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Abstract
We study a free transmission problem driven by degenerate fully nonlinear operators.
Our first result concerns the existence of a viscosity solution to the associated Dirichlet
problem. By framing the equation in the context of viscosity inequalities, we prove
regularity results for the constructed viscosity solution to the problem. Our findings
include regularity in C1,α spaces, and an explicit characterization of α in terms of
the degeneracy rates. We argue by perturbation methods, relating our problem to a
homogeneous, fully nonlinear uniformly elliptic equation.
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1 Introduction

We examine viscosity solutions u ∈ C(�) to the free transmission problem

|Du|θ1 F(D2u) = f (x) in �+(u) ∩ �

|Du|θ2 F(D2u) = f (x) in �−(u) ∩ �,
(1)

where � is a bounded domain in R
d , �+(u) := {u > 0}, and �−(u) := {u < 0}.

In addition, F : S(d) → R is a (λ,�)-elliptic operator, θi > 0, i = 1, 2, are fixed
constants, the source term f : � → R is a bounded function and S(d) stands for the
space of d×d symmetric matrices.We prove the existence of viscosity solutions to the
Dirichlet problem associated with (1) and establish optimal regularity in C1,α-spaces,
with appropriate estimates.

The model in (1) accounts for a diffusion process degenerating as a power of the
gradient. The degeneracy law depends on the sign of the solution, which introduces
discontinuities along ∂{u > 0} and ∂{u < 0}. Since the subregions where distinct
degeneracy regimes take place are unknown a priori, the transmission interface is
understood as a free boundary. Also, there is no a priori reason for |{u = 0}| = 0; as
a consequence, (1) prescribes a PDE only in a subregion of �.

Transmission problems account for diffusion processes in heterogeneous media,
with applications to thermal and electromagnetic conductivity and composite mate-
rials, such as fiber-reinforced structures. A typical formulation can be described as
follows. Given a domain� ⊂ R

d , we choose k−1 open, mutually disjoint subregions
�i � �, for i = 1, . . . , k − 1, and set

�k := � \
k−1⋃

i=1

�i .

Inside each �i a different equation is prescribed. For example, let A : � → R
d2 be a

matrix-valued mapping and consider

div (A(x)Du) = 0 in �,

where

A(x) = Ai ,

for x ∈ �i , where Ai are constantmatrices and i = 1, . . . , k.Within each subregion,u
solves a divergence-form equation governed by constant coefficients. However, across
the transmission interface ∂�i , the diffusion process may be discontinuous.

Those discontinuities introduce difficulties in the study of the problem, affecting
the understanding of properties such as existence and uniqueness of solutions and their
regularity. Here, an important aspect of the analysis is the geometry of the transmission
surfaces.
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The first treatment of this class of problems appeared in [34], and was followed by
a number of developments [13, 20–22, 26, 31, 33, 38, 40, 41]. The findings reported in
these papers concern the well-posedness of transmission problems in distinct settings.
For a comprehensive account of these results, we refer the reader to [14].

The regularity of solutions to transmission problems has also been investigated in
the literature. In [30] the authors consider a bounded domain � in the presence of a
finite number of subregions (�i )

k
i=1 which are known a priori. In the interior of each

sub-region an equation in the divergence-form holds. Under regularity assumptions on
the diffusion coefficients and the geometry of the transmission interface, the authors
prove that solutions are C1,α-regular, locally; their estimates do not depend on the
proximity of the sub-regions (compare with [12]). A vectorial counterpart of those
results is reported in [29]. In that paper, the authors also derive bounds on higher
derivatives of the solutions, under additional conditions on the data of the problem.

In [4, 5] the authors examine a transmission problem related to the theory of conduc-
tivity. The model in [4] consists of a bounded domain with two compactly contained
sub-regions. These are ε-apart, where ε > 0 is a parameter. Inside each sub-region,
the divergence-form equation governing the problem has constant coefficient k > 0.
In the complementary region the diffusion coefficient is taken to be equal to 1. The
authors consider the case of perfect conductivity (k = +∞) and examine the behavior
of gradient bounds for the solutions as ε → 0. Though it is known that such bounds
deteriorate as both subregions approach each other, the findings of [4] produce a blow-
up rate for those estimates. In [5] the authors examine the case of multiple subregions
– standing for multiple inclusions – and consider also the case of insulation (k = 0).
We also mention [15].

A typical bottleneck in the regularity theory for solutions to transmission problems
is the geometry of the transmission interface. In [19], the authors consider a domain
� ⊂ R

d and a subregion �1 � �. By prescribing �1, they also define �2 := � \�1.
The main contribution of that paper is in the fact that ∂�1 is supposed to be merely
of class C1,α . Under this assumption, and a balance condition relating the normal
derivatives of the solutions across the transmission interface, the authors prove C1,α-
regularity of solutions to a problem driven by the Laplace operator. Their arguments
rely on a new stability result, connecting the transmission problem under analysis with
an auxiliary model, with flat interfaces.

The developments mentioned so far concern problems with transmission interfaces
known a priori. However, a natural generalization regards the case where those sub-
regions depend on the solution and, as a consequence, are endogenously determined.
In this case, transmission problems can be framed in the context of free boundary
analysis. This is precisely the context in the present work. Owing to the fact that the
transmission interface behaves as a free boundary, this class of models is referred to
as free transmission problems.

In [1], the authors consider a free transmission problem governed by the minimiza-
tion of the functional

I (v) :=
∫

�

(
1

2
〈A(x, v)Dv, Dv〉 + �(v) + f v

)
dx, (2)
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where

A(x, u) := A+(x)χ{u>0} + A−(x)χ{u≤0},
�(u) := λ+(x)χ{u>0} + λ−(x)χ{u≤0},
f := f+(x)χ{u>0} + f−(x)χ{u≤0},

and A± : � → R
d2 are matrix-valued mappings satisfying suitable ellipticity condi-

tions, f± : � → R are source terms in appropriate Lebesgue spaces and λ± : � → R

encode balance conditions of themodel. The critical points of (2) satisfy the divergence
form equations

{
div(A+(x)Du(x)) = f+ in {u > 0} ∩ �

div(A−(x)Du(x)) = f− in {u ≤ 0}◦ ∩ �,
(3)

equipped with a flux condition across the free transmission interface ∂{u > 0} ∩
�; the latter is derived through a Hadamard-type argument. The authors establish
the existence of minimizers for (2), with uniform estimates in L∞(�). Notice that
the functional under analysis lacks convexity, which entails further difficulties in the
analysis. Moreover, the authors resort to a perturbation argument and suppose A+ and
A− to be close, in a suitable topology. Under those conditions, solutions to (3) are
proved to be asymptotically Lipschitz.

Free transmission problems in the fully nonlinear setting have also been studied in
the literature. A uniformly elliptic problem is the subject of [35]. In that paper, the
authors consider the model

F1(D
2u)χ{u>0} + F2(D

2u)χ{u<0} = f in �, (4)

where Fi : S(d) → R
d are uniformly elliptic fully nonlinear operators, and f ∈

L∞(�). Under distinct assumptions on Fi , the authors prove regularity estimates in
Hölder and inW 2,BMO-spaces. Further density conditions on the negative phase of the
problem unlock the proof of quadratic growth for the solutions at branch points of the
free boundary. In [36], the authors prove the existence of L p-viscosity solutions to (4);
their argument relies on a combination of the comparison principle for an approximate
problem, combined with Perron’s method and a fixed point theorem. Once again,
further conditions on Fi produce more refined information on the solutions. In this
concrete case, leading to the existence of L p-strong solutions.

The model under analysis in the present paper is a free transmission problem.
Indeed, the regions where distinct degeneracy laws hold depend on the solution itself.
In addition, the problem has a fully nonlinear, non-variational, structure. Finally, the
equation is allowed to degenerate and does so as the gradient of the solutions vanishes.

Fully nonlinear equations degenerating as a power of the gradient have been exam-
ined in various contexts; the work-horse of the theory takes the form

|Du|θ F(D2u) = f (x) in �, (5)
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where F is a fully nonlinear uniformly elliptic operator, θ > −1 is a constant, and
f ∈ L∞(�)∩C(�). This ismodeled as a non-variational, fully nonlinear, variant of the
p-Poisson equation. Among the results available for the solutions to (5), we mention
comparison and maximum principles, well-posedness for the Dirichlet problem, and
an Aleksandroff-Bakelman-Pucci estimate; see [6], [7], [8], [9], [10], [24].

The regularity of solutions to (5) is the subject of [27], [11] and [3]. If u ∈ C(�)

is a viscosity solution to (5), then u ∈ C1,α
loc (�), with the appropriate estimates. In

particular, the Hölder-exponent α satisfies

α ∈ (0, α0) , α ≤ 1

1 + θ
,

where α0 stands for the exponent in the regularity theory associated with the homo-
geneous equation F = 0; see Proposition 3 and, for instance, [17, Section 5.3]. If F

is convex, then α0 = 1 and solutions are precisely C1, 1
1+θ -regular, locally.

The case of variable exponents θ = θ(x) is the topic of [16]. In that paper, the
authors prove optimal regularity estimates for viscosity solutions inC1,α-spaces. Here,
α ∈ (0, 1) depends on the regularity of solutions to equation F = 0 and on lower
and upper bounds for the exponent θ = θ(x). Although the authors work under
the assumption that θ(·) is a continuous function, their estimates do no depend on
the modulus of continuity of θ . Because the continuity of θ(·) plays no role in the
estimates in [16], the findings of that paper are very related to the present work and
most of the proofs in Section 4 follow by adjusting techniques and methods of [16].
See also [27, 28, 32].

We also mention the findings recently reported in [2]. In that paper, the authors
consider viscosity solutions to equations of the form

σ (|Du|) F(D2u) = f in �, (6)

under the assumption that σ−1 is a Dini-continuous modulus of continuity. In this
context, they prove that solutions are locally of class C1, with estimates.

Our first main result, concerning the existence of viscosity solutions, reads as fol-
lows.

Theorem 1 (Existence of solutions) Let� ⊂ R
d be a bounded domain which satisfies

a uniform exterior sphere condition. Suppose Assumptions A1 and A2 (see below)
hold, f ∈ C(�) and g ∈ C(∂�). Then there exists a viscosity solution u ∈ C(�) to

⎧
⎪⎨

⎪⎩

|Du|θ1 F(D2u) = f (x) in �+(u) ∩ �

|Du|θ2 F(D2u) = f (x) in �−(u) ∩ �

u = g on ∂�.

(7)

The solution u obtained is a viscosity subsolution to

min
{
|Du|max(θ1,θ2)F(D2u), F(D2u)

}
= C0 in � (8)
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and a viscosity supersolution to

max
{
|Du|max(θ1,θ2)F(D2u), F(D2u)

}
= −C0 in �, (9)

where C0 = ‖ f ‖L∞(�).

Compare Theorem 1with the findings in [36].We remark that our arguments do not
imply a comparison principle for the equations in (7), and we do not know if solutions
to the Dirichlet problem (7) are unique.

Once the existence of solutions is addressed, we examine their regularity. From this
point on we assume for simplicity that � = B1. We observe that the C1,α-regularity
only relies on the two differential inequalities (8)-(9). The C1,α result is based on a
perturbation argument which relates (8)-(9) with equation F = 0 for some F having
the same structure as F . Our second main theorem is the following.

Theorem 2 (Hölder-regularity of the gradient) Assume � = B1. Let u ∈ C(B1) be
a viscosity subsolution to (8) and a viscosity supersolution to (9) for some C0 ≥ 0.
Suppose Assumptions A1 and A2 (see below) hold. Let

α ∈ (0, α0), α ≤ 1

1 + max(θ1, θ2)
. (10)

Then u ∈ C1,α
loc (B1) and, for every 0 < τ < 1, there exists C > 0 such that

‖u‖C1,α(Bτ ) ≤ C

(
‖u‖L∞(B1) + max

{
C0,C

1
1+max(θ1,θ2)

0

})
, (11)

where C = C(d, λ,�, θ2, α, τ ).

If F is a convex operator, the Evans-Krylov theory for equation F = 0 becomes
available giving α0 = 1. Then, Theorem 2 produces an optimal regularity result and
viscosity solutions to a pair of differential inequalities (8)-(9) are of class C1,α∗

loc (B1),
where

α∗ := 1

1 + max(θ1, θ2)
, (12)

with appropriate estimates. We notice, however, the convexity assumption on F can
be substantially relaxed. Indeed, one may require solutions to the equation F = 0 to
have uniform C1,1-estimates, as in [17, Chapter 7]. Alternatively, one may impose the
convexity condition on the recession profile associated with F ; see [37, 39]. Indeed,
to impose a convexity condition on the operator F∗, defined by

F∗(M) := lim
μ→0

μF
(
μ−1M

)
,

the modulus of continuity driven by the exponent in (12) follows. In addition, we
believe themethods in the present papermay be adjusted to free transmission problems
driven by degeneracies of the form (6), yielding differentiability of the solutions in
that case as well.
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Remark 1 For the sake of simplicity, suppose 0 < θ1 ≤ θ2. Consider the problem

|Du|θ1χ{u>0}+θ2χ{u<0}F(D2u) = f in �. (13)

It differs from (1) in the sense that it prescribes the equation in the entire domain. The
proof of Theorem 1 also yields the existence of a viscosity solution u to (13) in the
standard sense on �+(u) ∪ �−(u), however on the set {u = 0}, u is only a viscosity
subsolution to

min
{
|Du|θ2F(D2u), F(D2u)

}
= f (x)

and a viscosity supersolution to

max
{
|Du|θ2F(D2u), F(D2u)

}
= f (x).

Hence, the conclusion of Theorem 2 is also available in this setting.

The remainder of this paper is organized as follows. In Section 2.1 we describe the
main assumptions of the paper. In Section 2.2 we recall some elementary notions and
show preliminary results, whereas in Section 2.3 we discuss scaling properties of the
model. The proof of Theorem 1 is in Section 3. Section 4 is devoted to the proof of
Theorem 2.

2 Preliminaries

In this sectionwe collect a fewnotions, known and preliminary results, and the assump-
tions under which we will work in this article.

2.1 Main Assumptions

Our main assumptions concern the uniform ellipticity of the fully nonlinear operator
governing (1) and the degeneracy degree constants θ1 and θ2.

A 1 (Uniform ellipticity) The function F : S(d) → R is such that F(0) = 0 and is
(λ,�)-uniformly elliptic; that is, for some fixed constants 0 < λ ≤ �,

λ ‖N‖ ≤ F(M) − F(M + N ) ≤ � ‖N‖

for every M, N ∈ S(d), with N ≥ 0.

A 2 (Degeneracy rates) The constants θ1, θ2 ∈ R satisfy

0 < θ1 ≤ θ2.

We notice that Assumption 1 in particular implies that F is degenerate elliptic.
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2.2 Preliminary Notions and Results

We begin with the definition of the Pucci extremal operators.

Definition 1 (Extremal operators) Let 0 < λ ≤ � be as in Assumption 1. We define
the extremal Pucci operators P±

λ,� : S(d) → R as follows:

P+
λ,�(M) := −�

∑

ei<0

ei − λ
∑

ei>0

ei

and

P−
λ,�(M) := −�

∑

ei>0

ei − λ
∑

ei<0

ei ,

where {e1, e2, . . . , ed} are the eigenvalues of M .

We write P±
λ,� = P±, when ellipticity constants have been set. For properties of

the extremal operators, we refer the reader to [17, Section 2.2] or [18]. For the sake
of completeness, we recall the notion of viscosity solution, see [23]. It is the so called
C-viscosity solution in the terminology of [18].

Definition 2 (Viscosity solution) Let G : � × R × R
d × S(d) → R be a degenerate

elliptic operator. We say that an upper semicontinuous function u : � → R is a
viscosity subsolution to

G(x, u, Du, D2u) = 0 (14)

inU if, whenever ϕ ∈ C2(�) and u − ϕ attains a local maximum at x0 ∈ �, we have

G(x0, u(x0), Dϕ(x0), D
2ϕ(x0)) ≤ 0.

Similarly, we say that a lower semicontinuous function u : � → R is a viscosity
supersolution to (14) if, whenever ϕ ∈ C2(�) and u − ϕ attains a local minimum at
x0 ∈ �, we have

G(x0, u(x0), Dϕ(x0), D
2ϕ(x0)) ≥ 0.

If u is both a viscosity subsolution and supersolution to (14), we say u is a viscosity
solution to (14).

We recall Perron’s method, see e.g. Theorem 4.1 of [23].

Lemma 1 (Perron’s method) Let� be a bounded domain and G ∈ C(�×R
d × S(d))

be degenerate elliptic. Suppose the comparison principle holds for (14) with this G.
Suppose further that there exist a viscosity subsolution w ∈ C(�) and a viscosity
supersolution w ∈ C(�) of (14) such that w ≤ w in � and w = w on ∂� . Then

u(x) := {u(x) | w ≤ v ≤ w, v is a viscosity subsolution to (14)
}

is a viscosity solution to (7).
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We continue by stating the maximum principle for viscosity solutions, Theorem
3.2 of [23].

Proposition 1 Let � be a bounded domain and H , G ∈ C(B1 × R
d × S(d)) be

degenerate elliptic. Let u be a viscosity subsolution to G(x, Du, D2u) = 0 and w be
a viscosity supersolution to H(x, Dw, D2w) = 0 in �. Let ψ ∈ C2(� × �). Define
v : � × � → R by

v(x, y) := u(x) − w(y).

Suppose further that (x, y) ∈ � × � is a local maximum of v − ψ in � × �. Then,
for each ε > 0, there exist matrices X and Y in S(d) such that

G (x, Dxψ(x, y), X) ≤ 0 ≤ H
(
y,−Dyψ(x, y),Y

)
,

and the matrix inequality

−
(
1

ε
+ ‖A‖

)
I ≤

(
X 0
0 −Y

)
≤ A + εA2

holds true, where A = D2ψ (x, y).

When developing perturbation methods we will need compactness properties of the
solutions. We will use [28, Theorem 1.1] which is stated below in a simplified form.

Proposition 2 (Hölder-continuity) Let u ∈ C(B1) be a bounded viscosity supersolu-
tion to

P+
λ,�(D2u) = −C0 in {|Du| > γ }

and a bounded viscosity subsolution to

P−
λ,�(D2u) = C0 in {|Du| > γ } ,

for some fixed γ > 0, and C0 ≥ 0. Then u ∈ Cβ
loc(B1) and for every 0 < τ < 1 there

exists C > 0 such that

‖u‖Cβ(Bτ ) ≤ C .

The constant β depends only on d, λ and �, and C depends only on d, λ, �, γ ,
‖u‖L∞(B1), C0 and τ .

The above proposition implies Hölder regularity of viscosity solutions to variants of
(8)-(9). Indeed, consider u ∈ C(B1) which is a viscosity subsolution to

min
{
|q + Du|θ2 F(D2u), F(D2u)

}
= 1 (15)
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and a viscosity supersolution to

max
{
|q + Du|θ2 F(D2u), F(D2u)

}
= −1 (16)

in the unit ball B1, where q ∈ R
d is an arbitrary vector. Let A0 > 1 be such that

|q| < A0. Then since |q + p| > A0 > 1 if |p| > 2A0, it is easy to see that u is a
viscosity subsolution to

F(D2u) = 0 in {|Du| > 2A0}.

As a consequence, in the set {|Du| > 2A0}, u is a viscosity subsolution to

P−
λ,�(D2u) = 0.

Similarly we obtain that in the set {|Du| > 2A0}, u is a viscosity supersolution to

P+
λ,�(D2u) = 0.

A straightforward application of Proposition 2 thus leads to the following corollary.

Corollary 1 Let u ∈ C(B1) be a viscosity subsolution to (15) and a viscosity superso-
lution to (16). Let Assumptions A1, A2 hold and let ‖u‖L∞(B1) ≤ 1. Suppose further

that |q| < A0, for some fixed constant A0 > 1. Then u ∈ Cβ
loc(B1) for some β ∈ (0, 1)

depending only on d, λ, �. In addition, for every 0 < τ < 1, there exists C > 0 such
that

‖u‖Cβ(Bτ ) ≤ C (17)

with C = C (d, λ,�, A0, τ ).

We recall the standard C1,α0
loc -regularity result for solutions to F = 0, see e.g. [17,

Corollary 5.7].

Proposition 3 Let F satisfy Assumption A1 and let h ∈ C(B1) be a viscosity solution
to

F(D2h) = 0 in B1.

Then h ∈ C1,α0
loc (B1), for some universal constant α0 ∈ (0, 1). Furthermore, there

exists C > 0 depending only on d, λ and �, such that

‖h‖C1,α0 (B1/2) ≤ C ‖h‖L∞(B3/4) .
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2.3 Scaling Properties

In this section we examine scaling properties of equations (8) and (9). Similar prop-
erties apply to (1). We only discuss scaling about the origin but the procedure can be
obviously done about every point with obvious adjustments.

Suppose u is a viscosity subsolution to (8) and a viscosity supersolution to (9) in
B1 but in fact we only require that (8)-(9) be satisfied in Br for some r > 0. We define
for K > 0,

v(x) := u(r x)

K
.

A straightforward computation implies that in particular v is a viscosity subsolution
to

min
{
|Dv|θ2F(D2v), F(D2v)

}
= C0 in B1

and a viscosity supersolution to

max
{
|Dv|θ2F(D2v), F(D2v)

}
= −C0 in B1,

where

F(M) := r2

K
F

(
K

r2
M

)

and

C0 = C0 max

(
r2+θ2

K 1+θ2
,
r2

K

)
.

Choosing

K :=
[
‖u‖L∞(B1) + max

{
C0,C

1
1+θ2
0

}]

and setting r := ε < 1 we obtain ‖v‖L∞(B1) ≤ 1 and C0 ≤ ε. Thus by this kind of
scaling we can always assume that viscosity subsolutions/supersolutions u of (8)/(9)
satisfy ‖u‖L∞(B1) ≤ 1 and C0 ≤ 1 or C0 is arbitrarily small.

3 Existence of Solutions

Next we prove the existence of a viscosity solution to (7) with the required properties.
We start by considering an approximating problem and establishing a comparison
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principle. Let v ∈ C(�). For 0 < ε < 1, define the function gv
ε as

gv
ε := max

(
min

(
v + ε

2ε
, 1

)
, 0

)
on �

and gv
ε = 0 on R \ �. Let ηε(·) be the standard mollifier and consider hv

ε(x) :=
(gv

ε ∗ ηε)(x), for x ∈ �. Finally, we define the exponent function θv
ε : � → R by

setting

θv
ε (x) := θ1h

v
ε(x) + (1 − hv

ε(x))θ2.

Notice that θ1 ≤ θv
ε ≤ θ2. We consider the family of equations

(ε + |Du|)θε
v (x)

[
εu + F(D2u)

]
= f (x) in �, (18)

and prove a comparison principle for its sub and supersolutions.

Proposition 4 (Comparison principle) Let � be a bounded domain, F be degenerate
elliptic and f ∈ C(�). Let u ∈ USC(�) be a viscosity subsolution to (18) and
w ∈ LSC(�) be a viscosity supersolution to (18). Suppose u ≤ w on ∂�. Then,
u ≤ w in �.

Proof If the statement is false, we have maxx∈�(u − w)(x) =: τ > 0. For δ > 0 we
define �δ : � × � → R as

�δ(x, y) := u(x) − w(y) − |x − y|2
2δ

.

Let (xδ, yδ) ∈ � × � be such that

max
x,y∈�

�δ(x, y) = �δ(xδ, yδ) ≥ τ.

We know (see Lemma 3.1 of [23]) that

lim
δ→0

|xδ − yδ|2
δ

= 0 (19)

and thus, for small δ, we have xδ, yδ ∈ �. From Theorem 3.2 of [23] (see also
Proposition 1), there exist X ,Y ∈ S(d) such that

(
xδ − yδ

δ
, X

)
∈ J

2,+
u(xδ) and

(
xδ − yδ

δ
,Y

)
∈ J

2,−
w(yδ),

with

− 3

δ

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 3

δ

(
I −I

−I I

)
, (20)
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where I is the identity matrix. Inequality (20) implies X ≤ Y and, as a consequence
of the degenerate ellipticity of F , we thus have for sufficiently small δ,

ετ

2
≤ ε (u(xδ) − w(yδ)) ≤ f (xδ)

(
ε + |xδ−yδ |

δ

)θε
v (xδ)

− f (yδ)
(
ε + |xδ−yδ |

δ

)θε
v (yδ)

. (21)

Let | f (x)| ≤ C1 for all x ∈ � and let ω be a modulus of continuity of f on �. We
notice that

min

((
ε + |xδ − yδ|

δ

)θε
v (xδ)

,

(
ε + |xδ − yδ|

δ

)θε
v (yδ)

)
≥ εθ2 ,

max

(
−θε

v (xδ) ln

(
ε + |xδ − yδ|

δ

)
,−θε

v (yδ) ln

(
ε + |xδ − yδ|

δ

))
≤ −θ2 ln ε.

Let C2 be the Lipschitz constant of the function θε
v (x) and recall that | ln(ε + r)| ≤

| ln ε| + r for r ≥ 0. Then

f (xδ)
(
ε + |xδ−yδ |

δ

)θε
v (xδ)

− f (yδ)
(
ε + |xδ−yδ |

δ

)θε
v (yδ)

≤ f (xδ) − f (yδ)
(
ε + |xδ−yδ |

δ

)θε
v (xδ)

+ f (yδ)

⎛

⎜⎝
1

(
ε + |xδ−yδ |

δ

)θε
v (xδ)

− 1
(
ε + |xδ−yδ |

δ

)θε
v (yδ)

⎞

⎟⎠

≤ ω(|xδ − yδ|)ε−θ2 + C1

∣∣∣∣e
−θε

v (xδ) ln
(
ε+ |xδ−yδ |

δ

)

− e
−θε

v (yδ) ln
(
ε+ |xδ−yδ |

δ

)∣∣∣∣

≤ ω(|xδ − yδ|)ε−θ2 + C1e
−θ2 ln ε|θε

v (xδ) − θε
v (yδ)|

∣∣∣∣ln
(

ε + |xδ − yδ|
δ

)∣∣∣∣

≤ ω(|xδ − yδ|)ε−θ2 + C1ε
−θ2C2|xδ − yδ|

(
| ln ε| + |xδ − yδ|

δ

)
.

Therefore, letting δ → 0 in (21) and using (19), we obtain ετ
2 ≤ 0, which is a

contradiction. ��
Once the comparison principle is available for (18), we examine the existence of

viscosity solutions for this equation. To use Perron’s method, we construct continuous
viscosity sub and supersolutions to (18), agreeing with g on the boundary ∂�.

Lemma 2 (Existence of global sub and supersolutions) Let � be a bounded domain
which satisfies a uniform exterior sphere condition. Let Assumptions A1 and A2 hold
and let f ∈ C(�), g ∈ C(∂�). Then there exist a viscosity subsolution w ∈ C(�)

to (18) and a viscosity supersolution w ∈ C(�) to (18) for every 0 < ε < 1 and
v ∈ C(�), such that w = w = g on ∂�.
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Proof Weconstruct a continuous viscosity supersolutionw of (18) for every 0 < ε < 1
and v ∈ C(�) such that w = g on ∂�. We first construct a global supersolution to
(18). Let ‖ f ‖L∞(�) =: K . We choose a point x0 such that dist(x0,�) ≥ 1. Denote
K1 := max(K , λd) and let

w1(x) := K2 − K1

2λd
|x − x0|2,

where K2 is such that w1 > ‖g‖L∞(∂�) on ∂�. Then for x ∈ �,

(ε + |Dw1(x)|)θε
v (x)

[
εw1(x) + F(D2w1(x))

]
≥ K1 ≥ f (x).

Let R > 0; for every y ∈ ∂�, let xy be such that |y− xy | = R and BR(xy)∩� = {y}.
Denote R1 := R + diam(�). Define for α > 2, M > 0, wy(x) := M(R−α − |x −
xy |−α). Then wy(y) = 0, wy(x) > 0 in � and

Dwy(x) = Mα
x − xy

|x − xy |α+2

so

|Dwy | ≥ Mα
1

R1+α
1

in �.

Also

D2wy(x) = Mα
I

|x − xy |α+2 − Mα(α + 2)
(x − xy) ⊗ (x − xy)

|x − xy |α+4 .

We notice that if λ(α + 2) − d� ≥ 1, then

F(D2wy(x)) ≥ Mα
1

|x − xy |α+2 (λ(α + 2) − d�) ≥ Mα
1

|x − xy |α+2 .

We now fix M such that

Mα
1

R1+α
1

≥ 1 and Mα
1

R2+α
1

≥ K + ‖g‖L∞(∂�).

For 0 < η < 1 we now define the functions

wy,η(x) := g(y) + η + Cηwy(x),

where the constants Cη are such that Cη ≥ 1 and wy,η ≥ g on ∂�. We notice that the
Cη only depend on the modulus of continuity of g and are independent of y. Then, for
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every 0 < ε, η < 1 and x ∈ �

(
ε + |Dwy,η(x)|

)θε
v (x)

[
εwy,η(x) + F(D2wy,η(x))

]

≥ −‖g‖L∞(∂�) + CηMα
1

R2+α
1

≥ K ≥ f (x).

Therefore, the functions wy,η are supersolutions of (18) for every 0 < ε, η < 1 and
y ∈ ∂�. Thus the functions

w̃y,η(x) := min(wy,η(x), w1(x))

are viscosity supersolutions of (18). Finally the function

w(x) := inf{w̃y,η(x) : y ∈ ∂�, 0 < η < 1}

is the required viscosity supersolution of (18) and w = g on ∂�. A viscosity subso-
lution w of (18) such that w = g on ∂� is constructed similarly. ��

The existence of a unique viscosity solution to the approximating equations (18)
follows from Lemma 2, together with the comparison principle in Proposition 4 and
Perron’s method.

Corollary 2 Let � be a bounded domain which satisfies a uniform exterior sphere
condition. Let Assumptions A1 and A2 hold and let f ∈ C(�), g ∈ C(∂�). Then, for
every 0 < ε < 1 and v ∈ C(�), there exists a unique viscosity solution uv

ε to (18)
such that w ≤ uv

ε ≤ w in �. Moreover, there exists β = β(d, λ,�) > 0 such that for
every �′ � �, ∥∥uv

ε

∥∥
Cβ (�′) ≤ C, (22)

for some C = C
(
d, λ,�, ‖uv

ε‖L∞(�), ‖ f ‖L∞(�), dist(�′, ∂�)
)
.

Proof We only need to show (22). To this end we notice that uv
ε is a viscosity subso-

lution of

F(D2uv
ε) = ‖ f ‖L∞(�) + ‖uv

ε‖L∞(�) in {|Du| > 1},

and thus it is a viscosity subsolution to

P−
λ,�(D2uv

ε) = ‖ f ‖L∞(�) + ‖uv
ε‖L∞(�) in {|Du| > 1}.

Similarly we obtain that in the set {|Du| > 1}, uv
ε is a viscosity supersolution to

P+
λ,�(D2uv

ε) = −‖ f ‖L∞(�) − ‖uv
ε‖L∞(�) in {|Du| > 1}.

The result now follows by an easy application of Proposition 2. ��

123



    5 Page 16 of 30 G. Huaroto et al.

Now we introduce the set B ⊂ C(�), given by

B := {w ∈ C(�) | w ≤ w ≤ w
}
, (23)

where w,w : � → R are the sub and supersolution from Lemma 2, respectively. It is
clear that B is a convex and closed subset of C(�). Define a map T : B → C(�) as
follows. Given v ∈ B, let uv

ε be the unique solution to (18) such that uv
ε = g on ∂�,

whose existence is the subject of Corollary 2. Set

T v := uv
ε (24)

The next lemma collects some properties of the map T .

Lemma 3 (Properties of the map T ) Let B ⊂ C(�) and T : B → C(�) be defined
as in (23) and (24), respectively. Then T (B) ⊂ B. In addition, T (B) is precompact
in B and the map T is continuous.

Proof Let v ∈ B. Corollary 2 and the definition of T imply that w ≤ T v ≤ w, hence
T (B) ⊂ B. We emphasize that w and w are independent of v ∈ C(�) and ε > 0.

Now we observe that T (B) is precompact. Let (T vn)n∈N be a sequence in T (B).
Estimate (22), together with w ≤ T vn ≤ w, implies that the sequence (T vn)n∈N is
equibounded and equicontinuous in C(�). Hence, it has a subsequence which con-
verges to some w ∈ B.

To complete the proof, we show that T is continuous. Suppose that (vn)n∈N is a
sequence in B which converges in C(�) to v ∈ B. We need to verify that T vn → T v

in C(�). Since T (B) is precompact, there exists w ∈ B such that T vn → w in C(�),
through a subsequence if necessary.

We notice that hvn
ε converges uniformly to hv

ε in �, since vn → v uniformly. As a
consequence, the sequence of operators (Gn

ε )n∈N given by

Gn
ε (x, r , p, M) := (ε + |p|)θvn

ε (x) (εr + F(M))

converges locally uniformly to G∞
ε , where

G∞
ε (x, r , p, M) := (ε + |p|)θv

ε (x) (εr + F(M)) .

The stability of viscosity solutions and the uniqueness of viscosity solutions to our
Dirichlet boundary value problem for (18) ensure thatw = T v. To complete the proof
it remains to notice that this argument does not depend on the subsequence.

Suppose through a different subsequence (T vn j ) j∈N, we obtain T vn j → w′. Once
again, the stability of viscosity solutions yields T v = w′. The uniqueness of viscosity
solutions ensures w = w′ and the proof is complete. ��

In the sequel we detail the proof of Theorem 1.
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Proof of Theorem 1 Lemma3 and properties of the set B allowus to apply the Schauder
Fixed Point Theorem; see, for example, [25, Corollary 11.2]. For every ε > 0, we
conclude that there exists a viscosity solution uε ∈ C(�) to

(ε + |Duε|)θ
uε
ε (x)

(
εuε + F(D2uε)

)
= f (x) in �,

such that uε = g on ∂�. Again, estimate (22), together with w ≤ uε ≤ w, ensures
the existence of a sequence (uεn )n∈N, with εn < 1/n, and a function u ∈ B, such that
uεn → u in C(�). Using the fact that θuε

ε converges to θ1χ{u>0} + θ2χ{u<0} uniformly
on compact subsets of (�+(u) ∪ �−(u)) ∩ �, a standard consistency argument now
allows us to conclude that u is a viscosity solution to (7) in (�+(u) ∪ �−(u)) ∩ �.
Moreover, since 0 ≤ θ

uε
ε ≤ θ2, u is also a viscosity subsolution to (8) and a viscosity

supersolution to (9) in �.

Remark 2 Equation (18) is slightly different from the equations considered in [16] and
no quotable result from [16] can be used to claim directly that the solutions uv

ε from
Corollary 2 areC1,α with theC1,α estimates independent of the modulus of continuity
of the variable exponent function θ

uε
ε . If this was done, we could then claim that the

functions uε in the proof of Theorem 1 areC1,α with estimates independent of ε, which
then would give theC1,α-regularity of the solution u to (7) obtained in Theorem 1.We
do not attempt to follow this path.Moreover, equation (18) is only auxiliary and we are
interested in the regularity of all solutions of (7). For this reason we show in Section
4 the C1,α-regularity by working directly with equation (7) or more precisely with the
differential inequalities (8) and (9). Overall, the proof of Theorem 2 is perhaps similar
to the proof of a C1,α-regularity result in [16], however we provide the full proof in
Section 4 to keep the manuscript self-contained and rigorous.

4 Towards Improved Regularity

In this section we prove Theorem 2. We first establish Hölder continuity of viscosity
solutions to differential inequalities (15)-(16), for arbitrary vector q ∈ R

d . Proposition
5 below is a version of Lemma 3 of [27] and its proof follows the strategy of the proof
of Lemma 3 of [27] (see also Section 4 of [16]). However we present the proof with
all details. We emphasize that the Hölder-estimate in Proposition 5 does not depend
on q. Then the proof of Theorem 2 is done in several steps and uses techniques and
methods of [16].

Proposition 5 (Hölder-continuity) Let Assumptions A1, A2 hold. Let u ∈ C(B1) be a
viscosity subsolution to (15) and a viscosity supersolution to (16) in the unit ball B1,
where q ∈ R

d is arbitrary. Suppose that ‖u‖L∞(B1) ≤ 1. Then u ∈ Cβ
loc(B1), where β

is from Corollary 1 and for every 0 < τ < 1, there exists a universal constant Cτ > 0
such that

‖u‖Cβ (Bτ ) ≤ Cτ . (25)
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Proof Fix 0 < r < 1−τ
2 and define

ω(t) := t − t2

2
.

For constants L1, L2 > 0 and x0 ∈ Bτ , we set

L := sup
x,y∈Br (x0)

[
u(x) − u(y) − L1ω(|x − y|) − L2(|x − x0|2 + |y − x0|2)

]
.

We aim at verifying that there are choices of L1 and L2 for which L ≤ 0 for every
x0 ∈ Bτ . This will imply that u is Lipschitz continuous in Bτ by taking x0 = x .

Weargue by contradiction. Suppose there exists x0 ∈ Bτ forwhich L > 0 regardless
of the choices of L1 and L2. Consider the auxiliary functions ψ, φ : B1 × B1 → R

given by

ψ(x, y) := L1ω(|x − y|) + L2

(
|x − x0|2 + |y − x0|2

)

and

φ(x, y) := u(x) − u(y) − ψ(x, y).

Let (x, y) be a point where φ attains its maximum. Then

φ(x, y) = L > 0

and

L1ω(|x − y|) + L2

(
|x − x0|2 + |y − x0|2

)
≤ sup

x∈B1
u(x) − inf

x∈B1
u(x) ≤ 2.

Set

L2 :=
(
4
√
2

r

)2

.

Then,

|x − x0| + |y − x0| ≤ r

2
.

It follows that x, y ∈ Br (x0). In addition, x �= y; indeed, if this is not the case, we
would conclude L ≤ 0.

At this point, we use Proposition 1 to obtain elements in the closures of subjets and
superjets of u and produce a viscosity inequality relating those elements. We split the
rest of the proof into four steps.
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Step 1 - Proposition 1 ensures the existence of (qx , X) in the closure of the superjet
of u at x and of (qy,Y ) in the closure of the subjet of u at y, with

qx̄ := Dxψ(x̄, ȳ) = L1ω
′(|x̄ − ȳ|) x̄ − ȳ

|x̄ − ȳ| + 2L2(x̄ − x0)

and

qȳ := −Dyψ(x̄, ȳ) = L1ω
′(|x̄ − ȳ|) x̄ − ȳ

|x̄ − ȳ| − 2L2(ȳ − x0).

In addition, the matrices X and Y satisfy the inequality

(
X 0
0 −Y

)
≤
(

Z −Z
−Z Z

)
+ (2L2 + ι)I , (26)

for

Z := L1ω
′′(|x̄ − ȳ|) (x̄ − ȳ) ⊗ (x̄ − ȳ)

|x̄ − ȳ|2 + L1
ω′(|x̄ − ȳ|)

|x̄ − ȳ|
(
I − (x̄ − ȳ) ⊗ (x̄ − ȳ)

|x̄ − ȳ|2
)

where 0 < ι � 1 depends solely on the norm of Z .
Next,we apply thematrix inequality (26) to special vectors as to recover information

about the eigenvalues of X − Y . First, apply (26) to vectors of the form (z, z) ∈ R
2d

to get

〈(X − Y )z, z〉 ≤ (4L2 + 2ι)|z|2.
We then conclude that all the eigenvalues of (X−Y ) are less than or equal to 4L2+2ι.
Now, by applying (26) to

z̄ :=
(

x̄ − ȳ

|x̄ − ȳ| ,
ȳ − x̄

|x̄ − ȳ|
)

,

we obtain

〈
(X − Y )

x̄ − ȳ

|x̄ − ȳ| ,
x̄ − ȳ

|x̄ − ȳ|
〉

≤ (4L2 + 2ι)

∣∣∣∣
x̄ − ȳ

|x̄ − ȳ|
∣∣∣∣
2

= 4L1ω
′′(|x̄ − ȳ|) = 4L2 + 2ι − 4L1.

We conclude that at least one eigenvalue of (X − Y ) is below

4L2 + 2ι − 4L1.

We notice this quantity will be negative for large values of L1. Evaluating the minimal
Pucci operator on X − Y , we then get

P−
λ,�(X − Y ) ≥ 4λL1 − (λ + (d − 1)�)(4L2 + 2ι). (27)
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At this point we evoke the differential inequalities (15) and (16) satisfied by u in the
viscosity sense. They yield

min
{|q + qx̄ |θ2F(X), F(X)

} ≤ 1 (28)

and
max

{|q + qȳ |θ2F(Y ), F(Y )
} ≥ −1. (29)

Since F is (λ,�)-elliptic, we have

F(X) ≥ F(Y ) + P−
λ,�(X − Y ). (30)

Step 2 - In what follows, we relate (27), (30) and (28)-(29). Below, we consider all
possible cases.
Case 1: Suppose

min
{|q + qx̄ |θ2F(X), F(X)

} = F(X)

and

max
{|q + qx̄ |θ2F(Y ), F(Y )

} = F(Y ).

In this case we get

4λL1 ≤ (λ + (d − 1)�)(4L2 + 2ι) + 2.

Case 2: Suppose

min
{|q + qx̄ |θ2F(X), F(X)

} = |q + qx |θ2 F(X)

and

max
{|q + qx̄ |θ2F(Y ), F(Y )

} = ∣∣q + qy
∣∣θ2 F(Y ).

Then,

4λL1 ≤ (λ + (d − 1)�)(4L2 + 2ι) + ∣∣q + qy
∣∣−θ2 + |q + qx |−θ2 .

Case 3: Suppose

min
{|q + qx̄ |θ2F(X), F(X)

} = F(X)

and

max
{|q + qx̄ |θ2F(Y ), F(Y )

} = ∣∣q + qy
∣∣θ2 F(Y ).
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In this case we produce

4λL1 ≤ (λ + (d − 1)�)(4L2 + 2ι) + ∣∣q + qy
∣∣−θ2 + 1.

Case 4: Suppose

min
{|q + qx̄ |θ2F(X), F(X)

} = |q + qx |θ2 F(X)

and

max
{|q + qx̄ |θ2F(Y ), F(Y )

} = F(Y ).

Here, we obtain

4λL1 ≤ (λ + (d − 1)�)(4L2 + 2ι) + 1 + |q + qx |−θ2 .

Step 3 - Next, we explore the fact that q ∈ R
d is arbitrary, in close connection with

Cases 1-4. Observe that

|qx̄ | ≤ L1(1 + |x̄ − ȳ|) + 2L2 ≤ aL1,

for some a > 0, universal. Let A0 := 10aL1 and assume |q| ≥ A0. In this case, we
ensure that q �= qx̄ . A similar reasoning leads to q �= qȳ .

From the choice of A0 we conclude that

|q + qx̄ | ≥ A0 − A0

10
= 9

10
A0;

also |q + qȳ | ≥ 9
10 A0. Hence, we get

|q + qx̄ |−θ2 ≤
(

9

10
A0

)−θ2

.

Similarly, we obtain

|q + qȳ |−θ2 ≤
(

9

10
A0

)−θ2

.

Thus, the choice of A0 ensures that in all Cases 1-4

4λL1 ≤ (λ + (d − 1)�)(4L2 + 2ι) + C

Lθ2
1

+ C .

By choosing L1 � 1 large enough, depending only on d, λ, �, θ2 and L2, which in
turn depends only on 0 < r � 1 and τ , we produce a contradiction. Therefore, we
cannot have L > 0.
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As a result, in the case |q| ≥ A0, solutions to (15)-(16) are locally Lipschitz-
continuous, with universal estimates.
Step 4 - If |q| < A0 then Corollary 1, applied with γ = 2A0, guarantees that
u ∈ Cβ

loc(B1) for some universal β ∈ (0, 1) and u satisfies (25). ��
Proposition 6 (Approximation Lemma) Let Assumptions A1, A2 hold. Let u ∈ C(B1)

be a viscosity subsolution to

min
{
|q + Du|θ2F(D2u), F(D2u)

}
= c (31)

and a viscosity supersolution to

max
{
|q + Du|θ2F(D2u), F(D2u)

}
= −c (32)

in the unit ball B1, where c > 0 and q ∈ R
d is arbitrary. For every 0 < δ < 1 there

exists 0 < ε < 1 such that, if ‖u‖L∞(B1) ≤ 1 and

c ≤ ε,

then one can find h ∈ C1,α0
loc (B1) satisfying F(D2h) = 0 in the viscosity sense in B1

for some F satisfying Assumption A1, such that

‖u − h‖L∞(B3/4) ≤ δ. (33)

Such function h satisfies

‖h‖C1,α0 (B1/2) ≤ C ‖h‖L∞(B3/4) , (34)

where C = C(d, λ,�) > 0 is from Proposition 3 and is independent of q.

Proof For ease of presentation, we split the proof into five steps. As before, we resort
to a contradiction argument.
Step 1 - Suppose the statement of the proposition is false. If this is the case, there exist
0 < δ0 < 1, a sequence of functions (un)n∈N ⊂ C(B1), ‖un‖L∞(B1) ≤ 1, a sequence
of positive numbers (cn)n∈N, cn → 0, a sequence of vectors (qn)n∈N and a sequence
(Fn)n∈N of operators satisfying A1, such that un is a viscosity subsolution to

min
{
|qn + Dun|θ2Fn(D2un), Fn(D

2un)
}

= cn (35)

and a viscosity supersolution to

max
{
|qn + Dun|θ2Fn(D2un), Fn(D

2un)
}

= −cn (36)
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in the unit ball B1 for every n ∈ N but

‖un − h‖L∞(B3/4) ≥ δ0,

for every h ∈ C1,α0
loc (B1) satisfying F(D2h) = 0 in the viscosity sense in B1 for some

F .
Step 2 - By Proposition 5, we know that (un)n∈N is bounded in Cβ(Bτ ) for every
0 < τ < 1. Therefore, choosing a subsequence if necessary, it converges uniformly on
every compact subset of B1 to some function u∞ ∈ Cβ

loc(B1), where ‖u∞‖L∞(B1) ≤ 1.
In addition, (Fn)n∈N is uniformly Lipschitz continuous. Hence, there exists an operator
F∞ satisfying Assumption A1 such that Fn converges to F∞, locally uniformly.

Our goal is to prove that u∞ is a viscosity solution to

F∞(D2u∞) = 0 in B1.

We will only show that u∞ is a viscosity subsolution of F∞(D2u∞) = 0 as the proof
of the supersolution property is analogous. We consider two cases, depending on the
behavior of the sequence (qn)n∈N.
Step 3 - Firstly, suppose that the sequence (qn)n∈N does not admit a convergent
subsequence. Then, |qn| → ∞ as n → ∞. Let ϕ ∈ C2(B1) and suppose that u∞ − ϕ

attains a local maximum at x0 ∈ B1; we assume this maximum to be strict. Suppose
that

F∞(D2ϕ(x0)) > 0.

Standard arguments yield a sequence (xn)n∈N, converging to x0, such that un − ϕ

attains a local maximum at xn . Notice also that Dϕ(xn) → Dϕ(x0) and D2ϕ(xn) →
D2ϕ(x0). We choose M ∈ N such that

Fn(D
2ϕ(xn)) > cn

and

|qn + Dϕ(xn)| > 1,

for n > M . Then, for n > M , we conclude

min
{
|qn + Dϕ(xn)|θ2Fn(D2ϕ(xn)), Fn(D

2ϕ(xn))
}

> cn

which is a contradiction. A similar argument, using (36), shows that u∞ is a viscosity
supersolution and so we get that u∞ is a viscosity solution to

F∞(D2u∞) = 0 in B1

in this case.
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Step 4 -We now consider the complementary case. Namely, suppose (qn)n∈N admits
a convergent subsequence, still denoted by (qn)n∈N, such that qn → q∞. By resorting
to standard stability results (see, for instance, [23, Section 6, Remarks 6.2 and 6.3]),
we conclude that u∞ is a viscosity subsolution to

min
{
|q∞ + Du∞|θ2F∞(D2u∞), F∞(D2u∞)

}
= 0 (37)

and a viscosity supersolution to

max
{
|q∞ + Du∞|θ2F∞(D2u∞), F∞(D2u∞)

}
= 0 (38)

in the unit ball B1.
We now reduce the problem to the case q∞ ≡ 0. Indeed, by considering w∞ :=

u∞ + q∞ · x we get that w∞ is a viscosity subsolution to

min
{
|Dw∞|θ2F∞(D2w∞), F∞(D2w∞)

}
= 0 (39)

and a viscosity supersolution to

max
{
|Dw∞|θ2F∞(D2w∞), F∞(D2w∞)

}
= 0 (40)

in B1. Because D2w∞ = D2u∞ in the viscosity sense, by verifying F∞(D2w∞) = 0,
we infer F∞(D2u∞) = 0. We will only argue that w∞ is a viscosity subsolution of
F∞(D2w∞) = 0.

Let p(x) be a second order polynomial of the form

p(x) := b · x + 1

2
xT Ax,

for a vector b ∈ R
d and a matrix A ∈ R

d2 , fixed. Suppose that w∞ − p attains its
maximum at x0 ∈ B1. Without loss of generality we suppose x0 = 0, w∞(0) = 0 and
the maximum is strict. Our goal is to prove that F∞(A) ≤ 0.

From (39) we infer one of the following inequalities:

|b|θ1F∞(A) ≤ 0, |b|θ2F∞(A) ≤ 0 or F∞(A) ≤ 0.

In case b �= 0, F∞(A) ≤ 0 and we are done. If b = 0 the argument is exactly the same
as that in the proof of [27, Lemma 6].
Step 5 - Since u∞ is a viscosity solution to F∞(D2u∞) = 0 in B1, which satisfies
AssumptionA1, Proposition 3 guarantees that u∞ ∈ C1,α0

loc (B1). Proposition 3 implies

‖u∞‖C1,α0 (B1/2) ≤ C ‖u∞‖L∞(B3/4) .

Thus, taking h = u∞, F = F∞, we reach a contradiction. This completes the proof.
��
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Proposition 7 (Oscillation control) Let Assumptions A1, A2 hold. Let u ∈ C(B1) and
‖u‖L∞(B1) ≤ 1. Let α ∈ (0, α0). Set

ρ := min

{
1

2
,

(
1

2C

) 1
α0−α

}
and δ := ρ1+α

2
,

where C is from Proposition 6. If u is a viscosity subsolution to (31) and a viscosity
supersolution to (32) for any q and for c = ε, where ε is from Proposition 6 for the δ

above, then there exists an affine function �(x) = a+ b · x such that |a| ≤ C, |b| ≤ C
and

sup
x∈Bρ

|u(x) − �(x)| ≤ ρ1+α.

Proof Let h be the approximating function whose existence is ensured by Proposition
6. Set �(x) := h(0) + Dh(0) · x . The triangle inequality yields

sup
x∈Bρ

|u(x) − �(x)| ≤ sup
x∈Bρ

|u(x) − h(x)| + sup
x∈Bρ

|h(x) − h(0) − Dh(0) · x |

≤ δ + Cρ1+α0 ≤ ρ1+α.

��
Proposition 8 (Oscillation control in discrete scales) Let the assumptions of Proposi-
tion 7 be satisfied, however let q = 0 now and let in addition

α ≤ 1

1 + θ2
.

There exists a sequence of affine functions (�n)n∈N, of the form

�n(x) := an + bn · x,

satisfying
sup

x∈Bρn

|u(x) − �n(x)| ≤ ρ(1+α)n (41)

and
|an+1 − an| + ρn |bn+1 − bn| ≤ Cρ(1+α)n, (42)

for every n ∈ N and some universal constant C > 0.

Proof We argue by induction.
Step 1 - The basis case follows from Proposition 7. In fact, for h as in that proposition,
set �0 ≡ 0 and define �1(x) := h(0) + Dh(0) · x . It is clear that

sup
x∈Bρ

|u(x) − �1(x)| ≤ ρ1+α
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and

|h(0)| + |Dh(0)| ≤ C,

where C > 0 is a universal constant.
Step 2 - Now, suppose the case n = k has been verified. Next we examine the case
n = k + 1. To that end, we introduce the auxiliary function

vk(x) := u(ρk x) − �k(ρ
k x)

ρk(1+α)
.

It is easy to see that (see Section 2.3) vk is a viscosity subsolution to

min

{∣∣∣ρ−kαbk + Dvk

∣∣∣
θ2
Fk(D

2vk), Fk(D
2vk)

}
= ck

and a viscosity supersolution to

max

{∣∣∣ρ−kαbk + Dvk

∣∣∣
θ2
Fk(D

2vk), Fk(D
2vk)

}
= −ck,

where

Fk(M) := ρk(1−α)F

(
1

ρk(1−α)
M

)

and

ck := ε
(
max

{
ρk(1−α(1+θ2)), ρk(1−α)

})
.

Notice that Fk satisfies Assumption A1 and the choice of the exponent α, together
with ρ ≤ 1/2, yields ck ≤ ε. The induction hypothesis ensures ‖vk‖L∞(B1) ≤ 1.
Step 3 - Proposition 7 now implies that there exists an affine function �k satisfying

sup
x∈Bρ

∣∣vk(x) − �k(x)
∣∣ ≤ ρ1+α, (43)

where

�k(x) := ak + bk · x

is such that |ak | and |bk | are bounded by a constant C > 0, depending solely on d, λ

and �. Using the definition of vk , estimate (43) becomes

sup
x∈Bρ

∣∣∣∣∣
u(ρk x) − ak − bk · (ρk x) − ρk(1+α)

(
ak + bk · x)

ρk(1+α)

∣∣∣∣∣ ≤ ρ1+α.
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It implies

sup
x∈B

ρk+1

|u(x) − �k+1(x)| ≤ ρ(k+1)(1+α)

for

�k+1 = ak+1 + bk+1 · x :=
(
ak + ρk(1+α)ak

)
+
(
bk + ρkαbk

)
· x .

To complete the proof, we notice that

|ak+1 − ak | ≤ |ak | ρk(1+α) ≤ Cρk(1+α)

and

ρk |bk+1 − bk | ≤ ∣∣bk
∣∣ ρk(1+α) ≤ Cρk(1+α).

��
Proof of Theorem 2 Let δ, ε be as in Proposition 7. Denote

K = ‖u‖L∞(B1) + max

{
‖ f ‖L∞(B1) , ‖ f ‖

1
1+θ2
L∞(B1)

}

and set

v(x) = u(εx)

K
.

Then ‖v‖L∞(B1) ≤ 1 and (see Section 2.3) v is a viscosity subsolution to

min
{
|Dv|θ2F(D2v), F(D2v)

}
= ε in B1

and a viscosity supersolution to

max
{
|Dv|θ2F(D2v), F(D2v)

}
= −ε in B1,

where

F(X) = ε2

K
F

(
K

ε2
X

)
.

Thus we are in the framework of Propositions 6-8. From (41)-(42) we infer

an −→ v(0) and bn −→ Dv(0),
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with convergence rates of the order

|an − v(0)| ∼ ρn(1+α) and |bn − Dv(0)| ∼ ρnα.

Therefore

sup
x∈Bρn

|v(x) − v(0) − Dv(0) · x | ≤ sup
x∈Bρn

|v(x) − an − bn · x | + Cρn(1+α)

≤ Cρn(1+α),

where the second inequality comes from (41). Now if ρm+1 < r ≤ ρm for some
m ∈ N, then

sup
x∈Br

|v(x) − v(0) − Dv(0) · x | ≤ sup
x∈Bρm

|v(x) − v(0) − Dv(0) · x |

≤ Cρm(1+α)

≤ C

ρ1+α
ρ(m+1)(1+α)

≤ Cr1+α.

This concludes the proof since the same argument can be done for every point x0 ∈ Bτ

provided we also take ε < 1 − τ . ��
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of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49(4), 365–397
(1996)

19. Caffarelli, Luis A., Soria-Carro, María, Stinga, Pablo R.: Regularity for C1,α interface transmission
problems. Arch. Ration. Mech. Anal. 240(1), 265–294 (2021)

20. Campanato, Sergio: Sul problema di M. Picone relativo all’equilibrio di un corpo elastico incastrato.
Ricerche Mat., 6:125–149, (1957)

21. Campanato, Sergio: Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo
dell’elasticità. I. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13:223–258, (1959)

22. Campanato, Sergio: Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo
dell’elasticità. II. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13:275–302, (1959)

23. Crandall, Michael G, Ishii, Hitoshi, Lions, Pierre-Louis: User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, (1992)

24. Dávila, Gonzalo, Felmer, Patricio, Quaas, Alexander: Alexandroff-Bakelman-Pucci estimate for singu-
lar or degenerate fully nonlinear elliptic equations. C.R.Math.Acad. Sci. Paris 347(19–20), 1165–1168
(2009)

25. Gilbarg, David, Trudinger, Neil S.: Elliptic partial differential equations of second order. Classics in
Mathematics. Springer-Verlag, Berlin, (2001). Reprint of the 1998 edition

123



    5 Page 30 of 30 G. Huaroto et al.

26. Il’in, Vladimir A., Šišmarev, Il’ya A.: The method of potentials for the problems of Dirichlet and
Neumann in the case of equations with discontinuous coefficients. Sibirsk. Mat. Ž., pages 46–58,
(1961)

27. Imbert, Cyril, Silvestre, Luis: C1,α regularity of solutions of some degenerate fully non-linear elliptic
equations. Adv. Math. 233, 196–206 (2013)

28. Imbert, Cyril, Silvestre, Luis: Estimates on elliptic equations that hold only where the gradient is large.
J. Eur. Math. Soc. (JEMS) 18(6), 1321–1338 (2016)

29. Li, YanYan, Nirenberg, Louis: Estimates for elliptic systems from composite material. volume 56,
pages 892–925. (2003). Dedicated to the memory of Jürgen K. Moser

30. Li, YanYan, Vogelius, Michael: Gradient estimates for solutions to divergence form elliptic equations
with discontinuous coefficients. Arch. Ration. Mech. Anal. 153(2), 91–151 (2000)

31. Lions, Jacques-Louis., Schwartz, Laurent: Problèmes aux limites sur des espaces fibrés. Acta Math.
94, 155–159 (1955)

32. Mooney, Connor: Harnack inequality for degenerate and singular elliptic equations with unbounded
drift. J. Differential Equations 258(5), 1577–1591 (2015)

33. Oleı̆nik, Olga A.: Boundary-value problems for linear equations of elliptic parabolic type with discon-
tinuous coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 25, 3–20 (1961)

34. Picone, Mauro: Sur un problème nouveau pour l’équation linéaire aux dérivées partielles de la théorie
mathématique classique de l’élasticité, pp. 9–11. In Colloque sur les équations aux dérivées partielles,
CBRM, Bruxelles (1954)

35. Pimentel, Edgard A., Santos, Makson S.: Fully nonlinear free transmission problems. Interfaces Free
Bound. 25(3), 325–342 (2023)
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