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Abstract Diffraction of p-wave by a Griffith crack at an asymmetric position in an infinite
orthotropic strip is analyzed. Fourier and Abel transforms are used to reduce the problem to
a system of dual integral equation. The system of dual integral equation is further reduced
to a Fredholm integral equation of second kind and finally the integral equation is solved
numerically. The Stress Intensity Factor has been calculated and illustrated graphically to
show the effect of asymmetry of the position of the crack and material orthotropy.

Keywords Griffith crack - Orthotropic strip - P-wave - Asymmetric position -
Stress intensity factor

Introduction

Cracks and inclusions are common in almost all fabricated materials. The study of diffraction
of waves due to crack is interesting and active research area in solid mechanics. There are
a number of researchers Chen [1], Cinar and Erdogan [2], Dhaliwal [5], Gard [7], Kassir
and Tse [9] who studied diffraction of waves in orthotropic medium. Das, Patra and Deb-
nath [4] solved the problem of determining the stress intensity factor for an interfacial crack
between two orthotropic half planes bonded to a dissimilar orthotropic layer with a punch.
They reduced the problem to a system of simultaneous integral equations which are solved
by Chebyshev polynomials. The problem of two perfectly bonded dissimilar orthotropic strip
with an interfacial crack is studied by Li [10]. He derived the analytical expression for the
stress intensity factor. Sarkar, Mandal and Ghosh [15] solved the problem of diffraction of
elastic waves by three coplanar Griffith cracks in an orthotropic medium. Diffraction of p-
waves by edge crack in an infinitely long elastic strip is studied by Munshi and Mandal [14].
Elastostatic problem of an infinite row of parallel cracks in an orthotropic medium is analyzed
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by Sinharoy [16]. Monfared and Ayatollahi [12] investigated the problem of determining the
dynamic stress intensity factors of multiple cracks in an orthotropic strip with functionally
graded materials coating. They solved the problem by reducing it to a singular integral equa-
tion of Cauchy type. The problem of Interaction of three interfacial Griffith cracks between
bonded dissimilar orthotropic half planes has been studied by Mukherjee and Das [13]. Das,
Chakraborty, Srikanth and Gupta [3] solved the problem of determining the stress intensity
factors due to symmetric edge cracks in an orthotropic strip under normal loading. They
derived an analytical expression for the stress intensity factor at the crack tip. The problem
of finding The Stress Intensity Factors for two parallel interface cracks between a nonho-
mogeneous bonding layer and two dissimilar orthotropic half-planes under tension has been
studied by Itou [8].

In our paper, diffraction of p-wave by a Griffith crack at an asymmetric position in an
infinite orthotropic strip is analyzed. The mixed boundary value problem is reduced to a
system of dual integral equation by using Fourier transform and Abel transform technique.
The system of dual integral equation is again reduced to a Fredholm integral equation of
second kind and finally the Fredholm integral equation is solved numerically by Fox and
Goodwin [6] method. The stress intensity factor is calculated numerically and plotted graph-
ically against the dimensionless frequency to show the effect of the position of the crack and
material orthotropy.

Formulation of the Problem

Let us consider the problem of diffraction of p-wave by a Griffith crack in an infinite
orthotropic strip given by —b; < x1 < c;. The crack is located in the region —a < x| <
a, —00 < z1 < 00, y1 = 0. Normalizing all the lengths with respect to ‘a’ and putting
T =x A — oy, 4 =y, %‘ = b, &t = c, itis found that the location of the crack is
-1 <x <1, —00 < z <00, y =0 (Fig. 1) referred to Cartesian co-ordinate system
(x, ¥, z). Let us consider a normally incident time harmonic wave travels in the direction
of the positive y-axis. The oscillatory term e~'®’, which is common to all field variables, is
omitted in the formulation.

Displacement components are also made dimensionless with respect to ‘a’. The dimen-
sionless displacement components in x, y directions are assumed to be u, v respectively,

Y

Fig. 1 Geometry of the problem
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where
u=u(x,y, t)and v =v(x, y, 1) (1)

The nonzero stress components Ty, Tyy, Tyy are given by

ou av
=Ci1— +Cip— 2
Tox /12 gy tCn oy 2
Juin = 2 4 e 3)
- —c, 8 @&
yy/ H12 = 12a 228y
du  Jv
, 24 4
Tx)/MIZ 3y + ax “4)

where Cy1, C12 and Cy; are non-dimensional parameters related to the elastic constants by
the relations

Cii = Ei/pi2(1 — v, B2/ Ey) Q)
Cp = Ez/u12(1 —=vi, E2Ey) = CliEy J E) (6)
Cp= V12E2/l/~12(1 - V122E2/E1) =120 =121Cqy @)
The constants E; and v;; satisfy Maxwell’s relation:

vij [ Ei = vji [E, ®)

The displacement equations of motion for orthotropic material are
C11j 82u+(1+C12) (o :ﬁ@ )

9x2  9y? xdy  ¢2 312

9%v 9%v 82u a? 9%v
82+C2282+(1-|-C12) y:gﬁ (10)

where c; is the wave velocity.
Let us substitute u(x, y, ) = u(x, y)e

—iwt

and v(x, y, 1) = v(x, y)e *® in Eqs.(9) and

(10) to obtain
2 2 320
u 0“u
Ciig s+ 5y + (L4 Cr) +Hu—o (1
ax2 oy
9%v 9%v 2
Py 2+C228 2+(1-|-C12) +k2v—0 (12)

with k2 = a’w? / ¢;, . The boundary conditions are given by

Tyy(x,04) =7, (x,0-) =—19 —1<x<1 (13)
v(x,0)=0, -b<x<-1, 1<x<c (14)
Tyy(=b,y) =0 —o00<y<o0 (15)
Tyy(c,y) =0 —o0<y<o0 (16)
Tix(—b,y) =0 —o0 <y <oo 17)
Tix(c,y) =0 —o00<y<oo (18)
Tyy(x,00=0 —b=<x=<c 19)

where 1 is a constant.

@ Springer



160 Int. J. Appl. Comput. Math (2015) 1:157-170

The solutions of Egs. (11) and (12) with the help of the boundary condition (19) are

u(x,y) = /°° [e™ V1Y — Be™V2Y] A, (£)e'$ ¥ de

—00

+ / [A3(0)e3* + Ag(Q)e™ 3 + As()e"™ ™ + Ag()e™ ¥ cos(¢y)di
0

(20)
and
vle. ) = /_ Z [%f“ - ﬂ%ﬂw} Ar(§)ie s
+/oo [%As(z)e"” ~ B Ay p)e 3
o L¢ Y
+%As(§)e”“ - 02—4A6(;)e*V4X] sin(¢y)de 1)

and the non vanishing stress components are given by

oo CoaY , CmYa, .y .
/ [<Cn€ - %)e‘y” — B(Cnié — %)e m] Ay (®)ielt de

Txx/MIZ

+/o [(C11Y3 + C1pa3)A3(0)e"™ — (C11V3 + Craaz) Ag(O)e Y3

+ (C11Y4 + Croag) As(Q)e™* — (Criva + C120l4)A6(§)€7y”] cos(¢y)ds (22)

C ' ;
CRBN, v, @iel S dg

e C
Ty /12 = / [(Ci2€ — %‘”)ﬂl Y — B(Crak —

+/O [(Ci2Y3 + Cora3)A3(£)e">* — (CiaY3 + Coaaz) Aa(g)e” 3*
+(C12Y4 + Cas)As(£)e"* — (Cr2Vs + Coaas) Ag($)e™ Y4 ¥ ] cos(¢y)ds  (23)

Tay /112 = —/ (V1 +an(e 17 — e ) A E)eE e

—/OOO[@ - ai_i)A,%(()ey” +@ - “3{Y3>A4(c)e—w
= A + ¢ = B A0 sinGeyde 24)
where
(1+Cn)Vi

O[j =
(I+Cr2)v;
Y1 t+aq
h= Y2 a2

where Y% and Y% are the roots of the equation
Coo¥* + {(Ch +2C12 = CLiC)E> + (1 + Co)k V2 + (8% — k)(Clg? — k) =0

and, Y% and yﬁ are the roots of the equation

@ Springer



Int. J. Appl. Comput. Math (2015) 1:157-170 161

C11Y4+{(C122 +2C1p — C11C)E + (1 +C11)kf}v2+(§2 — k) (Ct? —kH =0

Formulation of the Dual Integral Equations

Using the boundary condition (13) and (14), the problem is reduced to the following system
of dual integral equations for determining the unknown function A(§)

oo
/ A de=0 —b<x<-1, 1<x<c (25)
—00
o0
/ E[1+ HE)]AE)e  ds = —pqéx) -l1=<x=1 (26)
0 1
where,
o) — oo
A) = TAI(’;:) (27)
also
2 _ _ 2 _
HE) = (C128” — Cpon Y1) = B(C128” — Cpen¥a) g £ > oo (28)
(a1 — Bap)0
, (C%2+C]2*C]]C22)(C12N1N2*C11)*C22{C12N12N22+C]](N12+N1N2+N22)} 29)
B C11(1+C12)(N1+N2)
) —(C%, +2C1p — C11Cn) + \/(C122 +2C12 — C11C22)? — 4C11Cp
Ny = 2o (30)
—(C} +2C1 — C11Ca) — (€ +2C1p — C11C0)? — 4C11C
2 12 12
Ny = 200 (1)
and

po(x) = 0 +/0 |:(C12Y3 + C220!3) (A3(0)e"* — Ag(p)e” 1)

“12

+ (C12V4 + Cootg) (As(g)e" ™ — Aé(f)fy“) } dg (32)

Again using the boundary conditions (15),(16),(17) and (18)and applying Fourier inverse
transform technique, the unknown functions A3(¢), A4(¢), A5(¢) and Ag(¢) are obtained
from the following linear equations

a3 V3 —bY; bYy- o4 Vs _ by by
(; —§)(A3(§)€ S As©)e *)+(—{ )(As(c)e o As()e™)

2 L Yi-¢ qVi-a e
RG] - 4 d 33
T3 =V /oc( £2+v3 E2+72 §CA(8)e £ (33)

(“3;3 - c) (A3(0)e ™ + Ag(©)e™ ") + (“4% - z) (As(2)e™* + Ag(§)e™ ")

2 (Vi qVi-¢ y
BT ) - AE)eiEd y
(V3 = Vi) /oo(guyg g JEA@da 34
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(Civs + Cioas) (A3 ™™ = A1) + (c. V4 + Croo) (As(O)e ™" — A6<;>e”“)

2 (B Vi—qs @ Vi—qa e
N A Aied 35
(V3 -v) /—oo( £2+ 72 £2 172 ($lie & (35)

and
(C11V3+C1203)(A3()e 3 — Ag(2)e ) +(Cr11Va + Craas) (As(2)e " — Ag(g)e )
2 L @3¥i—-qs  @3Yi—qu e
= / S - JA®ie ks (36)
ﬂ(Y3_Y4) —00 5 +y3 5 +Y4
where
o = C1Cp — C3,
Cu
0= — (Ci2 + Co)k?
Cn
CLe? — C11Cni? + Ciak?
q3 =
Cu
g — Ciok?(G? — k)
Cn
Method of Solution

To solve the dual integral equations given by (25) and (26), we consider

1
AG) = — /0 tg(0)Jo(ENdt (37)

2i 120

so that, the integral Eq. (25) is automatically satisfied. The Eq. (26),with the help of Abel’s
transform technique, is reduced to a Fredholm integral equation of second kind given by

1
g(u) +/ tg(1)L(u, t)dt =1 (38)
0
where the kernel L (u, t) is the sum of two functions
L(u,t)=Li(u,t)+ Lo(u,t) 39)
given by
Li(u,t) = /0 EH (&) Jo(51)Jo(§u)dé (40)
and

4 4 00
Ly(u.t) = — ZZ/O [8ij @ To(Vit) Io(Vju) + hij () Io(Vit) Lo(Yjw)] dE (41)
i=3 j=3
where
C12V3 +Cpas3 C12V3 +Cpas3

833(¢) = T(G% —q43), h33(0) = TO]% + q43)

@ Springer



Int. J. Appl. Comput. Math (2015) 1:157-170 163

C12Y3+Cxnou3 Ci12Y3 +Cra3

= — h = - -
843(¢) oA (g34 — qa4), ha3(0) oA (g34 + q44)
C12V4+Crnay C12Y4+Croy
834() = —————(gq53 — q63), h3s({) = ————(q53 + q63) (42)
OA OA
C12Vs +Cxay4 Ci2V4+Cray
g44(C) = T(QM —q64), hasa() = T(Cm + q64)

The function A is given by

A =38 (a%YS - C) (OMTW - §) (C11Y3 + C12a3)(C11V4 + Cr2a4)

2
x [cosh(b + ¢)Y3cosh(b + ¢)Yq4 — 1] — 4 |:(O[3§y3 — {) (C11V4 + Croay)?

2
+ (MTW -4 ) (Cnvs + C120l3)2:| sinh(b + ¢)v3 sinh(b + ©)v4 “43)

Also

a3y _ .
g3z = 4h (% — {) (C11V4 + Craoa)?e Y3 cosh by; sinh(b + ¢)VY4

ay4Y. .
—4hy (% - C) (C11V3 + C1203)(C11Va + Croog)e "3

X [sinh bY3 cosh(b + ¢)Y4 + sinh ¢Y3]

2
—4hs3 (a4TY4 - C) (C11Y3 + Crae3)e” Y3 sinh bY3 sinh(b + ¢) Va4

a3y ogY _
+4h3 (% - C) (% - C) (C11Y4 + Craog)e "3
x[cosh bY3 cosh(b + ¢)Y4 — cosh cY3] (44)

aszy _ .
qa3z = —4h (% - {) (C11Y4 + C12a4)ze Y3 cosh cY3sinh(b + ¢)Y4

a4 _
+4h (% - {) (C11Y3 + C1203)(C11 V4 + Craag)e "3

X [sinh cY3 cosh(b + ¢)Y4 + sinh bY3]

2
+4h3 (OMTM — {) (Cr1vs + C12a3)e_by3 sinh cY3 sinh(b + ¢)Y4

—4h3 (OBT% - C) (MTM - §) (C11Y4 + Croag)e™"3

x[cosh cY3 cosh(b + ¢)Y4 — cosh bY3] 45)

aszy _ VA .
g3 = —2h (% ~ c) (C11Y4 + Croag) (@72~ 4 e=V3=D4) sinh(b + ) Vs

oY
+2h; (% - () (C11Y3 + Cr2a3)(C11Y4 + Crr04)

x {(ehy3*CY4 _ e*CV3*hV4) cosh(b + ¢)Va4 + (eby3*hy4 _ e*CV3*CV4)}

2
Y . VA .
+2hy (““T“ —;) (C11V3 + Croas) (?73=Vs — ¢=V3=bYa) Sinh(b + )Yy
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—2hy (a%% - C) (a4TV4 - C) (C11Y4 + Cro0)

« {( PV L e V3Yay cosh(b 4 ¢) vy — (P304 4 eicyrm)} (46)

o3y e _bya— .
qas = 2> (—2 : —;) (C11Va + Crooa)* (V3 7P¥ 4 =PV =V4) sinh(b + ¢)s

oY
—2hy (% - 5) (C11Y3 + Cr2a3)(C11Y4 + Cro04)

x {(ech—bw _ e—bV3—cY4) cosh(b + ¢)va + (ecY3—cY4 _ e—by3—by4)}
2
—2hy (a“;i - C) (C11Y3 4 Croa3) (e384 — e7bY3=Y4) sinh (b + )4

Y Y.
+2hy (% —{) (% —{) (C11Y4 + Croaa)

x [(eCV3—bV4 + e P34y cosh(b + €)Y — (¢T3N 4 oIS } @7

a4y _ —hya— .
gs3 = 2hy (% - c) (C11V3 + C12a3)? (P~ 4 ePV3=Y4) sinh(b + ¢)v3

a3y
—2h (% — §) (C11Y3 + C1203)(C11Y4 + Cro04)

x {(eby4fc'Y3 _ e*bY3ch4)cosh(b + c)V3 + (efbv3+by4 _ e*CY376Y4)}
2
—2h3 (a%w - C) (C11V4 + Craag) (€4~ — P53~ V) sinh(b + ¢) 3

+2h3 (MTY% —C) ((MTW —Z) (C11v3 + Cpa3)

) {(eby4_cy3 ) cosh(b + &) — (TN 4 e—ch—cv4)] (48)

g6 = —2hy (““T“ - ;) (C11V3 + Crao)2 (@7 ~0% 4 &~PY4=¢%) sinh(b + )3

a3y
+2h (% - C) (C11VY3 + Cr2a3)(C11Y4 + Cra04)

x [(ecw—bv; _ e—bY4—CV3) cosh(b + ¢)Y3 — (e—bYs—bV4 _ e—CY3+CY4)]
2
+2h3 (L?& - é“) (C11Y4 + Croaa) (V47073 — ¢ 7PY4=Y3) sinh(b + ¢)Y3

Y Y.
—2h3 (% - C) (% — 4“) (C11Y3 + Cro3)

y {(ecw—bh N e—by4—cY3) cosh(b + )Vs — (e—bV3—bY4 + e—cY3+cY4)] (49)

a4y _ .
qss = —4h; (% — g“) (C11Y3 + Croa3)%e Y4 cosh bY4 sinh(b + ¢)V3

a3Y3 _
+4hs (T - C) (C11V3 + C1203)(C11 V4 + Croag)e "

x[sinh bY4 cosh(b + ¢)Y3 + sinh cV4]

@ Springer



Int. J. Appl. Comput. Math (2015) 1:157-170

165

2
+4hy (a%% - é“) (C11V4 + Croog)e” " sinh by4 sinh(b + )3

a3V3 oYy

—4hy (T — {) (T — {) (C11Y3 + Croaz)e "

x[cosh bY4 cosh(b + ¢)Y3 — cosh ¢Y4]

oy, _ .
qos = 4hy (4T4 — {) (C11Y3 + Craa3)%e " cosh cv4 sinh(b + ¢)V3

o3Y3 _
—4h2(‘2?*-4)(CUY3+412WQ(CUY4+-CQG4M?b“

X [sinh ¢Y4 cosh(b + ¢)Y3 + sinh bY4]

2
Y . .
—4hy (% - () (C11Ys + C12a4)e_by“ sinh ¢Y4 sinh(b + ¢)VY3

+4hy (“3%/3 - ;) (“4%’4 - ;) (C11Y3 + Craaz)e V4

x[cosh cY4 cosh(b + ¢)Y3 — cosh bY4]

_ (@Y — )¢

(Vi — @)
2 2 -
Y3 - Y4

V3 —v3
2 2
= q3Y3 — q4 hy = q3Y; — q4
i =vHvs’ V3 —vHvs

hy . ho

(50)

(D

(52)

Using the contour integration technique, discussed by Mandal and Ghosh [11] the kernel

L1 (u, t) can be transformed to integrals with finite limits given by

ks

mwﬁ:—{éﬁwmw—&mm@mwkw&

ks
+/ks XYy Jo(¢) HYV (u)de w1t
NCT

where

%, = [C12( 4+ C)E? = Con(C1iE” — K +VDICHE? = I = Cia¥y)

(1 + Ci)(C1E2 — k)T — 736

X, — [Ca(1 4 C12)E? — Coa(C11E2 — k2 + V5)I(C1E2 — k2 — C1oVy)
(1+ C12)(C1182 — k) (¥} — V)0

X, =

) )
r [C(1+ C12)E? — Cn(CiE? — k2 + Y, OIC1E? — k2 + CiaY))

/2 /2
(1+Ci2)(C1E2 = kDY, +v,)0
1

_ 1 2 — 1. ]2
Y1 [E(Bl — (B —432)2)]

1 2 — 1. ]2
2 = |:§(Bl+(31 _432)2)]

(53)
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/ 1 2 s 1 %
Vi = |3 (Bi+ (B} +4B)%)
1
2

/ 1 ’
Y, = [5091 + (B} +4Bz)%)]

5 _ (Ch+2Cn — CuCn)e + (1 + Co)k
1 =

Cxn
B (E2 — k) (C118% — k2)
2 fr—
Cn
o (k2 —EH(C1Er—KD)
Bz =
C»

For the case u < t the expression for the kernel L (u, t) can be obtained by interchanging u
and 7 in (53).

Quantities of Physical Interest: the Stress Intensity Factor (SIF)

It has been found that the normal stress component y, outside the crack has a square root
singularity at x = 1. This leads to the concept of Stress Intensity Factor(SIF). The SIF(K) is
defined by

Tyy (X, 0)(x — 1)2
7

K= sz_)ﬁ( (54)

The SIF determines the state of stress at the crack tip. After some manipulation it can be
shown that

(55)

Numerical Results and Discussions

The Fredholm integral Eq. (38) is solved numerically by Fox and Goodwin method. In this
method the integral in the Eq. (38) is represented by a quadrature formula involving the values
of the desired function g(¢) at the pivot points inside the range of integration. Then the Eq.
(38) is converted to a system of linear equations with the pivot points of g(#) as unknown
variables. The solution of which gives the first approximation of the required pivot values
of g(¢) which can be improved by using the difference correction technique. Once the value
of g(1) is calculated, the SIF is calculated and plotted graphically against the dimensionless
frequency for two different orthotropic materials whose elastic constants are given by the
following table (Table 1).

Table 1 Engineering elastic

constants Cu €2 Ci
Type I Boron-epoxi 50.8116 2.8767 0.7364
composite
Type II Steel-Mylar 18.7 2.92 1.3
composite
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0.0 |, . . . . ]
0.0 0.5 1.0 1.5 2.0 2.5

The Dimensionless Frequency(ks)

Fig. 2 SIF versus the dimensionless frequency for type I material and b = 1.5

1.0

0.8

04

Dynamic Stress Intensity Factor(K)

0.0 £, 1 . . . . ]
0.0 0.5 1.0 1.5 2.0 2.5

The Dimensionless Frequency(ks)

Fig. 3 SIF versus the dimensionless frequency for type I material and b = 2.0

The SIF(K) is plotted graphically against the dimensionless frequency(ky) for different
strip length, position of the crack for two orthotropic materials. Figs. 2, 3, and 4 show the
variation of SIF against the dimensionless frequency for different values of the strip length
for type I material. Figs. 5, 6, and 7 display the same for type II material.

From Figs. 2, 3 and 4 it is clear that the SIF for type I material increases initially with
the increasing value of the dimensionless frequency and after reaching a maximum value it
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0.8

0.6

04

Dynamic Stress Intensity Factor(K)

0.0 |, ! ! | | 1 7
0.0 0.5 1.0 1.5 2.0 2.5

The Dimensionless Frequency(ks)

Fig. 4 SIF versus the dimensionless frequency for type I material and b = 2.5

K)

Dynamic Stress Intensity Factor(

The Dimensionless Frequency(ks)

Fig. 5 SIF versus the dimensionless frequency for type II material and b = 1.5

decreases and shows wave like nature. Moreover the maximum height of the SIF becomes
slightly lower with the increment of b.

From Figs. 5, 6 and 7 it can be stated that SIF for the type II material increases initially
with the increasing value of the frequency and after reaching a highest value it decreases
rapidly and then shows wave like nature. Moreover it is noted that the maximum value of the
SIF for the type II material is little higher than that for the type I material.
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0.6 |

Dynamic Stress Intensity Factor(K)

02
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Fig. 6 SIF versus the dimensionless frequency for type II material and b = 2.0

0.6 |

04 r

Dynamic Stress Intensity Factor(K)
o
0

02 |

0.0
0.0 0.5 1.0 1.5 2.0 25
The Dimensionless Frequency(ks)

Fig. 7 SIF versus the dimensionless frequency for type II material and b = 2.5

Conclusions

From all the graphs of SIF, it can be concluded that though the SIF increases initially with
the increment of the frequency(k;), after reaching a maximum value it decreases and tends
to zero for large frequency. Therefore the value of SIF can be arrested within a certain range.
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