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Abstract The present article deals with a backorder Economic Order Quantity (EOQ) model
for natural leisure/closing time system where the demand rate depends upon the total shortage
period and the seasonal effect. A cost minimization problem is developed by trading off setup
cost, inventory cost, cost for idle time and shortage cost. The intuitionistic step order fuzzy
number for optimization has been developed, assuming all parameters as fuzzy numbers.
Ranking is done by employing score function, accuracy value on the centre of gravity and
Euclidean distance function over the objective function. Finally numerical examples are
considered to justify the model.

Keywords Inventory · Shortage · Natural idle time · Intuitionistic fuzzy set ·
Centre of gravity · Euclidean distance · Optimization

Introduction

It is common to all enterprises that the inventory models determine optimal order
quantity, shortage quantity and the duration of the opening and closing time of the
shop/industry/inventory itself. In inventory literature, several research articles have been
published alongthese directions except the use of natural opening or closing time duration
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in each day. Among those, some noteworthy works [1–6] are mentioned here. De [7] used
first the concept of natural idle time. In this article, he developed a model measuring an
error on customers’ demand on spot for without backorder model under intuitionistic fuzzy
environment. In the early stage of the invention of Step Order Fuzzy (SOF), Zadeh [8] used
the concept of linguistic variable in fuzzy set. A book on module of SOF was developed
by Kosinski [9]. Fortin et al. [10] studied an article over gradual numbers in fuzzy sys-
tems. A defuzzification method for ordered fuzzy numbers was analyzed by Kosinski and
Wilezynska-Sztyma [11]. Also, Kosinski and Wegrzyn-Wolska [12] developed a neural net-
work under defuzzification functional approximation method using step fuzzy numbers. On
the other hand, several extensions in fuzzy concept as well as methodology of defuzzifi-
cations were discussed extensively. In intuitionistic fuzzy environment, Chakraborty et al.
[13] considered a model for manufacturing inventory with shortages using Pareto-optimality
method. Scoring of fuzzy numbers was nicely introduced by Chen et al. [14]. Recently, [15]
and [16] published two novel articles of backlogging EOQ model using score functions and
interpolating by pass to Pareto optimality over intuitionistic fuzzy technique respectively.
The centroid in different approach was developed by [17,18] and [19]. A numerous research
articles over the ranking of fuzzy numbers were developed by Adamo [20], Chen and Lu
[21] and Fortemps and Roubens [22]. A fast method for ranking fuzzy numbers was studied
by Buckley and Chanas [23]. Jain [24,25], Kerre [26], and Nakamura [27] studied a lot over
the fuzzy decision making process. In general fuzzy system, Mabuchi [28] studied the index
value where the index itself was α-cut dependent. Tran and Duckstein [29] investigated fuzzy
numbers extensively, comparing among different types of fuzzy numbers. Recently, De and
Sana [30] introduced fuzzy promotional effect on customers’ demand in more realistic and
concrete way in a fuzzy backorder EOQ model.

In the present article, we investigate a backorder EOQ model for natural idle time in which
the demand rate in shortage time decreases exponentially with backorder time. Moreover,
the demand rate may vary for season to season. The commodities like vegetables, fruits,
woollen shawl, rain coats/ umbrella etc. are fall into this category. For this reason, we are
to incorporate fuzzy environment in which the membership value may vary with domain
set of the demand rate. Moreover, introducing a varying membership grade, we have had a
step-up and step-down fuzzy numbers as well. Based on the center of gravity of the fuzzy
objective function, the Ranking index and Euclidean Distance method under the score values
and accuracy values of the minimization problem for both the cases of strong and weak fuzzy
numbers are used in the model. Finally, a decision is made using the ranking values.

Assumptions and Notations

The following notations and assumptions are used to develop the model.
Assumptions

1. A day splits into two parts—one is inventory run time duration and other is closing time
duration. In practice, it is observed that shops/enterprises are closed and opened at fixed
times which may vary with location of enterprise. For instance, the closing and opening
times of the enterprises are 8:00 p.m. to 8:00 a.m. respectively. Here, the duration (8:00
p.m. to 8:00 a.m.) is an unavoidable pause time.

2. Replenishments are instantaneous.
3. The time horizon is infinite (days).
4. The sum of opening and closing time period is unity.

123



Int. J. Appl. Comput. Math (2015) 1:171–185 173

5. Shortages are allowed.
6. Demand rate per unit time is constant for stock inventory and it decreases exponentially

for stock- out period viz. d ′ = de−λ(m+1), where m is an positive integer, 0 ≤ λ ≤ 1 and
d(> 0) is demand per unit time during inventory period. This is a realistic assumption,
as the demand rate decreases gradually with the shortage period.

7. Holding cost and shortage cost are uniform over the cycle time.
8. Average natural idle time (leisure/pause) cost is constant per unit idle time.
9. Stock inventory period is (n + 1) days and backlogging period is (m + 1) days.

10. The security charge, telephone charge, transportation cost (if any) etc. beyond the work-
ing hours of inventory run time may be treated as cost for the idle time.

Notation

(i) q : The order quantity per cycle
(ii) t1: Duration of opening time (day)

(iii) t2: Duration of closing /natural idle time (day)
(iv) d : Demand rate per unit time in (i − 1, t1), i = 1, 2, 3, . . ., n + 1.
(v) c1: Inventory holding cost($) per unit quantity per day.

(vi) c2: shortage cost($) per unit quantity per day.
(vii) c3: Set up cost($) per cycle.

(viii) ic: Average natural idle time cost($) per unit idle time.
(ix) (n + m + 1): The number of days per cycle, nand m are positive integers and n > m.
(x) T : Cycle length (days).

(xi) t : Time horizon (days).
(xii) z: Average cost of the system per cycle ($).

Crisp Model Formulation

The inventory starts at the beginning of the opening time duration t1 and meets the demand
quantity d per unit time. Then, it remains steady up to the closing time period t2. Again,
it starts from the next day opening time and hence it continues up to (n + 1) days. After
that shortage continue up to (m + 1) days (see Fig. 1). Now, the objective function can be
developed as follows:
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m+1 days 

n+1 days  

d q

Fig. 1 Backorder EOQ model
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The inventory holding cost (HC) can be stated as

HC = c1

[
1

2
(2q − dt1) t1 + 1

2
(2q − 3dt1) t1 + 1

2
(2q − 5dt1) t1

+ · · · (n + 1) times
1

2
(2q − ndt1) t1

]

+c1 [(q − dt1) t1 + (q − 2dt1) t1 + (q − 3dt1) t1 + · · · ntimes]

= 1

2
(n + 1) dc1t1(n + t1) (1)

where
q = (n + 1) dt1 (2)

and
t1 + t2 = 1 (3)

The shortage cost (SC) is given by

SC = c2

[
1

2
d ′t1 + 1

2
t1

(
d ′t1 + 2d ′t1

) + 1

2
t1

(
2d ′t1 + 3d ′t1

) + 1

2
t1

(
3d ′t1 + 4d ′t1

)

+ · · · + 1

2
t1

(
md ′t1 + (m + 1)d ′t1

)]

= 1

2
d ′c2t

2
1 (m + 1)2

= 1

2
c2t

2
1 (m + 1)2de−λ(m+1) (4)

using
d ′ = de−λ(m+1) (5)

The idle time cost (IC) is given by

IC = ic {(n + 1) t2 + (m + 1)t2}
= ic(m + n + 2)t2

= ic(m + n + 2)(1 − t1) (6)

The cycle time,

T = (m + n + 2) (t1 + t2)

= (m + n + 2) (7)

Using equations (1), (4) and (5) the total average cost of the system by trading off holding
cost, shortage cost, idle time cost and setup cost per cycle is given by

Z = [
Holding Cost + Shortage Cost + Idle Time Cost + Setup cost

] × number of cycle

= [HC + SC + IC + c3]
1

T

= 1

m + n + 2

[
1

2
(n + 1) dc1t1 (n + t1) + 1

2
c2dt

2
1 (m + 1)2e−λ(m+1)

+ ic (m + n + 2) (1 − t1) + c3

]
(8)
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Now, our objective is to minimize the objective function (Z) stated as follows:

Minimize Z = 1

m + n + 2

[
1

2
(n + 1) dc1t1 (n + t1) + 1

2
c2dt

2
1 (m + 1)2e−λ(m+1)

+ ic (m + n + 2) (1 − t1) + c3

]
(9)

subject to the conditions

q = (n + 1) dt1; t1 + t2 = 1; n ≥ 0 and m ≥ 0.

Special cases If we take t2 → 0 then ic = 0. Consequently, the equation (9) reduces to

z =
[
c1q

2
+ c3d

q

]
(10)

which is the classical EOQ model without backorder.

Preliminaries

Step Order Fuzzy Numbers

It is worthwhile to point out that a class of order fuzzy number (OFNs) represents the whole
class of convex fuzzy numbers that possess continuous membership functions. To include
all OFN (with discontinuous membership function) some generalization of function f and
g is needed, developed by Kosinski [31] from function of bounded variation (BV). Then, all
convex fuzzy numbers are contained in this new space RBV ⊃ R of OFN. Then, operations
are defined by RBV in the similar way. The norm, however, will change into the norm of the
Cartesian product of the space of function of bounded variation. All convex fuzzy numbers
are contained in the new space RBV of OFN. Notice that functions of BV (Lojasiewicz [32])
are continuous except for a countable numbers of points.

Important consequence of this generalization is the possibility of introducing a sub-space
of OFN, composed of pair of step function. If we fix a natural number K and split [0,1)
into (K−1) sub-intervals [ai , ai+1) i.e.

⋃K−1
i=1 [ai , ai+1) = [0, 1), where 0 = a1 < a2 <

· · · < aK = 1 and define a step function f of resolution K by putting ui on each sub-
interval [ai , ai+1), then each such function f is identified with a K -dimensional vectors
f ∼ u = (u1, u2 . . . , uK ), the K-th value of uK corresponds to s = 1, i.e., f (1) = uK .
Taking a pair of such functions, we have an order fuzzy number from RBV . Graphical
representations of SOF are shown in Figs. 2, 3, and 4 in which the horizontal and vertical
axes represent demand rate and the membership grade value respectively.

Definition 1 By a step order fuzzy number A of resolution K we mean an order pair ( f, g)
of functions such that { f, g : [0, 1] → R} are K -step function.

We use RK for denotation the set of elements satisfying Definition 1. The example of a step
order fuzzy number and its membership function are shown in Fig. 1. The setRK ⊂ RBV has
been extensively elaborated by Gruszczynska and Krajewska [33]. We can identify RK with
the Cartesian product of RK ×R

K since each K -step function is represented by its K values.
It is obvious that each elements of the space RK may be regarded as an approximation of
elements from RBV . By increasing the number Kof steps, we have the better approximation.
The norm of RK is assumed to be the Euclidean one of R

2K which provides us an inner
product structure for our disposal.
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Fig. 2 Step up fuzzy number

Fig. 3 Step down fuzzy number

Fig. 4 Step function fuzzy number

Lattice Structure on RK

Let the set RK of step ordered fuzzy numbers with operations ∨ and ∧ such that, for

A = ( f A, gA) and B = ( fB , gB), A ∨ B = (sup { f A, fB} , sup {gA, gB}),
A ∧ B = inf { f A, fB} , inf {gA, gB}).

In the article (Kacprzak and Kosinski [34]), the algebra (RK ,∨,∧) defines a lattice
structure and it is proved in the following theorem.

Theorem 1 The algebra (RK,∨,∧) is a lattice.
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Let B be the set of two binary values: {0, 1} and let us introduce the particular subset N of
RK where N = {A = (

u, v
) ∈ RK : u ∈ BK , v ∈ BK }. It means such that each component

of the vector u as well as v have value 1 and 0. It is easy to observe that all subsets of N have
both a join and a meet in N . In fact, for pair of numbers form the set {0,1} we can determine
max and min and it is always constituted by 0 or 1. Therefore, N creates a complete lattice.
In such a lattice, we can distinguish the greatest element 1 represents by (1,1,…,1) and the
least element 0 represent by (0,0,…,0).

Theorem 2 The algebra (N ,∨,∧) is a complete lattice.
We say that two elements A and B are compliments of each other if and only if A ∨ B = 1
and A ∧ B = 0. The complement of a number is marked with Ac and is defined as follows:

Definition 2 Let A ∈ N be a step order fuzzy number represented by a binary vector
(a1, a2. . .a2K ). By the complement of A, we understand

Ac = (1 − a1, 1 − a2, . . . , 1 − a2K ). A bounded lattice for which every element has a com-
plement which is called a complemented lattice. Moreover, the structure of step order fuzzy
numbers {N∨,∧} forms a complete and complemented lattice in which complements are
unique. In fact it is a Boolean algebra. In the example with K = 2 a set of universe is
created by vectors N = {

(a1, a2, a3, a4) ∈ R
4 : ai ∈ {0, 1} , f or i = 1, 2, 3, 4

}
. The com-

plements of elements are (0, 1, 0, 0)c = (1, 0, 1, 1) , (1, 0, 0, 1)c = (0, 1, 1, 0) etc. Now, we
can rewrite the definition of the complements in terms of a new mapping.

Definition 3 For any A ∈ N , we define its negation as N (A) = (1 − a1, 1 − a2, . . . , 1
−a2K ) , if A = (a1, a2. . .a2K ). It is obvious, from Definition 1 and 2, that the negation of
given number A is its complement. Moreover, the operator N is a strong negation, because
it is involutive, i.e. N (N (A)) = A for any A ∈ N . One can refer [35] to define the strong
negation N in terms of the standard strong negation NI on the unit interval I = [0, 1] defined
by NI (x)=1 − x, x ∈ I , namely ((a1, a2 . . . , a2K )) = (NI (a1) ,NI (a2) , . . . ,NI (a2K )).
In the classical Zadeh’s [8] fuzzy logic, the definition of a fuzzy implication on an abstract
lattice L = (L ,≤L) is based on the notation from the fuzzy set theory introduced in [35].

Implication of SOF in Inventory Systems

Generally, the features of SOF of an element appear whenever we can able to characterize
it into clustered several subintervals. Also, the most vital factor of inventory model lies in
its demand rate. Thus clustering is possible when the demand rate has exclusively sensitive
on several seasons in a year. The commodities like medicine, umbrella, woollen shawl, rain
coat, special types of vegetable etc. fall under this considerations. In each subinterval the
membership values of fuzzy number is constant and are of step up and step down in nature
which are to be determined by the decision maker. That is, within several interval values of
demand rate, how much amount of membership grade will be added to the fuzzy information
so that the total average inventory cost be minimum. Thus for any seasonal product, it is quite
natural to incorporate SOF under consideration.

4-Tuples SOF

Let us define SOF for cost vector Ã = 〈a1, a2, a3, a4〉 and for demand rate and other para-
meters as B̃ = 〈b1, b2, b3, b4〉 respectively and they can be expressed in Tables 1 and 2
respectively as follows:
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Now, the member and non-membership functions for Ã may be stated as follows:

μ(x) =
⎧⎨
⎩

μ1 f or a1 ≤ x ≤ a2

μ2 f or a2 ≤ x ≤ a3

μ3 f or a3 ≤ x ≤ a4

(11)

and

γ(x) =
⎧⎨
⎩

(1 − μ1)w1 f or a1 ≤ x ≤ a2

(1 − μ2)w2 f or a2 ≤ x ≤ a3

(1 − μ3)w3 f or a3 ≤ x ≤ a4

(12)

where w1, w2, w3 < 1 and they are called weights iff

w1 + w2 + w3 = 1. (13)

The schematic diagram of membership and non membership function of SOF are shown in
Figs. 5 and 6 respectively.

Table 1 SOF for cost vector

Cost limit Literal terms Membership grade

[a1, a2] Cheap μ1

[a2, a3] High μ2

[a3, a4] Very high μ3

Table 2 SOF for demand rate and other

Value limit Literal terms Membership grade

[b1, b2] Poor γ1

[b2, b3] Average γ2

[b3, b4] High γ3

Fig. 5 Membership function of SOF
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Fig. 6 Non-membership function of SOF

Basic Arithmetic Operations on Ordered SOF

Let A = 〈a1, a2, a3, a4〉 and B = 〈b1, b2, b3, b4〉 are two ordered SOF, then for usual
Arithmetic operations {+,−,×,÷}, namely addition, subtraction, multiplication between A
and B are given below:

(i) A + B = 〈a1 + b1, a2 + b2, a3 + b3, a4 + b4〉,
(ii) A − B = 〈a1 − b5, a2 − b4, a3 − b3, a4 − b2〉

(iii) A × B = 〈Min(aibj), Max(aibj)〉 ∀i, j = 1, 2, 3, 4
(iv) A/B = 〈Min(ai/bj), Max(ai/bj)〉 for b j �= 0,∀i, j = 1, 2, 3, 4
(v) δA = 〈δa1, δa2, δa3, δa4〉 if δ ≥ 0 and δ A = 〈δa4, δa3, δa2, δa1〉 if δ < 0.

Centroid of SOF

From the perspectives of geometry, if a closed region R formed by a variable point (x, y)
where y is a function of x , then the centroid of the enclosed region is defined by (x0, y0) and
is defined by

x0 =
∫∫

R xdxdy∫∫
R dxdy

(14)

and

y0 =
∫∫

R ydxdy∫∫
R dxdy

(15)

Now, using (7) and (8) we get,

x0 =
(∫∫

R1
+ ∫∫

R2
+ ∫∫

R3
+ ∫∫

R4
· · ·

)
xdxdy(∫∫

R1
+ ∫∫

R2
+ ∫∫

R3
+ ∫∫

R4
· · ·

)
dxdy

=
μ1
2

(
c2

2 − c2
1

) + μ2
2

(
c2

3 − c2
2

) + μ3
2

(
c2

4 − c2
3

)
μ1 (c2 − c1) + μ2 (c3 − c2) + μ3 (c4 − c3)

(16)

and

y0 =
(∫∫

R1
+ ∫∫

R2
+ ∫∫

R3
+ ∫∫

R4
· · ·

)
ydxdy(∫∫

R1
+ ∫∫

R2
+ ∫∫

R3
+ ∫∫

R4
· · ·

)
dxdy
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=
μ2

1
2 (c2 − c1) + μ2

2
2 (c3 − c2) + μ2

1
2 (c4 − c3)

μ1 (c2 − c1) + μ2 (c3 − c2) + μ3 (c4 − c3)
(17)

Ranking Index

According to the article proposed by Chen [36], the ranking index value of a given element
is given by

I (x) =
√

(x0)
2 + (y0)

2 (18)

Maximum index value gives the value of strong fuzzy number, otherwise it is a weak fuzzy
number.

Euclidean Distance

Let δmax = Max {x, x ∈ Domain (A1, A2, . . . An−1, An)} where A′
i are fuzzy sets for i =

1, 2, . . . n . The distance between the two points (x0, y0) and (δmax , 0) is called Euclidean
Distance and is defined by

d (x) =
√

(x0 − δmax )
2 + (y0)

2 (19)

Now, minimizing the distance, we get the higher index value, which is generated from strong
fuzzy number (degree of membership >0.5) otherwise it is a weak fuzzy number.

Fuzzy Mathematical Model

In reality, we know every parametric value portending to any inventory system have a char-
acteristic of flexibility. That is why, in our model, the cost component vectors, demand rate
and time fraction of the exponential demand rate are fuzzified occasionally. Therefore, the
fuzzy mathematical problem can be stated as

Minimize z̃ = (n + 1) (n + t1)t1
2(m + n + 2)

d̃ c̃1+ (m + 1)2t2
1 e

−λ̃(m+1)

2(m + n + 2)
d̃ c̃2 + (1 − t1) ĩc+ c̃3

m + n + 2
(20)

= f1 Ã1 + f2 Ã2 + f3 Ã3 + f4 Ã4 (21)

where ⎡
⎢⎢⎢⎣

f1 = (n+1)(n+t1)t1
2(m+n+2)

f2 = (m+1)2t21
2(m+n+2)

f3 = (1 − t1)
f4 = 1

m+n+2

(22)

and ⎡
⎢⎢⎣
Ã1 = d̃ c̃1

Ã2 = d̃ c̃2e−λ̃(m+1)

Ã3 = ĩc
Ã4 = c̃3

(23)
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Considering all the parameters as SOF, we have⎡
⎢⎢⎣
Ã1 = 〈d1c11, d2c12, d3c14c14〉
Ã2 = 〈d1c21e−λ1(m+1), d2c22e−λ2(m+1) , d3c23e−λ3(m+1), d4c24e−λ4(m+1)〉
Ã3 = 〈ic1, ic2, ic3, ic4〉
Ã4 = 〈c31, c32, c33, c34〉

(24)

And, the SOF of the fuzzy objective function is

z̃ = 〈z1, z2, z3, z4〉 (25)

where⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 = (n+1)(n+t1)t1
2(m+n+2)

d1c11 + (m+1)2t21 e
−λ1(m+1)

2(m+n+2)
d1c21 + (1 − t1) i1 + c31

(m+n+2)

z2 = (n+1)(n+t1)t1
2(m+n+2)

d2c12 + (m+1)2t21 e
−λ2(m+1)

2(m+n+2)
d1c22 + (1 − t1) i2 + c32

(m+n+2)

z3 = (n+1)(n+t1)t1
2(m+n+2)

d3c13 + (m+1)2t21 e
−λ3(m+1)

2(m+n+2)
d1c23 + (1 − t1) i3 + c33

(m+n+2)

z4 = (n+1)(n+t1)t1
2(m+n+2)

d1c14 + (m+1)2t21 e
−λ4(m+1)

2(m+n+2)
d1c24 + (1 − t1) i4 + c34

(m+n+2)

(26)

The centroid of z̃ is given by (x0, y0) where

x0 =
μ1
2

(
z2

2 − z2
1

) + μ2
2

(
z2

3 − z2
2

) + μ3
2

(
z2

4 − z2
3

)
μ1 (z2 − z1) + μ2 (z3 − z2) + μ3 (z4 − z3)

(27)

and

y0 =
μ2

1
2 (z2 − z1) + μ2

2
2 (z3 − z2) + μ2

1
2 (z4 − z3)

μ1 (z2 − z1) + μ2 (z3 − z2) + μ3 (z4 − z3)
(28)

We may rewrite the problem is as follows:

Minimize I (x) =
√

(x0)
2 + (y0)

2 (29)

and

Minimize d (x) =
√

(x0 − δmax )
2 + (y0)

2 (30)

Cases of Optimality

Now, we shall study the cases where the cost component vectors and the demand parameters
are of step up/down fuzzy numbers. For different seasons, we have assumed that the cost
vectors and demand vectors follow the same membership grade values. We consider the cases
of three seasons such as Summer, Rainy and Winter which are as follows:

Where we put γ1 = (1−μ1)w1, γ2 = (1−μ2)w2, γ3 = (1−μ3)w3, and w1, w2, w3 < 1
(Table 3).

Table 3 Assumptions on SOF

Cases of optimality Summer Rainy Winter

Case-I: μ1 < μ2 < μ3 Down Up Up

Case-II: μ1 > μ2 > μ3 Up Down Down

Case-III: μ1 < μ3 < μ2 Down Up Down
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Numerical Example-1

Let us consider the holding cost c1 = $1.5, the shortage cost c2 = $1.2, set up cost c3 = $150,
idle time cost ic = $4.5, demand rate d = 150 units and time exponent multiplier λ = 0.5.
Then, the optimal solution of the crisp optimal is

(q∗ = 225.0, s∗ = 55.182, t∗1 = t∗2 = 0.5, n∗ = 2,m∗ = 1, z∗ = $123.25).

Numerical Example-2

Let us assume SOF values of the different parameters λ = (0.4, 0.6, 0.8, 0.9), c1 =
(1.2, 1.4, 1.6, 1.8), c3 = (80, 100, 150, 160), c2 = (0.9, 1, 1.3, 1.4), d = (130, 140, 150,

160), ic = (3.5, 4.5, 5, 5.5) and w1 = w2 = w3 = 1
3 . The solutions of the three models for

strong and weak fuzzy cases are provided in Table 4.
Now, considering only the expected values of the optimal solutions for strong and weak

fuzzy numbers, we have the Table 5.
Moreover, we need to justify our result by the accuracy test, developed by Chen [36]

and rank them accordingly. We shall do this only for case-II, as Table 5 shows model-II is
optimum.

Table 4 Optimal solution under SOF

Cases Fuzzy Intuitionistic fuzzy

I(z) d(z) I(z) d(z)

Max Min Max Min Max Min Max Min

Case-I Z = 258.09 120.18 39.82 0.346 123.09 0.31 198.26 0.31

μ1 < μ2 < μ3 q = 441.31 220.658 220.66 132.69 222.72 128.86 433.91 128.86

μ1 = 0.4 S = 97.613 48.808 111.194 95.26 49.95 95.21 60.102 95.21

μ2 = 0.7 t1 = 1 0.5 0.5 0.5 0.5 0.65 1 0.65

μ3 = 0.8 t2 = 0 0.5 0.5 0.5 0.5 0.35 0 0.35

n = 2 2 2 2 3 2 3 2

m = 1 1 1 1 1 1 1 1

Case-II Z = 235.66 110.40 75.66 0.333 309.55 107.04 237.69 0.3

μ1 > μ2 > μ3 q = 428.684 214.34 268.68 148.178 566.09 212.28 547.6 154.67

μ1 = 0.8 S = 85.531 42.766 74.47 98.51 79.08 39.54 80.92 101.39

μ2 = 0.7 t1 = 1 0.5 1 0.72 1 0.5 1 0.74

μ3 = 0.4 t2 = 0 0.5 0 0.28 0 0.5 0 0.26

n = 2 2 2 2 3 2 4 2

m = 1 1 1 1 1 1 1 1

Case-III Z = 338.23 116.31 273.64 0.41 239.23 116.68 264.28 0.38

μ1 < μ3 < μ2 q = 581.67 218.12 567.08 138.43 582.42 218.41 561.97 142.42

μ1 = 0.7 S = 71.89 46.64 66.72 96.19 93.24 45.62 70.25 97.34

μ2 = 0.8 t1 = 1 0.5 1 0.68 1 0.5 1 0.7

μ3 = 0.9 t2 = 0 0.5 0 0.32 0 0.5 0 0.3

n = 3 2 4 2 3 2 4 2

m = 1 1 1 1 1 1 1 1
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Table 5 General feasible solutions of the models

Methods IFS FS

Case-I Case-II Case-III Case-I Case-II Case-III

Strong fuzzy Max I (z) 123.09 – – – – –

Min d(z) – – – – – –

Weak fuzzy Min I (z) – 107.04 116.68 120.18 110.40 116.31

Max d(z) – – – – – –

Table 6 Various I (z) values for model-II

(μ1, μ2, μ3) (γ1, γ2, γ3) Score (μ – γ ) Accuracy (μ + γ ) Rank

(0.9, 0.8, 0.7) (0.033, 0.067, 0.1) z∗ = 112.63, q∗ = 215.68, s∗ = 44.89,

t∗1 = t∗2 = 0.5, n∗ = 2,m∗ = 1
114.29 3

(0.7, 0.6, 0.5) (0.1, 0.133, 0.167) z∗ = 110.96, q∗ = 214.64, s∗ = 43.72,

t∗1 = t∗2 = 0.5, n∗ = 2,m∗ = 1
114.07 2

(0.5, 0.4, 0.3) (0.167, 0.2, 0.233) z∗ = 104.69, q∗ = 210.83, s∗ = 38.35,

t∗1 = t∗2 = 0.5, n∗ = 2,m∗ = 1
113.75 1

From Table 6, we see that the minimum membership grade for SOF in model-II provides
optimum result under the considerations of standard score and accuracy function as well.
Also, in Table 5, the optimality occurs when the demand rate is weak fuzzy number. The
step down fuzzy number generates the minimum inventory cost due to seasonal variations
(summer, rainy, winter). The required optimal solution is: the minimum average cost is
z∗ = $104.69, the optimal order quantity is q∗ = 210.83, the optimum shortage quantity is
s∗ = 38.35, the optimal opening and closing time are 12 h each, the inventory run time is 3
days and the shortage period is 2 days only. Also, from Table 5, the optimality occurs when
the demand rate is considered as weak fuzzy number.

Conclusion

The present article develops a realistic EOQ model incorporating opening time and closing
time of the inventory system. During stock out situation, demands of the customers follow
an exponentially decaying with total time of shortage period. The basic insight lies in the
consideration of SOF for several parameters of the model itself. In SOF model, the sev-
eral membership grade values are considered but which one will give the minimum cost
is the managerial part of an inventory system as a whole. However, introducing SOF in
the intuitionistic fuzzy model, we have had a scope to utilize the laws of lattice algebra.
Because, the negation or complementation of SOF numbers have been illustrated properly
by max-min operators of a lattice. The larger step will give the stronger fuzzy number, but
in our study, we have assumed only three steps; if it is possible to develop a model for 12
steps (the value of the parameter whose value can vary monthly in a year and perform 12
non-intersecting intervals) then the model under SOF would be viewed in real life prob-
lems. Moreover, in our study, we have shown that the step down fuzzy number provides the
minimum inventory cost under weak fuzzy environment. The application of intuitionistic
SOF in such EOQ model is quite new compared to the existing inventory literature. The
present article may be extended in future in the light of α-levels set of both member and non-
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membership functions of SOF, Hamming distance method and several Aggregation Operators
methods.
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