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Abstract
Weare concernedwith strong axisymmetric solutions to the 3D incompressibleNavier-
Stokes equations. We show that if the weak L3 norm of a strong solution u on the time
interval [0, T ] is bounded by A � 1 then for each k ≥ 0 there exists Ck > 1 such
that ‖Dku(t)‖L∞(R3) ≤ t−(1+k)/2 exp exp ACk for all t ∈ (0, T ].

Keywords Navier-Stokes equations · Type I blow up · Critical spaces ·
Axisymmetry · Quantitative regularity · Weak L3 space

1 Introduction

We are concerned with the 3D incompressible Navier-Stokes equations,

{
∂t u − �u + (u · ∇)u + ∇ p = 0,

div u = 0 in R3 (1)

for t ∈ [0, T ). While the question of global well-posedness of the equations remains
open, it is well-known that the unique strong solution on a time interval [0, T ) can be
continued past T provided a regularity criterion holds, such as

´ T
0 ‖ curl u‖∞dt < ∞

(the Beale-Kato-Majda [3] criterion), Lipschitz continuity up to t = T of the direction
of vorticity (the Constantin-Fefferman [11] criterion), or if

´ T
0 ‖u‖qpdt < ∞ for any

p ∈ [3,∞], q ∈ [2,∞] such that 2/q + 3/p ≤ 1 (the Ladyzhenskaya-Prodi-Serrin
condition), among many others. The non-endpoint case q < ∞ of the latter condition
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was settled in the 1960s [17, 34, 41], while the endpoint case L∞
t L3

x was only settled
many years later by Escauriaza, Seregin, and Šverák [12]. The main difficulty of the
endpoint case is related to the fact that L3 is a critical space for 3DNavier–Stokes, and
[12] settled it with an argument by contradiction using a blow-up procedure and new
unique continuation results. This result implies that if T0 > 0 is a putative blow-up
time of (1), then ‖u(t)‖3 must blow-up at least along a sequence of times tk → T−

0 .
While Seregin [38] showed that the L3 norm must blow-up along any sequence of
times converging to T−

0 , the question of quantitative control of the strong solution u in
terms of the L3 norm remained open until the recent breakthrough work by Tao [44],
who showed that

|∇ j u(x, t)| ≤ exp exp exp(AO(1))t−
j+1
2 (2)

for all t ∈ [0, T ], j = 0, 1, x ∈ R
3, whenever

‖u‖L∞([0,T ];L3(R3)) ≤ A

for some A � 1. This result implies in particular a lower bound

lim sup
t→T−

0

‖u(t)‖3(
log log log(T0 − t)−1)

)c = ∞,

where c > 0 and T0 > 0 is the putative blow-up time, and has subsequently been
improved in some settings. For example,Barker andPrange [2] andBarker [1] provided
remarkable local quantitative estimates, and the second author [31] proved that, in the
case of axisymmetric solutions,

|∇ j u(x, t)| ≤ exp exp(AO(1))t−
j+1
2

for all t ∈ [0, T ], j = 0, 1, x ∈ R
3, whenever

∥∥∥r1− 3
p u

∥∥∥
L∞([0,T ];L p(R3))

≤ A

for some A � 1, p ∈ (2, 3]. In another work [32] he generalized (2) to higher
dimensions (d ≥ 4), where, due to an issue related to the lack of Leray’s intervals of
regularity, one obtains an analogue of (2) with four exponential functions. Recently
Feng, He, andWang [13] extended (2) to the non-endpoint Lorentz spaces L3,q for q <

∞. We emphasize that all these generalizations rely on the same stacking argument
by Tao [44]. In particular, the argument breaks down for the endpoint case q = ∞.

1.1 Tao’s Stacking Argument and Type I Blow-Up

In order to illustrate the issue at the endpoint space L3,∞, let us recall that the main
strategy of Tao [44] is to show that if u concentrates at a particular time, then there
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exists a widely separated sequence of length scales (Rk)
K
k=1 and α = α(A) > 0 such

that ‖u‖L3({|x |∼Rk }) ≥ α for all k, which implies that

‖u‖33 =
ˆ

R3
|u|3 ≥

∑
k

ˆ

|x |∼Rk

|u|3 ≥ α3K . (3)

The more singularly u concentrates at the origin, the larger one can take K ; thus the
L3 norm controls the regularity of u. More precisely, if ‖u‖3 ≤ A and u concentrates
at a large frequency N at time T , then one can take α = exp(− exp(AO(1))) and

K ∼ log(NT
1
2 ), which, by (3), implies that N ≤ T− 1

2 exp exp exp(AO(1)). This
controls the solution in the sense that higher frequencies do not admit concentrations,
and so a simple argument [44, Section 6] implies the conclusion (2).

Let us contrast this L3 situation with that of general Lorentz spaces L3,q with
interpolation exponent q ≥ 3. In that case, ‖u‖L3,q ({|x |∼Rk }) ≥ α implies

‖u‖L3,q (R3) �
∥∥‖u‖L3,q ({|x |∼Rk })

∥∥
�
q
k

≥ αK
1
q ,

and so one should expect the bounds from the stacking argument (3) used in theLorentz
space L3,q extension [13] to degenerate as q → ∞. Indeed, if |u(x)| = |x |−1 then, for
some constantα > 0,we have ‖u‖L3,∞({|x |∼R}) ≥ α for all R > 0, yet ‖u‖L3,∞(R3) ∼ 1
which shows that the first inequality in (3) fails for the L3,∞ norm. For this reason,
the approach of Tao [44] (and, for related reasons, of Escauriaza-Seregin-Šverák) to
the L3 problem cannot be extended to L3,∞.

This issue is in fact closely related to the study of Type 1 blow-ups and approx-
imately self-similar solutions to (1). Leray famously conjectured the existence of
backwards self-similar solutions that blow up in finite time, a possibility later ruled
out by Nečas, Růžička, and Šverák [26] for finite-energy solutions and by Tsai [45]
for locally-finite energy solutions. The latter reference identifies the following as a
very natural ansatz for blow-up:

u(t, x) = 1

(T0 − t)
1
2

U

(
x

(T0 − t)
1
2

)
,

U (y) = a

(
y

|y|
)

1

|y| + o

(
1

|y|
)

as |y| → ∞, (4)

where a : S2 → R
3 is smooth. While Tsai [45] shows that there are no solutions

exactly of this form, solutions that approximate this profile or attain it in a discretely
self-similar way are promising candidates for singularity formation, as demonstrated
by, for example, the Scheffer constructions [27, 28, 36, 37], and the recent numerical
evidence of an approximately self-similar singularity for the axisymmetric system due
to Hou [15]. Unfortunately, criteria pertaining to L3 such as those in [12, 31, 44] are
less effective at controlling such solutions because |x |−1 /∈ L3(R3), which shows the
relevance of the weak norm L3,∞.
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Specializing to the case of axial symmetry, it is known, for instance, that certain
critical pointwise estimates of u with respect to the distance from the axis imply
regularity [6, 7, 33]. Moreover, Koch, Nadirashvili, Seregin, and Šverák [16] proved
a Liouville-type theorem for ancient axisymmetric solutions. Furthermore, Seregin
[39] proved that finite-time blow-up cannot be of Type I. Thus, roughly speaking, no
axisymmetric solution can approximate the profile (4) all the way up to a putative
blow-up time T0. However, this regularity is only qualitative (indeed, the proof uses
an argument by contradiction based on a “zooming in” procedure), and so explicit
bounds on the solution have not been available.

The main purpose of this work is to make this regularity quantitative, in a similar
sense in which Tao [44] quantified the Escauriaza-Seregin-Šverák theorem [12]. This
allows us to not only to rule out Type I singularies, but also to control how singular
they can possibly become. For example, it lets us estimate the length scale up to which
a solution can be approximated by a self-similar profile, see Corollary 1.3 for details.

1.2 TheMain Regularity Theorem

We suppose that a strong solution to (1) on the time interval [0, T ] is axisymmetric,
namely that

∂θur = ∂θu3 = ∂θuθ = 0, (5)

where ur , uθ , u3 denote (respectively) the radial, angular, and vertical components of
u, so that

u = ur er + uθeθ + u3e3

in cylindrical coordinates, where er , eθ , e3 denote the cylindrical basis vectors. We
assume further that u remains bounded in L3,∞,

‖u‖L∞([0,T ];L3,∞(R3)) ≤ A (6)

for some A � 1. We prove the following.

Theorem 1.1 (Main result) Suppose u is a classical axisymmetric solution of (1) on
[0, T ] × R

3 obeying (6). Then

‖∇ j u(t)‖L∞
x (R3) ≤ t−

1+ j
2 exp exp(AOj (1))

for all j ≥ 0, t ∈ [0, T ].
We note that, although our proof of the above theorem does use some of the basic

a priori estimates (see Section 4.2) pointed out by Tao [44], it follows a completely
different scheme. Our main ingredients are parabolic methods applied to the swirl
� := ruθ near the axis, as well as localized energy estimates on

� := ωr

r
and 
 := ωθ

r
. (7)
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In a sense, we use those estimates to replace the Carleman inequalities appearing in
Tao’s [44] approach.

To be more precise, our proof builds on the work of Chen, Fang, and Zhang [8],
who showed that the energy norm of �, 
,

‖�‖L∞
t L2

x
+ ‖
‖L∞

t L2
x
+ ‖∇�‖L2

t L2
x
+ ‖∇
‖L2

t L2
x
, (8)

controls u via an estimate on ‖u2θ /r‖L2 (see [8, Lemma 3.1]). They also observed that
one can indeed estimate this energy norm as long as the angular velocity uθ remains
small in any neighbourhood of the axis, namely if

‖rduθ‖L∞
t ([0,T ];L3/(1−d)({r≤α})) is sufficiently small for some α > 0 and d ∈ (0, 1).

(9)

In fact, this can be observed from the PDEs satisfied by �, 
,

(
∂t + u · ∇ − � − 2

r
∂r

)

 + 2

r2
uθωr = 0,(

∂t + u · ∇ − � − 2

r
∂r

)
� − (ωr∂r + ω3∂3)

ur
r

= 0,

(10)

which show that, in order to control the energy of 
, � one needs to control ur/r , ωr ,
ω3 and uθ . However, ur/r can be controlled by 
 in the sense that

ur
r

= �−1∂3
 − 2
∂r

r
�−2∂3
 (11)

(see [8, p. 1929] for details), which is one of the main properties of function 
. In
particular, (11) lets us use the Calderón-Zygmund inequality to obtain that

∥∥∥D2 ur
r

∥∥∥
Lq

≤ ‖∂3
‖Lq (12)

for q ∈ (1,∞) (see [8, Lemma 2.3] for details). Moreover ωr = r�, and ω3 =
∂r (ruθ )/r , which shows that the L2 estimate of �, 
 relies only on control of uθ .
In fact, away from from the axis, one can easily control uθ , while near the axis the
smallness condition (9) is required in an absorption argument by the dissipative part
of the energy, see [8, (3.11)–(3.14)] for details.

In this work we obtain such control of uθ thanks to the weak-L3 bound (6), by
utilizing parabolic theory developped byNazarov andUral’tseva [24] in the spirit of the
Harnack inequality. Namely, noting that the swirl � := ruθ satisfies the autonomous
PDE

(
∂t +

(
u + 2

r
er

)
· ∇ − �

)
� = 0 (13)
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everywhere except for the axis, one can deduce (as observed in [24, Section 4]) Hölder
continuity of � near the axis. A similar observation, but in a case of limited regularity
of u was used by Seregin [39] in his proof of no Type I blow-ups for axisymmetric
solutions. We quantify this approach (see Proposition 5.1 below) to obtain an estimate
on the Hölder exponent in terms of the weak-L3 norm, and hence we obtain sufficient
control of the swirl � in a very small neighbourhood of the axis. As for the outside of
the neighbourhood, we obtain pointwise estimates on u and all its derivatives, which
are quantified with respect to A, and which improve the second author’s estimates [31,
Proposition 8]. This would enable one to close the energy estimates for the quantities
in (8) if there exist sufficiently many starting times where the energy norms are finite.
Indeed, given a weak L3 bound (6) and short time control of the dynamics of the
energy (8), control of ‖�(T )‖L2 + ‖
(T )‖L2 can be propagated from an initial time
very close to t = T . Unfortunately, there are no times when we can explicitly control
these energies in terms of A due to lack of quantitative decay in the x3 direction. The
standard approach of propagating L2 control of�,
 from the initial data at t = 0 (for
instance, as in [8]) would lead to additional exponentials in Theorem 1.1.

To avoid this issue and prove efficient bounds, we replace (8) with L2 norms that
measure � and 
 uniformly-locally in x3: namely, we consider

‖�‖L∞
t L2

3−uloc
+ ‖
‖L∞

t L2
3−uloc

+ ‖∇�‖L2
t L

2
3−uloc

+ ‖∇
‖L2
t L

2
3−uloc

, (14)

where ‖ · ‖L2
3−uloc

:= supz∈R ‖ · ‖L2(R2×[z−1,z+1]). See Proposition 6.1 below for an
estimate of such energy norm. This approach gives rise to two further challenges.

One of them is the x3-uloc control of the solution u itself in terms of (14).We address
this difficulty by an x3-uloc generalization of the L4 estimate on uθ /r1/2 introduced
by [8, Lemma 3.1], together with a x3-uloc bootstrapping via ‖u‖L∞

t L6
3−uloc

, as well
as an inductive argument for the norms ‖u‖L∞

t Wk−1,6
uloc

with respect to k ≥ 1, where

“uloc” refers to the uniformly locally integrable spaces (in all variables, not only x3).
We refer the reader to Steps 2–4 in Section 7 for details.

Another challenge is an x3-uloc estimate on ur in terms of 
. To be more precise,
instead of the global estimate (12), we require L2

3−uloc control of ur/r , which is much
more challenging, particularly considering the bilaplacian term in (11) above. To this
endwe develop a bilaplacian Poisson-type estimate in L2

3−uloc (see Lemma 5.5), which
enables us to show that∥∥∥∇∂r

ur
r

∥∥∥
L2
3−uloc

+
∥∥∥∇∂3

ur
r

∥∥∥
L2
3−uloc

� ‖
‖L2
3−uloc

+ ‖∇
‖L2
3−uloc

, (15)

see Lemma 5.3. Note that this is a x3-uloc generalization of (12), and also requires the
whole gradient on the right-hand side, rather than ∂3
 only. Such an estimate lets us
close the bound in (14), and thus control all subcritical norms of u in terms of ‖u‖L3,∞
(see Section 7 for details).

Having overcome the two difficulties of controlling the energy (14), we deduce (in
(73)) that ‖
(t)‖L2

3−uloc
≤ exp exp AO(1) for all t ∈ [1/2, 1], whenever a solution u

satisfies ‖u‖L∞([0,1];L3,∞) ≤ A; see Figure 1(supposing that T = 1). This suffices for
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t0

∥
∥uθr

−1/2
∥
∥

L4
3−uloc

, ‖u‖L6
3−uloc

11
2

t

‖Γ‖L2
3−uloc

, ‖urer + uzez‖L
p
3−uloc

exp(− expAO(1))

0

≤ exp expAO(1), p ∈ [3,∞)

‖u‖
W

1,6
uloc

≤ exp expAO(1)

‖u‖
W

2,6
uloc

≤ exp expAO(1)

≤ exp expAO(1)

Fig. 1 A sketch of the proof of Theorem 1.1

iteratively improving the quantitative control of u until t = 1. Indeed, we first deduce
a subcritical bound on the swirl-free part of the velocity on the same time interval,
namely that ‖ur er +uzez‖L p

3−uloc
�p exp exp AO(1) for p ≥ 3 and t ∈ [1/2, 1].We can

then control (in (74)) the time evolution of ‖uθr−1/2‖L4
3−uloc

over short time intervals,
and so, choosing t0 ∈ [0, 1] sufficiently close to 1 (by picking a time of regularity, see
Lemma 4.2) we then obtain (in (75)) that ‖uθr−1/2‖L4

3−uloc
and ‖u‖L6

3−uloc
are bounded

by exp exp AO(1) for all t ∈ [t0, 1], see Figure 1. This subcritical bound allows one to
also estimate ‖u‖Wk,6

uloc
≤ exp exp ACk for every k, on a time interval of the same size

(see Step 4 in Section 7), which yields the claim of Theorem 1.1.

1.3 A Comparison of the Blow-Up Rate

We note that Theorem 1.1, together with the well-known blow-up criterion ‖u(t)‖∞ ≥
c/(T0 − t)1/2 (see [30, Corollary 6.25], for example), where T0 > 0 is a putative
blow-up time, immediately implies the following lower bound on the blow-up rate of
‖u(t)‖L3,∞ .

Corollary 1.2 (Blow-up rate of the weak-L3 norm) If u is a classical axisymmetric
solution of (1) that blows up at T0, then

lim sup
t→T−

0

‖u(t)‖L3,∞(R3)

(log log(T0 − t)−1)c
= +∞. (16)

This corollary is also a consequence of a recent theorem of Chen, Tsai, and Zhang
[9], who prove1

lim sup
t→T−

0

‖b(t)‖Ḃ−1∞,∞(R3)(
log log 100

T0−t

) 1
48− = +∞,

1 Let us note the existence of a substantial misprint in the published version of [9]: in their Theorem 1.4,
as in our Corollary 1.2, the blow-up rate is double-logarithmic.
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where b := ur er + u3e3 denotes the swirl-less part of the velocity field u (see [22,
Section 3.3] for the relevant definition of Ḃ−1∞,∞). Thus, since Ḃ−1∞,∞(R3) ⊃ L3,∞, the
above blow-up rate implies (16). We conjecture that a variant of Theorem 1.1 holds
with the weak-L3 norm replaced by such a critical Besov norm and can be proved
using the ideas presented here.

In order to describe the relation of Corollary 1.2 to [9], we note that the argument
in [9] proceeds by proving a pointwise estimate of the form

|ruθ | ≤ C exp(−c| log r |τ ), (17)

where c,C > 0, τ ∈ (0, 1), for axisymmetric solutions obeying the slightly
supercritical bound

1

R
1
2

‖u‖L∞((−R2,0);L2(BR)) ≤ K

(
log log

100

R

)β

for all R ∈ (0, 1/4]

for some β ∈ (0, 1
8 ) and K > 0. This is yet another application of Harnack inequality

methods to axisymmetric Navier-Stokes equations. Rather than proving Hölder con-
tinuity of � under a global control of a critical norm as we do in Proposition 5.1, [9]
obtains (17) by an “almost Hölder continuity,”

osc
Qρ

� ≤ exp

(
−c

((
log

100

ρ

)τ

−
(
log

100

R

)τ))
osc
QR

� (18)

for 0 < ρ < R ≤ 1/4, τ ∈ (0, 1); see [9, Proposition 1.2]. A similar result in the case
of τ = 1/4 has been obtained independently by Seregin [40, Proposition 1.3]. Note
that the case of τ = 1 corresponds to Hölder continuity.

We emphasize that the main point of our work is not to improve the blow-up rate
but to give an explicit bound on u and its derivatives in terms of only the critical
norm—this is a strictly stronger result in the sense that it pertains to all axisymmetric
classical solutions, even those not blowing up. A naïve attempt to prove a similar
quantitative theorem (e.g., using ideas of estimating axisymmetric vector fields from
[21]) would lead to a bound which, compared to Theorem 1.1, would contain more
iterated exponentials as well as severe dependence on the time t and subcritical norms
of the initial data. Instead, Theorem 1.1 parallels the results in [44] and improves
on those in [31] in the sense that the final bound depends only on ‖u‖L∞

t L3,∞
x

and
a dimensional factor in t . This also leads to additional interesting corollaries: for
instance, an explicit rate of convergence for u(t) → 0 as t → +∞, and the non-
existence of nontrivial ancient axisymmetric solutions in L∞

t L3,∞
x .

A comparison of these results with the work of Chen, Tsai, and Zhang [9] raises the
following question: Is it possible to efficiently control (in the sense of Theorem 1.1) u
and its derivatives in terms of only b measured in some critical norm? In fact, in our
proof of Hölder continuity of � near the axis (Proposition 5.1) one can easily replace
(6) with boundedness of ‖b(t)‖L3,∞ in time, since “u” in (13) can be replaced by “b”,
due to axisymmetry. However, we do require L3,∞ control of all components of u for
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other quantitative estimates leading to Theorem 1.1. These include the basic estimates
(Lemmas 4.2–4.4), quantitative decay away from the axis (Proposition 5.2), as well as
energy estimates on 
 and � (Proposition 6.1) and their implementation in the main
argument (Section 7).

A related open problem is to explicitly control u in terms of uθ only. In fact, despite
a number of works [8, 18, 20, 25, 40, 46] on the properties of the swirl ruθ , its role in
the regularity problem of axisymmetric solutions remains unclear.

1.4 An Estimate on the Self-similar Length Scale

One of the remarkable consequences of the quantitative estimate provided by The-
orem 1.1 above is that it provides an estimate on the length scale up to which an
axisymmetric solution to the NSE (1) can be approximated by a self-similar profile as
in (4).

In order to make this precise, we will say that a vector field b ∈ L∞(R3;R3) is
nearly-spherical if there exists δ ∈ (0, 1/2) such that for every R > 0, there exists
x0 ∈ R

3 with |x0| = R such that

|b(x0)| ≥ ‖b‖∞
2

and |b(x) − b(x0)| ≤ ‖b‖∞
4

for all x ∈ B(x0, δ|x0|). (19)

Clearly any spherical profile b(x) = a(x/|x |) is nearly-spherical for every a ∈
C(∂B(0, 1)) (in which case the choice of δ for (19) to hold can be made by a sim-
ple continuity argument). Let ψ ∈ C∞

c (R3; [0, 1]) be such that
´

ψ = 1, and let
ψl(x) := l−3ψ(x/l) denote a mollifier at a given length scale l > 0. We also set
ψ̃l := ψl ∗ ψl .

We note that, letting R := 2l/δ, we can find x0 ∈ R
3 with |x0| = 2l/δ and satisfying

(19). In particular

∣∣∣∣
(

ψ̃l ∗ b(·)
| · |

)
(x0)

∣∣∣∣ =
∣∣∣∣
ˆ

B(x0,2l)
ψ̃l(x0 − y)

b(y)

|y| dy

∣∣∣∣ � |b(x0)| − ‖b‖∞/4

(1 + δ)|x0| ≥ δ‖b‖∞
16l

,

which shows that ∥∥∥∥ψ̃l ∗ b(·)
| · |

∥∥∥∥∞
≥ δ‖b‖∞

16l
(20)

for every length scale l > 0. This simple fact lets us deduce from Theorem 1.1 that, if
an axisymmetric solution approximates a self-similar profile b(t, x)/|x | up to length
scale l(t), where b is nearly-spherical uniformly on [0, t], then l(t) cannot be smaller
than a particular quantitative threshold.

Corollary 1.3 If u is a strong axisymmetric solution u of (1) on [0, T ],
∥∥∥u(t) − ψl(t) ∗ b(t, x)

|x |
∥∥∥
L3,∞ ≤ σ‖b(t)‖∞ (21)
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for t ∈ [0, T ], and σ < cδ, where c > 0 is a sufficiently small constant and b(T ) is
nearly-spherical with constant δ, then

l(T ) � δT
1
2 ‖b(T )‖∞ exp

(
− exp

(
‖b‖O(1)

L∞
t,x ([0,T ]×R3)

))
.

Proof We note that, at time T ,

‖u‖∞ � ‖ψl ∗ u‖∞

≥
∥∥∥∥ψ̃l ∗ b(·)

| · |
∥∥∥∥∞

−
∥∥∥∥ψl ∗

(
u − ψl ∗ b(·)

| · |
)∥∥∥∥∞

≥ δ‖b‖∞
16l

− Cl−1
∥∥∥∥u − ψl ∗ b(·)

| · |
∥∥∥∥
L3,∞

≥
(

δ

16
− C σ

) ‖b‖∞
l

.

Thus ‖u(T )‖∞ ≥ δ‖b(T )‖∞/32l if σ ∈ (0, δ/32C). Since also

‖u(t)‖L3,∞ ≤
∥∥∥∥ψ̃l(t) ∗ b(t, ·)

| · |
∥∥∥∥
L3,∞

+
∥∥∥∥u(t) − ψl(t) ∗ b(t, ·)

| · |
∥∥∥∥
L3,∞

≤ C‖b(t, ·)‖∞

for all t ∈ [0, T ], Theorem 1.1 implies that

δ‖b(T )‖∞
32 l(T )

≤ ‖u(T )‖∞ � T−1/2 exp exp
(
‖b‖O(1)

L∞([0,T ]×R3)

)
,

from which the claim follows. 
�

1.5 Organization of the Paper

The structure of the paper is as follows. In the following Section 2 we discuss prelim-
inary concepts related to the Lorentz spaces L p,q , the Bogovskiĭ operator, a simple
Poisson-type tail estimate that we will later (in Section 5.3) expand to obtain our
Poisson-type estimate (15) above, as well as some properties of cylindrical coordi-
nates. In Section 3we discuss some properties of axisymmetric functions, including an
axisymmetric Bernstein inequality (Section 3.1) and a quantified version of Hardy’s
inequality (Section 3.2). In Section 4 we present some quantitative estimates of the
3D Navier–Stokes equations, including the Picard iterates (Section 4.1), times of reg-
ularity, bounded total speed, and second derivatives estimates (Section 4.2), all of
which remain valid without the assumption of axisymmetry. The following section,
Section 5, is dedicated to quantitative estimates that are specific to the axisymmetric
setting (5) of the equations (1). These include the statement of the Hölder estimate of
the swirl � mentioned above (Section 5.1), pointwise estimates away from the axis
(Section 5.2), as well as the Poisson-type x3-uloc estimate on ur/r (15) (Section 5.3).
In Section 6 we prove the energy estimate (14) for 
 and � mentioned above, and
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Section 7 combines the developed methods to prove the main theorem, Theorem 1.1.
Finally, Appendix A includes a detailed verification of the Hölder estimate of �.

2 Preliminaries

Given f : � → R we let

osc
�

f := sup
�

f − inf
�

f

denote the oscillation of f over �. We also denote by
ffl
�

:= 1
|�|

´
�
the average over

�.
We use standard definitions of Lebesgue spaces L p(�), Sobolev spaces Wk,p(�),

spaces of continuous functions C(�), spaces Cc(�) of continuous functions with
compact support. For brevity of notation we often omit “�” in the notation if� = R

3;
for example W 1,∞ ≡ W 1,∞(R3). We use the convention ‖ · ‖p := ‖ · ‖L p(R3), and
we reserve the notation ‖ · ‖ := ‖ · ‖2 for the L2(R3) norm. We also write

´ := ´
R3 .

Given p ∈ [1,∞], we define the uniformly local L p norms,

‖u‖L p
uloc

:= sup
x∈R3

‖u‖L p
x (B(x,1)) and ‖u‖L p

t,x−uloc
:= ∥∥‖u‖L p

uloc

∥∥
L p
t
, (22)

as well as the norms that are uniformly local in x3 only,

‖ f ‖L p
3−uloc(R

3) := sup
z∈R

‖ f ‖L p(R2×[z−1,z+1]). (23)

We let �(x, t) := (4π t)−3/2e−x2/4t denote the heat kernel, which satisfies

‖∇k�(t)‖p = Ck,pt
− 3

2

(
1− 1

p

)
− k

2 . (24)

We often use the notation et� f := �(t) ∗ f .
Given N ∈ {2k : k ∈ N} we let PN denote the N -th Littlewood-Paley projection.

We recall a localized version of the Bernstein inequality

‖PN f ‖Lq (�) �k N
3
p1

− 3
q ‖PN f ‖L p1 (�R) + (RN )−k N

3
p2

− 3
q ‖PN f ‖L p2 , (25)

where � ⊂ R
3 is an open set, k ≥ 1, �R := {x ∈ R

3 : dist(x,�) < R}, q ∈ [1,∞]
and p1, p2 ∈ [1, q]; see [44, Lemma 2.1] for a proof.

2.1 Lorentz Spaces

We recall the Lorentz spaces, defined by

‖ f ‖L p,q := p1/q‖λ|{| f | ≥ λ}|1/p‖Lq (R+, dλ
λ

) (26)
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for q < ∞ and

‖ f ‖L p,∞ := ‖λ|{| f | ≥ λ}|1/p‖L∞(R+, dλ
λ

).

We recall the Hölder inequality for Lorentz spaces,

‖ f g‖L p,q ≤ Cp1,p2,q1,q2‖ f ‖L p1,q1 ‖g‖L p2,q2 , (27)

whenever 1/p = 1/p1 + 1/p2, 1/q = 1/q1 + 1/q2, p1, p2, p ∈ (0,∞), q1, q2, q ∈
(0,∞]. We refer the reader to [43, Theorem 6.9] for a proof of (27). The Hölder
inequality can be very useful when estimating some localized integrals in terms of the
L p,∞ norm. For example, if φ ∈ C∞

0 (�) is a smooth cutoff function then we have the
simple estimate

‖φ‖L p,1 = p
ˆ ∞

0
|{|φ| ≥ λ}|1/pdλ ≤ p

ˆ ‖φ‖∞

0
|{|φ| ≥ λ}|1/pdλ ≤ p|�|1/p‖φ‖∞,

which shows that, for example

ˆ

�

f g ≤ ‖ f ‖L3,∞‖g‖2|�|1/6.

This simple method allows us to use the weak L3 space to estimate some integrals
over a region close to the axis of symmetry.

We also note two Young’s inequalities involving weak L p spaces

‖ f ∗ g‖L p,∞ � ‖ f ‖1‖g‖L p,∞ for p ∈ (1,∞), (28)

‖ f ∗ g‖p � ‖ f ‖r‖g‖Lq,∞ for p, q, r ∈ (1,∞) with
1

p
+ 1 = 1

q
+ 1

r
, (29)

see [22, Proposition 2.4(a)] and [35, Theorem A.16] for details (respectively).

2.2 The Bogovski Operator

We recall that, given p ∈ (1,∞), an open ball B ⊂ R
3, b ∈ W 1,p(B) such that

div b = 0, and φ ∈ C∞
0 (B; [0, 1]) such that φ = 1 on B/2 there exists b ∈ W 1,p(R3)

such that b = 0 outside B and inside B/2,

div b = div(φb) and ‖b‖W 1,p �B ‖b‖W 1,p(B), (30)

due to the Bogovskiı̆ lemma (see [4, 5] or [14, Lemma III.3.1], for example). Here
we use the non-homogeneous W 1,p norm and so the implicit constant in (30) may
depend of the size of B. We note that the Bogovskiı̆ lemma often assumes that the
domain is star-shaped (which is not the case for B \ B/2), but it can be overcome in
this particular setting by applying the partition of identity to φ; see [29, Section 2.3]
for example.
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2.3 A Poisson-Type Tail Estimate

Here we are concerned with a Poisson equation of the form −� f = D2g, and we
show that any Wk,∞(B(0, 1)) norm of ∇ f can be bounded by the L1

uloc norm of g, if
g = 0 on B(0, 2).

To be more precise, we let ψ ∈ C∞
c (B(0, 1); [0, 1]) be such that ψ = 1 on

B(0, 1/2). Given y ∈ R
3 we set

ψy(x) := ψ(x − y). (31)

and

ψ̃ :=
∑
j∈Z3

| j |≤10

ψ j .

Lemma 2.1 Suppose that f = D2(−�)−1(g(1 − ψ̃)) for some g ∈ L2. Then

‖ψ∇ f ‖Wk,∞ �k ‖g‖L1
uloc

for k ≥ 0.

Proof We note that

∂i f (x) =
ˆ

(xi − yi )g(y)(1 − φ̃(y))

|x − y|5 dy

for x ∈ supp φ, and so

|∇ f (x)| ≤
ˆ

{|x−y|≥5}
|g(y)|

|x − y|4 dy

≤
∑
j∈Z3

| j |≥2

ˆ x1+ j1+1

x1+ j1

ˆ x2+ j2+1

x2+ j2

ˆ x3+ j3+1

x3+ j3

|g(y)|
|x − y|4 dy3 dy2 dy1

� ‖g‖L1
uloc

∑
j∈Z3

| j |≥2

| j |−4 � ‖g‖L1
uloc

,

as required. An analogous argument applies to higher derivatives of f . 
�

The above proof demonstrates a simplemethod of tail estimationwhichwewill later
use to obtain a L2

3−uloc estimate of ur/r in terms of 
, mentioned in the introduction
(recall (15)). In fact, to this end, a similar strategy can be applied in the x3 direction
only, and can be extended to the more challenging biLaplacian Poisson equation (see
Lemma 5.5 below).
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2.4 Cylindrical Coordinates

Given x ∈ R
3 we denote by x ′ := (x1, x2) the horizontal variables, and r := (x21 +

x22 )
1/2 denotes the radius in the cylindrical coordinates. We often use the notation

{r < r0} := {x ∈ R
3 : r < r0}

for a given r0 > 0.
We recall a version of the Hardy inequality

‖r−1 f ‖Lq (�) � C(�)‖ f ‖Lq (�) + ‖∇ f ‖Lq (�), (32)

where � is a bounded domain and q ∈ (1, 2]; see [8, Lemma 2.4] for a proof.
We recall the divergence operator in cylindrical coordinates: if v = vr er + vθeθ +

v3e3 then

div v = 1

r
∂r (rvr ) + 1

r
∂θvθ + ∂3v3. (33)

We say that a vector field v is axisymmetric if (5) holds. In such case we have

|∇′v|2 = (∂rvr )
2 + (∂rvθ )

2 + (∂rv3)
2 + 1

r2
(v2r + v2θ ), (34)

which implies the pointwise bounds

|vr |
r

,
|vθ |
r

≤ |∇′v|.

Here ∇′ refers to the gradient with respect to the horizontal variables x ′ only.
Moreover,

|∂rr f | � |D2 f |. (35)

Indeed, since

∂r = cos θ ∂1 + sin θ ∂2 = x1
|x ′|∂1 + x2

|x ′|∂2,

where x ′ := (x1, x2) refers to the horizontal variables, we can compute that

∂rr = x21
|x ′|2 ∂11 + 2

x1x2
|x ′|2 ∂1∂2 + x22

|x ′|2 ∂22,
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from which (35) follows. More generally,

∂rrr = x31
|x ′|3 ∂111 + 3x21 x2

|x ′|3 ∂11∂2 + 3x1x22
|x ′|3 ∂1∂22 + x32

|x ′|3 ∂222,

∂rrrr = x41
|x ′|4 ∂1111 + 4x31 x2

|x ′|4 ∂111∂2 + 6x21 x
2
2

|x ′|4 ∂11∂22 + 4x1x32
|x ′|4 ∂1∂222 + x42

|x ′|4 ∂2222.

This shows that

|D3
r ,x3 f | � |D3 f | and |D4

r ,x3 f | � |D4 f | (36)

for any axisymmetric f (here, for example, D4 refers to all fourth order derivatives
with respect to x1, x2, x3).

3 Properties of Axisymmetric Functions

Here we discuss some properties of axisymmetric functions, including an axisymmet-
ric Bernstein inequality and a quantified Hardy’s inequality.

3.1 Bernstein Inequalities

Here we discuss a version of the axisymmetric Bernstein inequality provided by [31,
Proposition 1] that involves the weak L3 space.

Lemma 3.1 Let Tm be a Fourier multiplier whose symbol m is supported on B(0, N )

with |∇ jm| ≤ MN− j and 1 < q < p ≤ ∞. If either − 2
p < α < 1

q − 1
p or p = ∞

and α = 0, we have

‖rαTmu‖L p � MN
3
q − 3

p −α‖u‖Lq,∞

for all axisymmetric scalar- or vector-valued functions u.

Proof We normalize M = N = 1. Under these assumptions on p, α, Proposition 1 in
[31] implies

‖rαTmu‖L p � ‖P≤10u‖Lq+ε

for Tm P≤10 = Tm , since an ε > 0 sufficiently small depending on p, q, α. Let ψ be
the kernel such that P≤10 = ψ∗. Then by the weak Young inequality (29),

‖P≤10u‖Lq+ε � ‖ψ‖L1+O(ε)‖u‖Lq,∞ � ‖u‖Lq,∞ .


�
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A useful consequence of the above lemma is the following heat kernel estimate

‖rαe�∇ j f ‖L p ≤ ‖rαe�∇ j P≤1 f ‖L p +
∑
N>1

‖rαe�∇ j PN f ‖L p

�α,p,q, j ‖ f ‖Lq,∞(1 +
∑
N>1

e−N2/100N j+ 3
q − 3

p )

�p,q, j ‖ f ‖Lq,∞ (37)

under the same assumptions on the parameters as in Lemma 3.1.

3.2 A Quantified Version of the Hardy Inequality

By the classical Hardy inequality

‖r− 3
p+ 1

2 f ‖p �p (‖ f ‖2 + ‖∇ f ‖2)

for any axisymmetric f , and p ∈ (2, 6) (see [8, Lemma 2.6], for example). Here we
prove a version of this inequality, which is localized in the horizontal variables, “uloc”
in x3, and which has a quantified divergence of the constant near p = 2. Namely we
prove the following.

Lemma 3.2 (Quantified Hardy inequality) For p ∈ (2, 6 − ε),

‖r− 3
p + 1

2 f ‖L p
3−uloc({r≤1}) �ε (p − 2)−O(1)

(
‖ f ‖L2

3−uloc({r≤1}) + ‖∇ f ‖L2
3−uloc({r≤1})

)
.

Proof From the Sobolev embedding

‖u‖L2p/(2−p)(R2) � (2 − p)−O(1)‖∇u‖L p(R2)

for p < 2, (see, e.g., [42] where the sharp constant is computed), one can prove the
two-dimensional Gagliardo-Nirenberg inequality

‖ f ‖Lq (B(1)) � q

(
‖ f ‖

6
q

L6(B(1))
‖∇ f ‖1−

6
q

L2(B(1))
+ ‖ f ‖L p(B(1))

)
(38)

for q > 6. Fix ε > 0 to be specified. Then

∥∥∥ f (·, x3)
r

3
q − 1

2

∥∥∥
Lq
x ′ (r≥ε)

≤ ‖r− 3
q + 1

2 ‖
L6q/(6−q)

x ′ ({r≥ε})‖ f (·, x3)‖L6
x ′ (R

2)

� ε
− 1

q + 1
6 ‖ f (·, x3)‖L6

x ′ (R
2).
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Inside, for any 1
s ∈ ( 3

2p − 1
4 ,

1
p ), by (38),

∥∥∥ f (·, x3)
r

3
p− 1

2

∥∥∥
L p
x ′ (r≤min(1,ε))

≤ ‖r− 3
p + 1

2 ‖Ls
x ′ (r<min(1,ε))‖ f (·, x3)‖L ps/(s−p)

x ′ (B(1))

�
(1
s

− 3

2p
+ 1

4

)− 1
s
( 1

p
− 1

s

)−1

×
(

ε
− 3

p + 1
2+ 2

s ‖ f (·, x3)‖
6
p − 6

s

L6
x ′ (B(1))

‖∇ f (·, x3)‖1−
6
p + 6

s

L2
x ′ (B(1))

+‖ f (·, x3)‖L p
x ′ (B(1))

)
.

Upon taking ε = ‖ f ‖36/‖∇ f ‖32 and 1
s = 4

3p − 1
6 ,

∥∥∥ f (·, x3)
r

3
p − 1

2

∥∥∥
L p
x ′ (B(1))

� (p − 2)−O(1)
(

‖ f (·, x3)‖
3
2− 3

p

L6
x ′ (B(1))

‖∇ f (·, x3)‖− 1
2+ 3

p

L2
x ′ (B(1))

+‖ f (·, x3)‖L p
x ′ (B(1))

)
.

Finally by Hölder’s inequality, Sobolev embedding, and Gagliardo-Nirenberg inter-
polation, we find

∥∥∥ f

r
3
p − 1

2

∥∥∥
L p
x (B

R2 (1)×BR(z,1))
� (p − 2)−O(1)‖ f ‖H1

x (B
R2 (1)×BR(z,1)),

as required. 
�

4 Basic Estimates for the Navier-Stokes Solutions

Here we discuss some estimates for the Navier-Stokes equations without the
assumption of axisymmetry.

4.1 The Picard Estimates

We define the flat and sharp Picard iterates

u�
n(t) := e(t−tn)�u(tn) −

ˆ t

tn
e(t−t ′)�

Pdiv(u�
n−1 ⊗ u�

n−1(t
′))dt ′, u�

n := u − u�
n

(39)

for all n = 1, 2, . . . and t ≥ tn , where tn ∈ [0, 1
2 ) is an increasing sequence of times,

and u�
0 := 0, u�

0 := u. We have the following.
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Lemma 4.1 (Basic Picard estimates)Assume u solves (1) on [0, 1]×R
3 with the bound

(6). If p ∈ (3,∞] and − 2
p < α < 1

3 − 1
p or p = ∞ and α = 0, we have

‖rα∇ j u�
n‖L∞

t L p
x ([ 12 ,1]×R3) ≤ AOn, j,p(1), (40)

‖u�
n‖L∞

t Lq
x ([ 12 ,1]×R3) ≤ AOn,q (1) for all q ∈ (1, 3), (41)

‖∇ j PNu
�
n‖L∞

t,x ([ 12 ,1]×R3) ≤ e−N2/On, j (1)AOn, j (1), (42)

as well as the energy estimate

‖∇u�
n‖L2

t,x ([ 12 ,1]×R3) ≤ AOn(1). (43)

In particular,

‖∇u‖L2
t,x−uloc([ 12 ,1]×R3) ≤ AO(1). (44)

The proof of (40)–(42) above relies only on the definition (39) as well as basic heat
estimates (24), which, together with the weak Young’s inequality (29), can be used in
the same way as [44, (3.11)–(3.13)] and [32, Proposition 2.5] to obtain the estimates
with ‖u‖L∞([0,1];L3,∞) ≤ A on the right-hand side.

4.2 Basic Estimates

Here we assume that u satisfies (1) with the weak L3,∞ bound (6) on the time interval
[0, T ].
Lemma 4.2 (Choice of time of regularity) If u solves (1) on a time interval I and
satisfies ‖u‖L∞

t L3,∞
x (I×R3)

≤ A, then there exists t∗ ∈ I such that

‖∇ j u(t∗)‖L∞
x (R3) ≤ |I |− 1+ j

2 AO(1)

for all j = 0, 1, 2, . . . , 10.

Lemma 4.3 (Bounded total speed) We have the bounded total speed estimate

‖u‖L1
t L∞

x (I/2×R3) ≤ |I | 12 AO(1).

The two lemmas above follow by the same arguments in [44, Lemma 3.1] and [13,
Propositions 3.1–2] using the estimates in Lemma 4.1. In particular, it is straightfor-
ward to check that the proofs of Propositions 3.1 and 3.2 in [13] are still valid in
Lorentz spaces L p,q with q = ∞. Furthermore, we estimate ∇2u in terms of A.
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Lemma 4.4 (2nd order derivatives estimates) If u solves (1) on [0, T ] and obeys (6),
then

‖∇2u‖L p
t,x−uloc([ T2 ,T ]×R3)

�p AO(1)T
5
2p − 3

2

for p ∈ [1, 4
3 ), where the “uloc” norm is considered as the supremum of the L p norms

over B(T 1/2) ⊂ R
3 (instead of B(1), recall (22)).

Proof We use an approach due to Constantin [10]. First rescale to make T = 1. For

every ε ∈ (0, 1
2 ), we define the approximation to the function 〈x〉 := (1 + |x |2) 1

2 ,

qε(x) := 〈x〉 − 1

2(1 − ε)
〈x〉1−ε

which satisfies the properties

|∇qε | ≤ 1, (45)

ξ T∇2qε(x)ξ >
ε

2
〈x〉−(1+ε)|ξ |2, (46)

1 − 2ε

2 − 2ε
〈x〉 ≤ qε(x) ≤ 〈x〉. (47)

With τ a time scale to be specified, we define w := qε(τω) which obeys the equation

(∂t + u · ∇ − �)w = τ∇qε(τω) · (ω · ∇u) − τ 2 tr(∇ωT∇2qε∇ω).

Recall that ω := curl u denotes the vorticity vector. Multiplying by a spatial cutoff at
length scale R and integrating over Rd ,

d

dt

ˆ

R3
wψ ≤

ˆ

R3
(u · ∇ψ + �ψ)w + O(τ |∇u|2)ψ − ε

2
τ 2〈τω〉−(1+ε)|∇ω|2ψ.

Let ψ̃ be an enlarged cutoff function so that R|∇ψ | + R2|�ψ | ≤ 10ψ̃ . We set

‖ f ‖L p
uloc,R

:= sup
B(R)⊂R3

‖ f ‖L p(B(R)).

Integrating in time starting from a t0 to be specified and taking a supremum over the
balls,

‖wψ(t)‖L1
uloc,R

+ ε

2
τ 2

ˆ t

t0

ˆ

R3
〈τω〉−(1+ε)|∇ω|2ψ dxdt

� ‖w(t0)‖L1
uloc,R

+
ˆ t

t0
(R−2 + R−1‖u‖∞)‖w(t ′)‖L1

uloc,R
dt ′ + τ‖∇u‖2

L2
t,x−uloc,R

.
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Grönwall’s inequality

‖w(t)‖L1
uloc,R

�
(
‖w(t0)‖L1

uloc,R
+ τ RAO(1)

)
exp(R−2|t − t0| + R−1AO(1)|t − t0| 12 ),

where |t − t0|1/2 comes from applying the Cauchy-Schwarz inequality in the time
integral and by using the energy bound (44). Setting R = AC1 and τ = A−2C1 for a
sufficiently large C1, we find

‖〈τω(t)〉‖L1
uloc,R

� ‖〈τω(t0)〉‖L1
uloc,R

.

By (44) and Hölder’s inequality, we can find a t0 ∈ [1/4, 1/2] where the right-hand
side is bounded by AO(1). Therefore

ˆ t

t0

ˆ

R3
〈τω〉−(1+ε)|∇ω|2ψ dxdt ≤ ε−1AO(1).

We use Hölder’s inequality with the decomposition

|∇ω| 4
3+ε = (|∇ω| 4

3+ε 〈τω〉−2 1+ε
3+ε

)〈τω〉2 1+ε
3+ε

to conclude

‖∇ω‖
L4/(3+ε)
t,x−uloc([t0,t]×R3)

≤ ε−O(1)AO(1).

To convert this into a bound on ∇2u, fix a unit ball B ⊂ R
3 and a cutoff function ϕ ∈

C∞
c (3B)with ϕ ≡ 1 in 2B.We decompose∇2u = a+bwhere a = ∇2�−1 curl(ϕω).

Note that b = ∇ f where f = ∇�−1 curl((1 − ϕ)ω) is harmonic in 2B so for any
p ∈ [1, 4

3 ),

‖a‖L p
t,x ([t0,t]×B) � ‖∇ω‖L p

t,x ([t0,t]×3B) + ‖∇ϕ‖L∞‖ω‖L2
t,x−uloc([t0,t]×R3) ≤ ε−O(1)AO(1)

and

‖b‖L p
t,x ([t0,t]×B) � ‖∇�−1 curl((1 − ϕ)ω)‖L2

t,x ([t0,t]×2B)

� ‖ω�‖L2
t,x ([t0,t]×R3) + ‖ω�‖L∞

t,x ([t0,t]×R3) ≤ AO(1),

where we have used (44), Hölder’s inequality, (43), and (40). 
�

5 Estimates for Axisymmetric Navier-Stokes Solutions

Here we provide some estimates of classical solutions of (1) that are specific to the
axisymmetric assumption on the solutions.

123



Quantitative control of the axisymmetric NSE Page 21 of 52 15

We first note that uθ satisfies

(
∂t + u · ∇ − � + 1

r2

)
uθ + ur

r
uθ = 0, (48)

which in particular gives that the swirl � := ruθ satisfies

(
∂t +

(
u + 2

r
er

)
· ∇ − �

)
� = 0 (49)

in (R3 \ {r = 0}) × (0, T ). It then follows that, at each time, (r , x3) �→ uθ (r , x3, t)
is a continuous function on R+ ×R with uθ (0, x3) = 0 for all x3 (see [23, Lemma 1]
for details). In particular

�(0, x3, t) = 0 for all x3 ∈ R, t ∈ (0, T ). (50)

Moreover, since ω = ωr er + ωθeθ + ω3e3 is a smooth vector field we see (also by
[23, Lemma 1]) that � = ωr

r , 
 := ωθ

r (recall (7)) satisfy

|�(r , x3, t)|, |
(r , x3, t)| � C(x3, t) (51)

for r ∈ [0, 1].

5.1 Hölder Continuity Near the Axis

Here we consider the parabolic equation

MV := ∂t V − �V + b · ∇V = 0 (52)

in a space-time cylinder

QR(x0, t0) := B(x0, R) × (t0 − R2, t0).

We assume that at each point of QR := QR(0, 0)

either div b = 0 or V = 0. (53)

We also assume that

N (R) := 2 + sup
R′≤R

(R′)−α‖b‖L�
t L

q
x (QR′ ) < ∞, (54)

where α := 3
q + 2

�
− 1 ∈ [0, 1). In such setting [24, Corollary 3.6] observed that V

must be Hölder continuous in the interior of QR , and in the proposition belowwe state
a version of their result in which we quantify the dependence of the Hölder exponent
in terms of N .
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Proposition 5.1 If V is a Lipschitz solution of (52) on Q2R then

osc
B(r)

V (0) �
( r

R

)γ

osc
QR

V

for all r ≤ R, where γ = exp(−N O(1)).

Proof See Appendix 1. 
�
We note that the swirl � satisfies (52) with b := u + 2er/r (recall (49) above).

Moreover div b = 0 everywhere except for the axis, since div u = 0, div(er/r) = 0
(recall (33)) there. Furthermore,� = 0 on the axis (recall (50)), and so the assumption
(53) holds. Thus Proposition 5.1 shows that� is Hölder continuous in a neighborhood
of the axis. We explore this in more detail in the proof of Theorem 1.1 below, where
we quantify N in terms of the weak-L3 bound A (see Step 1 in Section 6 below).

5.2 Pointwise Estimates Away from the Axis

The following is a more precise version of Proposition 8 in [31].

Proposition 5.2 (Pointwise bounds away from the axis) Let u solve (1) on [0, 1]
satisfying (5) and (6). Then for every ε ∈ (0, 4/15), we have

|∇ j u| ≤
(
r−1− j + r− 1

3+ε
)
AOε, j (1)

for each t ∈ [1/2, 1]. We also have

‖u‖L p({r≥1}) ≤ AOp(1)

for each such t, and p ∈ (3,∞].
Proof We first pick any α ∈ (1/3 − ε/2, 1/3) and c = c( j) > 0 sufficiently small so
that

(1 − α + j)c < ε/2 and c < α/(1 − α). (55)

We also pick n = n( j) ∈ N sufficiently large so that

n ≥ (2 + j)

(
1 + 1

c

)
. (56)

We set tk := 1/2− (1/2)k and we define a sequence of regions {x ∈ R
3 : r ≥ R/2} =

�1 ⊃ �2 ⊃ · · · ⊃ �n = {x ∈ R
3 : r ≥ R} such that dist(�c

i ,�i+1) ≥ R/2n.
Given such a sequence of times we now consider the corresponding Picard iterates

u�
k , u

�
k , for k ∈ {0, 1, . . . , n}.
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Step 1. We show that

‖PNu�
k(t)‖L∞({r≥R/2}), ‖PNu�

k(t)‖L∞({r≥R/2}) � R−αN 1−αAOk (1) (57)

for all α ∈ [0, 1
3 ), R > 0 and t ∈ [tk, 1], k ≥ 0.

In fact, we first observe that Lemma 3.1 gives that

‖rαPNu(t)‖∞ � N 1−α‖u(t)‖L3,∞ � N 1−αAO(1). (58)

Thus, since the first inequality above is valid for any axisymmetric function, it remains
to note that the second inequality is also valid for each u�

k , u
�
k , on [tk, 1], k ≥ 0. Indeed,

the case k = 0 follows trivially, while the inductive step follows by applying Young’s
inequality (28) for weak L p spaces, and Hölder’s inequality (27) for Lorentz spaces

‖u�
k(t)‖L3,∞ � ‖�(t − tk)‖1‖u(tk)‖L3,∞

+
ˆ t

tk
‖∇�(t − t ′)‖1‖(u�

k−1 ⊗ u�
k−1)(t

′)‖L3/2,∞dt ′

≤ Ck A + Ck‖u�
k−1‖2L∞([tk−1,1];L3,∞)

ˆ t

tk
(t − t ′)−

1
2 dt ′ ≤ AOk (1)

for t ∈ [tk, 1], as required, where we also used the heat kernel bounds (24).

Step 2. We show that the inequality from Step 1 can be improved for u�
k for large

k, namely

‖PNu�
k‖L∞([ 12 ,1]×{r≥R}) ≤ N AOk (1)((RN )−(k−1)α + N−(k−1)) (59)

for every k ≥ 1 and N ∈ 2N ∩ [100k max(1, R−1),∞).
We will show that,

Xk,N ≤ N− 4
5 AOk (1)((RN )−(k−1)α + N−(k−1)), (60)

for k ≥ 1 and N ≥ 100k max(1, R−1), using induction with respect to k, where

Xk,N := ‖PNu�
k‖L∞([tk+1,1];L5/3(�k))

.

Then (59) follows by the local Bernstein inequality (25).
As for the base case k = 1 we note that (37) gives that

‖PNu�
1(t)‖5/3 �

ˆ t

t1
‖PN e(t−t ′)�

Pdiv(u ⊗ u)(t ′)‖5/3dt ′

�
ˆ t

t1
e−(t−t ′)N2/O(1)N

6
5 ‖(u ⊗ u)(t ′)‖

L
3
2 ,∞dt ′

� N
6
5 ‖e−t N2/O(1)‖L1(t1,1)‖u‖2L3,∞
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for t ∈ [t1, 1]. Thus

X1,N ≤ ‖PNu�
1‖L∞([t2,1];L5/3) ≤ N− 4

5 AO(1), (61)

due to Hölder’s inequality for Lorentz spaces (27).
As for the inductive step, we use the Duhamel formula for u�

k (recall (39)), and the
local Bernstein inequality (25) to obtain

‖PNu�
k(t)‖L5/3(�k)

�
ˆ t

tk
‖PN e(t−t ′)�

Pdiv(u ⊗ u − u�
k−1 ⊗ u�

k−1)‖L5/3(�k)
dt ′

≤
ˆ t

tk
Ne−(t−t ′)N2/O(1)dt ′

(
‖PN (u ⊗ u − u�

k−1 ⊗ u�
k−1)‖L∞([tk ,1];L5/3(�k−1))

+(N R)−(k−1)α‖PN (u ⊗ u − u�
k−1 ⊗ u�

k−1)‖L∞([tk ,1];L5/3)

)
� N−1

(
‖PN (u ⊗ u − u�

k−1 ⊗ u�
k−1)‖L∞([tk ,1];L5/3(�k−1))

+N
1
5 (N R)−(k−1)αAO(1)

)
,

where we used the weak L3 bound (6) and Lemma 3.1 for the u ⊗ u term and (40)
for the u�

k−1 ⊗ u�
k−1 term. Thus we can use the paraproduct decomposition in the first

term on the right-hand side to obtain

Xk,N � N−1‖Y1 + · · · + Y5‖L∞([tk ,1];L5/3(�k−1))
+ N− 4

5 (N R)−(k−1)αAOk (1), (62)

where

Y1 := 2
∑
N ′∼N

PN ′u�
k−1 � P≤N/100u

�
k−1,

Y2 :=
∑

N1∼N2�N

PN1u
�
k−1 ⊗ PN2u

�
k−1,

Y3 :=
∑

N1∼N2�N

PN1u
�
k−1 ⊗ PN2u

�
k−1,

Y4 := 2
∑
N ′∼N

PN ′u�
k−1 � P≤N/100u

�
k−1,

Y5 := 2
∑
N ′∼N

P≤N/100u
�
k−1 � PN ′u�

k−1,

where we use the notation a � b := a ⊗ b + b ⊗ a. Using (57),

‖Y1‖L∞([tk ,1];L5/3(�k−1))
�

∑
N ′∼N

Xk−1,N ′
∑
N ′�N

R−α(N ′)1−αAOk (1)
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� R−αN 1−αAOk (1)
∑
N ′∼N

Xk−1,N ′

and

‖Y2‖L∞([tk ,1];L5/3(�k−1))
� R−αAOk (1)

∑
N ′�N

(N ′)1−αXk−1,N ′ .

Moreover, the frequency-localized bounds (42) for u�
k−1 give that

‖Y3‖L∞([tk ,1];L5/3(�k−1))
� AOk (1)

∑
N ′�N

e−(N ′)2/Ok (1)N ′Xk−1,N ′ ,

and (41), as well as boundedness of P≤N/100 on L5/3 give that

‖Y4‖L∞([tk ,1];L5/3(�k−1))
� AOk (1)

∑
N ′∼N

e−(N ′)2/Ok (1)N ′ � e−N2/Ok (1)AOk (1).

Finally, using boundedness of P≤N/100 on L∞ and (40) we obtain

‖Y5‖L∞([tk ,1];L5/3(�k−1))
� AOk (1)

∑
N ′∼N

Xk−1,N ′ .

Combining these estimates into (62), we have shown

Xk,N ≤ AOk (1)

⎛
⎝((RN )−α + N−1)

∑
N ′∼N

Xk−1,N ′ + N−1R−α
∑
N ′�N

(N ′)1−αXk−1,N ′

+N−1
∑
N ′�N

e−(N ′)2/Ok (1)N ′Xk−1,N ′ + N− 4
5 (N R)−(k−1)α + N−1e−N2/Ok (1)

⎞
⎠ .

(63)

Since the upper bounds on Xk−1,N ′ provided by the inductive assumption (60) are
comparable for all N ′ ∼ N , up to constants depending only on k, we thus obtain that

∑
N ′∼N

Xk−1,N ′ ≤ AOk (1)N− 4
5

(
(RN )−α(k−2) + N−k−2

)
,

R−α
∑
N ′�N

(N ′)1−αXk−1,N ′

≤ AOk (1)R−α
∑
N ′�N

(N ′)1−α− 4
5

(
(RN ′)−α(k−2) + (N ′)−(k−2)

)

≤ AOk (1)N
1
5

(
(RN )−α(k−1) + N−(k−1)

)
,
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where, in the last line we used the fact that (k − 1)(1 − α) − 4/5 < 0 for any k ≥ 2.
A similar estimate for

∑
N ′�N e−(N ′)2/Ok (1)N ′Xk−1,N ′ now allows us to deduce from

(63) that

Xk,N ≤ N− 4
5 AOk (1)((RN )−(k−1)α + N−(k−1)),

as required.

Step 3. We prove the claim.
We first consider the case R ≥ 100n/c, and we note that, by (57)

‖PN≤Rc∇ j u�
n‖L∞

t,x ([ 12 ,1]×{r≥R}) ≤
∑
N≤Rc

AOn(1)N 1−α+ j R−α

≤ AOn(1)R−α+(1−α+ j)c ≤ AOn(1)R− 1
3+ε,

where we used the choice of α > 1/3 − ε/2 and the first property of our choice (55)
of c in the last inequality. On the other hand for N > Rc we can use (59) with k = n
to obtain arbitrarily fast decay in N . Comparing the terms on the right-hand side of
(59) we see that N−(n−2) dominates (RN )−(n−2)α if and only if N ≤ Rα/(1−α), which
allows us to apply the decomposition

‖PN>Rc∇ j u�
n‖L∞

t,x ([ 12 ,1]×{r≥R}) ≤
∑

Rc<N≤Rα/(1−α)

AOn(1)N−n+2+ j

+
∑

N>Rα/(1−α)

AOn(1)N 1+ j (RN )−(n−1)α

≤ AOn(1)Rc(−n+2+ j)

≤ AOn(1)R−1− j ,

where we used the second property of our choice (55) of c in the second inequality,
and the choice (56) of n in the last inequality.

We now suppose that R ≤ 100n/c. The low frequencies can be estimated directly
from the weak L3 bound (6),

‖P≤1002n/c R−1∇ j u‖L∞
t,x ([ 12 ,1]×{r≥R}) �n,c AO(1)R−1− j .

On the other hand, for N > 1002n/c R−1 we have in particular N > Rα/(1−α), which
shows that the dominant term on the right-hand side of (59) is (RN )−(n−2)α , and so

‖P>1002n/c R−1∇ j u�
n(t)‖L∞({r≥R})

≤
∑

N>1002n/c R−1

N 1+ j AOn(1)(RN )−(n−1)α ≤ AOn(1)R−1− j
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for every t ∈ [1/2, 1], as desired. As for the estimate for u� we use (40) to obtain

‖∇ j u�
n‖L∞({r≥R}) ≤ R−1/3+ε‖r1/3−ε∇ j u�

n‖∞ �ε R−1/3+ε AOε, j (1),

as needed.
The estimate for ‖u‖L p({r≥1}) follows by an L p analogue of Step 1, as well as

applying the Xk,N estimates (60) in the L p variant of Step 3. 
�

5.3 A Poisson-Type Estimate on ur/r

Herewediscuss howderivatives ofur/r canbe controlled by
 using the representation
(11),

ur
r

= �−1∂3
 − 2
∂r

r
�−2∂3
, (64)

see [8, p. 1929], which will be an essential part of our x3-uloc energy estimates for �

and 
 (see Proposition 6.1 below).

Lemma 5.3 (The L2
3−uloc estimate on ur/r )

∥∥∥∇∂r
ur
r

∥∥∥
L2
3−uloc

+
∥∥∥∇∂3

ur
r

∥∥∥
L2
3−uloc

� ‖
‖L2
3−uloc

+ ‖∇
‖L2
3−uloc

. (65)

A version of the above estimate without the localization in x3 has appeared in [8,
Lemma 2.3]. As mentioned in the introduction, the localization makes the estimate
much more challenging, particularly due to the bilaplacian term in (64).

In order to prove Lemma 5.3 we note that, since

∂r

r
= �′ − ∂rr ,

(64) gives that

ur
r

= −�−1∂3
 + 2(∂rr − �′)�−2∂3
. (66)

Thus, since |∇∂3
ur
r | = |(∂r∂3 urr , ∂3∂3

ur
r )| (and similarly for |∇∂r

ur
r |), we can use (35)

and (36) to observe that

∣∣∣∇∂3
ur
r

∣∣∣ +
∣∣∣∇∂r

ur
r

∣∣∣ � |D2
r ,x3�

−1∂3
| + |D2
r ,x3(∂rr − �′)�−2∂3
|

� |∇
| + |D2�−1∇′
| + |D4�−2∇′
|,

where we used ∂33 = � − �′ in the last line. In particular, each of the terms on the
right-hand side involves at least one derivative in the horizontal variables. Thus, in
order to estimate the left-hand side of (65) it suffices to find suitable bounds on the last
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two terms, which we achieve in Lemmas 5.4–5.5 below. Their claims give us (65), as
required.

Lemma 5.4 If f = �−1∇′
 then

‖D2 f ‖L2
3−uloc

≤ ‖
‖L2
3−uloc

+ ‖∇′
‖L2
3−uloc

.

Proof Let I (x) denote the kernel matrix of D2(−�)−1. We have that

|∇ j I (x)| ≤ C

|x |3+ j
for j = 0, 1,

and

D2 f (x) = p.v.
ˆ

R3
I (x − y)∇′
(y)dy

= p.v.
ˆ

R3
∇′
(y)φ̃(y3)I (x − y)dy + p.v.

ˆ

R3

(y)(1 − φ̃(y3))∇′ I (x − y)dy

=: f1(x) + f2(x).

The Calderón-Zygmund inequality (see [35, Theorem B.5], for example) gives that

‖ f1‖L2
3−uloc

≤ ‖ f1‖L2 � ‖∇′
 φ̃‖L2 � ‖∇′
‖L2
3−uloc

.

Moreover, noting that
´
R2

dx1 dx2
(a2+x21+x22 )2

= Ca−2, we can use Young’s inequality for

convolutions to obtain

‖ f2(·, x3)‖L2 ≤
ˆ

R

‖
(·, y3)‖L2(1 − φ̃(y3))

|x3 − y3|2 dy3

≤
∑
j≥1

ˆ

{|x3−y3|∈( j, j+1)

‖
(·, y3)‖L2(1 − φ̃(y3))

|x3 − y3|2 dy3

≤
∑
j≥1

j−2
ˆ

{|x3−y3|∈( j, j+1)
‖
(·, y3)‖L2dy3

≤ ‖
‖L2
3−uloc

.

Integration in x3 over supp φ finishes the proof. 
�
For the bilaplacian term in (66) one needs to work harder:

Lemma 5.5 Let f = D4�−2∇′
. Then

‖ f ‖L2
3−uloc

≤ ‖
‖L2
3−uloc

+ ‖∇
‖L2
3−uloc

.
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Proof We have that

f (x) = p.v.
ˆ

R3
p.v.

ˆ

R3
∇′
(z)I (x − y)I (y − z)dz dy.

Recalling that φ̃ = ∑
| j |≤10 φ j , and

˜̃
φ = ∑

| j |≤20 φ j we use the partition of unity,

1 = ˜̃
φ(z3) + (1 − ˜̃

φ(z3))φ̃(y3) +
∑

| j |>10
|k|>20

φ j (y3)φk(z3)

= ˜̃
φ(z3) + (1 − ˜̃

φ(z3))φ̃(y3)

+
∑

| j |>10

φ j (y3)

⎛
⎜⎜⎜⎜⎝

∑
|k|>20

|k− j |≤10

φk(z3) +
∑

|k|>20
|k− j |>10
k≤ j/2

φk(z3) +
∑

|k|>20
|k− j |>10
j/2<k≤2 j

φk(z3) +
∑

|k|>20
|k− j |>10
k>2 j

φk(z3)

⎞
⎟⎟⎟⎟⎠ ,

to decompose f accordingly,

f (x) = p.v.
ˆ

R3
p.v.

ˆ

R3
∇′
(z) ˜̃

φ(z3)I (x − y)I (y − z)dy dz

+ p.v.
ˆ

R3
I (x − y)φ̃(y3)p.v.

ˆ

R3
∇′
(z)(1 − ˜̃

φ(z3))I (y − z)dz dy

+ p.v.
ˆ

R3
I (x − y)

∑
| j |>10

φ j (y3)p.v.
ˆ

R3
∇′
(z)

∑
|k|>20

|k− j |≤10

φk(z3)I (y − z)dz dy

+ p.v.
ˆ

R3
I (x − y)

∑
| j |>10

φ j (y3)p.v.
ˆ

R3
∇′
(z)

∑
|k|>20

|k− j |>10
k≤ j/2

φk(z3)I (y − z)dz dy

+ p.v.
ˆ

R3
I (x − y)

∑
| j |>10

φ j (y3)p.v.
ˆ

R3
∇′
(z)

∑
|k|>20

|k− j |>10
j/2<k≤2 j

φk(z3)I (y − z)dz dy

+ p.v.
ˆ

R3
I (x − y)

∑
| j |>10

φ j (y3)p.v.
ˆ

R3
∇′
(z)

∑
|k|>20

|k− j |>10
k>2 j

φk(z3)I (y − z)dz dy

=: f1(x) + f2(x) + f3(x) + f4(x) + f5(x) + f6(x).

Clearly f1 involves localization of∇′
 in z3, and sowe can use theCalderón-Zygmund
inequality twice to obtain

‖ f1‖L2 � ‖∇
‖L2
3−uloc

.
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As for f2 we integrate by parts in the z-integral (note that this does not conflict with
the principal value, as the singularity has been cut off, and the far field has sufficient
decay) and apply the Calderón-Zygmund estimate in x to obtain

‖ f2‖L2 �
∥∥∥∥∥φ̃(y3)

ˆ

R3

|
(z)|(1 − ˜̃
φ(z3))

|y − z|4 dz

∥∥∥∥∥
L2

� sup
y3∈supp φ̃

∥∥∥∥∥
ˆ

R3

|
(z)|(1 − ˜̃
φ(z3))

|y − z|4 dz

∥∥∥∥∥
L2
y′

� sup
y3∈supp φ̃

ˆ

R

‖
(·, z3)‖L2(1 − ˜̃
φ(z3))

|y3 − z3|2 dz3

� sup
y3∈supp φ̃

∑
j≥1

j−2
ˆ

|z3−y3|∈( j, j+1)
‖
(·, z3)‖L2

z′
dz3 � ‖
‖L2

3−uloc
,

where we used Young’s inequality in the second line (as in the lemma above).
As for f3, we integrate by parts in z and then in y to obtain

| f3(x)| �
∑

| j |>10

ˆ

R3

φ j (y3)

|x − y|4

∣∣∣∣∣∣∣∣
p.v.

ˆ

R3

(z)

∑
|k|>20

|k− j |≤10

φk(z3)I (y − z)dz

∣∣∣∣∣∣∣∣
dy.

We note that the integration by parts is justified as

f3 = D2(−�)−1

⎛
⎝(1 −

∑
| j |≤10

φ j (y3))D
2(−�)−1

(
∇′
(1 −

∑
k∈I

φk(z3)

)⎞
⎠ ,

where I := {−20, . . . , 20} ∪ { j − 10, . . . , j + 10} is a finite index set. Thus, the
operation of integration by parts above is equivalent to moving ∇′ outside of the outer
brackets, which in turn holds since the sums do not depend on x ′ and ∇′ commutes
with other differential symbols.

Thus, using Young’s inequality in x ′

‖ f3(·, x3)‖L2
x ′

�
∑

| j |>10

ˆ

R

φ j (y3)

|x3 − y3|2

∥∥∥∥∥∥∥∥
p.v.

ˆ

R3

(z)

∑
|k|>6

|k− j |≤2

φk(z3)I (y − z)dz

∥∥∥∥∥∥∥∥
L2
y′

dy3

�
∑
| j |>2

j−2

∥∥∥∥∥∥∥∥
p.v.

ˆ

R3

(z)

∑
|k|>20

|k− j |≤10

φk(z3)I (y − z)dz

∥∥∥∥∥∥∥∥
L2
y

�
∑

| j |>10

j−2

∥∥∥∥∥∥∥∥

(z)

∑
|k|>20

|k− j |≤10

φk(z3)

∥∥∥∥∥∥∥∥
L2

� ‖
‖L2
3−uloc
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for each x3 ∈ supp φ, where we applied the Cauchy-Schwarz inequality (in y3) in the
second line.

As for f4 we note that

|y3 − z3| ≥ |y3| − |z3| ≥ ( j − 1) − (k + 1) ≥ j

2
−2 ≥ ( j + 2)/4 ≥ (|y3| + 1)/4 ≥ |y3 − x3|/4.

Thus, we can integrate by parts in z to obtain

| f4(x)| ≤
ˆ

R3

ˆ

R3∩{|y3−z3|≥|x3−y3|/4}
|
(z)|(1 − φ̃(y3))(1 − φ̃(y3 − z3))

|x − y|3|y − z|4 dz dy.

Hence, applying Young’s inequality in x ′ and then in y′ we obtain

‖ f4(·, x3)‖L2 ≤
ˆ

R

∥∥∥∥∥
ˆ

R3∩{|y3−z3|≥|x3−y3|/4}

(z)(1 − φ̃(y3))(1 − φ̃(y3 − z3))

|y − z|4 dz

∥∥∥∥∥
L2
y′

·
ˆ

R2

dx1 dx2(|x3 − y3|2 + x21 + x22
)3/2︸ ︷︷ ︸

=C|x3−y3|−1

dy3

�
ˆ

R

ˆ

R∩{|y3−z3|≥|x3−y3|/4}
‖
(·, z3)‖L2(1 − φ̃(y3))(1 − φ̃(y3 − z3))

|x3 − y3| |y3 − z3|2 dz3 dy3.

(67)

Hence

‖ f4(·, x3)‖L2 ≤
ˆ

R

1 − φ̃(y3)

|x3 − y3|3/2

⎛
⎝∑

j≥1

ˆ

{|y3−z3|∈( j, j+1)}
‖
(·, z3)‖L2

|y3 − z3|3/2 dz3
⎞
⎠ dy3

� ‖
‖L2
3−uloc

ˆ

R

1 − φ̃(y3)

|x3 − y3|3/2 dy3 � ‖
‖L2
3−uloc

.

As for f5 we have

1

4
≤ |x3 − y3|

|x3 − z3| ≤ 4,

since

|x3 − y3| ≤ |y3| + |x3| ≤ j + 2 ≤ 2 j − 8 ≤ 4k − 8 ≤ 4(|z3| − |x3|) ≤ 4|x3 − z3|

123



15 Page 32 of 52 W. S. Ożański, S. Palasek

and

|x3 − z3| ≤ |z3| + |x3| ≤ k + 2 ≤ 2 j + 2 ≤ 4( j − 2) ≤ 4(|y3| − |x3|) ≤ 4|x3 − y3|.

In particular, the triangle inequality gives that

|y3 − z3| ≤ 5|x3 − z3|.

Thus we can integrate by parts twice (in z and then in y, so that the derivative falls
on I (x − y)), and then use Young’s inequality twice (as in (67) above) and Tonelli’s
Theorem to obtain

‖ f5(·, x3)‖L2 ≤
ˆ

R

ˆ

{|x3−y3|/4≤|x3−z3|≤4|x3−y3|}

‖
(·, z3)‖L2(1 − φ̃(y3 − z3))(1 − ˜̃
φ(z3))

|x3 − y3|2|y3 − z3| dz3 dy3

≤
ˆ

R

‖
(·, z3)‖L2(1 − ˜̃
φ(z3))

|x3 − z3|2
ˆ

{|y3−z3|≤5|x3−x3|}
1 − φ̃(y3 − z3)

|y3 − z3| dy3 dz3

�
ˆ

R

‖
(·, z3)‖L2(1 − ˜̃
φ(z3))

|x3 − z3|2 log(5|x3 − z3|)dz3

�
∑
j≥1

ˆ

|z3−x3|∈( j, j+1)

‖
(·, z3)‖L2

|x3 − z3|2 log(5|x3 − z3|)dz3

�
∑
j≥1

j−2 log(5 j)‖
‖L2
3−uloc

� ‖
‖L2
3−uloc

.

Finally, for f6 we observe that

1

4
≤ |x3 − z3|

|y3 − z3| ≤ 4,

since

|y3 − z3| ≥ |z3| − |y3| ≥ k − j − 2 >
k − 8

2
≥ k + 2

4
≥ |x3| + |z3|

4
≥ |x3 − z3|

4

and

|y3 − z3| ≤ |y3| + |z3| ≤ j + k + 2

≤ 3k + 4

2
≤ 4(k − 2) ≤ 4(|z3| − |x3|) ≤ 4|x3 − z3|.

In particular, the triangle inequality gives that

|x3 − y3| ≤ 5|x3 − z3|.
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Thus, similarly to the case of f5 (although without integrating by parts in y), we apply
Young’s inequality twice, and Tonelli’s Theorem to obtain

‖ f6(·, x3)‖L2 ≤
ˆ

R

ˆ

R

‖
(·, z3)‖L2(1 − φ̃(y3))(1 − ˜̃
φ(z3))

|x3 − y3||y3 − z3|2 dz3 dy3

≤
ˆ

R

‖
(·, z3)‖L2(1 − ˜̃
φ(z3))

|x3 − z3|2
ˆ

{ 14 |z3−x3|≤|y3−z3|≤4|z3−x3|}
1 − φ̃(y3)

|x3 − y3| dy3 dz3

≤
ˆ

R

‖
(·, z3)‖L2(1 − ˜̃
φ(z3))

|x3 − z3|2
ˆ

{1≤|x3−y3|≤5|x3−z3|}
1

|x3 − y3|dy3 dz3

�
ˆ

R

‖
(·, z3)‖L2(1 − ˜̃
φ(z3))

|x3 − z3|2 log(5|x3 − z3|)dz3

�
∑
j≥1

ˆ

|z3−x3|∈( j, j+1)

‖
(·, z3)‖L2 log(5|x3 − z3|)
|x3 − z3|2 dz3

�
∑
j≥1

log(5 j) j−2‖
‖L2
3−uloc

� ‖
‖L2
3−uloc

for x3 ∈ supp φ. Integration of the squares of the above estimates for f3, f4, f5, f6
gives the claim. 
�

6 Energy Estimates for!/r

In this section, we assume the weak L3 bound (6) on the time interval [0, 1] and prove
an energy bound for �2 + 
2 at time 1, that is we prove the following.

Proposition 6.1 (An L2
3−uloc energy estimate for� and
) Let u be a classical solution

of (1) satisfying the weak L3 bound (6) on [0, 1]. Then

‖�(1)‖L2
3−uloc(R

3) + ‖
(1)‖L2
3−uloc(R

3) ≤ exp exp AO(1). (68)

Recall (23) that ‖ · ‖L p
3−uloc

:= supz∈R ‖ · ‖L p(R2×[z−1,z+1]). We note that we will
only use (in (73) below) the bound on 
.

Proof We fix a cutoff function φ ∈ C∞
c ((−1, 1); [0, 1]) such that φ ≡ 1 in

[−1/2, 1/2], and we define the translate

φz(y) := φ(y − z).
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Clearly, we have the pointwise inequality

φ′
z, φ

′′
z �

2∑
i=−2

φz+i .

We will consider the energies

E(t) := sup
z∈R

Ez(t), Ez(t) := 1

2

ˆ

R3
(�(t, x)2 + 
(t, x)2)φz(x3)dx,

F(t) := sup
z∈R

Fz(t), Fz(t) :=
ˆ t

t0

ˆ

R3
(∇�(s, x)2 + ∇
(s, x)2)φz(x3)dx ds

for t ∈ [t0, 1], where t0 ∈ [0, 1] will be chosen in Step 3 below. Given z ∈ R, we
multiply the equations (10) by φz
 and φz�, respectively, and integrate to obtain, at
a given time t ,

E ′
z ≤

ˆ

R3

(
− (|∇�|2 + |∇
|2)φz + 1

2
(�2 + 
2)(uzφ

′
z + φ′′

z )

+ (ωr∂r + ω3∂3)
ur
r

�φz − 2r−1uθ�
φz

)
dx

=: −F ′
z(t) + I1 + I2 + I3.

(69)

The second term on the right hand side can be bounded directly,

I1 � (1 + ‖uz‖L∞
x (R3))E(t). (70)

The remaining terms I2, I3 are more challenging. In order to estimate them, as well
as choose t0 and deduce the claim (68), we follow the steps below.

Step 1.We use the Hölder estimate (Proposition 5.1) to show that |�| ≤ rγ AO(1)

whenever r ≤ 1
2 and t ∈ [3/4, 1], where γ = exp(−AO(1)).

To this end we note that, due to incompressibility, div(u+ 2
r er ) = 4πδ{x ′=0}, which

enables us to apply Proposition 5.1 to the equation for the swirl � (recall (13)).
Moreover, in the notation of Proposition 5.1, for every R < 1

2 , t0 ∈ [ 12 , 1] and
x0 ∈ (0, 0) × R (i.e., on the x3-axis),

R− 4
5 ‖u + er

r
‖
L∞
t L

5
3
x (Q((t0,x0),R))

� R− 1
2 ‖u‖L∞

t L2
uloc([t0−R2,t0]×R3) + 1 ≤ AO(1),

by Hölder’s inequality and (44) applied on the timescale R2. (In particular note that
each scale R leads to a different decomposition u = u�

n+u�
n , but they all obey the same

bounds up to being suitably rescaled.) Thus, for every r ∈ (0, 1/2), osc
B(x0,r)

�(t0) �
rγ osc

Q(1/2)
� for r ∈ (0, 1/2), which implies the claim.
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Step 2. We show that

ˆ t

t0
|I2 + I3| � 1

2
F(t) + r−10

0 +
ˆ t

t0
GE

for each t0 ∈ [3/4, 1] and t ∈ [t0, 1], where

r0 := e−γ −2
, (71)

γ = exp(−AO(1)) is given by Step 1, and

G := r−3
0 + ‖u‖∞ + ‖D2u‖

L5/4
uloc

+ ‖∇u‖L2
uloc

at each t ′ ∈ [t0, t].
To this end, we proceed similarly to [8]. Using integration by parts, we compute

I2 = 2π
ˆ

R

ˆ ∞

0
(−∂3uθ ∂r

ur
r

� + ∂r (ruθ )

r
∂3

ur
r

�)φz(x3)r dr dx3

=
ˆ

R3
uθ (∂r

ur
r

∂3�φz − ∂3
ur
r

∂r�φz + ∂r
ur
r

�φ′
z)

=: I2,1 + I2,2 + I2,3.

Let us further decompose I2,i = I2,i,in + I2,i,out (i = 1, 2, 3) by writing

ˆ
=
ˆ

{r<r0}
+
ˆ

{r≥r0}
.

We decompose

I2,1,in = I2,1,in,1 + I2,1,in,2,

where

I2,1,in,1 :=
ˆ

{r<r0}
uθ

( 
�

∂r
ur
r

)
∂3�φz

and � := {x ′ : r < 1} × suppφz . We compute using Hölder’s inequality and Sobolev
embedding

∣∣∣∣
ˆ

�

∂r
ur
r

∣∣∣∣ ≤ ‖r−1∂r ur‖L1(�) + ‖r−2ur‖L1(�)

� ‖r−1‖L15/8(�)‖∇u‖L15/7(�) � ‖∇2u‖L5/4(�) + ‖∇u‖L2(�) � G.
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Thus, integrating by parts, and applying Hölder’s inequality in Lorentz spaces (27),
and Young’s inequality, we obtain

|I2,1,in,1| ≤ G
ˆ

B(r0)×R

(
r�2φz + |uθ�φ′

z |
)
dx

� G(r0E + ‖uθ‖L3,∞
x (R3)

‖�‖L2
x (�)|�| 16 )

� G(E + AO(1)).

As for I2,1,in,2 we note that p = 2(1−γ )/(1−2γ ) is such that p−2 = 2γ /(1−2γ ) ≥
γ and so we can use the quantified Hardy inequality (Lemma 3.2) to obtain, for we
estimate for t ∈ [ 12 , 1],

|I2,1,in,2| � ‖r 3
p − 1

2 uθ‖
L

(
1
2− 1

p

)−1

({r≤r0}∩suppφz)∥∥∥∥r− 3
p + 1

2 (∂r
ur
r

−
 

�

∂r
ur
r

)φ
1
2
z

∥∥∥∥
L p({r≤1})

‖∂3�φ
1
2
z ‖2

� γ −O(1)rγ /3
0

∥∥∥∇∂r
ur
r

∥∥∥
L2
3−uloc

‖∇�φ
1
2
z ‖2

≤ e−γ −1/4(‖∇
‖L2
3−uloc(R

3) + ‖
‖L2
3−uloc(R

3))‖∇�φ
1
2
z ‖2,

where we have also applied Poincaré’s inequality and our choice (71) of r0. Thus

ˆ t

t0
I2,1,in,2 ≤ 1

20
F(t) +

ˆ t

t0
E .

An analogous argument, in which “∂r” and “∂3” are switch, gives us the same bound
for I2,2,in,2. As for I2,2,in,1, we integrate by parts, and apply Hölder’s inequality for
Lorentz spaces (27), and Young’s inequality, to obtain

|I2,2,in,1| ≤
∣∣∣∣
 

�

∂3
ur
r

φz

∣∣∣∣
ˆ

{r≤r0}∩suppφz

|uθ ∂r�|

�
∣∣∣∣
 

�

ur
r

φ′
z

∣∣∣∣‖uθ‖L3,∞‖∇�‖L2
x (suppφz)

r
1
3
0

�
2∑

i=−2

‖∇u‖L1(�)A(F ′
z+i )

1
2 r

1
3
0

� GAr1/30

(
2∑

i=−2

F ′
z+i

) 1
2

,
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which, thanks to the smallness of r0 = exp(− exp(AO(1))) (recall (71)), gives that

ˆ t

t0
|I2,2,in,1| ≤ 1

20
F(t) + (t − t0).

We similarly decompose I2,3,in = I2,3,in,1 + I2,3,in,2 to find

|I2,3,in,1| =
∣∣∣∣
 

�

∂r
ur
r

∣∣∣∣
∣∣∣∣
ˆ

{r≤r0}
uθ�φ′

z

∣∣∣∣ � (‖∇u‖L2(�) + ‖∇2u‖L5/4(�))AE
1
2 r

1
3
0

� G(E + 1),

where we have used Lemma 3.2 and change of variables, the pointwise estimate
|ur/r | ≤ |∇u|, and Hölder’s inequality to bound

∣∣∣∣
 

�

∂r
ur
r

∣∣∣∣ �
ˆ z+10

z−10

ˆ 1

0

(
|∂r ur | + |ur |

r

)
dr dz

� ‖r−1∂r ur‖L1(�) + ‖r−1∇u‖L1(�)

� ‖r−1∇u‖L5/4(�)

� ‖∇u‖L2(�) + ‖∇2u‖L5/4(�),

where we used (34) in the third line, and the Hardy inequality (32) in the last line.
Next

|I2,3,in,2| =
∣∣∣∣
ˆ

{r≤r0}
uθ

(
∂r
ur
r

−
 

�

∂r
ur
r

)
�φ′

z

∣∣∣∣
� ‖ruθ‖L3({r≤r0})

∥∥∥∥r− 1
2

(
∂r
ur
r

−
 

�

∂r
ur
r

)∥∥∥∥
L3(R2×suppφz)

‖r− 1
2 �‖L3(R2×suppφz)

≤ AO(1)r
2
3
0

∥∥∥∇∂r
ur
r

∥∥∥
L2
3−uloc

‖∇�‖L2
3−uloc

,

where we have used the Hardy inequality (Lemma 3.2). Thus Lemma 5.3 and Young’s
inequality imply that

ˆ t

t0
|I2,3,in,2| ≤ 1

20
F(t) +

ˆ t

t0
E .

Next let us consider the contributions to I2 from outside B(r0). Using Hölder’s
inequality, we obtain that

|I2,1,out| =
∣∣∣∣
ˆ

{r>r0}
uθ ∂r

ur
r

∂3�φz dx

∣∣∣∣
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≤ ‖uθ‖L6
3−uloc({r>r0})‖r−1∂r ur − r−2ur‖L3

3−uloc({r>r0})‖∇�‖L2
3−uloc(R

3).

Hence, since Proposition 5.2 shows that |u| ≤ AO(1)(r−1 + r−1/4) and |∂r ur | ≤
AO(1)(r−2 + r1/4), we see that the first two norms on the right hand side are finite and
bounded by, say, r−10

0 . Thus, an application of Young’s inequality gives that

ˆ t

t0
|I2,1,out| ≤ 1

20
F(t) + r−10

0 (t − t0).

The remaining outer parts of I2, i.e. I2,2,out and I2,3,out can be estimated in a similar
way, with the latter bounded by, say, E + r−10

0 .
Finally let us consider I3. Taking p such that, for example, 1

p = 1
2 − γ

4 , we have
p − 2 = 2γ /(2 − γ ) ≥ γ , and so our quantified Hardy’s inequality (Lemma 3.2)
shows that

|I3,in| ≤
∥∥∥r−2+ 6

p uθ

∥∥∥
L

(
1− 2

p

)−1

({r≤r0})
‖r− 3

p + 1
2 �‖L p

3−uloc
‖r− 3

p + 1
2 
‖L p

3−uloc

� γ −O(1)rγ /2
0

(
‖�‖L2

3−uloc
+ ‖∇�‖L2

3−uloc

) (
‖
‖L2

3−uloc
+ ‖∇
‖L2

3−uloc

)
,

which gives that
´ t
t0

|I3,in| ≤ 1
20 F(t) + ´ t

t0
E . On the other hand, for r ≥ r0 we have

the simple bound

|I3,out| ≤ 2‖r−1uθ‖L∞
x ({r≥r0})‖�‖L2

3−uloc
‖
‖L2

3−uloc
≤ r−5/4

0 E,

as required.

Step 3. Given τ > 0 we use the choice of time of regularity (Lemma 4.2) to find
t0 ∈ [1 − τ, 1] such that E(t0) � AO(1)τ−3.

Indeed, Lemma 4.2 lets us choose t0 ∈ [1 − τ, 1] such that

‖∇2u(t0)‖∞ ≤ AO(1)τ− 3
2 .

It follows from the axial symmetry and (34) that |�| + |
| ≤ |∇ω|, and so

‖�(t0)φ
1/2
z ‖L2({r≤1}) + ‖
(t0)φ

1/2
z ‖L2({r≤1}) � ‖∇ω(t0)‖L∞(B(1)×R) ≤ AO(1)τ− 3

2

(72)

for every z ∈ R. Using the decomposition ω = ω
�
1 +ω

�
1 on the interval [0, 1], by (44),

(40), and Hölder’s inequality,

‖�(t0)φ
1/2
z ‖L2({r>1}) + ‖
(t0)φ

1/2
z ‖L2({r>1})

� ‖ω�
1‖L2(R3) + ‖r−1ω

�
1‖L2({r>1}∩supp φz)

� ‖∇u�
1‖L2(R3) + ‖r−1‖L4

x ′ (B(1)c)‖ω�
1‖L4(R3)
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≤ AO(1).

This and (72) proves the claim of this step.

Step 4. We prove the claim.
Integration in time of the energy inequality (69) from initial time t0 chosen in Step

3 above, taking supz∈R, and applying the estimate (70) for I1 and Step 2 for I2, I3 we
find that

E(t) + 1

2
F(t) ≤ E(t0)︸ ︷︷ ︸

≤AO(1)τ−3

+r−10
0

+
ˆ t

t0
O(r−3

0 + ‖u‖∞ + ‖∇2u‖
L5/4
uloc

+ ‖∇u‖L2
uloc

)E(t ′)dt ′.

for t ∈ [t0, 1]. Thus, by Grönwall’s inequality,

E(1) ≤ (AO(1)τ−3 + r−10
0 ) exp

(
O

(
r−3
0 (t − t0) + AO(1)(t − t0)

1
5

))
.

Setting τ := r40 , we see that the last exponential function is O(1), and the prefactor
gives the required estimate (68). 
�

7 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Namely, given the L3,∞ bound (6) on the time
interval [0, 1], we show that |∇ j u| ≤ exp exp AOj (1) at time 1.

Step 1. We show that ‖b‖L p
3−uloc(R

3) ≤ Cp exp exp AO(1) for each p ∈ [3,∞),
t ∈ [1/2, 1], where b := ur er + uzez denotes the swirl-free part of the velocity field.

To this end we apply Proposition 6.1 to find

‖
‖L∞
t L2

3−uloc([ 12 ,1]×R3) ≤ exp exp AO(1). (73)

On the other hand Proposition 5.2 shows that

‖r2ω‖L∞
x ({r≤10}) ≤ AO(1).

Interpolating between this inequality and (73) we obtain

‖ωθ‖L p
3−uloc({r≤10}) = ‖
 2

3 (r2ωθ)
1
3 ‖L p

3−uloc({r≤10})

� ‖
‖
2
3

L2
3−uloc

‖r2ωθ‖
1
3
L∞
x ({r≤10}) ≤ exp exp AO(1)

for all p ≤ 3. Noting that

curl b = ωθeθ , divb = 0
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almost everywhere, and that div b = 0 we now localize b to obtain an L p estimate
near the axis. Namely, for any unit ball B ⊂ {r ≤ 10}, let φ ∈ C∞

c (B) such that φ ≡ 1
on B/2. Observe that for all p ∈ [1, 3) we can use Hölder’s inequality for Lorentz
spaces (27) to obtain

‖div(φb)‖L p(R3) = ‖b · ∇φ‖p � ‖b‖L3,∞‖∇φ‖L3p/(3−p),1 � A.

Applying the Bogovskiĭ operator (30) to div(φb) on the domain B \ (B/2), we find
b̃ ∈ W 1,p such that divb̃ = 0, ‖b − b̃‖W 1,p(B) ≤ AO(1), b̃ ≡ b in B/2, and b̃ ≡ 0
outside B. Then for any p ∈ (1, 3),

‖b‖L3p/(3−p)(B/2) ≤ ‖b̃‖3p/(3−p) � ‖∇b̃‖p � ‖curl b̃‖L p(B)

≤ ‖ωθ‖L p(B) + ‖b − b̃‖W 1,p(B)

≤ exp exp AO(1),

which is our desired localized estimate. Here we have used the boundedness of the
operator ∇ f �→ curl f in L p (which is a consequence of the identity curl curl f =
∇(div f ) − � f , which in turn implies that ∇ f = ∇(−�)−1 curl(curl f ) for
divergence-free f ). Combining this with the pointwise estimates away from the axis
(Proposition 5.2) gives the claim of this step.

Step 2. We show that there exists C0 > 1 such that

∥∥∥uθ (t)

r
1
2

∥∥∥4
L4
3−uloc

≤
∥∥∥uθ (t0)

r
1
2

∥∥∥4
L4
3−uloc

+ 1 + exp exp AC0

ˆ t

t0

∥∥∥∥uθ

r
1
2

∥∥∥∥
4

L4
3−uloc

(74)

for each t0 ∈ [1/2, 1] and t ∈ [t0, 1].
To this end we provide a localization of the estimate of uθ /r1/2 in the spirit of [8,

Lemma 3.1]. Indeed, one can calculate from the equation (48) for uθ that for a smooth
cutoff ψ = ψ(x3),

1

4

d

dt

ˆ

R3

u4θ
r2

ψ + 3

4

ˆ

R3

∣∣∣∇ u2θ
r

∣∣∣2ψ + 3

4

ˆ

R3

u4θ
r4

ψz

= −3

2

ˆ

R3

1

r3
uru

4
θψ + 1

8

ˆ

R3

1

r2
u2θ (2u

2
θuz − ∂z(u

2
θ ))ψ

′ =: I1 + I2 + I3.

As before, we choose ψ ∈ C∞
c ((−2, 2)) with ψ ≡ 1 in [−1, 1] and define the

translates ψz(x) := ψ(x − z) for all z ∈ R. We consider the energies

Ez(t) := 1

4

ˆ

R3

u4θ
r2

ψz, Fz(t) := 3

4

ˆ t

t0

ˆ

R3

∣∣∣∇ u2θ
r

∣∣∣2ψz,

E(t) := sup
z∈R

Ez(t), F(t) := sup
z∈R

Fz(t).
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By Step 1 and Sobolev embedding,

|I1| � ‖ur‖L6
3−uloc

∥∥∥r− 1
2
u2θ
r

∥∥∥2
L12/5(�)

≤ exp exp AO(1)

(∥∥∥u2θ
r

∥∥∥ 1
2

L2(�)

∥∥∥∇ u2θ
r

∥∥∥ 3
2

L2(�)
+

∥∥∥u2θ
r

∥∥∥ 1
2

L2(�)

)
,

where � := R
2 × supp ψ . It follows that

ˆ t

t0
|I1| ≤ 1

20
F(t) + exp exp AO(1)

ˆ t

t0
E + (t − t0).

Similarly,

|I2| � ‖uz‖L6
3−uloc

∥∥∥u2θ
r

∥∥∥
L2
3−uloc

∥∥∥u2θ
r

∥∥∥
L3(�)

≤ exp exp AO(1)E
1
2

(∥∥∥u2θ
r

∥∥∥ 1
2

L2(�)

∥∥∥∇ u2θ
r

∥∥∥ 1
2

L2(�)
+

∥∥∥u2θ
r

∥∥∥
L2(�)

)
,

which yields the same bound as I1. Finally,

|I3| = 1

8

∣∣∣∣
ˆ

R3

u2θ
r

∂3
u2θ
r

ψ ′
∣∣∣∣ �

∥∥∥u2θ
r

∥∥∥
L2
3−uloc

∥∥∥∇ u2θ
r

∥∥∥
L2(�)

,

so we have
ˆ t

t0
|I3| ≤ 1

20
F(t) +

ˆ t

t0
O(E).

Summing and taking the supremum over z ∈ R gives the claim of this step.

Step 3. We deduce that

‖u‖L∞
t L6

3−uloc([t0,1]×R3) ≤ exp exp AO(1), (75)

where

t0 := 1 − exp(− exp AO(1)).

Indeed, Lemma 4.2 and Proposition 5.2 give a t0 ∈ [1 − exp(− exp AC0), 1] such
that ‖r− 1

2 uθ (t0)‖L4
x (R

3) ≤ exp exp A2C0 . Therefore, applying Grönwall’s inequality
to the claim of the previous step,∥∥∥∥uθ

r
1
2

∥∥∥∥
L∞
t L4

3−uloc([t0,1]×R3)

≤ exp exp AO(1).
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Combining this with Proposition 5.2 and Hölder’s inequality,

‖uθ‖L∞
t L6

3−uloc([t0,1]×R3)

≤ ‖ruθ‖
1
3
L∞
x ({r≤1})‖r− 1

2 uθ‖
2
3

L∞
t L4

3−uloc([t0,1]×R3)
+ ‖u‖L∞

t L6
x ([t0,1]×{r>1})

≤ exp exp AO(1),

which, together with Step 1, implies (75).
We note that Step 3 already provides a subcritical local regularity condition of the

typeofLadyzhenskaya-Prodi-Serrin,whichguarantees local boundedness of all spatial
derivatives of u, and can be proved by employing the vorticity equation for example
(see [35, Theorem 13.7]). In the last step below we use a robust tail estimate of the
pressure function (recall Lemma 2.1) to provide a simpler justification of pointwise
bounds by exp exp AO(1).

Step 4. We prove that, if ‖u‖L∞([1−t1,1];Wk−1,6
uloc )

� exp exp AO(1) for some k ≥ 1

and t1 = exp(− exp AO(1)), then the same is true for k (with some other t1 of the same
order).

Let I = [a, b] ⊂ [t1, 1], and let χ ∈ C∞(R) be such that χ(t) = 0 for t <

a + (b − a)/8 and χ(t) = 1 for t > (a + b)/2. We set φ ∈ C∞
c (B(0, 2); [0, 1]) such

that φ = 1 on B(0, 1/2) and
∑

j∈Z3 φ j = 1, where φ j := φ(· − j) for each j ∈ R
3.

Letting v := χφ∇ku we see that v(t1) = 0, and

vt − �v = −χ ′φ∇ku − 2χ∇φ · ∇(∇ku) − χ�φ(∇ku)︸ ︷︷ ︸
=: f1

−χφdiv(1 + T )∇k(u ⊗ u)

= f1 − φdiv(1 + T )((χ∇ku ⊗ u + u ⊗ χ∇ku)φ̃)

− χφdiv(1 + T )
∑

|α|+|β|+|γ |=k
|α|,|β|<k

Cα,β,γ (Dαu ⊗ DβuDγ φ̃)

− χφdivT∇k(u ⊗ u(1 − φ̃))

=: f1 + f2 + f3 + f4.

We can now estimate ‖v(t)‖6, by extracting the same norm on the right-hand side and
ensuring that the length of the interval is sufficiently small, so that the norm can be
absorbed. Namely,

‖v(t)‖6 =
∥∥∥∥
ˆ t

a
e(t−t ′)� f1(t

′)dt ′ +
ˆ t

a
e(t−t ′)� f2(t

′)dt ′ +
ˆ t

a
e(t−t ′)� f3(t

′)dt ′

+
ˆ t

a
e(t−t ′)� f4(t

′)dt ′
∥∥∥∥
6

≤
(
‖χ∇kuφ̃‖L∞([a,t];L6) + ‖χ ′∇k−1uφ̃‖L∞([a,1];L6)

)ˆ t

a
‖�(t − t ′)‖W 1,1dt ′

+ ‖χ∇kuφ̃1/2‖L∞([a,t];L6)‖uφ̃1/2‖L∞([a,t];L6)

ˆ t

a
‖�(t − t ′)‖W 1,6/5dt ′
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+ ‖u‖2
L∞([a,1];Wk−1,6

uloc )

ˆ t

a
‖�(t − t ′)‖W 1,6/5dt ′

+ ‖div T (u ⊗ u(1 − φ̃))‖L∞([a,1];Wk,6(B(0,2)))

ˆ t

a
‖�(t − t ′)‖1dt ′

≤ ‖χ∇ku‖L∞([a,t];L6
uloc)

(
(b − a)1/2 + exp exp AO(1)(b − a)1/4

)
+ exp exp AO(1)

for each t ∈ (a, b), where we used Young’s inequality, heat estimates (24) and the
Calderón-Zygmund inequality. By replacing φ (in the definition of v) by φz for any
z ∈ R

3, we obtain the same bound, and so

‖χ∇ku‖L∞([a,b];L6
uloc)

≤ ‖χ∇ku‖L∞([a,b];L6
uloc)

(b − a)1/4 exp exp AO(1) + exp exp AO(1).

Thus, for any b, a such that t1 ≤ a < b ≤ 1 and (b − a)1/4 ≤ exp exp AO(1)/2 we
can absorb the first term on the right-hand side by the left-hand side to obtain

‖∇ku‖L∞([(a+b)/2,b];L6
uloc)

≤ exp exp AO(1).

Since the upper bound is independent of the location of [a, b] ⊂ [t1, 1], we obtain the
claim.
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Appendix A: Quantitative Parabolic Theory

Here we prove Proposition 5.1. Namely, we consider parabolic cylinders

Qλ,θ
R (t0, x0) := [t0 − θR2, t0] × B(x0, λR), Qλ,θ

R := Qλ,θ
R (0, 0), QR := Q1,1

R

and we consider Lipschitz solutions V ofMV = 0 on Qλ,θ
R , namely we suppose that

ˆ

R

ˆ
(∂t Vφ + ∇V · ∇φ + b · ∇Vφ) = 0 (76)
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for all φ ∈ C∞
c (Qλ,θ

R ), where the (distributional) supports of divb and V are disjoint.
Moreover we assume that (54) holds, namely

N (R) := 2 + sup
R′≤2R

(R′)−α‖b‖L�
t L

q
x (QR′ ) < ∞,

where α := n
q + 2

�
− 1 ∈ [0, 1). We also say that V is a subsolution (or supersolution)

ofMV = 0, i.e.MV ≤ 0 (orMV ≥ 0), if (76) holds with “=” replaced by “≤” (or
“≥”) for all nonnegative test functions.

We will show that

osc
B(r)

V (0) �
( r

R

)γ

osc
Q(R)

V (77)

for all r ≤ R, where γ = exp(−N O(1)).
To this end we first prove the Harnack inequality for Lipschitz subsolutions of

MV = 0.

Lemma A.1 (based on Lemma 3.1 in [24]) Let V be a Lipschitz solution of MV ≤ 0
in Qλ,θ

R where λ ∈ (1, 2] and θ ∈ (0, 1]. Then

sup
Q1,θ/2

R

V+ ≤ (N /θ)C

( 
Qλ,θ

R

V 2+

) 1
2

.

Proof We first note that, for any r , a satisfying

3

r
+ 2

a
∈

[
3

2
,
5

2

]
,

we have the interpolation inequality

‖ζU‖La
t Lrx (Q

λ,θ
R )

�λ,θ R
3
r + 2

a − 3
2 ‖ζU‖V(Qλ,θ

R )
, (78)

by [19, (3.4) in Chapter II], where V is the energy space L∞
t L2

x ∩ L2
t Ḣ

1
x .

Since V is a subsolution, we have, for a non-negative test function η,

ˆ

Qλ,θ
R

(∂t Vη + ∇V · ∇η + b · ∇Vη) ≤ 0.

We let η := ϕ′(V )ξ where ξ is a cutoff function vanishing on a neighborhood of the
boundary of Qλ,θ

R , and ϕ is a convex function vanishing on R−. Taking U := ϕ(V )

we obtain

ˆ

Qλ,θ
R ∩{V>0}

(
∂tUξ + ∇U · ∇ξ + ϕ′′(V )

ϕ′(V )2
|∇U |2ξ + b · ∇Uξ

)
≤ 0.
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We now take

ϕ(τ) := τ
p
+ (p > 1) and ξ := χ{t<t}Uζ 2,

where ζ is a smooth cutoff function in Qλ,θ
R and t ∈ (−θR2, 0),

ˆ

BλR

(ζU )2(t)dx +
ˆ

Qλ,θ
R ∩{t<t}

(2 − p−1)|∇U |2ζ 2 +U∇U · ∇(ζ 2)

+1

2
b · ∇(U 2)ζ 2 − ∂t (ζ

2)U 2 ≤ 0. (79)

Using integration by parts and recalling the assumption div b ≥ 0, we can apply
Hölder’s inequality to obtain

ˆ

Qλ,θ
R ∩{t<t}

b · ∇(U 2)ζ 2 ≥ −
ˆ

Qλ,θ
R ∩−{t<t}

b · ∇(ζ 2)U 2

≥ −‖b‖L�
t L

q
x (Q

λ,θ
R )

‖|U | 1s ζ 1
s −1∇ζ‖L2s

t,x (Q)‖(ζ |U |)2− 1
s ‖

L
(1− 1

2s − 1
�

)−1

t L
(1− 1

2s − 1
q )−1

x (Q)

= −‖b‖L�
t L

q
x (Q

λ,θ
R )

‖Uζ 1−s |∇ζ |s‖
1
s

L2
t,x (Q

λ,θ
R )

‖ζU‖2−
1
s

La
t Lrx (Q

λ,θ
R )

,

where s > 2 and r and a are defined by

1

2s
+ 1

q
+ 1

r

(
2 − 1

s

)
= 1,

1

2s
+ 1

�
+ 1

a

(
2 − 1

s

)
= 1.

Applying Young’s inequality to separate the last term, and utilizing the interpolation
inequality (78) (which is valid since

3

r
+ 2

a
= 3

2
+ 1 − 2

(
1 + 2/

(
3

q
+ 2

�

))−1

∈ (3/2, 11/6),

as needed) we obtain, after plugging into the local energy inequality (79),

sup
t∈[−θR2,0]

ˆ

BλR

(ζU )2dx +
ˆ

Qλ,θ
R ∩{t<t}

(2 − p−1)|∇U |2ζ 2 +U∇U · ∇(ζ 2) − ∂t (ζ
2)U 2

−O

(
R2‖b‖2s

L�
t L

q
x (Q

λ,θ
R )

‖Uζ 1−s |∇ζ |s‖2
L2
t,x (Q

λ,θ
R )

)
− 1

10
‖ζU‖2V(Qλ,θ

R )
≤ 0.

Absorbing ∇U from the term on the third term on the left-hand side by the second
term we obtain

‖ζU‖2V(Qλ,θ
R )

�
ˆ

Qλ,θ
R

(
|∇ζ |2 + ζ |∂tζ | + R2‖b‖2s

L�
t L

q
x (Q

λ,θ
R )

ζ 2−2s |∇ζ |2s
)
U 2.
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We now set

λm := 1 + 2−m(λ − 1) and θm := 1

2
θ(1 + 4−m),

and we substitute ζ with ζm such that

ζm ≡ 1 in Qλm+1,θm+1
R , ζm ≡ 0 outside Qλm ,θm

R , |∂tζm | ≤ 4mC

θR2 ,
|∇ζm |
ζ
1− 1

s
m

≤ 2mC

R
,

where C may depend on λ. Then the energy estimate and (78), taken with r = l =
10/3, yield

‖ζmU‖
L10/3
t,x (Qλ,θ

R )
� ‖ζmU‖V(Qλ,θ

R )
≤ CR−1(θ− 1

2 + 2m + N s)2ms‖U‖L2
t,x (Q

λ,θ
R )

.

Recalling the definition ofU and replacing p with pm := (5/3)m , Hölder’s inequality
implies

( 
Q

λm+1,θm+1
R

u2pm+1+

) 1
2pm+1

≤
(
C
 

Qλm ,θm
R

(ζmU )10/3

) 1
rpm

≤
(
Cθ−1

m N 2s4m(s+1)
 

Qλm ,θm
R

u2pm+

) 1
2pm

.

Iterating, we have

( 
Qλm ,θm

R

u2pm+

) 1
2pm

≤
m−1∏
k=0

(
C

θ
4k(s+1)N s

) 1
2pk

( 
Qλ,θ

R

u2+

) 1
2

,

and we conclude by taking m → ∞. 
�
In the next three lemmas we focus on nonnegative solutions to MV ≤ 0 and we

find lower bounds on the mass distribution of such solutions. We first show that if
V ≥ k in QR , except for a small (quantified) “portion of QR”, then in fact V ≥ k/2
everywhere in a smaller cylinder.

Lemma A.2 (based on part 2 of Corollary 3.1 in [24]) If V is a non-negative solution
of MV ≥ 0 in Qλ,θ

R and

|{V < k} ∩ Qλ,θ
R | ≤ (N /θ)−5C |Qλ,θ

R |,

then

V ≥ k

2
in Q1,θ/2

R .
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Proof We apply Lemma A.1 to k − V to find

sup
Q1,θ/2
1

(k − V )+ ≤ (N /θ)C

( 
Qλ,θ

R

(k − V )2+

) 1
2

≤ N−1k,

which implies the result. 
�
We now show that, if the cylinder Q1,θ

R is flat enough, then a lower bound on the

bottom lid of Q1,θ
R (i.e. at t = −θR2) implies a similar lower bound at every t .

Lemma A.3 (based on Lemma 3.2 in [24]) Suppose V is non-negative withMV ≥ 0
in a neighbuorhood of Q1,θ0

R and

|{V (−θ0R
2) ≥ k} ∩ BR | ≥ δ0|BR |

for some δ0 > 0 and θ0 ≤ C−1δ60N−1. Then

|{V (t) ≥ 1

3
δ0k} ∩ BR | ≥ 1

3
δ0|BR |

for all t ∈ [−θ0R2, 0].
Proof By the calculations in [24], with ζ a smooth cutoff function supported in BR ,

ˆ

BR

(V (t) − k)2−ζ 2 +
ˆ

Q
1,θ0
R

χ{t<t}|∇(V − k)−|2ζ 2 ≤
ˆ

BR

(V (−θ0R
2) − K )2−ζ 2

(80)

+
ˆ

Q
1,θ0
R

χ{t<t}(V − k)2−
(
O(|∇ζ |2) + b · ∇(ζ 2) + (divb)ζ 2). (81)

We choose ζ such that ζ ≡ 1 in B(1−σ)R and |∇ζ | ≤ 2
σ R where σ < 1 is to be

specified. Note that, due to (53),

ˆ

Q
1,θ0
R

χ{t<t}(V − k)2−(divb)ζ 2 ≤ k2
ˆ

Q
1,θ0
R

χ{t<t}(divb)ζ 2

= −k2
ˆ

Q
1,θ0
R

χ{t<t}b · ∇(ζ 2).

Then the right-hand side of (80) is bounded by

k2
(
(1 − δ0)|BR | + O(θ0σ

−2|BR |) + 4

σ R
‖b‖L�

t L
q
x (QR)‖1‖L�′

t Lq′
x (Q

1,θ0
R )

)
.
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From here one can proceed with the argument exactly as in [24] to arrive at

∣∣∣∣
{
V (t) <

1

3
δ0k

}
∩ BR

∣∣∣∣ ≤
(
1 − 1

3
δ0

)−2

(1 − δ0 + O(σ + σ−2θ0 + σ−1θ
2/�′
0 N )).

Setting σ = C−1/5δ20 and θ0 as above proves the claimed bound. 
�
We now show that for any given “portion of Q1,θ

R ” (in the sense of a set with the
measure arbitrarily close to |Q1,θ |) V is greater or equal a constant multiple of some
lower bound, if, for each t , the lower bound occurs at least on some “portion of BR”.
Although this enables us to obtain a lower bound on almost the entire cylinder, we
lose an exponential in the process.

Lemma A.4 (based on Lemma 3.3 in [24]) Let V ≥ 0 be a solution of MV ≥ 0 in
Qλ,θ

R satisfying

|{V (t) ≥ k0} ∩ BR | ≥ δ1|BR | for all t ∈ [−θR2, 0]

for some k0 > 0, δ1 > 0. Then for any μ > 0 and s > C(N + θ−1)/(δ1μ)2,

|{V < 2−sk0} ∩ Q1,θ
R | ≤ μ|Q1,θ

R |.
Proof With km = 2−mk0, we define

Em(t) := {x ∈ BR : km+1 ≤ V (x, t) < km}; Em := {(t, x) ∈ Q1,θ
R : x ∈ Em(t)}.

Integrating the inequality MV ≥ 0 against the test function η = (V − km)−ξ(x)2

where ξ is a smooth cutoff vanishing in a neighborhood of ∂BλR and satisfying ξ ≡ 1
in BR ,
ˆ

Qλ,θ
R ∩{V<km }

|∇V |2ξ2 ≤
ˆ

Qλ,θ
R

|∇(V − km)−|2ξ2 �
ˆ

BλR∩{V<km }
(V − km)2−ξ2

∣∣∣∣
t=−θR2

+
ˆ 0

−θR2

ˆ

BλR∩{V<km }
(V − km)2−|∇ξ |2 + 2(V − km)2−ξb · ∇ξ

� k2m Rn(1 + θN ), (82)

by Hölder’s inequality and the trivial bound 0 ≤ (V − km)− ≤ km . From De Giorgi’s
inequality [19, (5.6) in Chapter II],

(km − km+1)|{V (t) < km+1} ∩ BR | � R

δ1

ˆ

Em(t)
|∇V (t)|

for all t ∈ [−θR2, 0]. Integrating in time, squaring, and applying Cauchy-Schwarz
gives

k2m+1

∣∣∣{V < km+1} ∩ Q1,θ
R

∣∣∣2 � R2

δ21

ˆ

Em
|∇V |2dxdt |Em |.
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Combined with (82), this gives

∣∣∣{V < km+1} ∩ Q1,θ
R

∣∣∣2 � δ−2
1 Rn+2(1 + θN )|Em |.

We conclude

s
∣∣∣{V < ks} ∩ Q1,θ

R

∣∣∣2 ≤
s−1∑
m=0

∣∣∣{V < km+1} ∩ Q1,θ
R

∣∣∣2

� δ−2
1 Rn+2(1 + θN )

s−1∑
m=0

|Em |

� δ−2
1 (θ−1 + N )|Q1,θ

R |2. 
�

We can now combine Lemmas A.2–A.4 to obtain a pointwise lower bound for V
in the interior of a cylinder, with an exponential dependence on N .

Lemma A.5 (based on part 1 of Corollary 3.2 in [24]) If V is a non-negative solution
of MV ≥ 0 in Q2,1

R and

|{V (−�R2) ≥ k} ∩ BR | ≥ δ|BR |

for some k > 0 and � ≤ C−1δ6N−1, then

V ≥ exp(−δ−2(N /�)20C )k in Q1,�/2
R .

Proof This is a straightforward application of Lemmas A.3, A.4, and A.2 in sequence,
with the latter two applied with R → 3

2 R to compensate for the shrinking domain in
Lemma A.2. 
�

By considering V−inf V and sup V−V the above lemma now allows us to estimate
oscillations of solutions to MV = 0 with no sign restrictions.

Lemma A.6 (based on Lemma 3.5 of [24]) If V solves MV = 0 in Q2,1
R then

osc
Q(1)

V ≤ (1 − exp(−N 50C )) osc
Q(2)

V

where Q(1) = Q1,�/2
R , Q(2) = Q2,1

R , and � = C−2N−1.

Proof Consider the positive supersolutions V1 = V − infQ(2) V and V2 = supQ(2) V −
V . With k = osc

Q(2)
V , clearly we must have |{Vi (−�R2) ≥ k} ∩ B2R | ≥ |B2R |/2 for

either i = 1 or i = 2. Fix this i , so Vi obeys the hypotheses of Lemma A.5. Let us
assume for concreteness that i = 1; the other case is analogous. Then by the lemma,

inf
Q(2)

V + exp(−N 50C ) osc
Q(2)

V ≤ V ≤ sup
Q(2)

V
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for all (t, x) ∈ Q(1), which immediately implies the result. 
�
Finally, iterating Lemma A.6 we obtain the required Hölder continuity (77), i.e. we

can prove Proposition 5.1.

Proof of Proposition5.1 Iterating Lemma A.6, we have

osc
Q2,1

(�/2)k/2R/2

V ≤ (1 − exp(−N 50C ))k osc
Q2,1

R/2

V .

We conclude upon taking k = �log R
r (log 2

�
)−1�. 
�
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28. Ożański, W.S.: Weak solutions to the Navier-Stokes inequality with arbitrary energy profiles. Comm.
Math. Phys. 374(1), 33–62 (2020)
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