a(a − 1)3, we have

f2(x) = φ2 ◦ φ1(x) = (x − a)(x + a2)(x − a3)(x + a4)

x(x − a2)(x + a3)
.

Example 10 Let a > 1. Observing that −a4 < −a2 < −a < 0 < a < a3 < a4, we put

θ
(2)
4 = −a4, θ

(2)
3 = a, θ

(2)
2 = −a, θ

(2)
1 = a4, θ

(1)
2 = −a2, θ

(1)
1 = a3.

Then we have b1 = a5, b2 = a2(a4 − 1)(a2 − 1), λ1 = a3 − a2, λ2 = −2(a3 − a2), and

f2(x) = φ2 ◦ φ1(x) = (x2 − a2)(x2 − a8)

x(x + a2)(x − a3)
.

Example 11 Let 0 < a < b, so that −b < −√
ab < −a < 0 < a <

√
ab < b. Then with

b1 = ab, b2 = (a − b)2, λ1 = λ2 = 0 we have

f2(x) = φ2 ◦ φ1(x) = (x2 − a2)(x2 − b2)

x(x2 − ab)
.

The Case n = 3.

Let

f3(x) = φ3 ◦ φ2 ◦ φ1(x) =
∏8

i=1(x − θ
(3)
i )

x
∏2

i=1(x − θ
(1)
i )

∏4
i=1(x − θ

(2)
i )

. (25)

By the Splicing principle,

θ
(3)
8 < θ

(2)
4 < θ

(3)
4 < θ

(1)
2 < θ

(3)
6 < θ

(2)
2 < θ

(3)
2 < 0

0 < θ
(3)
7 < θ

(2)
3 < θ

(3)
3 < θ

(1)
1 < θ

(3)
5 < θ

(2)
1 < θ

(3)
1 . (26)

By the basic relationship,

− b1 = θ
(3)
1 θ

(3)
2 = θ

(3)
3 θ

(3)
4 = θ

(3)
5 θ

(3)
6 = θ

(3)
7 θ

(3)
8 = θ

(2)
1 θ

(2)
2 = θ

(2)
3 θ

(2)
4 = θ

(1)
1 θ

(1)
2 . (27)

By Lemma 6 (iv) together with the Correspondence Principle,

−b2 =
(
θ
(3)
1 + θ

(3)
2 − θ

(1)
1 − θ

(1)
2

) (
θ
(3)
3 + θ

(3)
4 − θ

(1)
1 − θ

(1)
2

)

=
(
θ
(3)
5 + θ

(3)
6 − θ

(1)
1 − θ

(1)
2

) (
θ
(3)
7 + θ

(3)
8 − θ

(1)
1 − θ

(1)
2

)

=
(
θ
(2)
1 + θ

(2)
2 − θ

(1)
1 − θ

(1)
2

) (
θ
(2)
3 + θ

(2)
4 − θ

(1)
1 − θ

(1)
2

)
, (28)

and again by Lemma 6 (iv),
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−b3 =
(
θ
(3)
1 + θ

(3)
2 + θ

(3)
3 + θ

(3)
4 − θ

(2)
1 − θ

(2)
2 − θ

(2)
3 − θ

(2)
4

)

·
(
θ
(3)
5 + θ

(3)
6 + θ

(3)
7 + θ

(3)
8 − θ

(2)
1 − θ

(2)
2 − θ

(2)
3 − θ

(2)
4

)
. (29)

By Lemma 6 (i) the values λ1, λ2, λ3 satisfy

λ1 =
2∑

i=1

θ
(1)
i ,

λ2 =
4∑

i=1

θ
(2)
i − 2

2∑

i=1

θ
(1)
i ,

λ3 =
8∑

i=1

θ
(3)
i − 2

4∑

i=1

θ
(2)
i − 4

2∑

i=1

θ
(1)
i .

Again, given any θ
(k)
i satisfying the relations in (26), (27) and (28), by defining

b1, b2, b3, λ1, λ2, λ3 as above we obtain an f3(x) of the form (25). Thus we have the analogue
of Theorem 7 for the case n = 3; see Theorem 13.

Example 12 Let a0 = 1.839... be the real zero of x3 − x2 − x − 1 = 0. Let a be any real
with a > a0, and set θ(1)1 = 1, θ(1)2 = −1,

θ
(2)
1 = a, θ

(2)
2 = − 1

a
, θ

(2)
3 = a − 1

a + 1
, θ

(2)
4 = −a + 1

a − 1

θ
(3)
1 = a2, θ

(3)
2 = − 1

a2 , θ
(3)
3 = a2 − 1

a2 + 1
, θ

(3)
4 = −a2 + 1

a2 − 1
,

θ
(3)
5 = a2 + 1

a2 − 1
, θ

(3)
6 = −a2 − 1

a2 + 1
, θ

(3)
7 = 1

a2 , θ
(3)
8 = −a2.

It is easy to see that (26) holds since, by assumption, a3 − a2 − a − 1 > 0, and that (27)
holds with b1 = 1. Next, we have

(
θ
(3)
1 + θ

(3)
2 − θ

(1)
1 − θ

(1)
2

) (
θ
(3)
3 + θ

(3)
4 − θ

(1)
1 − θ

(1)
2

)

=
(

a2 − 1

a2

) (
a2 − 1

a2 + 1
− a2 + 1

a2 − 1

)

= −4,

(
θ
(3)
5 + θ

(3)
6 − θ

(1)
1 − θ

(1)
2

) (
θ
(3)
7 + θ

(3)
8 − θ

(1)
1 − θ

(1)
2

)

=
(

a2 + 1

a2 − 1
− a2 − 1

a2 + 1

) (
1

a2 − a2
)

= −4,

(
θ
(2)
1 + θ

(2)
2 − θ

(1)
1 − θ

(1)
2

) (
θ
(2)
3 + θ

(2)
4 − θ

(1)
1 − θ

(1)
2

)

=
(

a − 1

a

) (
a − 1

a + 1
− a + 1

a − 1

)

= −4,

and so (28) holds with b2 = 4. Thus there exist φ1, φ2, φ3 such that

f3(x) := φ3 ◦ φ2 ◦ φ1(x) =

(
x2 − 1

a4

) (
x2 − a4

)
(

x2 −
(

a2+1
a2−1

)2
) (

x2 −
(

a2−1
a2−1

)2
)

x(x2 − 1)
(
x + 1

a

)
(x − a)

(
x + a+1

a−1

) (
x − a−1

a+1

) .
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The General Case

For general n, we start with the relationship of Lemma 6,

−bm =
⎛

⎝
2m−1
∑

i=1

θ
(m)
i −

2m−1
∑

i=1

θ
(m−1)
i

⎞

⎠

⎛

⎝
2m−1
∑

i=1

θ
(m)
2m−1+i

−
2m−1
∑

i=1

θ
(m−1)
i

⎞

⎠ ,

for m ≤ n. For a fixed m we apply the Correspondence Principle to obtain 2n−m+1 − 1
companion relationships:

−bm =
⎛

⎝
2m−1
∑

i=1

θ
(m+ j)
2m
+i −

2m−1
∑

i=1

θ
(m−1)
i

⎞

⎠

⎛

⎝
2m−1
∑

i=1

θ
(m+ j)
2m−1(2
+1)+i

−
2m−1
∑

i=1

θ
(m−1)
i

⎞

⎠ , (30)

0 ≤ j ≤ n − m, 0 ≤ 
 ≤ 2 j − 1, (31)

where θ(0)1 := 0. Thus for m = 1, 2, 3 and j, 
 satisfying (31), we have

−b1 = θ
(1+ j)
2
+1 θ

(1+ j)
2
+2 , (32)

−b2 =
(
θ
(2+ j)
4
+1 + θ

(2+ j)
4
+2 − θ

(1)
1 − θ

(1)
2

) (
θ
(2+ j)
4
+3 + θ

(2+ j)
4
+4 − θ

(1)
1 − θ

(1)
2

)
, (33)

−b3 =
(
θ
(3+ j)
8
+1 + θ

(3+ j)
8
+2 + θ

(3+ j)
8
+3 + θ

(3+ j)
8
+4 − θ

(2)
1 − θ

(2)
2 − θ

(2)
3 − θ

(2)
4

)

·
(
θ
(3+ j)
8
+5 + θ

(3+ j)
8
+6 + θ

(3+ j)
8
+7 + θ

(3+ j)
8
+8 − θ

(2)
1 − θ

(2)
2 − θ

(2)
3 − θ

(2)
4

)
. (34)

There are 2n − 1, 2n−1 − 1 and 2n−2 − 1 equations in (32), (33) and (34) respectively. For
m = n we have a single relationship,

−bn =
(
θ
(n)
1 + · · · + θ

(n)
2n−1 − θ

(n−1)
1 − · · · − θ

(n−1)
2n−1

)

·
(
θ
(n)
2n−1+1

+ · · · + θ
(n)
2n − θ

(n−1)
1 − · · · − θ

(n−1)
2n−1

)
. (35)

Altogether, there are
∑n

m=1(2
n−m+1 − 1) = 2n+1 − 2 − n equations in 2n+1 − 2 variables

θ
( j)
i . Insisting that the bi be positive gives n more soft conditions.

Theorem 13 Existence-Uniqueness property. Let n be a positive integer. Given a collection
of 2n+1 −2 real numbers θ( j)

i , 1 ≤ j ≤ n, 1 ≤ i ≤ 2 j satisfying the 2n+1 −2−n equations in
(30) for some positive real numbers bm, m ≤ n, and ordered in accordance with the Splicing
principle (12), there exists a unique sequence of doubling transformations φi (x), 1 ≤ i ≤ n,
with poles at zero, such that with fn(x) := φn ◦ φn−1 ◦ · · · ◦ φ1(x), we have

fn(x) =
∏2n

i=1(x − θ
(n)
i )

x
∏n−1

j=1
∏2 j

i=1(x − θ
( j)
i )

.

Proof The proof is an extension of the proof of Theorem 7 and so we just give a sketch. To
define the φi , we simply define the bi as in (30), and the λi by the relations in Lemma 6 (i),
to wit,
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λ1 =
2∑

i=1

θ
(1)
i , (36)

λ2 =
4∑

i=1

θ
(2)
i − 2

2∑

i=1

θ
(1)
i (37)

λ3 =
8∑

i=1

θ
(3)
i − 2

4∑

i=1

θ
(2)
i − 4

2∑

i=1

θ
(1)
i (38)

...

λn =
2n
∑

i=1

θ
(n)
i − 2

2n−1
∑

i=1

θ
(n−1)
i − · · · − 2n−1

2∑

i=1

θ
(1)
i . (39)

The composition φn ◦ φn−1 ◦ · · · ◦ φ1 then has zeros and poles satisfying (30) and the λi

equations (36), (37), . . . , (39). The theorem then follows by the analogue of the uniqueness
lemma, Lemma 8, which can be proven by induction following the line of argument in the
proof of Lemma 8. 
�

Proof of the Integral Formula

Theorem 14 Let φ(x) = x − λ − b
x−μ with λ, b ∈ R, b > 0. Then for any continuous,

absolutely integrable function F(x) on (−∞,∞), we have

∫ ∞

−∞
F(φ(x)) dx =

∫ ∞

−∞
F(x) dx .

Proof Let I = ∫ ∞
−∞ F(x) dx . Replacing x by x + μ, we may assume that μ = 0 and

φ(x) = x − λ− b

x
.

Since φ(x) is continuously differentiable on (0,∞) with image (−∞,∞), and φ′(x) =
1 + b

x2 , we have, substituting x = φ(u),

I =
∫ ∞

0
F(φ(u))φ′(u) du =

∫ ∞

0
F(φ(u))+ F(φ(u))

b

u2 du. (40)

Now, since |F(φ(u))| ≤ |F(φ(u))||φ′(u)|, and |F(φ(u)) b
u2 | ≤ |F(φ(u))||φ′(u)| for u ∈

(0,∞), and F(φ(u))φ′(u) is absolutely integrable on (0,∞), the functions F(φ(u)) and
F(φ(u)) b

u2 are integrable on (0,∞), and so we can break up the integral in (40) to get,

I =
∫ ∞

0
F(φ(u)) du +

∫ ∞

0
F(φ(u))

b

u2 du.
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Next, we substitute u = −b/t , and note that φ
(−b

t

) = φ(t), dt = b
u2 du, to obtain

I =
∫ ∞

0
F(φ(u)) du +

∫ 0

−∞
F(φ(−b/t)) dt

=
∫ ∞

0
F(φ(u)) du +

∫ 0

−∞
F(φ(t)) dt

=
∫ ∞

−∞
F(φ(u)) du.


�

References

1. Hagler, B.A.: A transformation of orthogonal polynomial sequences into orthogonal Laurent polynomial
sequences, Ph.D. thesis, University of Colorado at Boulder, Boulder, 1–124 (1997)

2. Hagler, B.A.: Formulas for the moments of some strong moment distributions. Orthogonal functions,
moment theory, and continued fractions (Campinas, 1996), Lecture Notes in Pure and Applied Mathematics,
199, Dekker, New York, 179–186 (1998)

3. Hagler, B.A., Jones, W.B., Thron, W.J.: Orthogonal Laurent polynomials of Jacobi, Hermite, and Laguerre
types. Orthogonal functions, moment theory, and continued fractions, (Campinas, 1996). Lecture Notes in
Pure and Applied Mathematics, 199, Dekker, New York, 187-208 (1998)

4. Wilson, E.B.: Advanced calculus. A Text Upon Select Parts of Differential Calculus, Differential Equations,
Integral Calculus, Theory of Functions, with Numerous Exercises. Dover Publications Inc, New York
(1959)

123


	Doubling Transformations and Definite Integrals
	Abstract
	Introduction
	Compositions of Doubling Transformations
	Fundamental Relations
	The case n=2
	The Case n=3.
	The General Case
	Proof of the Integral Formula
	References


