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Abstract In [11], Dafermos and Rodnianski presented a novel approach to estab-
lish uniform decay rates for solutions ϕ to the scalar wave equation �gϕ = 0 on
Minkowski, Schwarzschild and other asymptotically flat backgrounds. This paper
generalises the methods and results of [11] to a broad class of asymptotically flat
spacetimes (M, g), including Kerr spacetimes in the full subextremal range |a| < M ,
but also radiating spacetimes with no exact symmetries in general dimension d + 1,
d ≥ 3. As a soft corollary, it is shown that the Friedlander radiation field for ϕ is
well defined on future null infinity. Moreover, polynomial decay rates are established
for ϕ, provided that an integrated local energy decay statement (possibly with a finite
loss of derivatives) holds and the near region of (M, g) satisfies some mild geometric
conditions. The latter conditions allow for (M, g) to be the exterior of a black hole
spacetime with a non-degenerate event horizon (having possibly complicated topol-
ogy) or the exterior of a compact moving obstacle in an ambient globally hyperbolic
spacetime satisfying suitable geometric conditions.
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1 Introduction

The covariant wave equation

�gϕ = 1√−g
∂μ
(
gμν√−g∂νϕ

) = 0, (1.1)

where g is the Lorentzian metric of a background manifold M, arises in various areas
of mathematical physics, including fluid mechanics, where g is the so called acoustical
metric of a fluid in motion, as well as general relativity, in which case g corresponds
to the spacetime metric of a 3 + 1 dimensional model of our universe.

Of fundamental importance in most settings where equation (1.1) appears is the
case where the background (M, g) is flat or almost flat, that is, when M = R

d+1 and
g is the Minkowski metric η

η = −dt2 + (dx1)2 + . . .+ (dxd)2 (1.2)

(in the usual (t, x1, . . . , xd) coordinates of Rd+1) or small perturbations of it, respec-
tively. These are the simplest settings for which the stability properties (i.e. uniform
boundedness and decay properties) of solutions to (1.1) have been studied extensively.
Of particular interest for applications is also the study of the stability properties of
equation (1.1) on backgrounds (M, g) which are far from Minkowski, but which are
asymptotically flat, i.e. asymptotically approach (as one moves to “infinity” along any
null direction) the geometry of (Rd+1,η). Such backgrounds include, for instance,
various black hole spacetimes appearing in general relativity (see [13]).

In this paper, we will develop a general approach for establishing decay estimates for
equation (1.1) on a general class of asymptotically flat backgrounds (M, g), general-
ising the methods of [11]. In order to better clarify the motivation behind our approach
and our assumptions on the backgrounds (M, g), we will first briefly highlight the
main techniques that have been developed so far for obtaining stability estimates for
equation (1.1), and state a non-technical summary of our results. We will then revisit
and compare the main techniques that already exist in the literature, before, finally,
presenting our results in detail.

1.1 The Klainerman Vector Field Method

One of the most successful approaches for obtaining decay estimates for solutions ϕ

to (1.1) on flat or almost flat backgounds has been the so called vector field method
(see e.g. [35]), which utilises the vector fields generating the conformal isometries of
Minkowski spacetime in two ways:

1. As multipliers: For any conformally Killing vector field X of (Rd+1,η), one can
multiply equation (1.1) with X (ϕ)+wϕ (where w is a smooth function on R

d+1

depending on the choice of X ) and then integrate the resulting expression over a
domain � of Rd+1 bounded by two achronal hypersurfaces S1,S2, with S2 being
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6 Page 4 of 194 G. Moschidis

in the future of S1 (e.g. � can be of the form {0 ≤ t ≤ T }). For the right choices
of X, w, performing an integration by parts yields an identity of the form

∫

S2

EX,w[ϕ] =
∫

S1

EX,w[ϕ], (1.3)

where EX,w[ϕ] is a positive definite weighted quadratic expression in ϕ and its first
derivatives. Notice that the identity (1.3) only contains terms on the boundary of
� and can be interpreted as an estimate of the “final” energy norm

∫
S2

EX,w[ϕ] in
terms of the “initial” energy norm

∫
S1

EX,w[ϕ]. This approach can be traced back
to Morawetz (see [28]).

2. As commutation vector fields: For certain elements X of the algebra of conformally
Killing vector fields ofRd+1, the commutator [�g, X ] is is either 0 or a multiple of
�g . Thus, equation (1.1) is also satisfied by Xϕ (or even higher derivatives of ϕ),
and this fact allows the establishment of L2 estimates for higher order derivatives of
ϕ, which in turn yield pointwise decay estimates for ϕ itself through suitable global
Sobolev inequalities. This approach was initiated and developed by Klainerman
(see e.g. [21,22]).

The vector field method has turned out to be especially fruitful in the study of non
linear variants of (1.1), culminating in the proof of the non linear stability of Minkowski
spacetime in [7].

Preceding the use of conformally Killing vector fields X as multipliers for equation
(1.1), Morawetz [27] utilised more general first order operators generating “positive
bulk terms” in ϕ, i.e. estimates for the L2 norm of ϕ integrated over spacetime. In
particular, studying the decay properties of solutions ϕ to equation (1.1) on the exterior
of a compact star-shaped obstacle O in R

d with reflecting boundary conditions on ∂O,
Morawetz derived an integrated local energy decay statement for ϕ, that is an estimate
of the form

∫ ∞

0

∫

{t=τ}∩{r≤R}

(
|∂ϕ|2 + |ϕ|2

)
dxdτ +

∫ ∞

0

∫

{t=τ}∩∂O
|∂ϕ|2dσdτ

�
∫

{t=0}
|∂ϕ|2 dx . (1.4)

This estimate was obtained in [27] by using the (not conformally Killing) radial vector
field ∂r as a multiplier for (1.1).

The exterior of a compact obstacle O in R
d (where suitable boundary conditions

for solutions ϕ to (1.1) are imposed on the boundary ∂O of O) is already an exam-
ple of a background for equation (1.1) which is not a globally small perturbation
of Minkowski spacetime. More complicated examples far from Minkowski include
spacetimes (Md+1, g), d ≥ 3, which contain black hole regions, like Schwarzschild
or Kerr (see [13]). Such backgrounds are of particular interest to general relativity.
One common feature that the exterior of a compact obstacle O in flat space and the
exterior of a black hole spacetime share is the fact that they are naturally separated
into two regions where different geometric mechanisms contribute to the long time
behaviour of solutions to (1.1) on them:
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• In the “near” region of these backgrounds, the long time behaviour of solutions to
(1.1) is strongly affected by the characteristics of the null geodesic flow, such as
the existence of trapped null geodesics which are reflected on the obstacle or orbit
around the black hole. In the black hole case, the existence of such geodesics is
unavoidable. A further geometric aspect of a black hole spacetime (M, g) which
is absent in the obstacle case is the so called event horizon H. In most interesting
examples, the geometric structure of H leads to the celebrated red-shift effect,
which forces “wave packets” travelling along the null generators of H to decay
fast. For this reason, the null geodesics spanning H are not considered trapped in
this case.1

• In the “far away” region of these backgrounds, there exists a coordinate chart
(t, x1, . . . , xd) in which the metric g is pointwise close to the Minkowski metric η

(1.2) and tends to it along all outgoing null directions (of course, in the exterior of a
compact obstacle in flat space, g is identically equal to the Minkowski metric η in
this region). Thus, setting r = √(x1)2 + . . .+ (xd)2, the area of the {r, t = const}
surfaces increases to infinity along the outgoing null directions, and this fact serves

as a decay mechanism for solutions to (1.1). In particular, the quantity r
d−1

2 ϕ is
expected to have a finite limit on future null infinity I+, provided that ϕ arises from
suitably decaying initial data (see [17] and Section 7). Notice that on a general
asymptotically flat spacetime (M, g), with its asymptotically flat region foliated
by a set of outgoing null hypersurfaces {Sτ}τ∈R, I+ can be abstractly defined
and is parametrised by the “points at infinity” of the null geodesics generating
{Sτ}τ∈R.

The issue of matching the estimates obtained for solutions to (1.1) in different regions
of a black hole spacetime implicitly appeared in [1,4,5,8,9,12,13,37,38], where defin-
itive boundedness and decay estimates were established for solutions to (1.1) on
Schwarzschild and very slowly rotating Kerr exterior spacetimes (i.e. for Kerr space-
times with angular momentum a and mass M satisfying the relation |a| � M). This
was achieved by the use of a Morawetz-type integrated local energy decay statement,
in conjunction with an adaptation of techniques previously applied on flat spacetime.

1.2 The Dafermos–Rodnianski Method

In [11], Dafermos and Rodnianski suggested a more flexible strategy for proving
polynomial decay estimates for solutions to (1.1), which is explicitly tied to the afore-
mentioned partition of a general asymptotically flat spacetime. This approach makes
use of first order multipliers producing both positive boundary terms (like in (1.3))
and positive bulk terms (like in (1.4)), and each term contains weights which grow
towards I+ but are time-translation invariant. For the sake of simplicity of our expo-
sition, we will discuss here the approach of [11] restricted to the case of Schwarzschild
spacetime.

1 They are considered trapped, however, in the case when H is degenerate and the red-shift effect is absent,
which happens in extremal black hole spacetimes. See [3].
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6 Page 6 of 194 G. Moschidis

On the exterior of Schwarzschild spacetime (MSch, gM )of mass M , fix the (u, v, σ)
double null coordinate system (where u = 1

2 (t − r∗) and v = 1
2 (t + r∗), see [13])

and let {Sτ}τ∈R be a foliation of MSch by spacelike hypersurfaces terminating at
I+ (see Section 3 for the relevant definition), such that Sτ2 is in the future domain
of dependence of Sτ1 when τ2 > τ1. Let also T denote the stationary Killing field
of (MSch, gM ), and let N be a globally timelike vector field on MSch such that
[T, N ] = 0 and T ≡ N in the far away region {r � 1}. Then the following esti-
mates hold for solutions ϕ to (1.1) (See Section 2 for the notations on vector field
currents):

Non degenerate energy boundedness: For any τ1 < τ2:

∫

Sτ2

J N
μ (ϕ)nμ

Sτ2
≤ C ·

∫

Sτ1

J N
μ (ϕ)nμ

Sτ1
, (1.5)

where nSτ
is the future directed unit normal on the leaves of the foliation {Sτ}, and the

constant C in (1.5) depends only on the precise choice of the foliation {Sτ}τ∈R and
the vectro field N . See [9] for a proof of (1.5).

Integrated local energy decay in the near region: There exists an m > 0, such that
for any R > 0 and τ ∈ R:

∫

D+(Sτ)∩{r≤R}

(
|∂ϕ|2 + |ϕ|2

)
dgM ≤ C(R) ·

m∑

j=0

∫

Sτ

J N
μ (T jϕ)nμ

Sτ
, (1.6)

where dgM is the spacetime volume form, nSτ
is the future directed unit normal on

Sτ and the constant C(R) depends only on R and the precise choice of the foliation
{Sτ}τ∈R. This was established in [4,8,9].

Remark Notice that (1.6) is actually valid for m = 1. However, due to the existence
of trapped null geodesics on (MSch, gM ), the requirement that m > 0 is necessary in
this case. Notice also that it is the red shift effect that allows the integrand in the left
hand side of (1.6) to be non-degenerate up to the event horizon H of (MSch, gM ) (see
[13]).

Using as ingredients the estimates (1.5) and (1.6), the novel approach of [11] for
establishing polynomial decay rates for solutions ϕ to (1.1) lies in the proof of a
hierarchy of r p-weighted energy estimates for ϕ in a neighborhood of I+ and the
repeated use of the pigeonhole principle on the resulting set of estimates in order to
obtain polynomial decay rates for various weighted energies of ϕ. In particular, the
following result was established in [11]:

Theorem (Dafermos-Rodnianski [11], specialised here to Schwarzschild) On
Schwarzschild exterior spacetime (MSch, gM ), the following statements hold for any
solution ϕ to the wave equation (1.1):
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1. An r p-weighted energy hierarchy of the form

∫

{r≥R}∩{u=τ2}
r p|∂v(rϕ)|2 dvdσ +

∫

{r≥R}∩Dτ2
τ1

r p−1
(
p|∂v(rϕ)|2

+(2 − p)|r−1∂σ (rϕ)|2
)
dudvdσ

�
∫

{r≥R}∩{u=τ1}
r p|∂v(rϕ)|2dvdσ +

∫

{r∼R}∩Dτ2
τ1

(
|∂ϕ|2 + |ϕ|2

)
, (1.7)

for p ∈ [0, 2] holds, where Dτ2
τ1 = {τ1 ≤ u ≤ τ2} for τ1 < τ2, and the derivatives

are consideredwith respect to thedouble null coordinate system (u, v, σ )onMSch .
The hierarchy (1.7) is stable under suitable perturbations of the backgroundmetric.

2. Let t̄ be a time function on MSch with spacelike level sets intersecting the future
event horizonH+ and terminating at null infinityI+, such that T (t̄) = 1. In view of
(1.6), (1.5) and (1.7), t̄−1 polynomial decay estimates hold forϕ, provided its initial
data on S0 (or on the hypersurface {t = 0}, where t is the usual Schwarzschild
exterior time coordinate) are sufficiently smooth and decaying.

3. (Schlue [34]) In the near region of (MSch, gM ), t̄−
3
2 +δ polynomial decay rates

for ϕ hold, provided its initial data on S0 (or on the hypersurface {t = 0}) are
sufficiently smooth and decaying.

See [11] for a more detailed description of the above result and an explanation of
how the proof immediately carries over to a certain wider class of spacetimes.

1.3 Non-technical Statements of the Main Results and Applications

The goal of the present paper is to introduce a broad class of asymptotically flat
Lorentzian manifolds (Md+1, g), d ≥ 3, on which the methods of [11,34] (suitably
adapted) can be generalised. In particular, this class (described in Section 3) is broad
enough to include spacetimes which radiate Bondi mass through future null infinity
I+ and are allowed to have a timelike boundary ∂timM with compact spacelike cross-
sections (modeling the boundary of a compact, possibly moving, obstacle in an ambient
globally hyperbolic spacetime). An increasing hierarchy of geometric conditions will
be imposed on this class of spacetimes, with each additional set of conditions leading
to additional decay estimates for solutions ϕ to the wave equation (1.1) on (M, g).
These conditions are partly motivated by the geometric structure of Kerr spacetime
(and perturbations of it).

In particular, we will establish the following three results, each following from the
previous under additional assumptions on the structure of (M, g):

Theorem Let (Md+1, g), d ≥ 3, be a Lorentzian manifold with the asymptotics
(1.14), possibly with non-empty timelike boundary ∂timM with compact spacelike
cross-sections. Then the following statements hold for any solution ϕ to the wave
equation (1.1) on (M, g):

1. Weighted energy hierarchy. An r p-weighted energy hierarchy holds, similar to
(1.7). See Theorems 5.1 and 6.1.
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6 Page 8 of 194 G. Moschidis

2. Slow polynomial decay.Assume that an integrated local energy decay statement of
the form (1.6) holds for solutionsϕ to (1.1) on (M, g) (satisfying suitable boundary
conditions on ∂timM, if non empty). Then t̄−1 polynomial decay estimates hold
for ϕ, provided its initial data are sufficiently smooth and decaying, where t̄ is a
suitably defined time function on M. See Theorem 8.1.

3. Improved polynomial decay. Assume, in addition to the previous integrated local
energy decay assumption, that (M, g) possesses two vector fields {T, K } (not nec-
essarily distinct) with timelike span and with slowly decaying in time deformation
tensor. Then provided the initial data for ϕ are sufficiently smooth and decaying
(and that suitable boundary conditions have been imposed on ∂timM):

– In case d is odd, a t̄− d
2 decay rate for ϕ and a t̄− d+1

2 decay rate for the
derivatives of ϕ hold.

– In case d is even, a t̄− d
2 +δ decay rate for ϕ and its derivatives holds.

See Theorem 9.1.

See also Sections 1.5.1, 1.5.2 and 1.5.3 for a more detailed statement of Parts 1, 2
and 3 of the above theorem.

Remark We should note that in fact, the integrated local energy estimate assumed
in Parts 2 and 3 of the above theorem is weaker than (1.6), as we allow for an
additional

∫
D+(Sτ)

r−1 J N
μ (T jϕ)nμ

S summand on the right hand side. On general space-
times (M, g) with g having radiating asymptotics (without satisfying any special
monotonicity condition), this additional “error” term appears necessary for (1.6) to
hold (see Sections 4 and 8). Furthermore, in Part 3 above we can relax the condition
that the deformation tensors of T, K decay in time, replacing this with the statement
that they are merely uniformly ∈-small, provided there is no loss of derivatives in the
assumed integrated local energy decay estimate. In this case, however, there is an extra
O(ε) loss in the exponents of t̄ in the related decay estimates. See also the remark in
Section 1.5.3.

As an application of Part 1 of the above theorem, we will establish that solutions
to (1.1) on general asymptotically flat spacetimes (without any assumptions posed on
the structure of their near region) have a well defined radiation field on future null
infinity I+:

Theorem (Existence of radiation field at I+) Let (Md+1, g), d ≥ 3, be a
Lorentzian manifold with the asymptotics (1.14). Then for any smooth solution ϕ

to (1.1) with suitably decaying intial data on a spacelike hypersurface	 ofM which
is asymptotically of the form {t = const}, the Friedlander radiation field �I+ of ϕ
on future null infinity:

�I+(u, σ ) = lim
r→+∞ (Ω · ϕ(u, r, σ )) , (1.8)

where� = r
d−1

2
(
1 + O(r−1)

)
, exists and is a smooth function of (u, σ ). See Theorem

7.1.

The assumption of an integrated local energy decay estimate for solutions ϕ to (1.1),
stated in Part 2 of the above theorem, does not hold on general spacetimes (M, g)
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without restricting the structure of their trapped set. In particular, in the case when
(M, g) contains a stably trapped null geodesic, the local energy of ϕ will not decay
faster than logarithmically, see e.g. [32]. Hence, in that case, no ILED statement with
finite loss of derivatives (i.e. of the form (1.6)) can hold on (M, g).

Even in the case where no ILED statement holds, however, the r p-weighted energy
hierarchy (1.7) can still yield decay estimates for ϕ provided some decay estimate for
the local energy of ϕ can be established. In [29], it is shown that on a general class
of stationary and asymptotically flat spacetimes (M, g), the local energy of solutions
ϕ to (1.1) decays logarithmically in time. Combining Part 1 of the above theorem
with the logarithmic local energy decay estimate established in [29], we will thus
be able to infer that the energy of ϕ through a hyperboloidal foliation of M decays
logarithmically in time:

Theorem (Logarithmic decay of the energy flux through a hyperboloidal folia-
tion, [29] ) Let (Md+1, g), d ≥ 3, be a globally hyperbolic spacetime with a Cauchy
hypersurface 	.

Assume that (M, g) is stationary,with stationaryKilling field T , andasymptotically
flat. IfM contains a black hole region bounded by an event horizonH, assume thatH
has positive surface gravity and that the ergoregion (i.e. the set where g(T, T ) > 0)
is “small” (see [29] for the precise statement of these assumptions). Finally, assume
that an energy boundedness statement of the form (1.5) holds for solutions to �ϕ = 0
on the domain of outer communications D of M.

It then follows that the energy flux through a T -translated hyperboloidal foliation
of M terminating at I+ of any smooth solution ϕ to (1.1) on (M, g) with suitably
decaying initial data on aCauchy hypersurface	 ofM decays at least logarithmically
in time. See [29].

We will now give some examples of spacetimes (M, g) satisfying the assumptions
of the above theorem. On these spacetimes, polynomial decay rates for solutions to
(1.1) will be inferred as a result of Parts 2 and 3 of the above theorem.

Our first example will be the exterior region of a subextremal Kerr spacetime
(with parameters a, M in the fulll subextremal range |a| < M). This satisfies all
the geometric assumptions of Parts 1, 2 and 3 of the above theorem. We should remark
that, in fact, our assumption on the properties of the vector fields T, K of Part 3
of the above theorem was motivated by the geometric properties of the subextremal
Kerr family. In view of the integrated local energy decay statement and the energy
boundedness estimate established in [16], we will be able to infer Corollary 3.1 of
[16]:

Theorem (Polynomial decay on subextremal Kerr exterior for |a| < M, [16])
Corollary 3.1 of [16] holds, that is to say, a t̄− 3

2 pointwise decay rate for ϕ and t̄−2

decay rate for the derivatives of ϕ hold for solutions ϕ to the wave equation (1.1) on
subextremal Kerr spacetimes in the full parameter range |a| < M.

See Section 1.6.3 for a precise statement of this result.
Notice also that, in view of the integrated local energy decay estimate established

in [23], the results of the present paper also imply a t̄−2+δ decay estimate for solutions
ϕ to (1.1) on very slowly rotating 4 + 1 dimensional Myers–Perry spacetimes.
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For our second example, we will first need to introduce a definition: A metric g on
R
d+1 will be called a radiating uniformly small perturbation of Minkowski spacetime

(Rd+1,η) if it has the asymptotics (1.14), and moreover there exists a small ε0 > 0
such that r ·(g−η) and all its derivatives are ε0-globally small, with each differentiation
of this tensor with respect to ∂t except for the first one yielding additional decay in
terms of |u| (see (1.42) and (1.43) for a more precise definition). For such spacetimes,
the geometric assumptions of Parts 1, 2 and 3 are satisfied and an integrated loacal
energy decay estimate of the form (1.6) without loss of derivatives holds (in view
of the stability to small perturbations of the estimates provided by the ∂r -Morawetz
current, combined with the estimates of Section 4 of the present paper). Examples of
such spacetimes include the vacuum dynamical perturbations of Minkowski spacetime
considered in [7].

We will infer the following result:

Theorem (Improved polynomial decay on radiating uniformly small perturba-
tions of Minkowski) If (Rd+1, g) is a radiating uniformly small perturbation of
Minkowski spacetime and ε0 is small enough, then any solution ϕ to �gϕ = 0 on

(Rd+1, g) with suitably decaying initial data on {t = 0} will satisfy a t̄− d
2 +O(ε0)

decay estimate. If, in addition, the deformation tensor of the vector field ∂t is O(t̄−δ0)

decaying for some δ0, then ϕ will satisfy a t̄− d
2 decay rate.

See Section 1.6.4 for a precise statement of this result. Let us remark that this
theorem extends a recent result of Oliver [31].

Our final example will concern the class of radiating black hole exterior spacetimes
(M, g) dynamically settling down to the exterior region of a subextremal Kerr space-
time. In order to present our example in the most simple form that can be deduced
without computation from previous results, we will retrict ourselves to spacetimes
(M, g) settling down to Schwarzschild exterior at a sufficiently fast polynomial rate.
This class includes the dynamical vacuum spacetimes constructed in [14] (which actu-
ally approach Schwarzschild at an exponential rate).

The energy current yielding the integrated local energy decay statement for
Schwarzschild exterior constructed in [8], combined with the estimates of Section
4 of the present paper and the fast rate at which g approaches the Schwarzschild met-
ric gM , immediately imply that an integrated local energy decay statement of the form
(1.6) also holds on (M, g). Furthermore, it is straightforward to check that (M, g)
satisfies the assumptions of Parts 1, 2 and 3 of the above Theorem (in view of the fast
approach to the Schwarzschild exterior metric, which satisfies these assumptions).
Thus, on these spacetimes we will be able to infer the following result:

Theorem (Improved polynomial decay on dynamical, radiating black hole
spacetimes) If (M3+1, g) is a radiating black hole spacetime settling down to a
Schwarzschild exterior at a sufficiently fast polynomial decay rate (such us the ones
constructed in [14]), then any solutionϕ to�gϕ = 0 on (M, g)with suitably decaying

initial data on a Cauchy hypersurface will satisfy a t̄− 3
2 decay estimate.

We will discuss in more detail the results of this paper and their applications in the
next sections of the introduction. But first, we will review in more detail the “old”
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approach of using the conformal isometries of Minkowski spacetime for establishing
decay rates for solutions to (1.1) on asymptotically flat spacetimes, and compare it to
the method of [11].

1.4 Comparison of the Two Approaches

1.4.1 The “Old” Approach

The use of first order operators as multipliers and commutators for (1.1) has been
implemented extensively during the last 50 years to deal with linear and non linear
wave equations on small perturbations of Minkowski spacetime (Rd+1,η).

Following Morawetz (see e.g. [28]), one way to obtain decay for the local energy
of solutions ϕ to (1.1) is to apply the conformal Killing field Z of (Rd+1,η)

Z = (t2 + r2)∂t + 2tr∂r (1.9)

as multiplier for (1.1). On Minkowski spacetime itself for d ≥ 3, the vector field Z
gives rise to a conserved positive definite energy norm EZ [ϕ](t)with weights growing
in t . In particular, one can bound:

EZ [ϕ](τ) �
∫

{t=τ}

(
v2|∂vϕ|2 + u2|∂uϕ|2 + |∂σϕ|2 + |ϕ|2

)
dx, (1.10)

where (t, r, σ) is the usual polar coordinate system on Minkowski space R
3+1, v =

t + r , u = t − r and dx denotes the usual integration measure on {t = const} slices
of Rd+1 (see also Section 2 for the σ notation). Thus, the preservation of EZ [ϕ](t)
and the growth in time of the weights in the expression (1.10) can be used to establish
polynomial decay in time estimates for the L2 norm of certain derivatives of ϕ.

The above approach has been also implemented in the treatment of the wave equa-
tion (1.1) on the complement of a compact obstacle O in flat space, with suitable
boundary conditions imposed on the boundary ofO. In [27,28], for instance, pointwise
polynomial decay rates were established for solutions ϕ to (1.1) on the complement
of a star shaped obstacle with Dirichlet boundary conditions, and this was achieved
with the use of the conformally Killing vector field Z and the radial vector field ∂r as
multipliers for equation (1.1). Moreover, the use of ∂r as a multiplier for (1.1) yielded
the integrated local energy decay statement (1.4).

Another method for obtaining refined pointwise decay rates for solutions ϕ to (1.1)
on flat spacetime is the commutation vector field method, introduced by Klainerman:
By commuting equation (1.1) with the generators of the isometries of (Rd+1,η) plus
the dilation vector fieldand the dilation vector field S:

S = t∂t + r∂r (1.11)

((t, r) being the usual time and radius coordinates on Minkowski space), and using
the conservation of the EZ energy norm (1.10) on (Rd+1,η) together with a modified
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version of the Sobolev embedding theorem due to Klainerman (see [21,22]), one can
attain a pointwise decay estimate for ϕ(d ≥ 3):

|∂ l1u ∂ l2v (r−1∂σ)
l3ϕ| � (1 + |t − r |)− 1

2 −l1(1 + t + r)−
d−1

2 −l2−l3
√
El1,l2,l3 , (1.12)

where l1, l2, l3 ≥ 0 are integers and El1,l2,l3 is a weighted higher order energy norm of
the initial data for ϕ on {t = 0}. See [35] for more details on the commutation vector
field approach.

Notice that the t− d
2 decay rate for |ϕ| in the region {r � 1} provided by (1.12)

guarantees that |ϕ(t, x)| is integrable in t in dimensions d ≥ 3, and this fact is of
fundamental importance in the treatment of non linear variants of the wave equation
(1.1).

The aforementioned techniques have been also extended to the exterior of black hole
spacetimes, such as the Schwarzschild and very slowly rotating (i. e with |a| � M)
Kerr exterior spacetimes, see [1,5,8,9]. In these works, a variant of the conformally
Killing vector field Z of Minkowski spacetime was constructed and used, but this
construction came at a cost: Since Z is not a conformally Killing vector field on these
black hole spacetimes, decay estimates obtained in this way for solutions to (1.1) were
coupled with error terms in the near region of the spacetimes under consideration, and
these error terms carried weights growing in time.

In view also of the unavoidable presence of trapping in the near region of a black
hole spacetime, the error terms associated to the use of the modified Z vector field as
a multiplier for (1.1) required additional effort in order to be controlled. An essential
step towards controlling these error terms was the establishment of an integrated
local energy decay statement of the form (1.6), with the use of carefully chosen first
order multipliers for (1.1) capturing the red-shift effect near the horizon H and the
structure of the trapped set in the near region {r � 1} (these multipliers being equal
to ∂r plus a lower order correction in the far away region {r � 1}). See [1,4,8–
10,13,38].

The above approach of using an adaptation of the Morawetz Z vector field and an
integrated local energy decay statement yielded t−1 decay estimates for solutions ϕ

to (1.1) on Schwarzschild exterior spacetimes and t−1+δ(a) decay estimates on slowly
rotating Kerr exterior spacetimes, with δ(a) → 0 as a → 0 (see [13]). In [24,25], Luk

was able to obtain improved t− 3
2 +δ decay estimates for ϕ in the near region of these

backgrounds by commuting the wave equation (1.1) with an analogue of the dilation
vector field S (1.11) of Minkowski spacetime.

Let us note at this point that the vector field approach has been effectively
applied in the case of non linear wave equations on a radiating spacetime which
is globally close to (R3+1,η): This can be viewed as a corollary of the monumen-
tal proof of the non linear stability of Minkowski spacetime in the context of the
Einstein equations, by Christodoulou and Klainerman (see [7]). These techniques
have also been applied in the study of non linear wave equations on black hole
spacetimes (see the work of Luk [26]). See also [31] for the treatment of the lin-
ear wave equation (1.1) on radiating spacetimes which are globally close to (R3+1,η)
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(where, among other decay results, a t− 3
2 decay rate in the near region is estab-

lished).
The difficulties in extending the “old” approach of establishing decay estimates

for solutions to (1.1) on more general black hole spacetimes led the authors of
[11] to suggest a more flexible approach that does not involve multipliers and com-
mutators with weights growing in time. This is the approach that we will now
discuss.

1.4.2 The r p-Weighted Energy Method

The crux of the new method of obtaining decay estimates for solutions to (1.1) intro-
duced in [11] lies in the establishment of a hierarchy of estimates for r p-weighted
energies, 0 ≤ p ≤ 2, using as a multiplier an r p-weighted outgoing null vector field.
On Minkowski spacetime, this hierarchy of estimates takes the following form for any
solution ϕ to the wave equation (1.1) and any τ1 ≤ τ2, R > 0:

∫

{u=τ2}∩{r≥R}
r p · |∂v(rϕ)|2 dvdσ

+
∫

{τ1≤u≤τ2}∩{r≥R}
r p−1

(
p|∂v(rϕ)|2 + (2 − p)|r−1∂σ(rϕ)|2

)
dudvdσ

≤
∫

{u=τ2}∩{r≥R}
r p · |∂v(rϕ)|2 dvdσ

+
∫

{τ1≤u≤τ2}∩{r=R}
r p ·

(
|r−1∂σ(rϕ)|2 − |∂v(rϕ)|2

)
dudσ. (1.13)

In the above, u = t − r , v = t + r . For the σ notation on the angular variables, see
Section 2. Moreover, the right hand side of (1.13) also controls the angular derivatives
of the radiation field of ϕ on future null infinity I+, but we have dropped these terms
for simplicity. A similar expression is also valid on Schwarzschild spacetimes and
suitable perturbations, see [11].

The importance of the hierarchy (1.13) lies in the fact that the left hand side of
(1.13) contains a positive definite bulk term, while the “error” term in the near region
(namely the last term of the right hand side) does not carry weights growing in t .
Thus, combining (1.13) with the integrated local energy decay statement (1.6) and the
energy boundedness estimate (1.5), the authors of [11] were able to obtain uniform

polynomial decay rates for r
1
2 ϕ and rϕ in terms of u.

A noteable aspect of this novel approach of [11] is that decay rates for ϕ are
obtained by repeatedly applying the pigeonhole principle on the positive definite bulk
term (i.e. the second term of the left hand side) controlled in (1.13). This is in contrast
to the older approach (described in the previous section), which yielded decay rates
for ϕ by establishing uniform bounds for t-weighted energy norms of ϕ on suitable
hypersurfaces.

Moreover, the new method of [11] allows one to obtain the result of Luk ([25]),
namely to establish improved (i.e. t− 3

2 +δ) polynomial decay estimates for ϕ in the
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near region of Schwarzschild exterior: This was achieved by Schlue in [34], where it
was established that commuting (1.1) with the outgoing null vector field ∂v (as well
as the generators of the isometries of Schwarzschild) leads to an improvement of the
p-hierarchy (1.13).2 In particular, it was established that higher order ∂v and r−1∂σ
derivatives of ϕ satisfy (1.13) for larger values of p. This better decay rate in r was then
translated into a better decay rate in u by using the expression of the wave equation
(1.1) as well as the pigeonhole principle argument of [11].

This novel approach has also been implemented in the case of non-linear wave equa-
tions: In [39,40], Yang established a small data global existence result for non-linear
(in fact, quasi-linear) wave equations on a certain class of asymptotically flat back-
grounds, using the techniques of [11] (see also [41]). In [2], Angelopoulos obtained
a small data global existence result for spherically symmetric solutions to a class of
semi-linear wave equations on extremal Reissner–Nordström backgrounds. A variant
of the r p-weighted energy method has also been effectively used in the case of the Ein-
stein equations themselves: In [14,20], the authors established an r p-weighted energy
hierarchy, a proper tensorial analogue of (1.13), for radiating solutions to the Einstein
equations Ric(g) = 0 that approach the Schwarzschild exterior in the future. Notice
also that [14] utilised the r p-weighted energy method for the Einstein equations in the
scattering setting.

1.5 Statement of the Main Results

The present paper introduces a broad class of asymptotically flat spacetimes
(Md+1, g), d ≥ 3, on which the techniques of [11] and [34] can be generalised.
See Section 3 for a more detailed discussion of the class of spacetimes under consid-
eration. Notice that this class of metrics includes spacetimes with non-constant Bondi
mass at null infinity, see e.g. [6,33], such as the dynamical vacuum perturbations of
Minkowski spacetime (see [7]). Moreover, spacetimes in this class are allowed to have
a timelike boundary ∂timM with compact spacelike cross-sections.

We will now proceed to briefly review the results established in the following
sections of the paper.

1.5.1 The r p-Weighted Energy Hierarchy in Dimensions d ≥ 3

In this Section, all results will be stated on an asymptotic region Na f ⊂ M of a
general radiating asymptotically flat3 spacetime (M, g). In particular, let (N d+1

a f , g),

d ≥ 3, be a Lorentzian manifold diffeomorphic to R × [R0,+∞) × S
d−1 for some

R0 > 0, on which a single (u, r, σ) coordinate chart has been fixed. Assume that in
this chart g takes the form

2 Note also that [34] also deals with the case of higher dimensional Schwarzschild spacetimes.
3 Let us also remark that the results of this paper also hold on spacetimes which are asymptotically conic
instead of asymptotically flat. However, we will not pursue this issue further in this paper.
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g = −4

(
1 − 2M(u, σ)

r
+ O(r−1−a)

)
du2 −

(
4 + O(r−1−a)

)
dudr

+ r2 ·
(
gSd−1 + O(r−1)

)
+ O(1)dudσ

+ O(r−a)drdσ + O(r−2−a)dr2, (1.14)

where M(u, σ) is a bounded and sufficiently regular function of u, σ. Notice that
(Na f , g) is not in general globally hyperbolic.

We will extend the hierarchy (1.13) to (Na f , g) as follows (see the remark below
for explanation of the notation):

Theorem 1.1 Let S1,S2 be two spacelike hyperboloidal hypersurfaces of (N d+1
a f , g),

d ≥ 3, terminating at I+, such that S2 ⊂ J+(S1). Then for any 0 < p ≤ 2, any
given 0 < η < a, 0 < δ < 1 and R > 0 large, the following inequality is true for any

smooth function ϕ : Na f → C (setting also �
.= Ω · ϕ, where Ω = (− det(g))

1
4 ):

∫

S2∩{r�R}
r p|∂r�|2 dv dσ

+
∫

S2∩{r�R}

(
r p|r−1∂σ�|2 + max

{
(d − 3), r−δ

} · r p−2|�|2
)
dudσ

+
∫

J+(S1)∩J−(S2)∩{r�R}
χR ·

(
pr p−1|∂r�|2 + (2 − p)r p−1|r−1∂σ�|2

+ max{(2 − p)(d − 3), r−δ} · r p−3|�|2
)
dudvdσ �p,η,δ

�p,η,δ

∫

S1∩{r�R}
r p|∂r�|2 dvdσ +

∫

S2∩{r�R}

(
r p|r−1∂σ�|2

+ max{(d − 3), r−δ} · r p−2|�|2
)
dudσ

+
∫

J+(S1)∩J−(S2)∩{r∼R}

(
r p|∂�|2 + r p−2|�|2

)
dudvdσ +

∫

S1∩{r�R}
J ∂uμ (ϕ)nμ

S

+
∫

J+(S1)∩J−(S2)∩{r�R}
χR · (r p+1 + r1+η

) · |Ω · �gϕ|2 dudvdσ. (1.15)

In the above, the constants implicit in the �p,η,δ notation depend only on p,η, δ and
on the geometry of (Na f , g). The partial derivatives ∂r , ∂σ are considered with respect
to the cooordinate chart (u, r, σ) and the notation ∂σ is explained in Section 2.

Remark Notice that the dudσ volume form on the hyperboloidal hypersurfaces Si
degenerates as r → +∞ when compared to dvdσ. The notion of a spacelike hyper-
boloidal hypersurface terminating at I+ is given in Section 3.1. For the notations on
vector field currents see Section 2.

For a more detailed statement of the above result, see Theorems 5.1 and 5.3 in Section 5.
We will also establish the following improved r p-weighted hierarchy for higher

derivatives of ϕ:
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Theorem 1.2 With the notations as in Theorem 1.1, for any k ∈ N, any 2k−2 < p ≤
2k, any given 0 < η < a and R > 0 large, the following inequality is true for any
smooth function ϕ : Na f → C (setting also �

.= Ω · ϕ):

∫

S2∩{r�R}
r p|∂r∇k−1

S �|2 dvdσ +
∫

S2∩{r�R}
r p|r−1∂σ∇k−1

S �|2 dudσ

+
∫

J+(S1)∩J−(S2)∩{r�R}
χR ·

(
r p−1|∂r ∇k−1

S �|2

+ (2k − p)r p−1|r−1∂σ∇k−1
S �|2

)
dudvdσ �p,η

�p,η

k∑

j=1

∫

S1∩{r�R}
r p−2(k− j)|∂r∇ j−1

S �|2 dvdσ

+
k∑

j=1

∫

S1∩{r�R}

(
r p−2(k− j)|r−1∂σ∇ j−1

S �|2 + r p−2k |�|2
)
dudσ

+
k∑

j=0

∫

J+(S1)∩J−(S2)∩{r∼R}
r p−2(k− j)|∂ j�|2 dudvdσ

+
k∑

j=1

∫

S1∩{r�R}
J ∂uμ (∇ j−1

S ϕ)nμ

S +
k∑

j=1

∫

J+(S1)∩J−(S2)∩{r�R}
χR

· (r p+1−2(k− j) + r1+η
) · |∇ j−1

S (Ω�gϕ)|2 dudvdσ. (1.16)

In the above,

|∇ j
Sψ |2 .=

∑

j1+ j2+ j3= j

|r− j2− j3∂
j1
r ∂

j2
σ ∂

j3
u ψ |2 (1.17)

and the constants implicit in the�p,η notation dependonly on p,η andon the geometry
of (Na f , g).

See Section 6 for a more detailed statement of the above result.

1.5.2 A t̄−1 Polynomial Decay Estimate for Solutions to the Wave Equation �ϕ = 0

In this section, we will be concerned with obtaining results for (1.1) on the whole space-
time (M, g) (and not merely the asymptotic region Na f ). Provided that an integrated
local energy decay statement (possibly with loss of derivatives) holds for solutions
to �gϕ = F on a spacetime (Md+1, g), d ≥ 3, with g asymptotically of the form
(1.14), we will establish polynomial decay rates for ϕ with respect to a hyperboloidal
foliation of M.
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In particular, let (Md+1, g), d ≥ 3, be a Lorentzian manifold with possibly non-
empty boundary ∂M, which can be split as

∂M = ∂timM ⊕ ∂horM, (1.18)

where ∂timM is smooth and timelike and ∂horM is piecewise smooth and null. Assume
also that (M, g) is globally hyperbolic as a manifold with timelike boundary, which
means that the double (M̃tim, g) of (M, g) across ∂timM is globally hyperbolic.

Suppose that (M, g) satisfies the following geometric assumptions:

(GM1) Asymptotic flatness: (M, g) is asymptotically flat in the sense that there exists
an open subset Na f ⊂ M such that each connected component of Na f is
mapped diffeomorphically on R × (R0,+∞) × S

d−1 through a coordinate
chart (u, r, σ), and in this coordinate chart g has the form (1.14).

(GM2) Existence of a well behaved time function: There exists a function t̄ : M → R

with level sets which are spacelike hyperboloids terminating at future null
infinity, such that on each component ofNa f the difference |t̄−u| is bounded,
and the foliation {t̄ = const} in the region M\Na f is sufficiently “regular”
(see Section 8 for the precise relevant assumptions on t̄).

In fact, the precise description of Assumptions (GM1)–(GM2)is more complicated,
and requires the splitting of these assumptions into a larger number of statements: see
Assumptions (G1)–(G13) of Sections 7.1 and 8.1.1.

For convenience, we define the globally timelike vector field N so that N ≡ grad(t̄)
on M\Na f and N = ∂u on each connected component of the region Na f ∩ {r � 1}.

Suppose also that on (M, g) the following integrated local energy decay estimate
holds:

(ILED1) Integrated local energy decay with polynomial loss of derivatives: There
exists an integer k ≥ 0, such that for any solution ϕ to �ϕ = F with
suitable boundary conditions on ∂timM, any m ∈ N, 0 ≤ τ1 ≤ τ2, η > 0
and R > 0:

m∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≤R}
|∇ jϕ|2 +

m∑

j=1

∫

{τ1≤t̄≤τ2}∩∂timM
|∇ jϕ|2

≤ Cm,η(R)
m+k−1∑

j=0

∫

{t̄=τ1}
J N
μ (N jϕ)n̄μ

+Cm,η

m−1∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≥R}
r−1 J N

μ (N jϕ)n̄μ

+Cm,η(R)
m+k−1∑

j=0

∫

{τ1≤t̄≤τ2}
r1+η|∇ j F |2, (1.19)

where Cm,η(R) depends only on m,η,R and the geometry of (M, g).
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See Section 8.1.2 for a more detailed description of Assumption (ILED1). For
an alternative to the Assumption (ILED1), see the remarks in Section 8.1.2 (and in
particular (8.21) and (8.22)).

On any spacetime (M, g) satisfying the above assumptions we will establish the
following decay statement for solutions to (1.1):

Theorem 1.3 Let (Md+1, g) satisfy the geometric assumptions (GM1) and (GM2),
and the integrated local energy decay assumption (ILED1), and let t̄ and N be as
above. Then the following decay estimates hold for any 0 < δ < 1, any τ ≥ 0 and
any solution ϕ to the inhomogeneous wave equation �gϕ = F with suitably decaying
inital data on {t̄ = 0} (and satisfying suitable boundary conditions on ∂timM):

∫

{t̄=τ}
J N
μ (ϕ)n̄μ ≤ Cδ

τ2−δ
E2,k[ϕ](0)+ F2,k,d,δ[F](τ), (1.20)

sup
{t̄=τ}

rd−2 · |ϕ|2 ≤ Cδ

τ2−δ
E2,k,d [ϕ](0)+ F2,k,d,δ[F](τ) (1.21)

and

sup
{t̄=τ}

rd−1 · |ϕ|2 ≤ C

τ
E2,k,d [ϕ](0)+ F1,k,d [F](τ). (1.22)

Furthermore, in case the vector field T = ∂u in the coordinate chart (u, r, σ) in the
asymptotically flat region {r � 1} of M satisfies for some (small) δ0 > 0 and any
k ∈ N:

Lk
T g = O(|u|−δ0)

{
O(r−1−a)dvdu + O(r)dσdσ + O(1)dudσ

+O(r−a)dvdσ + O(r−1)du2 + O(r−2−a)dv2
}

(1.23)

and the second term of the right hand side of the integrated local energy decay estimate
(1.19) is replaced by

Cm,η

m−1∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≥R}
|u|−δ0r−1 J N

μ (N jϕ)n̄μ, (1.24)

then the δ-loss in the decay estimates (1.20) and (1.21) can be removed:

∫

{t̄=τ}
J N
μ (ϕ)n̄μ ≤ C

τ2 E
2,k[ϕ](0)+ F2,k,d [F](τ) (1.25)

and

sup
{t̄=τ}

rd−2 · |ϕ|2 ≤ C

τ2 E
2,k,d [ϕ](0)+ F2,k,d [F](τ). (1.26)

See Theorem 8.1 (and the remark below it) in Section 8 for a more detailed statement
of the above result and the definition of the weighted energy norms of ϕ and F in the
right hand side of (1.20), (1.21) and (1.22).
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Remark Let us remark that the initial weighted energy norm on the hyperboloid
{t̄ = 0} in the right hand sides of (1.20)–(1.26) can be readily replaced by a similar
weighted norm on a hypersurface 	 terminating at spacelike infinity (e.g. a hyper-
surface which in the asymptotically flat region is of the form {t = const}). In that
case, the source spacetime energy normsF[F] in (1.20)–(1.26) are replaced by similar
weighted spacetime norms of F over the region J+(	) ∩ {t̄ ≤ τ}.

1.5.3 An Improved t̄− d
2 Polynomial Decay Estimate for Solutions to the Wave

Equation �ϕ = 0 in Dimensions d ≥ 3

Finally, we will also be able to establish improved polynomial decay rates for ϕ,
under some additional restrictions on the spacetimes (M, g). Let (M, g), satisfy the
geometric assumptions (GM1) and (GM2) of the previous section, as well as the
integrated local energy decay assumption (ILED1). Let also t̄ and N be as in the
statement of Theorem 1.3.

Assume furthermore that (M, g) satisfies the following two geometric conditions:

(GM3) There exist two smooth vector fields T, K (not necessarily distinct) on (M, g)
such that:

1. dt̄(T ) = dt̄(K ) = 1
2. The span of {T, K } is everywhere timelike on M\H+ (where H+ is the future

event horizon of (M, g), which is required to be a subset of ∂Mhor ).
3. In the coordinate chart (u, r, σ) on each connected component of the region r � 1,

T = ∂u and K = T +� (where � is the generator of a rotation of Sd−1, allowed
to be identically 0).

4. The vector fields T and K are almost Killing in the sense that there exists a small
δ0 > 0 such that their deformation tensor satisfies the O(t̄−δ0) decay estimates
(9.5) and (9.6).

(GM4) The span of {T, K } is tangential to the future event horizon H+ of (M, g) (if
non-empty). Moreover, H+ is non-degenerate with respect to K , in the sense
that K satisfies g(K , K ) = 0 and d (g(K , K )) �= 0 on H+.4

(GM5) The constants in the elliptic, Sobolev and Gagliardo–Nirenberg type estimates
on the leaves of the foliation {t̄ = τ} stated in Section 9.1 can be chosen to
be independent of τ ≥ 0.

Remark Assumption (GM5) holds automatically on spacetimes (M, g) which are
near stationary or time periodic.

Again, the precise description of Assumptions (GM3)–(GM5) is actually more com-
plicated, and will require the splitting of these assumptions into a larger number of
statements: see Assumptions (EG1)–(EG8) in Section 9.1.

We will also assume that the following stronger form of Assumption (ILED1) holds:

(ILED2) Integrated local energy decay with polynomial loss of derivatives: There
exists an integer k ≥ 0, such that for any solution ϕ to �ϕ = F with

4 Hence, K should be viewed as the analogue of the Hawking vector field of the Kerr spacetime.
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suitable boundary conditions on ∂timM, any m ∈ N, 0 ≤ τ1 ≤ τ2, η > 0,
R > 0 and any integers i1, i2 ≥ 0 we can bound:

m∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≤R}
|∇ j (T i1 K i2ϕ)|2 +

m∑

j=1

∫

{τ1≤t̄≤τ2}∩∂timM
|∇ j (T i1 K i2ϕ)|2

≤ Cm,η,i1,i2(R)
m+k−1∑

j=0

∫

{t̄=τ1}
J N
μ (N j T i1 K i2ϕ)n̄μ

+Cm,η,i1,i2

m−1∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≥R}
|t̄ |−δ0r−1 J N

μ (N j T i1 K i2ϕ)n̄μ

+Cm,η,i1,i2(R)
m+k−1∑

j=0

∫

{τ1≤t̄≤τ2}
r1+η|∇ j�(T i1 K i2ϕ)|2. (1.27)

See Section 9.1 for a more detailed description of Assumption (ILED2)
For spacetimes (M, g) as above, we will infer the following improved decay result:

Theorem 1.4 Let (Md+1, g) satisfy the geometric assumptions (GM1), (GM2),
(GM3), (GM4) and (GM5) and the integrated local energy decay assumption (ILED2),
and let t̄ and N be as above. Then for any integer 1 ≤ q ≤ � d+1

2 �, any 0 < ε � δ0,
any τ ≥ 0 and any solution ϕ to the inhomogeneous wave equation �gϕ = F with
suitably decaying intial data on {t̄ = 0} (and satisfying suitable boundary conditions
on ∂timM) the following estimates hold:

E (0,q)en [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q)
en [ϕ](s) ds

�m,ε τ−2q+C εE (2q,k,δ0)
in [ϕ](0)+ F (q,k,m,δ0)

ε [F](τ) (1.28)

and

E (0,q)en,deg[ϕ](τ) �m,ε τ−2qE (2q,k,δ0)
in [ϕ](0)+ F (q,k,m,δ0)

deg,ε [F](τ). (1.29)

In the above, E (a,q)en [ϕ](τ) is the non degenerate L2 normon {t̄ = τ} of all derivatives of
ϕ of order q, with ra weights near infinity, and E (a,q)en,deg[ϕ](τ) is similar to E (a,q)en [ϕ](τ)
but with a degeneracy on H+. See Section 9 for a more precise definition of these
norms.

Moreover, the following pointwise decay rates for ϕ are established:

1. In case the dimension d is odd, we can bound:

sup
{t̄=τ}

∣∣ϕ
∣∣ �m,ε τ− d

2
√
E0,d [ϕ](0)+ F (q,k,0,δ0)

pw,ε [F](τ), (1.30)
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and for any integer m ≥ 1:

sup
{t̄=τ}

∣∣∇mϕ
∣∣
h �m,ε τ− d+1

2
√
Em+2,d [ϕ](0)+ F (q,k,m+2,δ0)

pw,ε [F](τ). (1.31)

2. In case the dimension d is even, for any integer m ≥ 0 we can bound:

sup
{t̄=τ}

∣∣∇mϕ
∣∣
h �m,ε τ− d

2 +C ε
√
Em,d [ϕ](0)+ F (q,k,μ,δ0)

pw,ε [F](τ). (1.32)

For the definition of the weighted energy norms of ϕ and F appearing in the right
hand sides of the inequalities above, see Section 9.

See Theorem 9.1 and Corollary 9.2 in Section 9 for more details.

Remark Let us remark at this point that in the case the integrated local energy decay
statement in Assumption (ILED1) does not lose derivatives (i.e. k = 0), we can relax
the assumption that the deformation tensors of T and K decay like t̄−δ0 (i.e. (9.5) and
(9.6)) by replacing it with a uniform ε0-smallness assumption (i. e . (9.42)– (9.44))
for some ε0 > 0. In this case, we can still obtain (1.28), (1.32), (1.29) and (1.30),
at a cost of an O(ε0) loss in the exponent of τ in all these inequalities. Thus, in the
absence of trapping, the r p-weighted energy method of [11] is robust enough to yield
the full “improved” polynomial hierarchy on spacetimes that do not settle down to a
stationary background. See also the remark below Theorem 9.1.

We should also notice that in the case when the vector fields T and K are exactly
Killing, the proof of Theorem 9.1 yields that for any solution ϕ to �ϕ = 0 with
compactly supported initial data and any integer k ≥ 0:

|T kϕ| �k t̄
−1−k . (1.33)

Therefore, using the frequency cut-off techniques of [12] or [29], from (1.33) (and the
corresponding statement for decay of the energy of T kϕ on the foliation {t̄ = τ }) we
can deduce that for any ω0 > 0, ϕ≥ω0 decays superpolynomially in t̄ (where ϕ≥ω0 is
the part of ϕ supported in the frequency range |ω| > ω0 with respect to the t̄ variable
in a coordinate chart where T = ∂t̄ ).

Finally, as before, we should note that the initial weighted energy norm on the
hyperboloid {t̄ = 0} in the right hand sides of (1.28)–(1.32) can be readily replaced
by a similar weighted norm on a hypersurface 	 terminating at spacelike infinity. In
that case, the source spacetime energy norms F[F] in (1.28)–(1.32) are replaced by
similar weighted spacetime norms of F over the region J+(	) ∩ {t̄ ≤ τ }.

1.6 Applications of the r p-Weighted Energy Method

We will now discuss some applications of Theorems 1.1–1.4.
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1.6.1 The Friedlander Radiation Field for Solutions to the Wave Equation �ϕ = 0

On any product Lorentzian manifold of the form (Md+1, g) = (R × Sd ,−dt2 +
ḡ),5 where (Sd , ḡ) is an asymptotically Euclidean Riemannian manifold for d ≥ 2,
Friedlander [17] has established that for any smooth solution ϕ to the wave equation

�gϕ = 0 on (M, g) with compactly supported initial data on {t = 0}, r d−1
2 · ϕ has

a well defined and smooth limit on future null infinity. This limit is called the future
radiation field of ϕ. In order to deduce this result, Friedlander utilised the Penrose
compactification method.

As a soft corollary of the hierarchy of r p-weighted estimates (1.15), we will extend
the result of Friedlander to more general asymptotically flat spacetimes (Md+1, g),
not necessarily of product type, with d ≥ 3:

Theorem 1.5 Let (Md+1, g), d ≥ 3, be a Lorentzian manifold with with the asymp-
totics (1.14), in the sense that each connected component of an open subsetNa f,M of
M is mapped diffeomorphically on R × (R0,+∞) × S

d−1 through a (u, r, σ) coor-
dinate chart, in which g has the form (1.14). Then for any smooth solution ϕ to the
inhomogeneous wave equation�gϕ = F on (M, g)with (ϕ, ∂ϕ)|{t=0} and F suitably
decaying in r , the limit

(
lim

r→+∞Ω · ϕ

)
(u, r, σ)

.= �I+(u, σ), (1.34)

where � = r
d−1

2
(
1 + O(r−1)

)
, exists on all connected components of Na f,M and

defines a smooth function on R × S
d−1. Moreover, the following limit exists and is

finite for all integers j1, j2, j3 ≥ 0

lim
r→+∞

(
r j1∂

j1
r ∂

j2
σ ∂

j3
u (�ϕ)

)
< +∞, (1.35)

where the coordinate derivatives ∂r , ∂σ and ∂u are considered with respect to the
(u, r, σ) coordinate system in the region {r � 1}.

This result will be established in Section 7. For the required decay rates for the
initial data of ϕ and the source term F , see the statement of Theorem 7.1.

Remark Notice that Theorem 1.5 applies also on spacetimes (M, g) where the decay
rate of g near the future null infinity does not allow for a smooth conformal compact-
ification of the spacetime. Let us also notice that we actually expect the limit (1.35) to
be identically 0 when j1 ≥ 1 and ϕ solves �ϕ = 0 with compactly supported initial
data, but we do not establish this fact here.6

The above result will be established in Section 7. For the required decay rates for
the initial data of ϕ and the source terms F , see the statement of Theorem 7.1.

5 As usual for product Lorentzian manifolds, t will denote the projection onto the first factor of R × S.
6 In case (M, g) admits a conformal compactification near I+, the stronger statement

limr→+∞
(
r2 j1∂

j1
r ∂

j2
σ ∂

j3
u (�ϕ)

)
< +∞ is known to hold for solutions ϕ to �ϕ = 0 with compactly

supported initial data.
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1.6.2 Logarithmic Hyperboloidal Energy Decay for Solutions to the Wave Equation
�ϕ = 0 on a General Class of Stationary Asymptotically Flat Spacetimes

As described before, the results of the present paper have been used in our [29] to
establish the following result:

Theorem (Corollary 2.2 of [29]). Let (Md+1, g), d ≥ 3, be a globally hyperbolic
spacetime with a Cauchy hypersurface 	.

Assume that (M, g) is stationary,with stationaryKilling field T , andasymptotically
flat. IfM contains a black hole region bounded by an event horizonH, assume thatH
has positive surface gravity and that the ergoregion (i.e. the set where g(T, T ) > 0)
is “small” (see [29] for the precise statement of these assumptions). Finally, assume
that an energy boundedness statement is true for solutions to �ϕ = 0 on the domain
of outer communications D ofM.

It then follows that any smooth solution ϕ to�gϕ = 0 onMwith suitably decaying
initial data on a Cauchy hypersurface 	 of M satisfies on D for any integer m > 0:

Ehyp(t̄) ≤ Cm
{
log(2 + t̄)

}2m

(
E (m)
hyp(0)+ Ew,hyp(0)

)
. (1.36)

In the above, t̄ ≥ 0 is a suitable time function on J+(	) ∩ D with hyperboloidal
level sets, satisfying T (t̄) = 1, and Ehyp(t̄) is the energy flux of ϕ with respect to the

level sets of the time functiont̄ . E (m)
hyp(0) is the energy of the first m derivatives of ϕ at

{t̄ = 0}, while Ew(0) is a suitable weighted energy of ϕ at {t̄ = 0}. The constant C on
the right hand side depends on the geometry of (D, g) and the precise choice of the
function t̄ , while in addition to that, Cm also depends on the number m of derivatives
of ϕ in E (m)(0).

For a more detailed statement of the above result, see [29].

1.6.3 Polynomial Decay for Solutions to the Wave Equation �ϕ = 0 on the Exterior
of Subextremal Kerr Spacetimes for |a| < M

In the next three sections, we will introduce some examples of spacetimes (M, g)
which satisfy the assumptions of Theorems 1.1–1.4.

Our first such example will be the exterior of a subextremal Kerr spacetime
(Ma,M , ga,M ) with parameters lying in the full subextremal range |a| < M . Notice
that this spacetime satisfies all the geometric assumptions of Theorems 1.1–1.4. In fact,
the form of the assumptions of Theorem 1.4 was motivated by the geometry of the
subextremal Kerr family. In [10], the authors have established an energy boundedness
and integrated local energy decay statement for solutions to (1.1) on (Ma,M , ga,M ).
As already noted in [10], by applying Theorems 8.1 and 9.1 one can thus readily
upgrade these results to polynomial decay estimates for solutions to (1.1), and there-
fore establish Corollary 3.1 of [10], which we state here with the notation of [10]:

Corollary (Corollary 3.1 of [16]) Let (Ma,M , ga,M ) be the exterior of a Kerr black
hole spacetime of mass M and angular momentum a, such that |a| < M. Let 	̃0 be a

123



6 Page 24 of 194 G. Moschidis

smooth spacelike hypersurface of (Ma,M , ga,M ) intersecting transversally the future
event horizon H+ and terminating at fututre null infinity I+. Let also 	̃τ denote the
image of 	̃0 under the flow of the stationary Killing field T of (Ma,M , ga,M ) (see
[16]), and let N be a globally timelike, future directed and T -invariant vector field on
Ma,M coinciding with T in the region {r � 1}.

Then, for any δ > 0, there exists a constant C = C(a,M, 	̃0, δ) > 0 such that for
any smooth solution ϕ to the wave equation (1.1) on J+(	̃0) ⊂ (Ma,M , ga,M ) with
suitably decaying initial data on 	̃0 the following energy decay estimates hold:

∫

	̃τ

J N
μ (ϕ)nμ

	̃
≤ C · Eτ−2, (1.37)

∫

	̃τ

J N
μ (Nϕ)nμ

	̃
≤ C · Eτ−4+δ. (1.38)

Moreover, the following pointwise decay estimates hold:

sup
	̃τ

r · ∣∣ϕ| ≤ C
√
E · τ− 1

2 , (1.39)

sup
	̃τ

∣
∣ϕ| ≤ C

√
E · τ− 3

2 (1.40)

and
sup
	̃τ

(∣∣Nϕ| + |∇	̃
ϕ|) ≤ C

√
E · τ−2. (1.41)

In the above, E denotes a suitable higher order weighted energy norm of the intial
data of ϕ on 	̃0, and is not necessarily the same quantity in all of the above estimates.

See [16] for more details.

Remark Notice that the slowly rotating 4 + 1 dimensional Myers–Perry spacetimes
satisfy all the geometric assumptions of Theorem 1.4. Therefore, in view of the inte-
grated local energy decay estimate established in [23], Theorem 1.4 implies that any
solution ϕ to (1.1) on a slowly rotating 4 + 1 dimensional Myers–Perry spacetime
with suitably decaying initial data satisfies a t̄−2+δ pointwise decay estimate.

1.6.4 Improved Polynomial Decay on Radiating Uniformly Small Perturbations of
Minkowski Spacetime

For our second example of a spacetime satisfying the assumptions of Theorems 1.1–
1.4, we will need to introduce a definition: We will define a metric g on R

d+1, d ≥ 3,
to be a radiating uniformly small perturbation of Minkowski spacetime if there exists
a (small) ε0 > 0 and an R > 0 such that, in the (u, r, σ) coordinate system on R

d+1

in the region {r ≥ R}, g is of the form (3.3) for some 0 < a ≤ 1, and moreover:

• For any integers m1,m2 ≥ 0 we have the global bound:

sup
Rd+1

|Lm1
T ∇m2

e (g − η)|e �m1,m2 ε0(1 + r)−1 min{1, |u|1−m1} (1.42)
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• In the region {r ≥ R} we can estimate for any m ≥ 1 in the (u, r, σ) coordinate
system:

Lm
T g = Om(ε0 min{1, |u|1−m}){O(r−1−a)drdu + O(r)dσdσ + O(1)dudσ

+ O(r−a)drdσ + O(r−1)du2 + O(r−2−a)dr2}. (1.43)

In the above, T is the vector field ∂t in the Cartesian coordinate system (t, x1, . . . , xd)
on R

d+1, e is the usual Euclidean metric on R
d+1 and ∇e is the flat connection on

R
d+1. Notice that if ε0 is smaller than an absolute constant, T is everywhere timelike

and furthermore (Rd+1, g) can not contain any trapped geodesics. In fact, if ε0 is
small enough, the ∂r -Morawetz current of Minkowski spacetime (combined with the
estimates of Section 4 of the present paper) yields an integrated local energy decay
estimate of the form (1.19) without loss of derivatives. Furthermore, the rest of the
geometric Assumptions of Theorems 1.1–1.4 are satisfied, except for the assumption
on the t̄−δ0 decay of deformation tensors of T and K which is replaced by a uniform
ε0-smallness assumption (see the remark below Theorem 1.4).

For such a spacetime (Rd+1, g), we will fix S ⊂ R
d+1 to be a smooth spacelike

hypersurface of (Rd+1, g) which terminates at I+, and let t̄ : Rd+1 → R be defined
by the condition T (t̄) = 1 and t̄ |S = 0.

One can deduce from [7] that dynamical solutions of the vacuum Einstein equations
arising from initial data which are close to the ones for Minkowski spacetime are
included in this class.

The following pointwise decay estimate for solutions to the wave equation on
radiating uniformly small perturbations of Minkowski spacetime is a straightforward
application of Theorems 1.3 and 1.4:

Corollary Let (Rd+1, g), d ≥ 3, be a uniformly small perturbation of Minkowski
spacetime, in the sense that for some ε0 > 0 and R > 0, g is of the form (3.3) in the
region {r ≥ R} and (1.42) and (1.43) hold. Let also t̄ : (Rd+1, g) → R be constructed
as above. Then, provided ε0 is smaller than an absolute constant, for any solution ϕ

to the wave equation �gϕ = 0 on (Rd+1, g) and any τ ≥ 0 we can bound

sup
{t̄=τ}

|ϕ| � τ− d
2 +O(ε0)

√
E0,d [ϕ](0) (1.44)

and, for any integer m ≥ 1:

sup
{t̄=τ}

|∇mϕ|e � τ− d+1
2 +O(ε0)

√
Em+2,d [ϕ](0). (1.45)

In case the following stronger assumptions on the deformation tensor of T hold for
some δ0 > 0 and any m1 ≥ 1, m2 ≥ 0 in place of (1.42) and (1.43):

sup
Rd+1

|rLm1
T ∇m2

e (g − η)|e �m1,m2 |u|1−m1−δ0 (1.46)
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and in the region {r ≥ R} for any m ≥ 1:

Lm
T g = Om(|u|1−m−δ0){O(r−1−a)drdu + O(r)dσdσ + O(1)dudσ

+O(r−a)drdσ + O(r−1)du2 + O(r−2−a)dr2}, (1.47)

then (1.44) and (1.45) can be upgraded to

sup
{t̄=τ}

|ϕ| � τ− d
2
√
E0,d [ϕ](0) (1.48)

and, for any integer m ≥ 1:

sup
{t̄=τ}

|∇mϕ|e � τ− d+1
2
√
Em+2,d [ϕ](0). (1.49)

For the definition of the initial energy norms E0,d [ϕ](0) and Em+2,d [ϕ](0) on the
hypersurfaces {t̄ = 0} (which can also be replaced by norms on {t = 0}), see Section
9.2.

Remark Notice that the above corollary extends a recent result of Oliver [31].

1.6.5 Improved Polynomial Decay on Dynamical, Radiating Black Hole Spacetimes

A final example of a class of spacetimes satisfying the assumptions of Theorems
1.1–1.4 will concern the exterior region of black hole spacetimes dynamically set-
tling down to a subextremal Kerr spacetime. Here, we will restrict ourselves only to
spacetimes (MSch, g) (where MSch has the differentiable structure of the Schwarz-
schild exterior) settling down to the Schwarzschild exterior spacetime (MSch, gM ) for
some M > 0 at a sufficiently fast polynomial rate. In particular, we will assume that
we can fix a double null foliation on (MSch, g) such that the components of g with
respect to this foliation approach the components of the Schwarzschild metric gM at a
sufficiently fast polynomial rate towards “timelike infinity”. This class of spacetimes
includes, in particular, the radiating spacetimes constructed in [14], which approach
the Schwarschild metric at an exponential rate. We will not provide more details of
this setup here, but instead we will refer the reader to [14]. The reason for this restric-
tion is that it is straightforward to check (essentially without calculation) that these
spacetimes (MSch, g) satisfy the assumptions of Theorems 1.1–1.4 (we will omit the
details).

On spacetimes (MSch, g) as above, the energy current yielding the integrated local
energy decay statement for the Schwarzschild exterior (MSch, gM ) constructed in
[8], combined with the estimates of Section 4 of the present paper and the fast rate at
which g approaches the Schwarzschild metric gM , imply that an integrated local energy
decay statement of the form (1.27) also holds on (MSch, g). Furthermore, (MSch, g)
also satisfies the rest of the geometric assumptions of Theorem 1.4. Therefore, as an
application of Theorem 1.4, we obtain the following result:
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Corollary Let (MSch, g) be a radiating spacetime approaching (MSch, gM ) in the
future at a sufficiently fast polynomial rate (in the sense described above). Let also
t̄ : MSch → R be a function with spacelike level sets intersecting H+ transversally
and terminating at I+, such that T (t̄) = 1 (where T is the Schwarzschild stationary
Killing field). Then for any solutionϕ to�gϕ = 0 on (MSch, g)with suitably decaying
initial data on a Cauchy hypersurface, the following pointwise decay estimates hold:

sup
{t̄=τ}

∣∣ϕ
∣∣ �m,ε τ− 3

2
√
E0[ϕ](0) (1.50)

and for any integer m ≥ 1:

sup
{t̄=τ}

∣∣∇mϕ
∣∣ �m τ−2

√
Em+2[ϕ](0). (1.51)

For the definition of the initial energy norms E0[ϕ](0) and Em+2[ϕ](0) on the hyper-
surfaces {t̄ = 0} (which can also be replaced by norms on a Cauchy hypersurface),
see Section 9.2

Remark We should notice that the spacetimes constructed in [14] are only Cl on the
future event horizon H+ for some sufficiently large l, but not C∞. However, Theorem
1.4 still applies in this case, and the above Corollary holds provided the integer m
in (1.51) is restricted to lie below some constant C(l) depending on the order of
differentiability of g on H+.

1.6.6 Expected Applications in the Case of Non-linear Wave Equations and the
Einstein Equations

As we mentioned in Section 1.4.2, the r p-weighted energy method of [11] has already
been applied to the study of solutions to non-linear wave equations on backgrounds
close to Minkowski spacetime (R3+1,η). In particular, in [40], Yang established the
global existence of small data solutions to quasilinear wave equations satisfying the
null condition on non-stationary backgrounds (M, g)which areC1-close to (R3+1,η)

and approach (R3+1,η) towards I+.
We expect that the estimates established in Sections 5–9 are robust enough to be

generalised to the case of small data solutions to systems of quasilinear wave equa-
tions satisfying the null condition on general radiating asymptotically flat spacetimes
(M, g) satisfying Assumptions (GM1), (GM2), (GM3), (GM4), (GM5) and the inte-
grated local energy decay assumption (ILED2). This would serve as an extension of
the results of [40] on this much broader class of spacetimes which are not necessarily
globally close to (R3+1,η) (and equipped with a metric g decaying to η at a weaker
rate in a neighborhood of I+), and moreover only satisfy an integrated local energy
decay statement with loss of derivatives.

In [20] and [14], the techniques of [11] have been extended to the case of the vacuum
Einstein equations

Ric(g) = 0, (1.52)
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establishing an r p-weighted hierarchy of estimates for the curvature components of
dynamical solutions to (1.52) approaching the Schwarzschild exterior in the future.
In view of the properties of the Kerr exterior spacetime, the asymptotic dynamical
behaviour of solutions to (1.52) arising as small perturbations of Minkowski space-
time, established in [7], and the decay estimates established for the linearised vacuum
perturbations of Schwarzschild exterior in [15], it would be reasonable to expect that
a proof of the well-known subextremal Kerr exterior stability conjecture (see [15])7

would also establish that all vacuum small perturbations of the subextremal Kerr exte-
rior spacetime satisfy Assumptions (GM1)–(GM5) and (ILED2). For this reason, we
expect the results of Sections 5–9, suitably adapted according to [14,20], to be relevant
to the ongoing research aimed at establishing the Kerr exterior stability conjecture.

1.7 Outline of the Paper and Technical Comments

In this section, we will describe briefly how the current paper is organised and we will
sketch the difficulties arising in the proof of the main statements. In particular, we will
point out the new difficulties that appear in comparison to [11,34]. The reader might
find it helpful to return to this section after viewing the detailed setup of the Theorems
in Sections 4–9.

The geometry of the asymptotically fat region Na f of the spacetimes (M, g) under
consideration is introduced in Section 3. In this region, a function t̄ with hyperboloidal
level sets is constructed. It is also shown that inNa f , the wave operator takes the form:

� · �ϕ = −
(

1 + O(r−1−a)
)

· ∂u∂v(�ϕ)+ r−2�g
Sd−1+O(r−1)(�ϕ)

− (d − 1)(d − 3)

4
r−2 · (�ϕ)+ Err(�ϕ), (1.53)

where � = r
d−1

2
(
1 + O(r−1)

)
and the “error” terms Err(�ϕ) have the form (3.15).

Notice that the particular choice of the factor � serves to eliminate some terms in the
expression for Err(�ϕ) which would be “problematic” in the derivation of the r p-
weighted energy estimates (1.15) and (1.16) (such terms would appear, for instance,

if one substituted � by r
d−1

2 in the case when ∂uM �= 0 in (1.14))
In Section 4, we establish ∂r -Morawetz and J T -energy boundedness estimates of

the form

∫

{τ1≤t̄≤τ2}∩{r≥R}
r−1−η

(
|∂ϕ|2 + r−2|ϕ|2

)
�η

∫

{t̄=τ1}∩{r≥R}
J Tμ (ϕ)n̄

μ

+
∫

{τ1≤t̄≤τ2}∩{r∼R}

(
|∂ϕ|2 + r−2|ϕ|2

)
+
∫

{τ1≤t̄≤τ2}∩{r≥R}
r1+η|�ϕ|2

+
∫

{τ1≤t̄≤τ2}∩{r≥R}
r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
(1.54)

7 Provided, of course, that the conjecture is true!
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and

∫

{t̄=τ1}∩{r≥R}
J Tμ (ϕ)n̄

μ �η

∫

{t̄=τ1}∩{r≥R}
J Tμ (ϕ)n̄

μ

+
∫

{τ1≤t̄≤τ2}∩{r∼R}

(
|∂ϕ|2 + r−2|ϕ|2

)

+
∫

{τ1≤t̄≤τ2}∩{r≥R}
r1+η|�ϕ|2

+
∫

{τ1≤t̄≤τ2}∩{r≥R}
r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
, (1.55)

respectively. We notice that the last terms of the right hand sides of (1.54) and (1.55)
appear due to the radiating asymptotics of (1.14), and can be completely dropped in
the case the spacetime is non radiating or when the radiating components of (1.14)
satisfy some special monotonicity conditions (which are satisfied in the case when
∂uM ≤ 0 in (1.14) and the spacetime is spherically symmetric).

In Section 5, the r p-weighted energy hierarchy (1.15) is established. This is
achieved by multiplying the expression (1.53) by r p∂v(�ϕ) and then integrating by
parts (in the top order terms) over a region of the form {τ1 ≤ t̄ ≤ τ2} (athough
regions of different “shape” are also treated). In this integration by parts proce-
dure, the error terms occuring from the Err(�ϕ) summands are controlled with
the help of the already positive definite terms in the resulting expression, after
adding to it the estimates (1.54) and (1.55), using also a Hardy-type inequality for
the zeroth order terms. It is in this procedure that the elimination of the “worst”
terms in Err(�ϕ), resulting from the precise choice of the factor � in (1.53), is
important.

In Section 6, the higher order r p-weighted energy hierarchy (1.16) is established.
This is achieved by commuting equation (1.53) with ∂v , r−1∂σ and r−1∂u , and repeat-
ing the proof leading to (1.15), after noticing that the first two commutation vector
fields lead to the appearence of some new bulk terms with favorable sign. Notice
that in this procedure, multiple integrations by parts are performed also on lower
order terms, in order to guarantee that (1.16) is valid even at the (upper) endpoint
p = 2k.

In Section 7, Theorem 1.5 concerning the existence of the Friedlander radiation
field is formulated and established with the use of the boundary terms controlled by
the r p-weighted energy hierarchy (1.16) (for 2k−1 < p ≤ 2), combined simply with
the fundamental theorem of calculus. As a corollary of Theorem 1.5, it is shown the
L2 norm of certain derivatives of the radiation field of ϕ on I+ are also controlled by
the right hand side of (1.15) and (1.16).

In Section 8, the geometric conditions and the integrated local energy decay assump-
tion (consistent with the right hand side error term in (1.54)) on the spacetimes
(M, g), on which Theorem 1.3 (concerning the t̄−1 decay estimates for ϕ) applies,
are introduced. The proof of Theorem 1.3 then follows by applying the pigeonhole
principle on the positive bulk terms of the hierarchy (1.15), as was first done in [11].
Notice that, since no energy boundedness statement is a priori assumed, in order to
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obtain the final decay estimate in this procedure, an energy boundedness estimate
with loss of derivatives (and right hand side error terms consistent with (1.55)) is
established.8

Finally, in Section 9, the extra geometric conditions on (M, g), required for Theo-

rem 1.4 (concerning the t̄− d
2 decay estimates for ϕ) to hold, are formulated. The proof

of Theorem 1.4 then follows by repeated applying the pigeonhole principle argument
on the higher order hierarchy (1.16) for higher T and χ · K derivatives of ϕ (where
χ is a suitable compactly supported cut-off function). In each step in this procedure,
the wave equation is used to substitute derivatives of ϕ tangential to the hyperboloids
{t̄ = const} with T and χ · K derivatives of ϕ, in a fashion similar to [34]. In the
end, however, the wave equation is used again to transform decay estimates of T and
χ ·K derivatives of ϕ into decay estimates of certain elliptic operators on {t̄ = const}
applied on ϕ, and then the elliptic estimates of Section B of the Appendix yield decay
estimates for the energy of all higher order derivatives of ϕ. Pointwise decay estimates
for ϕ then follow by applying the Gagliardo–Nirenberg type estimates of Section

9.8. Thus, our method for extracting t̄− d
2 decay estimates differs substantially from

the method implemented in [34] (which yielded t̄− 3
2 +δ decay estimates). For a more

detailed sketch of the proof of Theorem 1.4, see Section 9.4. Let us remark that the
elliptic estimates of Section B are also used to control error terms arising from the
commutations with the truncated vector field χ ·K .

2 Notational Conventions

2.1 Conventions on Constants and Inequality Symbols

We will use capital letters (e.g. C) to denote “large” constants, namely constants that
appear on the right hand side of inequalities, and hence can be replaced by larger
ones without affecting the validity of the inequality. Lower case letters (e.g. c) will
be used to denote small constants (which can similarly freely be replaced by smaller
ones). Moreover, the same character might be used to denote different constants even
in adjacent lines or formulas.

We will not keep track of the dependence of constants on the specific geometric
aspects of our spacetime, except for some very specific cases. However, we will always
keep track of the dependence of all constants on each parameter that has not been fixed.
Once a parameter is fixed (which will be clearly stated in the text), we will feel free
to drop the dependence of constants on it.

The notation f1 � f2 for two real functions f1, f2 will as usual mean that there
exists some C > 0, such that f1 ≤ C · f2. Of course, it should be stated clearly in
each case whether this constant C depends on any free parameters. If nothing is stated
regarding the dependence of this constant on parameters, it should be assumed that it
only depends on the geometry of the background under consideration.

8 Notice, however, that this energy estimate can yield a “true” energy boundedness estimate only in the
case where the spacetime (M, g) is non-radiating or when the radiating components of (1.14) satisfy some
special monotonicity conditions.
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We will also write f1 ∼ f2 if f1 � f2 and f2 � f1. Moreover, f1 � f2 will mean
that the quotient | f1|

| f2| can be bounded from above by some sufficiently small positive
constant, the magnitude and the dependence of which on variable parameters will be
clear in each case from the context. Furthermore, for any function f : M → [0,+∞)

defined on some set M, we will denote with { f � 1} the subset { f ≥ R} of M for
some constant R � 1.

For functions f1, f2 of some variable x taking values in a semi-infinite interval
[a,+∞), writing f1 = o( f2) will imply that f1

f2
can be bounded by some continuous

function h : [a,+∞) → R+ such that h(x) → 0 as x → +∞. Again, the dependence
of this bound h on any free parameter will be clear from the context.

2.2 Convention on Connections and Volume form Notations

We will frequently denote the natural connection of a pseudo-Riemannian manifold
(N , hN ) as ∇hN or ∇hN , and the associated volume form as dhN . If hN is Rie-
mannian, we will denote the associated norm on ⊕n,m∈N (⊗nTN ⊗m T ∗N ) with∣
∣ · ∣∣hN .

For any integer j ≥ 0,
(∇hN

) j
or ∇ j

hN will as usual denote the higher order
operator

∇hN · · · ∇hN︸ ︷︷ ︸
j times

. (2.1)

Notice that the above product is not symmetrised. We will always use Latin characters
to denote such powers of covariant derivative operators, while Greek characters will
be used for the indices of a tensor in an abstract index notation.

Example Under these conventions, for a (n,m)-tensor k and a function u on a pseudo-
Riemannian manifold (N , hN ), the quantity

kα1...αn
β1... βm

·
(
∇n+m
hN

)β1... βm

α1... αn
u

denotes a contraction of k with the higher order derivative ∇n+m
hN u of u, where the

metric hN was used to raise the first m indices of ∇n+m
hN u. Notice that the abstract

index notation used above is independent of the choice of an underlying coordinate
chart for the indices.

2.3 Conventions on Notations for Derivatives on S
d−1

In this paper we will frequently work in polar coordinates, and hence it will prove
convenient to introduce some shorthand notation regarding iterated derivatives on the
unit sphere S

d−1, d ≥ 2.
We will denote with gSd−1 the usual round metric on the sphere Sd−1, which is the

induced metric on the unit sphere ofRd . The metric gSd−1 extends naturally to an inner
product on the tensor bundle ⊕n,m∈N

(⊗nTSd−1 ⊗m T ∗
S
d−1
)

over Sd−1; we will still
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denote this inner product as gSd−1 . For any tensor field m on S
d−1, |m|g

Sd−1 will as

usual denote the norm of m with respect to gSd−1 . We will also denote with ∇Sd−1
or

∇Sd−1 the covariant derivative associated with gSd−1 . We will denote with �g
Sd−1 the

Laplace–Beltrami operator on (Sd−1, gSd−1). For any smooth (k1, k2)-tensor field m

on S
d−1,

(
∇Sd−1

)k
m (or ∇k

Sd−1m) will denote the (k1, k2 + k)-tensor field on S
d−1

obtained after applying the operator ∇Sd−1
on m k times.

We will frequently work on regions U of a spacetime Md+1 where there exists a
coordinate “chart” mapping U diffeomorphically onto R+ ×R+ × S

d−1. In any such
a coordinate “chart”, σ will denote the projection σ : U → S

d−1. Notice that with this
notation, for any x ∈ M, σ(x) is a point on S

d−1 and not just the coordinates of this
point in a coordinate chart on S

d−1. We will not need to fix a coordinate atlas on S
d−1.

We will use the same σ notation also for the spherical variable of a polar coordinate
“chart” on codimension 1 submanifolds of M (the range of such a “chart” will be
R+ × S

d−1). For instance, (r, σ) : {t = 0} → R+ × S
d−1 will denote the usual polar

coordinate chart on the hyperplane {t = 0} of Rd+1.
For any function h on a subset U of a spacetime M covered by a polar coordinate

chart (u1, u2, σ) : U → R+ ×R+ ×S
d−1 and any α1, α2 ∈ R+, h(α1, α2, ·) defines a

function on S
d−1. In this way, the ∇Sd−1

differential operator on S
d−1 is extended to

a tangential differential operator on the hypersurfaces {u1, u2 = const} of U . Notice,
of course, that this operator is tied to the specific choice of the polar coordinate chart
(u1, u2, σ).

We will now introduce some schematic notation for derivatives on S
d−1 (and the

associated tangential operators on the hypersurfaces {u1, u2 = const} in a (u1, u2, σ)

coordinate chart on a spacetime M). For any function h on S
d−1 and any k ∈ N, we

will frequently denote the k-th order derivative ∇k
Sd−1h as ∂kσh, and we will also use

the following notation for the norm of this tensor:

|∂kσh| .=
∣∣∣∇k

Sd−1h
∣∣∣
Sd−1

. (2.2)

Moreover, for any symmetric (k, 0)-tensor a on S
d−1, we will use the following

schematic notation for the contraction of
(
∇Sd−1

)k
h with a:

a · ∂kσh .= aι1...ιk (∇k
Sd−1)ι1...ιk h (2.3)

(see the previous section for the notations on powers of covariant derivatives and
the abstract index notation). We will use the same notation for the contraction of the
product of derivatives of two or more functions: For any set of n functions h1, . . . , hn
on S

d−1 and any set ( j1, . . . jn) of non negative integers, for any (
∑n

k=1 jk, 0)-tensor
a on S

d−1 which is symmetric in any pair of indices lying in the same one of the

intervals Im =
(∑m−1

k=1 jk + 1,
∑m

k=1 jk
)

for each m ∈ {1, . . . n} (but not necessarily

symmetric in pairs of indices lying in different Im’s), we will denote
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a · ∂ j1
σ h1 · · · ∂ jn

σ hn
.=a

ι1...ι
∑n

k=1 jk ·
(
∇ j1
Sd−1

)

ι1...ι j1

h1 · · ·
(
∇ jn
Sd−1

)

ι∑n−1
k=1 jk+1

...ι∑n
k=1 jk

hn .

(2.4)

The same notation (2.3) and (2.4) will also apply when h, h1, . . . , hn are tensor
fields on S

d−1.
Depending on the context, dσ will be used to denote either the usual volume

form on (Sd−1, gSd−1 ) or a 1-form on S
d−1 satisfying for any k ∈ N the bound∣

∣∣∣
(
∇Sd−1

)k
dσ

∣
∣∣∣
g
Sd−1

≤ 10k . Similarly, dσdσ will denote a symmetric (2, 0)-tensor on

S
d−1 satisfying for any k ∈ N the bound

∣∣
∣∣
(
∇Sd−1

)k
(dσdσ)

∣∣
∣∣
g
Sd−1

≤ 10k .

As an example, the above notation will allow us to perform the following integration
by parts procedure onSd−1 for any function f and any tensora with the aforementioned
symmetries:

∫

Sd−1
a · ∂σ f · ∂σ∂σ f dσ = −1

2

∫

Sd−1
(ẽ1∂σa + ẽ2a) · ∂σ f · ∂σ f dσ, (2.5)

for some smooth contracting tensors ẽ1, ẽ2 which are bounded (in any Ck norm) with
bounds depending only on the tensor type of a.

We will frequently use the notation (2.3) and (2.4) in cases where we do not have
an explicit form for the contracting tensor a, but we merely have bounds for the norm
of a and its derivatives. It is for this reason that we choose to use a notation which
apparently loses information regarding the structure of the underlying expression.

Notice that in a polar coordinate chart (u1, u2, σ) : U → R+ × R+ × S
d−1, the

following commutation relation holds for any function h:

L∂ui
∇Sd−1

h = ∇Sd−1
∂ui h, (2.6)

where ∂ui is the coordinate vector field associated to the coordinate function ui , i =
1, 2. Therefore, we will frequently denote

L∂ui
∇Sd−1

h
.= ∂ui ∂σh, (2.7)

and this will allow us to commute ∂ui with ∂σ, as if ∂σ was a regular coordinate vector
field.

2.4 Convention on the O(·) Notation

For the conventions regarding the use the O(·) notation on asymptotically flat space-
times in this paper, see the beginning Section 3.
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2.5 Conventions on Integration

When we integrate over open subsets of a Lorentzian manifold (M, g) using the
natural volume form ω associated to g, we will often drop the volume form in the
expression for the integral. Recall that ω is expressed as

ω = √−det (g)dx0 · · · dxd

in any local coordinate chart (x0, x1, x2, . . . , xd). The same rule will apply when
integrating over any spacelike hypersurface S of (M, g) using the natural volume
form of its induced Riemannian metric.

2.6 Notations for Vector Field Multipliers and Currents

Since we will use the language of currents and vector field multipliers in order
to establish the desired estimates, let us briefly recall first the required nota-
tion: On any Lorentzian manifold (M, g), associated to the wave operator �g =

1√−det (g)
∂μ
(√−det (g) · gμ ν∂ν

)
is the energy momentum tensor T , which for any

smooth function ψ : M → C takes the form

Tμ ν(ψ) = 1

2

(
∂μ ψ ·∂νψ̄ + ∂μψ̄ · ∂ν ψ

)− 1

2

(
∂λ ψ ·∂λψ̄

)
gμ ν. (2.8)

Given any continuous and piecewise C1 vector field X on M, we can define almost
everywhere the associated currents

J X
μ (ψ) = Tμ ν(ψ)Xμ, (2.9)

K X (ψ) = Tμ ν(ψ)∇μXψ. (2.10)

The following divergence identity then holds almost everywhere:

∇μ J X
μ (ψ) = K X (ψ)+ Re

{
(�g ψ) · Xψ̄

}
. (2.11)

3 Geometry of the Asymptotically Flat Regions (Na f , g)

In Sections 4, 5 and 6, we will work in d + 1 dimensional, smooth and time oriented
Lorentzian manifolds (N d+1

a f , g) diffeomorphic to R×(Rd\BR) for d ≥ 3 (where BR

is the closed Euclidian ball of radius R). The manifolds (Na f , g) will serve as models
of the asymptotically flat region of more general asymptotically flat spacetimes, and
will appear as open subsets of the Lorentzian manifolds studied in Sections 7, 8 and
9. Let us notice that (Na f , g) will not in general be globally hyperbolic.

We will fix a global coordinate chart (t, r, σ) : Na f → R× (Rd\BR), where t ∈ R

is the projection to the first factor of R × (Rd\BR), and (r, σ) ∈ (R+,Sd−1) are the
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usual polar coordinates on R
d\BR . Moreover, it will be useful for us to define the

coordinate function u = t − r , and introduce the coordinate system (u, r, σ).
In the (u, r, σ) coordinate system, we will adopt the following notation for the

derivatives of functions h on Na f : We will write

h = O(rb) (3.1)

for some b ∈ R if for any integer k ≥ 0 we can bound:

∑

k1+k2+k3=k

∣∣rk1∂k1
r ∂k2

σ ∂k3
u h
∣∣ ≤ Ck · rb (3.2)

for some constant Ck depending only on k and the function h itself. By replacing
the coordinate derivatives in (3.2) with the connection derivatives in the associated
directions, the same O(·) notation will apply when h takes values in some vector
bundle E over Na f with a fixed Hermitian metric to measure the size of the norms in
the left hand side of (3.2) and a fixed compatible connection. For instance, the case
when E = ⊗n1TSd−1 ⊗n2 T ∗

S
d−1 (equipped with the natural metric and connection

arising from the standard round gSd−1 ) will appear in the text.
In the coordinate chart (u, r, σ) on Na f , the Lorentzian metric g will be assumed

to take the following radiative form for some 0 ≤ a ≤ 1:

g = −4

(
1 − 2M(u, σ)

r
+ O(r−1−a)

)
du2 −

(
4 + O(r−1−a)

)
dudr

+ r2 · (gSd−1 + hSd−1

) (
has3 (u, σ)+ O(r−a)

)
dudσ

+ O(r−a)drdσ + O(r−2−a)dr2, (3.3)

where M(u, σ) and has3 (u, σ) are real functions on R× S
d−1 with all their derivatives

uniformly bounded and hSd−1 is a symmetric (2, 0)-tensor on S
d−1 satisfying the

bound hSd−1 = O(r−1).
Notice that this class of metrics includes the Bondi radiating spacetimes (see i.e.

[6,33]). Due to the form (3.3) of the metric, the vector field ∂r in the (u, r, σ) coordinate
system is almost null, but not necessarily null, and u is not necessarily an optical
function.

It will also be convenient to express the metric in an almost double null coordinate
system (u, v, σ), where v = u + r . We easily calculate from (3.3) that in the (u, v, σ)
coordinate system, the metric has the following form:

g = −
(

4 + O(r−1−a)
)
dvdu+r2 · (gSd−1 +hSd−1

)+(has(u, σ)+O(r−a)
)
dudσ

+ O(r−a)dvdσ + 4

(
−2M(u, σ)

r
+ O(r−1−a)

)
du2 + O(r−2−a)dv2, (3.4)

where hSd−1 = O(r−1).
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Notice that differentiation with respect to ∂v in the (u, v, σ) coordinate system is
the same as differentiation with respect to ∂r in the (u, r, σ) chart. Notice also that
differentiation with respect to ∂u is not the same in the two coordinate systems.

Let us also define the function t
.= 2u + r = u + v, which has spacelike level sets,

at least for r � 1. In the (t, r, σ) coordinate system, we easily calculate from (3.3)
that the metric g has the following expression:

g = −
(

1 − 2M(u, σ)

r
+ O(r−1−a)

)
· dt2 −

(
4M(u, σ)

r
+ O(r−1−a)

)
dtdr

+
(

1 + 2M(u, σ)

r
+ O(r−1−a)

)
dr2 + r2 ·

(
gSd−1 + O(r−1)

)

+
(

−1

2
has(u, σ)+ O(r−a)

)
(dr − dt)dσ + O(r−a)dtdσ. (3.5)

Notice that the vector field T = ∂t in the (t, r, σ) coordinate chart will not necessar-
ily be a Killing vector field for Na f , but it will certainly be timelike for r � 1. Notice
also that in this coordinate system, differentiation with respect to either ∂t or ∂r does
not improve the decay rate in r of O(r−c) functions (∂r in this system is different than
∂r in the (u, r, σ) chart).

It is important to remark that if R � 1, in the region {r ≥ R} of Na f we can
estimate dudvdσ ∼ r−(d−1) · dvolg . In this region, we will also use the notation

|∂ϕ|2 .= |∂vϕ|2 + |∂uϕ|2 + |r−1∂σϕ|2 (3.6)

for the “coordinate Euclidean norm” of the gradient of any differentiable function
ϕ : Na f → C.

3.1 Spacelike Hyperboloidal Hypersurfaces Terminating at I+

It will be convenient to introduce a family of spacelike hypersurfaces “terminating at
future null infinity” (in a sense that will be made precise shortly). These hypersurfaces
will make easier the extraction of information regarding the radiating properties of
solutions ϕ to the wave equation �gϕ = 0 on (Na f , g).

We first introduce the following definition:

Definition 3.1 We define the future null infinity I+ of (Na f , g) as the abstract limit
of the hypersurfaces {v = vn} as vn → +∞ in the (u, v, σ) coordinate system.
In particular, a function � on I+ will always be defined as the limit limv→+∞ �̃

in the (u, v, σ) coordinate system for some function �̃ on Na f . We will also set
I+(τ1, τ2) = I+ ∩ {τ1 ≤ u ≤ t2}, which is to be understood as the abstract limit of
the hypersurfaces {v = vn} ∩ {τ1 ≤ u ≤ τ2} as vn → +∞ in the (u, v, σ) coordinate
system.

We will now define the notion of a hypersurface terminating at I+:
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Definition 3.2 Let S be an achronal inextendible hypersurface of (Na f , g). We will
say that S terminates at future null infinity I+ if the coordinate function u restricted
on S ∩ {r � 1} is bounded.

Notice that due to the form (3.3) of the metric in the (u, r, σ), and in particular due to the
fact that in this coordinate system g(∂r , ∂r ) = O(r−2−a) and g(∂r , ∂σ) = O(r−a),
we can easily calculate that for any R � 1 and τ ∈ R the boundary hypersurface
∂ J+ ({r ≤ R} ∩ {t = τ}) is an achronal hypersurface terminating at future null infin-
ity.

We can now construct a function t̄ : Na f → R with level sets that are spacelike
hypersurfaces9 terminating at future null infinity. More precisely, we define for any
fixed 0 < η′ < 1 + a

t̄η′ .= u − 1

1 + rη′ . (3.7)

The level sets of t̄η′ are spacelike hypersurfaces for r large enough depending on η′.
This follows from the computation:

gμν∂μ t̄η′ · ∂ν t̄η′ = gμν∂μu · ∂νu + 2gμν∂μu · ∂ν
( −1

1 + rη′

)

+ gμν∂μ

( −1

1 + rη′

)
· ∂ν
( −1

1 + rη′

)

= −2η′r−1−η′ + Oη′(r−2−a + r−2−η′
) < 0.

for r large enough in terms of η′.
Moreover, |t̄η′ − u| ≤ 1, and hence the level sets of t̄η′ are spacelike hypersurfaces

terminating at future null infinity, according to the definition 3.2.
We will frequently simply write t̄ in place of t̄η′ , since η′ will be considered fixed

throughout the next Sections.
For any τ ∈ R and τ1 ≤ τ2 ∈ R, we will denote

Sτ
.= {t̄ = τ} ∩ {r ≥ R3} (3.8)

and
R(τ1, τ2)

.= {τ1 ≤ t̄ ≤ τ2} ∩ {r ≥ R3}, (3.9)

where R3 = R3(η
′) is fixed large enough so that in the region {r ≥ R3} the level sets

of t̄η′ are spacelike.
Due to the definition of t̄η′ , the image of Sτ1 under the flow of the vector field

T = ∂t in the (t, r, σ) coordinate system for time τ is precisely Sτ1+τ.
Note that the Sτ can be regularly parametrized both by (u, σ) and by (v, σ), and the

corresponding coordinate volume forms dudσ and dvdσ satisfy the relation

dudσ ∼η′ r−1−η′
dvdσ. (3.10)

9 At least for r � 1.
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3.2 Expression of the Wave Equation in the Coordinate Chart (u, v,σ)

In the coordinate chart (u, v, σ) on Na f , the metric g takes the form (3.4), and we can
easily compute that in these coordinates:

det (g) = −4r2(d−1) ·
(

1 + O(r−1)
)

(3.11)

and the inverse of the metric has the following form:

g−1 = −
(

1 + O(r−1−a)
)
∂u∂v + r−2

(
g−1
Sd−1 − hinv

Sd−1

)

+ r−2
(

1

2
has(u, σ)+ O(r−a)

)
∂v∂σ

+ O(r−2−a)∂u∂σ +
(

−2M(u, σ)

r
+ O(r−1−a)

)
∂2
v + O(r−2−a)∂2

u ,

(3.12)

where hinv
Sd−1 = O(r−1).

Setting

�
.=
(

−1

4
det (g)

) 1
4 = r

d−1
2

(
1 + O(r−1)

)
, (3.13)

the wave operator then takes the following form:

� · �ϕ = −
(

1 + O(r−1−a)
)

· ∂u∂v(�ϕ)+ r−2�g
Sd−1+h

Sd−1 (�ϕ)

− (d − 1)(d − 3)

4
r−2 · (�ϕ)+ Err(�ϕ), (3.14)

where the Err(�) term is of the form (in our schematic notation of Section 2):

Err(�) = O(r−2−a) · ∂2
u�+ O(r−1) · ∂2

v�+ O(r−2−a)∂u∂σ�+ O(r−2)∂v∂σ�

+ O(r−3−a)∂σ∂σ�+ O(r−2−a)∂u�+ O(r−1−a)∂v�

+ O(r−2−a) · ∂σ�+ O(r−3)�. (3.15)

Notice the similarity of the expression (3.14) with the expression of the wave
operator in the double null coordinates of Minkowski spacetime.

4 Some ∂r - Morawetz Type and Energy Boundedness Estimates

In this section, we will establish some estimates of Morawetz type, controlling the
behaviour of solutions to �ϕ = F on our asymptotically flat model (Na f , g).

Recall that in the (u, v, σ) coordinate system, the wave equation takes the form
(3.14):
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� · �ϕ = −
(

1 + O(r−1−a)
)

· ∂u∂v(�ϕ)+ r−2�g
Sd−1+h

Sd−1 (�ϕ)

− (d − 1)(d − 3)

4
r−2 · (�ϕ)+ Err(�ϕ), (4.1)

where
� = r

d−1
2

(
1 + O(r−1)

)
(4.2)

and the Err(�) term is of the form:

Err(�) = O(r−2−a) · ∂2
u�+ O(r−1) · ∂2

v�+ O(r−2−a)∂u∂σ�

+ O(r−2)∂v∂σ�+ O(r−3−a)∂σ∂σ�+ O(r−2−a)∂u�

+ O(r−1−a)∂v�+ O(r−2−a) · ∂σ�+ O(r−3)�. (4.3)

We will also adopt the following convention: We will say that a function ϕ : Na f →
C has compact support in space if there exists a continuous function h : R → R+
such that supp(ϕ) ⊆ {r ≤ h(t)}.

4.1 A First ∂r - Morawetz Type Estimate

We will establish the following Morawetz-type lemma in the region {r � 1}:
Lemma 4.1 For any given 0 < η < a, there exists an R = R(η) > 0 and constants
C(η), c(η) > 0 such that for any smooth function ϕ : Na f → C, any τ1 ≤ τ2, any
T ∗ > 0 and any smooth cut-off function χ : Na f → [0, 1] supported in {r ≥ R} we
can bound:
∫

R(τ1,τ2)∩{t≤T ∗}
χ ·
(
r−1−η

(
|∂uϕ|2 + |∂vϕ|2

)
+ r−1|r−1∂σϕ|2 + r−3−η|ϕ|2

)

≤ C(η) ·
∫

{supp(∂χ)}∩R(τ1,τ2)∩{t≤T ∗}
|∂χ | ·

(
|∂ϕ|2 + r−2|ϕ|2

)

+C(η) ·
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χ
(
|∂vϕ|2 + |r−1∂σϕ|2

+ r−1−η′ |∂uϕ|2 + r−2|ϕ|2
)
rd−1dvdσ

+C(η) ·
∫

{t=T ∗}∩R(τ1,τ2)

χ
(
|∂ϕ|2 + r−2|ϕ|2

)
rd−1dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ · Re{

(
O(1)(∂v − ∂u)ϕ̄ + O(r−1)ϕ̄

)
· �gϕ

}

+C(η)
∫

R(τ1,τ2)∩{t≤T ∗}
χ · r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.4)

Remark In case the radiative components of the metric satisfy the bounds ∂uM ≤ 0
and |∂uhas | + |r∂uhSd−1 | � −(∂uM) + O(r−a) (which includes the non-radiating
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case ∂uM = 0, has = 0 and hSd−1 = O(r−1−a)), the last term of the right hand side of
(4.4) can be omitted. Furthermore, in case the T vector field satisfies (9.6) for m = 1,
then the last term of the right hand side of (4.13) is replaced by

∫

R(τ1,τ2)∩{t≤T ∗}
χ · t̄−δ0r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.5)

Proof Without loss of generality, we can assume that ϕ is real valued.
Let us consider the function f : [0,+∞) → (0,+∞) defined as:

f (r)
.= rη

1 + rη . (4.6)

Setting � = �ϕ and multiplying equation (4.1) with

χ · f (r) · (∂v − ∂u)�,

we obtain after integrating overR(τ1, τ2)∩{t ≤ T ∗} (with dudvdσ used as a volume
form):

∫

R(τ1,τ2)∩{t≤T ∗}
χ f (r) · (∂v − ∂u)� ·��ϕ dudvdσ

=
∫

R(τ1,τ2)∩{t≤T ∗}
χ f (r) · (∂v − ∂u)�

·
{
−
(

1 + O1(r
−1−a)

)
· ∂u∂v�+ r−2�g

Sd−1+h
Sd−1�

− (d − 1)(d − 3)

4
r−2 ·�+ Err(�)

}
dudvdσ. (4.7)

Using the expression

�g
Sd−1+h

Sd−1 = �g
Sd−1 + O(r−1)∂σ∂σ + O(r−1)∂σ,

we obtain after integrating by parts in ∂u , ∂v and ∂σ and absorbing the error terms in
the Err summand (and recalling that ∂vr = −∂ur = 1):

−
∫

R(τ1,τ2)∩{t≤T ∗}
χ f (r) · (∂v − ∂u)� ·�� ϕ dudvdσ

=
∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

{ (
f ′ + O(r−1−a) f

) |∂v�|2 + ( f ′ + O(r−1−a) f
) |∂u�|2

+2
(
2r−1(1 + O(r−1)) f − (1 + O(r−a)) f ′)

×
(

|r−1∂σ�|2 + (d − 1)(d − 3)

4
|r−1�|2

)}
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ f · (∂v − ∂u)� · (Err(�)+ O(r−3)∂σ∂σ�

)
dudvdσ
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+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) · (|∂�|2 + r−2|�|2) dudvdσ +

2∑

i=1

∫

Sτ1 ∩{t≤T ∗}
χ

·O(1)
(
|∂v�|2 + |r−1∂σ�|2 + r−1−η′ |∂u�|2 + r−2|�|2

)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}∩{r≥R}
O(1)

(|∂�|2 + r−2|�|2) dvdσ. (4.8)

Since� = �ϕ, we calculate by applying the product rule and expanding the square:

∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

(
f ′ + O(r−1−a) f

)
|∂v�|2 dudvdσ

=
∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

(
f ′ + O(r−1−a) f

)(
(∂vϕ)

2 + r−2(
(d − 1)2

4

+ O(r−1))ϕ2 + r−1(
d − 1

2
+ O(r−1))∂v(ϕ

2)

)
�2dudvdσ. (4.9)

By integrating by parts in the ∂v(ϕ2) term, since for all x > 0:

− d

dx

(
xd−2 d f

dx

)
+ d − 1

2
xd−3 d f

dx
≥ cηxd−4+η

(1 + xη
)−2 − Cη(d − 3)xd−4 f,

(4.10)
we obtain for any δ0 ≤ 1 due to the form of f if R is large enough in terms of η:

∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

(
f ′ + O(r−1−a) f

) |∂v�|2 dudvdσ

≥ δ0

(
cη

∫

R(τ1,τ2)∩{t≤T ∗}
χ · r−1−η (

(∂vϕ)
2 + r−2ϕ2) �2dudvdσ

−Cη(d − 3)
∫

R(τ1,τ2)∩{t≤T ∗}
χ · r−3|�|2 dudvdσ

−C
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χ | · r−2|�|2 dudvdσ

−C
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χ · r−2|�|2 dvdσ − C

∫

R(τ1,τ2)∩{t=T ∗}
χ · r−2|�|2 dvdσ

)

.

(4.11)

Notice that the (d − 3)
∫
χ · r−3|�|2 error term in the right hand side (4.11) can be

controlled by the corresponding term in the right hand side of (4.8), provided that δ0
is small enough in terms of η.

Using, now the expression (4.3) for Err(�), we can readily bound after integrating
by parts in the highest order terms (and in the �∂u� = 1

2∂u(�
2) term) and using a

Cauchy–Schwarz inequality:
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∫

R(τ1,τ2)∩{t≤T ∗}
χ f (r) · (∂v − ∂u)� ·

(
Err(�)+ O(r−3)∂2

σ�
)
dudvdσ

≤ Cη

∫

R(τ1,τ2)∩{t≤T ∗}
χ
{
O(r−1−a)|∂u�|2

+O(r−1)
(
|∂v�|2 + |r−1∂σ�|2 + r−2|�|2

)}
dudvdσ

+Cη

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χ |

(
|∂�|2 + r−2|�|2

)
dudvdσ + Cη

2∑

i=1

∫

Sτ1∩{t≤T ∗}
χ

·O(1)
(
|∂v�|2 + |r−1∂σ�|2 + r−1−η′ |∂u�|2 + r−2|�|2

)
dvdσ

+Cη

∫

R(τ1,τ2)∩{t=T ∗}
χ ·
(
|∂�|2 + r−2|�|2

)
dvdσ. (4.12)

Therefore, from (4.8), (4.11) and (4.12) for δ0 small enough in terms of η we obtain
the desired result (4.29) if R is large enough in terms of η. ��

We can also establish the following variant of Lemma 4.1 in the region bounded by a
pair of {t = const} hypersurfaces:

Lemma 4.2 For any given 0 < η < a, there exists an R = R(η) > 0 and constants
C(η), c(η) > 0 such that for any smooth function ϕ : Na f → Cwith compact support
in space, any t1 ≤ t2 and any smooth cut-off function χ : Na f → [0, 1] supported in
{r ≥ R} we can bound:

∫

{t1≤t≤t2}
χ ·
(
r−1−η

(
|∂uϕ|2 + |∂vϕ|2

)
+ r−1|r−1∂σϕ|2 + r−3−η|ϕ|2

)

≤ Cη

∫

{t1≤t≤t2}
|∂χ | ·

(
|∂ϕ|2 + r−2|ϕ|2

)
+ Cη

2∑

i=1

∫

{t=ti }∩{r≥R}
J Tμ (ϕ)n

μ

+
∫

{t1≤t≤t2}
χ · Re

{(
Oη(1)(∂v − ∂u)ϕ̄ + Oη(r−1)ϕ̄

)
· �gϕ

}

+Cη

∫

{t1≤t≤t2}
χ · r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.13)

Remark In case the radiative components of the metric satisfy the bounds ∂uM ≤ 0
and |∂uhas | + |r∂uhSd−1 | � −(∂uM) + O(r−a) (which includes the non-radiative
case ∂uM = 0, has = 0 and hSd−1 = O(r−1−a)), the last term of the right hand side
of (4.13) can be omitted.

The proof of this lemma is identical to the one for Lemma 4.1 (the only difference
being the domain ofNa f over which integrations by parts take place, and an application
of a Hardy type inequality for the boundary terms at t = t1, t2). Hence, the proof will
be omitted.
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4.2 An Improved ∂r - Morawetz Type Estimate

By a more careful choice of the function f used in the proof of Lemma 4.1, we
can obtain improved control of the spacetime integral of |∇ϕ|2, |ϕ|2 over any given
compact subset of R(τ1, τ2) ∩ {r ≥ R}, at the expense of having to introduce a
larger constant in the dependence on the initial energy of ϕ, but without such a loss
in the r ∼ R boundary terms. A related microlocal construction in the case of the
subextremal Kerr family can be seen in [16].

Lemma 4.3 For any given 0 < η < a, and any R > 0 sufficiently large in terms of η,
any Rc ≥ R, any τ1 ≤ τ2, any T ∗ > 0, any function χ : Na f → [0, 1] supported in
{r ≥ R} with ∂χ supported in {R ≤ r ≤ Rc} and any smooth function ϕ : Na f → C

we can bound:
∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ ·
((

|∂uϕ|2 + |∂vϕ|2
)

+ |r−1∂σϕ|2 + r−2|ϕ|2
)

+ Rc

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≥Rc}
χ ·
(
r−1−η

(
|∂uϕ|2 + |∂vϕ|2

)

+ r−1|r−1∂σϕ|2 + r−3−η|ϕ|2
)

≤ C(η) ·
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χ | · r ·

(
|∂ϕ|2+r−2|ϕ|2

)
+C(η, Rc)

·
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χ
(
|∂vϕ|2 + |r−1∂σϕ|2 + r−1−η′ |∂uϕ|2 + r−2|ϕ|2

)
rd−1dvdσ

+C(η, Rc) ·
∫

{t=T ∗}∩R(τ1,τ2)

χ
(
|∂ϕ|2 + r−2|ϕ|2

)
rd−1dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ · Re{

(
ORc,η(1)(∂v − ∂u)ϕ̄ + ORc,η(r

−1)ϕ̄
)

· �gϕ
}

+C(η)Rc ·
∫

R(τ1,τ2)∩{t≤T ∗}
χ · r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.14)

Remark In case the radiative components of the metric satisfy the bounds ∂uM ≤ 0
and |∂uhas | + |r∂uhSd−1 | � −(∂uM) + O(r−a) (which includes the non-radiative
case ∂uM = 0, has = 0 and hSd−1 = O(r−1−a)), the last term of the right hand
side of (4.3) can be omitted. Furthermore, in case the T vector field satisfies (9.6) for
m = 1, then the last term of the right hand side of (4.14) is replaced by

∫

R(τ1,τ2)∩{t≤T ∗}
χ · t̄−δ0r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.15)

Note that the constant in front of the boundary term in the r ∼ R region does not
depend on Rc. This is where the importance of this lemma lies, and this is where
Lemma (4.1) would fail to give a similar statement.

Proof Without loss of generality, we will assume that ϕ is real valued.
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Let us consider the smooth function fRc : Na f → (0,+∞) defined as fRc =
Rcg ◦ ( r

Rc
), where g : (0,+∞) → (0,+∞) is a smooth, increasing and concave

function satisfying:

g(x) =
{
x, x ≤ 1,

2, x ≥ 2.
(4.16)

We will follow the proof of Lemma 4.1, but we will use as a multiplier for equation
(4.1) the function

fimp = f · fRc , (4.17)

where

f = rη

1 + rη (4.18)

is the seed function used in the proof of Lemma 4.1.
Notice that for fimp we can calculate (since �2 = rd−1(1 + O(r−1))):

∂v fimp =−∂u fimp =(1+O(r−η
)
) · g′

(
r

Rc

)
+ηr−1−ηRc

(
1+O(r−1)

)
· g
(

r

Rc

)

(4.19)

and:

∂v

(
r−1�2∂u fimp

)
= −rd−2R−1

c

(
1 + O(r−1)

)
· g′′

(
r

Rc

)

−
(
(d − 2)rd−3 + 2ηrd−3−η

)
·
(

1 + O(r−1)
)

· g′
(

r

Rc

)

+η (η − (d − 3)) rd−4−ηRc

(
1 + O(r−1)

)
· g
(

r

Rc

)
.

Therefore, since g was assumed to be increasing and concave and satisfies (4.16), we
can bound:

∂v

(
r−1�2∂u fimp

)
− r−2�2∂u fimp

≥
{(−(d − 3)r−2 + ηr−2−η + O(r−3)

)
�2, r ≤ Rc

Rc
(−(d − 3)r−3 + η2r−3−η + O(r−4)

)
�2, r ≥ Rc.

(4.20)

Repeating the proof of Lemma 4.1, setting� = �ϕ and multiplying equation (4.1)
with χ · fimp · (∂v − ∂u)�, we obtain after integrating over R(τ1, τ2) ∩ {t ≤ T ∗}
(with dudvdσ used as a volume form) and integrating by parts in ∂u , ∂v and ∂σ:

−
∫

R(τ1,τ2)∩{t≤T ∗}
χ fimp · (∂v − ∂u)� ·��ϕ dudvdσ

=
∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

{ (
−∂u fimp + O(r−1−a) fimp

)
|∂v�|2
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+
(
∂v fimp + O(r−1−a) fimp

)
|∂u�|2

+Aimp

(
|r−1∂σ�|2 + (d − 1)(d − 3)

4
|r−1�|2

)}
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ fimp · (∂v − ∂u)� ·

(
Err(�)+ O(r−3)∂2

σ�
)
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
O( fimp|∂χ |) ·

(
|∂�|2 + r−2|�|2

)
dudvdσ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χO( fimp)

(
|∂v�|2+|r−1∂σ�|2+r−1−η′ |∂u�|2+r−2|�|2

)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
O( fimp)

(
|∂�|2 + r−2|�|2

)
dvdσ, (4.21)

where

Aimp
.= 2

(
2r−1(1 + O(r−1)) fimp − 1

2
(1 + O(r−a)) (∂v − ∂u) fimp

)
. (4.22)

Since � = �ϕ, we calculate by applying the product rule and expanding the
square:

∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

(
−∂u fimp + O(r−1−a) fimp

)
|∂v�|2 dudvdσ

=
∫

R(τ1,τ2)∩{t≤T ∗}
χ ·
(
−∂u fimp + O(r−1−a) fimp

)

×
{
(∂vϕ)

2 + r−2(1 + O(r−1))ϕ2 + r−1(1 + O(r−1))∂v(ϕ
2)
}
�2dudvdσ.

(4.23)

By integrating by parts in the ∂v(ϕ
2) term, we thus obtain (due to (4.20)) for any

δ0 ≤ 1:

∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

(−∂u fimp + O(r−1−a) fimp
) |∂v�|2 dudvdσ

≥ δ0

{
cη

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ · ((∂vϕ)2 + r−2−ηϕ2) �2dudvdσ

+ cηRc

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≥Rc}
χ · r−1−η (

(∂vϕ)
2 + r−2ϕ2) �2dudvdσ

−Cη(d − 3)
∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ · r−2|�|2 dudvdσ

−Cη(d − 3)Rc

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≥Rc}
χ · r−3|�|2 dudvdσ
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−
∫

R(τ1,τ2)∩{t≤T ∗}
O( fimp|∂χ |) · r−2|�|2 dudvdσ

−C(Rc)

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χr−2|�|2 dvdσ − C(Rc)

∫

R(τ1,τ2)∩{t=T ∗}
χr−2|�|2 dvdσ

}

.

(4.24)

Moreover, using a trivial Cauchy–Schwarz inequality for the ϕ∂vϕ term we can
bound from (4.23):

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ · 1

2

(
−∂u fimp + O(r−1−a) fimp

)
|∂v�|2 dudvdσ

≥
∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ ·
(
cηr−2ϕ2 − Cη(∂vϕ)

2
)
�2dudvdσ, (4.25)

and thus by adding to (4.24) a small multiple of (4.25) we obtain:

∫

R(τ1,τ2)∩{t≤T ∗}
χ · 1

2

(
−∂u fimp + O(r−1−a) fimp

)
|∂v�|2 dudvdσ

≥ δ0

{
cη

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ ·
(
(∂vϕ)

2 + r−2ϕ2
)
�2dudvdσ

+ cηRc

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≥Rc}
χ · r−1−η

(
(∂vϕ)

2 + r−2ϕ2
)
�2dudvdσ

−Cη(d − 3)
∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ · r−2|�|2 dudvdσ

−Cη(d − 3)Rc

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≥Rc}
χ · r−3|�|2 dudvdσ

−
∫

R(τ1,τ2)∩{t≤T ∗}
O( fimp|∂χ |) · r−2|�|2 dudvdσ

−C(Rc)

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χr−2|�|2 dvdσ

−C(Rc)

∫

R(τ1,τ2)∩{t=T ∗}
χr−2|�|2 dvdσ

}
. (4.26)

Using, now the expression (4.3) for Err(�), we can readily bound after integrating
by parts in the highest order terms (and in the �∂u� = 1

2∂u(�
2) term) and using a

Cauchy–Schwarz inequality:

∫

R(τ1,τ2)∩{t≤T ∗}
χ fimp · (∂v − ∂u)� ·

(
Err(�)+ O(r−3)∂2

σ�
)
dudvdσ

≤ Cη

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ
{
O(r−a)|∂u�|2
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+
(
|∂v�|2 + |r−1∂σ�|2 + r−2|�|2

)}
dudvdσ

+CηRc

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≥Rc}
χ ·
{
O(r−1−a)|∂u�|2

+ O(r−1)
(
|∂v�|2 + |r−1∂σ�|2 + r−2|�|2

)}
dudvdσ

+Cη

∫

R(τ1,τ2)∩{t≤T ∗}
O( fimp|∂χ |)

(
|∂�|2 + r−2|�|2

)
dudvdσ

+Cη(Rc)

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χO( fimp)

(
|∂v�|2 + |r−1∂σ�|2

+ r−1−η′ |∂u�|2 + r−2|�|2
)
dvdσ

+Cη(Rc)

∫

R(τ1,τ2)∩{t=T ∗}
O( fimp)

(
|∂�|2 + r−2|�|2

)
dvdσ. (4.27)

Therefore, from (4.21), (4.24) and (4.27) for δ0 small enough in terms of η, we
obtain the desired inequality if R is large enough in terms of η:

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≤Rc}
χ ·
((

|∂uϕ|2 + |∂vϕ|2
)

+ |r−1∂σϕ|2 + r−2|ϕ|2
)

+ Rc

∫

R(τ1,τ2)∩{t≤T ∗}∩{r≥Rc}
χ ·
(
r−1−η

(
|∂uϕ|2 + |∂vϕ|2

)

+ r−1|r−1∂σϕ|2 + r−3−η|ϕ|2
)

≤ C(η) ·
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χ | · r ·

(
|∂ϕ|2 + r−2|ϕ|2

)

+C(η, Rc) ·
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χ
(
|∂vϕ|2 + |r−1∂σϕ|2

+ r−1−η′ |∂uϕ|2 + r−2|ϕ|2
)
rd−1dvdσ

+C(η, Rc) ·
∫

{t=T ∗}∩R(τ1,τ2)

χ
(
|∂ϕ|2 + r−2|ϕ|2

)
rd−1dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ ·
(
ORc,η(1)(∂v − ∂u)ϕ + ORc,η(r

−1)ϕ
)

· �gϕ

+C(η)Rc ·
∫

R(τ1,τ2)∩{t≤T ∗}
χ · r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.28)

��
In the same way, we can establish a similar lemma in the region spanned by two

hypersurfaces of the form {t = const}.
Lemma 4.4 For any given 0 < η < a, and any R > 0 sufficiently large in terms of η,
any Rc ≥ R, any t1 ≤ t2, any function χ : Na f → [0, 1] supported in {r ≥ R} with
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∂χ supported in {R ≤ r ≤ Rc} and any smooth function ϕ : Na f → C with compact
support in space we can bound:s

∫

{t1≤t≤t2}∩{r≤Rc}
χ ·
((

|∂uϕ|2 + |∂vϕ|2
)

+ |r−1∂σϕ|2 + r−2|ϕ|2
)

+ Rc

∫

{t1≤t≤t2}∩{r≥Rc}
χ ·
(
r−1−η

(
|∂uϕ|2 + |∂vϕ|2

)
+r−1|r−1∂σϕ|2+r−3−η|ϕ|2

)

≤ C(η) ·
∫

{t1≤t≤t2}
|∂χ | · r ·

(
|∂ϕ|2 + r−2|ϕ|2

)

+C(η, Rc) ·
∫

{t=t1}∩{r≥R}
|∂ϕ|2 + C(η, Rc) ·

∫

{t=t2}∩{r≥R}
|∂ϕ|2

+
∫

{t1≤t≤t2}
χ · Re{

(
ORc,η(1)(∂v − ∂u)ϕ̄ + ORc,η(r

−1)ϕ̄
)

· �gϕ
}

+C(η)Rc ·
∫

{t1≤t≤t2}
χ · r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.29)

Remark In case the radiative components of the metric satisfy the bounds ∂uM ≤ 0
and |∂uhas | + |r∂uhSd−1 | � −(∂uM) + O(r−a) (which includes the non-radiative
case ∂uM = 0, has = 0 and hSd−1 = O1(r−1−a)), the last term of the right hand side
of (4.4) can be omitted.

4.3 Estimates for the JT -Energy

In this Section, we will establish some useful estimates for the energy associated to
the timelike vector field T = ∂u + ∂v in the coordinate chart (u, v, σ). Since we have
not assumed (Na f , g) to be stationary, the J T -energy current will not be in general
conserved.

Lemma 4.5 For any smooth functionϕ : Na f → C, any χ : Na f → [0, 1] supported
on {r ≥ R} for some R > 0 large in terms of the geometry of (Na f , g), any τ1 ≤ τ2
and any T ∗ > 0 the following estimate is true:

∫

Sτ2 ∩{t≤T ∗}
χ · J Tμ (ϕ)n̄μ +

∫

{t=T ∗}∩R(τ1,τ2)

(
|∂ϕ|2 + r−2|ϕ|2

)

≤ C ·
{∫

Sτi ∩{t≤T ∗}
χ · J Tμ (ϕ)n̄μ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ · r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + |r−1ϕ|2

)

+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) ·

(
|∂ϕ|2 + r−1|ϕ|2

)
+
∫

R(τ1,τ2)∩{t≤T ∗}
χO(1)

× Re
{
�−1 (∂v + ∂u) (�ϕ̄) · �ϕ

}}
. (4.30)
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for some constant C > 0 depending only on the geometry of (Na f , g). In the above, n̄
and n denote the future directed unit normals to the hypersurfaces Sτ and {t = const}
respectively.

Remark In case the radiative components of the metric satisfy the bounds ∂uM ≤ 0
and |∂uhas | + |r∂uhSd−1 | � −(∂uM) + O(r−a) (which includes the non-radiating
case ∂uM = 0, has = 0 and hSd−1 = O(r−1−a)), the second term of the right hand
side of (4.30) can be omitted. Furthermore, in case the T vector field satisfies (9.6) for
m = 1, then the second term of the right hand side of (4.30) is replaced by

∫

R(τ1,τ2)∩{t≤T ∗}
χ · t̄−δ0r−1

(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.31)

Proof Without loss of generality, we will assume that ϕ is real valued.
Setting � = �ϕ and multiplying equation (4.1) with χ · (∂v + ∂u)�, we obtain

after integrating over R(τ1, τ2) ∩ {t ≤ T ∗} (with dudvdσ used as a volume form):

∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)� ·��ϕ dudvdσ

=
∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)� ·

{
−
(

1 + O1(r
−1−a)

)
· ∂u∂v�

+ r−2χg
Sd−1+h

Sd−1�−
∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)�

×
{
− (d − 1)(d − 3)

4
r−2 ·�+ Err(�)

}}
dudvdσ. (4.32)

Using the expression

�g
Sd−1 +h

Sd−1 = �g
Sd−1 + O1(r

−1)∂σ∂σ + O(r−1)∂σ,

we obtain after integrating by parts in ∂u , ∂v and ∂σ and absorbing the error terms in
the Err summand (and recalling that ∂vr = −∂ur = 1):

−
∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)� ·��ϕ dudvdσ

=
∫

Sτ2 ∩{t≤T ∗}
1

2
χ

(
(1 + O(r−1)) · (∂v�)2 +

∣∣∣r−1∂σ�

∣∣∣
2 + (d − 1)(d − 3)

4
|r−1�|2

)
dvdσ

+
∫

Sτ2 ∩{t≤T ∗}
1

2
χ

(
(1+O(r−1)) · (∂u�)2+

∣∣∣r−1∂σ�

∣∣∣
2+ (d − 1)(d − 3)

4
|r−1�|2

)
dudσ

+
∫

{t=T ∗}∩R(τ1,τ2)

1

2
χ

(
(1 + O(r−1)) · (∂v�)2 +

∣∣∣r−1∂σ�

∣∣∣
2
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+ (d − 1)(d − 3)

4
|r−1�|2

)
dvdσ

+
∫

{t=T ∗}∩R(τ1,τ2)

1

2
χ

(
(1 + O(r−1)) · (∂u�)2 +

∣∣∣r−1∂σ�

∣∣∣
2

+ (d − 1)(d − 3)

4
|r−1�|2

)
dudσ

−
∫

Sτ1 ∩{t≤T ∗}
1

2
χ

(
(1 + O(r−1)) · (∂v�)2 +

∣∣∣r−1∂σ�

∣∣∣
2

+ (d − 1)(d − 3)

4
|r−1�|2

)
dvdσ

−
∫

Sτ1 ∩{t≤T ∗}
1

2
χ

(
(1+O(r−1)) · (∂u�)2+∣∣r−1∂σ�

∣∣2+ (d−1)(d−3)

4
|r−1�|2

)
dud σ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ ·
{
O(r−1−a)|∂v�|2 + O(r−1−a)|∂u�|2

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ · +O(r−1)

(
|r−1∂σ�|2 + (d − 1)(d − 3)

2
|r−1�|2

)}
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)� · Err(�) dudvd σ

+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) ·

(
|∂�|2 + r−2|�|2

)
dudvdσ. (4.33)

Since on Sτi we have dvdσ ∼ r−1−η′
dudσ, we obtain from (4.33):

∫

Sτ2 ∩{t≤T ∗}
χ

(
(∂v�)

2+r−1−η′
(∂u�)

2+∣∣r−1∂σ�
∣∣2+ (d−1)(d−3)

4
|r−1�|2

)
dvdσ

+
∫

{t=T ∗}∩R(τ1,τ2)

(
(∂v�)

2 + (∂u�)
2 + ∣∣r−1∂σ�

∣∣2 + (d − 1)(d − 3)

4
|r−1�|2

)
dvdσ

≤ C ·
{∫

Sτ1 ∩{t≤T ∗}
χ
(
(∂v�)

2+r−1−η′
(∂u�)

2+∣∣r−1∂σ�
∣∣2+ (d−1)(d−3)

4
|r−1�|2

)

dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ · {O(r−1−a)|∂v�|2 + O(r−1−a)|∂u�|2

+O(r−1)

(
|r−1∂σ�|2 + (d − 1)(d − 3)

4
|r−1�|2

)}
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)� · Err(�)dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) · (|∂�|2 + r−2|�|2) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χO(1) · (∂v + ∂u)� ·��ϕ dudvdσ

}
. (4.34)

Using a Hardy type inequality of the form established in Lemma C.1 (notice that
it is a 1-dimesnional Hardy inequality, since the volume form is dvdσ), we can
bound:
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∫

Sτi ∩{t≤T ∗}
χr−2|�|2 dvdσ +

∫

Sτi ∩{t=T ∗}
r−1|�|2 dσ

≤ C ·
{∫

Sτi ∩{t≤T ∗}
χ
(
(∂v�)

2+r−1−η′
(∂u�)

2
)
dvdσ +

∫

Sτi

|∂χ | · r−1|�|2 dvdσ

}

(4.35)

and
∫

{t=T ∗}∩R(τ1,τ2)

r−2|�|2 dvdσ ≤ C ·
{∫

{t=T ∗}∩R(τ1,τ2)

(
(∂v�)

2 + (∂u�)
2
)
dvdσ

+
2∑

i=1

∫

Sτi ∩{t=T ∗}
r−1|�|2 dσ

}

. (4.36)

Therefore, in view of (4.35) and (4.36), (4.34) can be improved into

∫

Sτ2 ∩{t≤T ∗}
χ
(
(∂v�)

2 + r−1−η′
(∂u�)

2 + ∣∣r−1∂σ�
∣∣2 + |r−1�|2

)
dvdσ

+
∫

{t=T ∗}∩R(τ1,τ2)

(
(∂v�)

2 + (∂u�)
2 + ∣∣r−1∂σ�

∣∣2 + |r−1�|2
)
dvdσ

≤ C ·
{∫

Sτ1 ∩{t≤T ∗}
χ
(
(∂v�)

2 + r−1−η′
(∂u�)

2 + ∣∣r−1∂σ�
∣
∣2 + |r−1�|2

)
dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ · {O(r−1−a)|∂v�|2

+O(r−1−a)|∂u�|2 + O(r−1)

(
|r−1∂σ�|2+ (d − 1)(d − 3)

4
|r−1�|2

)}
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)� · Err(�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) · (|∂�|2 + r−2|�|2) dudvdσ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
|∂χ | · |�|2 dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χO(1) · (∂v + ∂u)� ·��ϕ dudvdσ

}
. (4.37)

Using the expression (4.3) for Err(�), we can readily bound after integrating by
parts in the highest order terms (and in the �∂u� = 1

2∂u(�
2) term) and using a

Cauchy–Schwarz inequality:

∫

R(τ1,τ2)∩{t≤T ∗}
χ (∂v + ∂u)� · Err(�) dudvdσ

≤ Cη

∫

R(τ1,τ2)∩{t≤T ∗}
χ
{
O(r−1−a)|∂u�|2 + O(r−1)
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× (|∂v�|2 + δ1|r−1∂σ�|2 + r−2|�|2)} dudvdσ

+Cη

(∫

R(τ1,τ2)∩{t≤T ∗}
|∂χ | (|∂�|2 + r−2|�|2) dudvdσ

)

+
∫

Sτ2 ∩{t≤T ∗}
χO(r−a)

(
(∂v�)

2 + r−1−η′
(∂u�)

2 + ∣∣r−1∂σ�
∣∣2 + |r−1�|2

)
dvdσ

+
∫

{t=T ∗}∩R(τ1,τ2)

O(r−a)
(
(∂v�)

2 + (∂u�)
2 + ∣∣r−1∂σ�

∣∣2 + |r−1�|2
)
dvdσ

+
∫

Sτ1 ∩{t≤T ∗}
χO(r−a)

(
(∂v�)

2+r−1−η′
(∂u�)

2+∣∣r−1∂σ�
∣∣2+|r−1�|2

)
dvdσ.

(4.38)

Therefore, from (4.37), (4.38), (4.35) and the trace inequality

2∑

i=1

∫

Sτi ∩{t≤T ∗}
|∂χ | · r−1|�|2 dvdσ

≤
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) ·

(
r−1|∂�|2 + r−1|�|2

)
dudvdσ, (4.39)

we obtain if R is large enough in terms of the geometry of (Na f , g):

∫

Sτ2 ∩{t≤T ∗}
χ · J Tμ (ϕ)n̄μ +

∫

{t=T ∗}∩R(τ1,τ2)

(
J Tμ (ϕ)n

μ + r−2|ϕ|2
)

≤ C ·
{∫

Sτ1∩{t≤T ∗}
χ · J Tμ (ϕ)n̄μ+

∫

R(τ1,τ2)∩{t≤T ∗}
χ

·
{
r−1−a J Tμ (ϕ)n

μ + r−1
(
|∂vϕ|2 + |r−1∂σϕ|2 + |r−1ϕ|2

)}

+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) ·

(
|∂ϕ|2 + r−1|ϕ|2

)
+
∫

R(τ1,τ2)∩{t≤T ∗}
χO(1)

· Re
{
�−1 (∂v + ∂u) (�ϕ̄) · �ϕ

}}
. (4.40)

Using (4.4) for some fixed η < a, we thus obtain (4.30) from (4.40) provided R is
large in terms of the geometry of (Na f , g). ��
We can also establish the following generalisation of Lemma 4.5:

Lemma 4.6 For any smooth functionϕ : Na f → C, any χ : Na f → [0, 1] supported
on {r ≥ R} for some R > 0 large in terms of the geometry of (Na f , g), and any two
smooth, spacelike hypersurfaces S1,S2 of Na f intersecting the region {r ≤ R} such
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that S2 lies in the future domain of dependence of S1 ∪{r ≤ R}, the following estimate
is true:

∫

S2

χ · J Tμ (ϕ)nμ
S2

≤ C ·
{∫

S1

χ · J Tμ (ϕ)nμ
S1

+
∫

J+(S1)∩J−(S2)

χ · r−1 (|∂vϕ|2 + |r−1∂σϕ|2 + |r−1ϕ|2)

+
∫

J+(S1)∩J−(S2)

O(|∂χ |) · (|∂ϕ|2 + r−1|ϕ|2)

+
∫

J+(S1)∩J−(S2)

χO(1) · Re {�−1 (∂v + ∂u) (�ϕ̄) · �ϕ
}}

. (4.41)

for some constant C > 0 depending only on the geometry of (Na f , g) and the pre-
cise form of S1,S2 but independent of translation of these hypersurfaces by the flow
of T = ∂u + ∂v . In the above, nSi is the future directed unit normal of Si . Inte-
gration over Si is performed using the volume form of the induced metric, while
integration over J+(S1) ∩ J−(S2) is performed using the natural volume form
of g.

Remark Again, in case the radiative components of the metric satisfy the bounds
∂uM ≤ 0 and |∂uhas | + |r∂uhSd−1 | � −(∂uM) + O(r−a) (which includes the non-
radiating case ∂uM = 0, has = 0 and hSd−1 = O(r−1−a)), the second term of the right
hand side of (4.41) can be omitted. Furthermore, in case the T vector field satisfies
(9.6) for m = 1, then the second term of the right hand side of (4.41) is replaced
by ∫

J+(S1)∩J−(S2)

χ · t̄−δ0r−1
(
|∂vϕ|2 + |r−1∂σϕ|2 + r−2|ϕ|2

)
. (4.42)

Proof The proof of Lemma 4.6 follows in exactly the same way as that of Lemma
4.5, by integrating χ (∂v + ∂u)� ·��ϕ over J+(S1)∩ J−(S2) in place of R(τ1, τ2).
Hence, the details will be omitted. ��
Finally, we will also establish the following improvement of Lemma 4.5 for higher
order derivatives of ϕ, which will be used in Section 8:

Lemma 4.7 For any smooth functionϕ : Na f → C, any χ : Na f → [0, 1] supported
on {r ≥ R} for some R > 0 large in terms of the geometry of (Na f , g), any τ1 ≤ τ2
and any T ∗ > 0 the following estimate is true:

k∑

j=0

∑

j1+ j2+ j3= j

{∫

Sτ2 ∩{t≤T ∗}
χ · r2 j1 J Tμ

(
�−1∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)

)
n̄μ

+
∫

{t=T ∗}∩R(τ1,τ2)

r2 j1
(
J Tμ
(
�−1∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)

)
nμ
)}

≤ Ck ·
k∑

j=0

∑

j1+ j2+ j3= j

{∫

Sτ1 ∩{t≤T ∗}
χ · r2 j1 J Tμ

(
�−1∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)

)
n̄μ
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+
∫

R(τ1,τ2)∩{t≤T ∗}
χ · r2 j1−1�−2

×
(
|∂ j1+1
v ∂

j2
σ ∂

j3
u (�ϕ)|2 + r−2|∂ j1

v ∂
j2+1
σ ∂

j3
u (�ϕ)|2 + r−2|∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)|2

)

+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χ |) · r2 j1�−2

(
|∂∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)|2 + r−1|∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)|2

)

+
∫

R(τ1,τ2)∩{t≤T ∗}
χO(1)r2 j1�−2

·Re
{
(∂v + ∂u) (∂

j1
v ∂

j2
σ ∂

j3
u (�ϕ̄)) · ∂ j1

v ∂
j2
σ ∂

j3
u (��ϕ)

}}
. (4.43)

for some constant Ck > 0 depending only on the geometry of (Na f , g) and k.

Remark Again, in case the radiative components of the metric satisfy the bounds
∂uM ≤ 0 and |∂uhas | + |r∂uhSd−1 | � −(∂uM) + O(r−a) (which includes the non-
radiating case ∂uM = 0, has = 0 and hSd−1 = O(r−1−a)), the second term of the right
hand side of (4.43) can be omitted. Furthermore, in case the T vector field satisfies
(9.6) for m = 1, then the integrand of the second term of the right hand side of (4.43)
has an extra t̄−δ0 factor.

Proof The proof of (4.43) follows in exactly the same way as the proof of (4.30), by
integrating (for real ϕ) for any 0 ≤ j ≤ k and any partition j1, j2, j3 of j :

χ · (∂v + ∂u) (r
j1∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)) ·��

(
�−1r j1∂ j1

v ∂
j2
σ ∂

j3
u (�ϕ)

)
(4.44)

over R(τ1, τ2) ∩ {t ≤ T ∗} with dudvdσ as volume form, and then summing the
resulting estimates over all possible j1, j2, j3, using Lemma 6.3 to obtain an expression
the commutator of � with ∂v, ∂σ, ∂u . ��

5 The Extension of the r p-Weighted Energy Hierarchy

In this section, we will generalise the r p-weighted energy hierarchy introduced in
[11], so as to apply to the asymptotically flat region of a broad class of stationary
and asymptotically flat spacetimes, modeled on the spacetime (Na f , g). This will
be achieved by repeating the main steps of the method of [11] in the the case of
Minkowski spacetime and controlling the error terms with the use of Lemmas 4.1 and
4.5.

5.1 Statement of the r p-Weighted Energy Hierarchy

We will establish the following decay estimate for solutions to �ϕ = F on (Na f , g):

Theorem 5.1 For any 0 < p ≤ 2, any given 0 < η < a and 0 < δ < 1, any R > 0
large enough in terms of p,η, δ and any τ1 ≤ τ2, the following inequality is true
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for any smooth function ϕ : Na f → C and any smooth cut-off χR : Na f → [0, 1]
supported in {r ≥ R}:

E (p)bound,R;δ[ϕ](τ2)+
∫ τ2

τ1

E (p−1)
bulk,R,η;δ[ϕ](τ) d τ + lim sup

T ∗→+∞
E (p)I+,T ∗;δ[ϕ](τ1, τ2) �p,η,δ

�p,η,δ E (p)bound,R;δ[ϕ](τ1)+
∫

R(t1,t2)
|∂χR| ·

(
r p|∂ϕ|2 + r p−2 · |ϕ|2

)

+
∫

R(t1,t2)
χR · (r p+1 + r1+η

) · |�gϕ|2 Ω2dudvdσ. (5.1)

In the above, the constants implicit in the �p,η,δ notation depend only on p,η, δ and
on the geometry of (Na f , g), and the p-weighted energies are defined as follows:

E (p)bound,R;δ[ϕ](τ)
=
∫

Sτ

χR

(
r p
∣∣∂v(Ωϕ)

∣∣2 + r−1−η′ (
r p
∣∣r−1∂σ(Ωϕ)

∣∣2

+
(
(d − 3)r p−2 + min{r p−2, r−δ}

) ∣∣Ωϕ
∣∣2
))

dvdσ +
∫

Sτ

χR J
T
μ (ϕ)n̄

μ,

(5.2)

E (p−1)
bulk,R,η;δ[ϕ](τ)
=
∫

Sτ

χR

(
pr p−1

∣
∣∂v(Ωϕ)

∣
∣2

+
{(
(2 − p)r p−1 + r p−1−δ

) ∣
∣r−1∂σ(Ωϕ)

∣
∣2

+
(
(2 − p)(d − 3)r p−3 + min{r p−3, r−1−δ}

) ∣∣Ωϕ
∣∣2
})

dvdσ

+
∫

Sτ

χRr
−1−η|∂u(Ωϕ)|2 dvdσ (5.3)

and

E (p)I+,T ∗,δ[ϕ](τ1, τ2) =
∫

R(τ1,τ2)∩{t=T ∗}

(
r p
∣∣r−1∂σ(Ωϕ)

∣∣2

+
(
(d − 3)r p−2 + min{r p−2, r−δ}

) ∣∣Ωϕ
∣∣2
)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
J Tμ (ϕ)n

μ. (5.4)

Remark In fact, it follows from the proof of Theorem 5.1 that (5.1) can be improved
into:
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∣∣∣
∣

(
E (p)bound,R,ε;δ[ϕ](τ2)+

∫ τ2

τ1

E (p−1)
bulk,R,η,ε;δ[ϕ](τ) d τ + lim sup

T ∗→+∞
E (p)I+,T ∗,ε;δ[ϕ](τ1, τ2)

)

− E (p)bound,R,ε;δ[ϕ](τ1)

∣∣∣

≤ Cp,η,δ · ε ·E (p)bound,R,ε;δ[ϕ](τ1)+Cp,η,δ,ε

∫

R(t1,t2)
|∂χR | ·

(
r p|∂ϕ|2 + r p−2 · |ϕ|2

)

+Cp,η,δ,ε

∫

R(t1,t2)
χR · (r p+1 + r1+η

) · |�gϕ|2 �2dudvdσ (5.5)

for any 0 < δ < a and 0 < ε < 1, where

E (p)bound,R,ε;δ[ϕ](τ) =
∫

Sτ

χR

(
r p
∣
∣∂v(�ϕ)

∣
∣2 + r−1−η′ (

r p
∣
∣r−1∂σ(�ϕ)

∣
∣2

+
(
(d − 3)r p−2 + ε · min{r p−2, r−δ}

) ∣∣�ϕ
∣∣2
))

dvdσ

+
∫

Sτ

χR J
T
μ (ϕ)n̄

μ, (5.6)

E (p−1)
bulk,R,η,ε;δ[ϕ](τ) =

∫

Sτ

χR

(
pr p−1

∣
∣∂v(�ϕ)

∣
∣2

+
(
(2 − p)r p−1 + r p−1−δ

) ∣∣r−1∂σ(�ϕ)
∣∣2

+
(
(2 − p)(d − 3)r p−3 + ε · min{r p−3, r−1−δ}

) ∣
∣�ϕ

∣
∣2
)
dvdσ

+
∫

Sτ

χRr
−1−η|∂u(�ϕ)|2 dvdσ (5.7)

and

E (p)I+,T ∗,ε;δ[ϕ](τ1, τ2) =
∫

R(τ1,τ2)∩{t=T ∗}

(
r p
∣∣r−1∂σ(�ϕ)

∣∣2

+
(
(d − 3)r p−2 + ε · min{r p−2, r−δ}

) ∣∣�ϕ
∣∣2
)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
J Tμ (ϕ)n

μ. (5.8)

Using Lemma 6.3 on the commutator of � with ∂v , ∂σ and ∂u , we can also obtain
the following corollary of Theorem 5.1:

Corollary 5.2 Using the notations of Theorem 5.1, for any 0 < p ≤ 2, any integer
m ≥ 0, any given 0 < η < a and 0 < δ < 1, any R > 0 large enough in terms
of p,η, δ and any τ1 ≤ τ2, the following inequality is true for any smooth function
ϕ : Na f → C and any smooth cut-off χR : Na f → [0, 1] supported in {r ≥ R}:

m−1∑

j=0

∑

j1+ j2+ j3= j

{
E (p)bound,R;δ[r− j2∂ j1

v ∂
j2
σ ∂

j3
u ϕ](τ2)
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+
∫ τ2

τ1

E (p−1)
bulk,R,η;δ[r− j2∂ j1

v ∂
j2
σ ∂

j3
u ϕ](τ) d τ

+ lim sup
T ∗→+∞

E (p)I+,T ∗;δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ1, τ2)

}

�p,m,η,δ

m−1∑

j=0

∑

j1+ j2+ j3= j

E (p)bound,R;δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ1)

+
m−1∑

j=0

∫

R(t1,t2)
|∂χR | ·

(
r p|∂ j+1ϕ|2 + r p−2 · |∂ jϕ|2

)

+
m−1∑

j=0

∫

R(t1,t2)
χR · (r p+1 + r1+η

) · |∂ j (�gϕ)|2 �2dudvdσ. (5.9)

The proof of Corollary 5.2 will be omitted. Notice that in comparison to the improved
hierarchy statement (6.1), the estimate (5.9) holds for smaller values of p and the
terms of all orders in ϕ appear with the same weight.

We can also establish the following variant of Theorem 5.1 in the region bounded
by two hypersurfaces of the form {t = const}:

Theorem 5.3 For any 0 < p ≤ 2, any given 0 < η < a and 0 < δ < 1, any R > 0
large enough in terms of p, η, δ and any t1 ≤ t2, the following inequality is true for
any smooth function ϕ : Na f → C with compact support in space and any smooth
cut-off χR : Na f → [0, 1] supported in {r ≥ R}:

∫

{t=t2}
χR ·

(
r p|∂v(Ωϕ)|2 + r p|1

r
∂σ (Ωϕ)|2 +

(
(d − 3)r p−2

+ min{r p−2, r−δ}
)

|�ϕ|2
)
dvdσ +

∫

{t=t2}
χR J

T
μ (ϕ)n

μ

+
∫

{t1≤t≤t2}
χR ·

(
pr p−1

∣∣∂v(Ωϕ)
∣∣2+

{(
(2 − p)r p−1+r p−1−δ) ∣∣r−1∂σ (�ϕ)

∣∣2

+
(
(2 − p)(d − 3)r p−3 + min{r p−3, r−1−δ}

) ∣∣Ωϕ
∣∣2
}

+ r−1−η|∂u(Ωϕ)|2
)
dudvdσ

�p,η,δ

∫

{t=t1}
χR ·

(
r p|∂v(Ωϕ)|2 + r p|1

r
∂σ (Ωϕ)|2

+
(
(d − 3)r p−2 + min{r p−2, r−δ}

)
|Ωϕ|2

)
dvdσ

+
∫

{t=t1}
χR J

T
μ (ϕ)n

μ +
∫

{t1≤t≤t2}
|∂χR | ·

(
r p|∂ϕ|2 + r p−2 · |ϕ|2

)

+
∫

{t1≤t≤t2}
χR · (r p+1 + r1+η) · |�gϕ|2 Ω2dudvdσ. (5.10)
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In the above, the constants implicit in the �p,η,δ notation depend only on p,η, δ
and on the geometry of (Na f , g).

The proof of Theorem 5.3 is identical to the proof of Theorem 5.1 (the only difference
being the domain over which integrations are performed), and hence it will be omitted.

5.2 Proof of Theorem 5.1

For the proof of Theorem 5.1, we will need to introduce the following energy norms
on the hyperboloids {t̄ = τ}:

E (p)bound,R,T ∗ [ϕ](τ) =
∫

Sτ∩{t≤T ∗}
χR

(
r p
∣∣∂v(�ϕ)

∣∣2 + r−1−η′ (
r p
∣∣r−1∂σ(�ϕ)

∣∣2

+ (d − 1)(d − 3)

4
r p−2

∣∣�ϕ
∣∣2
))

dvdσ, (5.11)

E (p−1)
bulk,R,T ∗ [ϕ](τ) =

∫

Sτ∩{t≤T ∗}
χR

(
pr p−1

∣∣∂v(�ϕ)
∣∣2+(2− p)

(
r p−1

∣∣r−1∂σ(�ϕ)
∣∣2

+ (d − 1)(d − 3)

4
r p−3

∣∣�ϕ
∣∣2
))

dvdσ, (5.12)

E (p−1)
bulk,R,η,T ∗ [ϕ](τ) =

∫

Sτ∩{t≤T ∗}
χR

(
pr p−1

∣∣∂v(�ϕ)
∣∣2+(2− p)

(
r p−1

∣∣r−1∂σ(�ϕ)
∣∣2

+ (d − 1)(d − 3)

4
r p−3

∣
∣�ϕ

∣
∣2
))

dvdσ

+
∫

Sτ∩{t≤T ∗}
χRr

−1−η|∂u(�ϕ)|2 dvdσ (5.13)

and

E (p)I+,R,T ∗ [ϕ](τ1, τ2) =
∫

R(τ1,τ2)∩{t=T ∗}
χR

(
r p
∣
∣r−1∂σ(�ϕ)

∣
∣2

+ (d − 1)(d − 3)

4
r p−2

∣∣�ϕ
∣∣2
)

dvdσ. (5.14)

The main step in establishing Theorem 5.1 is contained in the following Lemma:

Lemma 5.4 For any 0 < p ≤ 2, any given 0 < η < a, any 0 < ε < 1, any R > 0
large enough in terms of p, η and ε, any τ1 ≤ τ2 and any T ∗ ≥ 0, the following
inequality holds for any smooth function ϕ : Na f → C and any smooth cut-off
χR : Na f → [0, 1] supported in {r ≥ R}:

E (p)bound,R,T ∗ [ϕ](τ2)+
∫ τ2

τ1

E (p−1)
bulk,R,η,T ∗ [ϕ](τ) d τ+E (p)I+,R,T ∗ [ϕ](τ1, τ2)

≤ (1 + Op,η(ε)
)
E (p)bound,R,T ∗ [ϕ](τ1)
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+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂(�ϕ)|2 + r p−2|�ϕ|2

)
dudvdσ

+Cp,η,ε

∫

Sτ1 ∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ+Cp,η,ε

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−2−a |�ϕ|2 dvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2−a |�ϕ|2 dvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · max{r p−3−a, r−3}|�ϕ|2 dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (r p+1 + r1+η

)|��ϕ|2 dudvdσ, (5.15)

where n̄ is the future directed unit normal to the hyperboloids Sτ.

Proof Without loss of generality we will assume that ϕ is real valued. We will set

�
.= � · ϕ. (5.16)

Following the approach of [11], we start by multiplying both sides of (3.14) with
χR · r p∂v�. We therefore compute, after applying the product rule for derivatives:

χR · r p∂v� ·��ϕ = −1

2
∂u

{
χR · r p(1 + O1(r

−1−a))|∂v�|2
}

+ 1

2
(∂u{χR · r p(1 + O1(r

−1−a))}|∂v�|2

− 1

2
∂v

{
χR ·

(
(d − 1)(d − 3)

4
r p−2

)
·�2

}

+ 1

2
∂v

{
χR ·

(
(d − 1)(d − 3)

4
r p−2

)}
�2

+χR · r p−2 · ∂v� ·�g
Sd−1+h

Sd−1�

+χR · r p∂v� · Err(�) (5.17)

Integration of (5.17) over {τ1 ≤ t̄ ≤ τ2} ∩ {t ≤ T ∗} using the coordinate volume
form dudvdσ (in place of the geometric volume form �2dudvdσ) readily yields:

∫

Sτ2 ∩{t≤T ∗}
1

2
χR ·

(
r p(1 + O(r−1−a)) · |∂v�|2

)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
1

2
χR ·

(
r p(1 + O(r−1−a)) · |∂v�|2

)
dvdσ

+
∫

Sτ2 ∩{t≤T ∗}
1

2
χR ·

(
(d − 1)(d − 3)

4
r p−2 + O(r p−3)

)
�2 dudσ

+
∫

R(τ1,τ2)∩{t=T ∗}
1

2
χR ·

(
(d − 1)(d − 3)

4
r p−2 + O(r p−3)

)
�2 dudσ
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+
∫

R(t1,t2)∩{t≤T ∗}
χR ·

{
1

2
pr p−1{1 + O(r−1−a)}|∂v�|2

+1

2
χR ·

(
(2 − p)

(d − 1)(d − 3)

4
r p−3 + O(r p−4)

)
�2
}
dudvdσ

+
∫

R(t1,t2)∩{t≤T ∗}
χR · r p−2 · ∂v� ·�g

Sd−1+h
Sd−1� dudvdσ

+
∫

R(t1,t2)∩{t≤T ∗}
χR · r p∂v� · Err(�) dudvdσ

=
∫

Sτ1∩{t≤T ∗}
1

2
χR ·

(
r p(1 + O(r−1−a)) · |∂v�|2

)
dvdσ

+
∫

Sτ1∩{t≤T ∗}
1

2
χR ·

(
(d − 1)(d − 3)

4
r p−2 + O(r p−3)

)
�2 dudσ

+
∫

R(t1,t2)∩{t≤T ∗}
O(|∂χR |) ·

(
O(r p) · |∂v�|2 + O(r p−2) ·�2

)
dudvdσ

−
∫

R(t1,t2)∩{t≤T ∗}
χR · r p∂v� ·��ϕ dudvdσ. (5.18)

Moreover, we obtain after integrating by parts in the spherical directions (recalling
that hSd−1 = O(r−1)):

∫

R(t1,t2)∩{t≤T ∗}
χR · r p−2 · ∂v� ·�g

Sd−1+h
Sd−1� dudvdσ

=
∫

R(t1,t2)∩{t≤T ∗}
χR · r p−2 · 1

2
∂v
{|∂σ�|2} dudvdσ

+
∫

R(t1,t2)∩{t≤T ∗}
χR · O(r p−3) · ∂v� · ∂σ� dudvdσ

+
∫

R(t1,t2)∩{t≤T ∗}
O(|∂σχR |) · r p−2 · ∂v� · ∂σ� dudvdσ. (5.19)

Hence, integrating by parts in the first term of the right hand side of (5.19), substituting
in (5.18) and absorbing the

∫
χR · O(r p−3) · ∂v� · ∂σ� summand of the right hand

side of (5.19) into the Err term, we infer (provided R is large enough in terms of ε):

E (p)bound,R,T ∗ [ϕ](τ2)+
∫ τ2

τ1

E (p−1)
bulk,R,T ∗ [ϕ](τ) d τ +E (p)I+,R,T ∗ [ϕ](τ1, τ2)

≤ (1 + ε)E (p)bound,R,T ∗ [ϕ](τ1)+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR |

×
(
O(r p)|∂(�ϕ)|2 + O(r p−2)|�ϕ|2

)
dudvdσ

+C ·
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ + C ·
∫

R(τ1,τ2)∩{t=T ∗}
χR J

T
μ (ϕ)n̄

μ
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+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · O(r p−2−a)|�ϕ|2 dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · O(r p−2−a)|�ϕ|2 dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−3−a)|�ϕ|2 dudvdσ

+
∫

R(t1,t2)∩{t≤T ∗}
χR · O(r p)∂v� · Err(�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p)∂v� ·��ϕ dudvdσ, (5.20)

where we denote for simplicity |∂�|2 = |∂v�|2 + |∂u�|2 + | 1
r ∂σ�|2. Notice that we

have used the asymptotic relation dudσ ∼ r−1−η′
dvdσ on the hyperboloids Sτ.

The positive
∫
R(t1,t2)∩{t≤T ∗}(2 − p)χRr p−1| 1

r ∂σ�|2 term of the left hand side of
(5.20) vanishes for p = 2. Since it will prove useful to retain some control over
angular derivatives in the left hand side of (5.20) even in the p = 2 case, we will
add to (5.20) the same inequality but for p′ = p − a in place of p in case p ≥ 1,
obtaining:

E (p)bound,R,T ∗ [ϕ](τ2)+
∫ τ2

τ1

(
E (p−1)
bulk,R,T ∗ [ϕ](τ)

+ E (p−1−a)
bulk,R,T ∗ [ϕ](τ)

)
d τ + E (p)I+,R,T ∗ [ϕ](τ1, τ2)

≤ (1 + ε)E (p)bound,R,T ∗ [ϕ](τ1)+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
O(r p)|∂(�ϕ)|2

+ O(r p−2)|�ϕ|2
)
dudvdσ + C

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ

+C
∫

R(τ1,τ2)∩{t=T ∗}
χR J

T
μ (ϕ)n̄

μ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR × O(r p−2−a)|�ϕ|2 dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · O(r p−2−a)|�ϕ|2 dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−3−a)|�ϕ|2 dudvdσ

+
∫

R(t1,t2)∩{t≤T ∗}
χR · O(r p)∂v� · Err(�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p)∂v� ·��ϕ dudvdσ. (5.21)
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In order to reach (5.15) it only remains to add to (5.21) the estimate of Lemma (4.2)
and suitably absorb the Err(�) term in (5.21) into the left hand side. Moreover, the
energy boundary terms on Sτ2 and {t = T ∗} will be dealt with by using Lemma 4.5.
In particular, assuming without loss of generality that ε �p,η 1, if R is large enough
in terms of ε, p,η the following estimate holds:

∫

R(t1,t2)∩{t≤T ∗}
χR · O(r p)∂v� · Err(�) dudvdσ �p,η B(p)

Err,η,ε[ϕ](τ1, τ2),

(5.22)

where

B(p)
Err,η,ε[ϕ](τ1, τ2)

.= ε

{∫ τ2

τ1

(
E (p−1)
bulk,R,T ∗ [ϕ](τ)+ E (p−1−a)

bulk,R,T ∗ [ϕ](τ)
)
d τ

+
2∑

i=1

E (p)bound,R,T ∗ [ϕ](τi )+ E (p)I+,R,T ∗ [ϕ](τ1, τ2)

}

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR| ·

(
r p|∂(�ϕ)|2+r p−2|�ϕ|2

)
dudvd σ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ +
∫

R(τ1,τ2)∩{t=T ∗}
χR J

T
μ (ϕ)n̄

μ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−2−a |�ϕ|2 dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2−a |�ϕ|2 dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · max{r p−3−a, r−3}|�ϕ|2 dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · (r p+1 + r1+η

)|��ϕ|2 dudvdσ. (5.23)

Notice that in view of Lemma 4.5 and the fact that 0 < p ≤ 2, the following bound
also holds:

∫

Sτ2 ∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ +
∫

R(τ1,τ2)∩{t=T ∗}
χR J

T
μ (ϕ)n̄

μ

�η

∫

Sτ1∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ

+ ε

∫ τ2

τ1

(
E (p−1)
bulk,R,T ∗ [ϕ](τ)+ E (p−1−a)

bulk,R,T ∗ [ϕ](τ)
)
dτ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r−3|�ϕ|2 dudvdσ
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+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂(�ϕ)|2 + r p−2|�ϕ|2

)
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · (r p+1 + r1+η

)|��ϕ|2 dudvdσ. (5.24)

Using (5.21), (5.26), (5.23), (5.22) and (5.24), inequality (5.15) follows readily, pro-
vided ε has been chosen small enough in terms of p and η so that the first line of the
right hand side of (5.23) can be absorbed into the left hand side of (5.21).

Notice that

∫

R(t1,t2)∩{t≤T ∗}
χR · O(r p)∂v� · Err(�) dudvdσ

=
∫

R(t1,t2)∩{t≤T ∗}
χR∂v� ·

{
O(r p−1)∂2

v�

+O(r p−2)∂v∂σ�+ O(r p−2−a)∂2
v�+ O(r p−2−a)∂u∂σ�+ O(r p−3−a)∂σ∂σ�

+O(r p−2−a)∂σ�+ O(r p−1−a)∂v�+ O(r p−2−a)∂u�+ O(r p−3)�
}
dudvdσ.

(5.25)

In view of Lemma 4.1 and the fact that 0 < p ≤ 2, we can bound for any ε > 0
provided R is large enough in terms of ε,η, p:

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3−a |∂u�|2 dudvdσ

≤
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r−1−η|∂u�|2 dudvdσ �p,η

�p,η B(p)
Err,η,ε[ϕ](τ1, τ2). (5.26)

We can also trivialy bound (if R is large enough in terms of ε,η, p):

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1−a

(
|∂v�|2 + |r−1∂σ�|2 + r−2|�|2

)
dudvdσ

�p,η B(p)
Err,η,ε[ϕ](τ1, τ2). (5.27)

Therefore, applying a Cauchy–Schwarz ineqality, all the terms of (5.25) which do not
contain second order derivatives of � can be bounded by B(p)

Err,η,ε[ϕ](τ1, τ2).
It thus remains to estimate the terms of

∫
R(t1,t2)

χR · r p · ∂v� · Err(�) dudvdσ

which contain second order derivatives of �, i.e. we have to bound (provided again
that R is large enough in terms of p,η, ε):
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∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

{
O(r p−1)∂v� · ∂2

v�+ O(r p−2−a)∂v� · ∂2
u�

+ O(r p−3−a)∂v� · ∂σ∂σ�+ O(r p−2−a)∂v� · ∂u∂σ�
+ O(r p−2)∂v� · ∂v∂σ�

}
dudvdσ �p,η B(p)

Err,η,ε[ϕ](τ1, τ2). (5.28)

In order to estimate these terms, we will perform some integrations by parts over
R(τ1, τ2) ∩ {t ≤ T ∗} which will reduce the maximum number of derivatives of �
appearing in these expressions to just one.

In particular, we proceed as follows:

1. For the part of
∫
R(t1,t2)

χR · r p · ∂v� · Err(�) consisiting of terms of the form
∂v� · ∂i∂v�, namely:

Err (p)v,i,v[ϕ](τ1, τ2)
.=
∫

R(τ1,τ2)∩{t≤T ∗}
χR

× {O(r p−1)∂v� · ∂2
v�+ O(r p−2) · ∂v� · ∂v∂σ�

}
dudvdσ,

(5.29)

after putting each summand in the form 1
2∂i {(∂v�)2} and integrating by parts in

∂i we obtain

Err (p)v,i,v[ϕ](τ1, τ2) �
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−2 · |∂v�|2 dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | · r p−1 · |∂v�|2 dudvdσ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−2|∂v�|2 dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2|∂v�|2 dvdσ. (5.30)

Thus, since p ≤ 2, we immediately infer (provided again that R is large enough
in terms of p,η, ε) that

Err (p)v,i,v[ϕ](τ1, τ2) �p,η B(p)
Err,η,ε[ϕ](τ1, τ2). (5.31)

2. For the part of
∫
R(t1,t2)

χR · r p · ∂v� · Err(�) consisiting of terms of the form

∂v�∂
2
i �, namely

Err (p)v,i,i [ϕ](τ1, τ2)
.=
∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

{
O(r p−2−a) · ∂v� · ∂2

u�

+ O(r p−3−a) · ∂v� · ∂σ∂σ�
}
dudvdσ, (5.32)
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we will perform two integrations by parts: By first integrating by parts schemat-
ically as ∂v�∂2

i � → ∂i∂v�∂i� = 1
2∂v{∂i�}2 and then we integrating in ∂v as

before, we can readily bound recalling that dudσ ∼ r−1−η′
dvdσ on Sτ):

Err (p)v,i,i [ϕ](τ1, τ2)

�
∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

{
r p−3−a |∂u�|2 + r p−2−a |∂u�| · |∂v�|2

+ r p−4−a |∂σ�|2 + r p−3−a |∂v�| · |∂σ�|
}
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | · r p−1 · |∂�|2 dudvdσ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR

{
r p−2−a |∂v�| · |∂u�| + r p−4−a−η′ |∂σ�|2

}
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR

{
r p−2−a |∂v�| · |∂u�| + r p−3−a |∂σ�|2

}
dvdσ.

(5.33)

Using a Cauchy–Schwarz inequality as well as inequality (5.26), the first two
lines of the right hand side of (5.33) can be bounded by Cp,η ·B(p)

Err,η,ε[ϕ](τ1, τ2).
Moreover, the last two lines of the right hand side of (5.33) can also be bounded
by the boundry terms appearing in B(p)

Err,η,ε[ϕ](τ1, τ2). Thus, provided again that
R is large enough in terms of p,η, ε, we have

Err (p)v,i,i [ϕ](τ1, τ2) �p,η B(p)
Err,η,ε[ϕ](τ1, τ2). (5.34)

3. Finally, it remains to bound the
∫
O(r p−2−a) · ∂v� · ∂u∂σ� summand in the

expression (5.25). We will perform three integrations by parts schematically as

∂v� · ∂σ∂u� → −∂u∂v� · ∂σ� → ∂u� · ∂v∂σ� → −∂σ∂u� · ∂v�, (5.35)

and then move the resulting
∫
O(r p−2−a) · ∂v� · ∂u∂σ� bulk term (which is

equal to −1 times the initial O(r p−2−a) · ∂v� · ∂u∂σ� term that we started with)
from the right hand side to the left hand side. This will provide an estimate of∫
O(r p−2−a) · ∂v� · ∂u∂σ� by bulk and boundary terms which contain only first

order derivatives in �. In particular, proceeding as described we infer10 that

∫

R(τ1,τ2)∩{t≤T ∗}
χRO(r

p−2−a) · ∂v� · ∂u∂σ� dudvdσ

�
∫

R(τ1,τ2)∩{t≤T ∗}
χRr

p−2−a |∂v�| · |∂σ�| dudvdσ

10 Using again the fact that dudσ ∼ r−1−η′
dvdσ on Sτ.
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+
∫

R(τ1,τ2)∩{t≤T ∗}
χRr

p−3−a |∂u�| · |∂σ�| dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χRr

p−2−a |∂v�| · |∂u�| dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR |r p|∂�|2 dudvdσ

+
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χRr

p−2−a
(
|∂v�| + r−1−η′ |∂u�|

)
· |∂σ�| dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χRr

p−2−a (|∂v�| + |∂u�|) · |∂σ�| dvdσ. (5.36)

Thus, after using a Cauchy–Schwarz inequality (as well as the estimate (5.26)),
we obtain provided that R is large enough in terms of p,η, ε:

∫

R(τ1,τ2)∩{t≤T ∗}
χRO(r

p−2−a) · ∂v� · ∂u∂σ� dudvdσ

�p,η B(p)
Err,η,ε[ϕ](τ1, τ2). (5.37)

Inequalities (5.31), (5.34) and (5.37) yield (5.22). Therefore, the proof of the
Lemma is complete. ��

In order to control the zeroth order terms appearing in the right hand side of (5.15),
we will make use of the following Hardy type inequality:

Lemma 5.5 For any 0 < p < 2, any given 0 < η < a, any R > 0 large enough in
terms of p,η, any τ1 ≤ τ2 and any T ∗ ≥ 0, the following inequality is true for any
smooth function ϕ : Na f → C with compact support in space and any smooth cut-off
χR : Na f → [0, 1] supported in {r ≥ R}:

∫

Sτ2 ∩{t≤T ∗}
χR · r p−2|�ϕ|2 r−1−η′

dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2 · |�ϕ|2 dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|�ϕ|2 dudvdσ �p,η E (p)bound,R,T ∗ [ϕ](τ1)

+
∫

Sτ1

χR · r p−2|�ϕ|2 r−1−η′
dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂(�ϕ)|2 + r p−2|�ϕ|2

)
dudvdσ

+
∫

Sτ1∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · (r p+1 + r1+η

)|��ϕ|2 dudvdσ, (5.38)
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where n̄ is the future directed unit normal on the hyperboloids Sτ. In the above, the
constants implicit in the �p,η notation depend only on p,η and on the geometry of
(Na f , g).

Proof As in the proof of Lemma (5.4), we can assume that ϕ is real valued. We will
also set �

.= �ϕ.
In dimensions d ≥ 4 (5.38) follows immediately from Lemma (5.4), since for

d ≥ 4 and for R large enough, the left hand side of (5.15) controls the left hand side
of (5.38) and the zeroth order terms in the right hand side of (5.38) can be absorbed
into the left hand side. Therefore it only remains to treat the case d = 3.

The proof of this lemma follows the standard steps of proving a Hardy-type inequal-
ity. Since ∂vr = 1 + o(1), we can write:

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|�|2 dudvdσ

=
∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

{
1

p − 2
∂v(r

p−2)+ o(r p−3)

}
|�|2 dudvdσ (5.39)

and hence, if R � 1:

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3(1 + o(1))|�|2 dudvdσ

= 1

p − 2

∫

R(τ1,τ2)∩{t≤T ∗}
χR · ∂v(r p−2)|�|2 dudvdσ

= 1

p − 2

{∫

Sτ2 ∩{t≤T ∗}
χR · r p−2|�|2 dudσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2|�|2 dudσ

−
∫

Sτ1∩{t≤T ∗}
χR · r p−2|�|2 dudσ

−
∫

R(τ1,τ2)∩{t≤T ∗}
(∂vχR) · r p−2|�|2 dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−22 · ∂v� ·� dudvdσ

}
, (5.40)

the last equality following after performing an integration by parts in ∂v .
Notice that 1

p−2 < 0 in the right hand side of (5.40). Therefore, after applying a
Cauchy–Schwarz inequality we obtain:

∫

Sτ2 ∩{t≤T ∗}
χR · r p−2|�|2 dudσ +

∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2|�|2 dudσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|�|2 dudvdσ
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≤ C(p)

{∫

Sτ1∩{t≤T ∗}
χR · r p−2|�|2 dudσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR| · r p−2|�|2 dudvdσ

+
(∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1|∂v�|2 dudvdσ

)1/2

×
(∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|�|2 dudvdσ

)1/2
}

. (5.41)

The second factor of the last term of the right hand side of (5.41) can be absorbed
into the left hand side, while the first factor of the same term can be bounded by the
left hand side of (5.15), and thus:

∫

Sτ2 ∩{t≤T ∗}
χR · r p−2|�|2 dudσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2|�|2 dudσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|�|2 dudvdσ

�p

∫

Sτ1∩{t≤T ∗}
χR · r p−2|�|2 dudσ + E (p)bound,R,T ∗ [ϕ](τ1)

+
∫

Sτ1∩{t≤T ∗}
χR J

T
μ (ϕ)n̄

μ

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂(�ϕ)|2 + r p−2|�ϕ|2

)
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · (r p+1 + r1+η

)|��ϕ|2 dudvdσ

+
∫

Sτ2 ∩{t≤T ∗}
χR · r p−2−a |�|2 dvdσ +

∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2−a |�|2 dvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · max{r p−3−a, r−3}|�|2 dudvdσ. (5.42)

If R is large enough in terms of p, the last two lines of the right hand side of (5.42)
can be absorbed into the left hand side, yielding the desired inequality (5.38). ��

Proof of Theorem 5.1. The proof of Theorem 5.1 follows readily by adding inequali-
ties (5.15) for the given value of p and (5.38) for min{p, 2 − δ} in place of p, using
also (4.30) and (4.4), and letting T ∗ → +∞. ��
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6 The Improved r p-Weighted Energy Hierarchy for Higher Order
Derivatives

In [34], Schlue established that on Schwarzschild exterior spacetimes, commutation
of the wave equation (1.1) with the outgoing null vector field ∂v and the generators
of the spherical isometries leads to an improved r p-weighted hierarchy for ∂v(�ϕ)

and r−1∂σ(�ϕ). This improvement of the r -weights in the hierarchy (1.7) for ∂v(�ϕ),
r−1∂σ(�ϕ) was fundamental in obtaining improved decay rates in u for Tϕ, and
subsequently for ϕ itself (T being the stationary Killing vector field of Schwarzschild
spacetime). See [34] for more details.

In this Section, we will extend and improve the results of [34] to spacetime regions
(Na f , g) with g of the form (3.3). In particular, we will establish that higher order
derivatives of �ϕ in directions tangential to the hyperboloids {t̄ = const} satisfy an
r p-weighted hierarchy similar to the one established in the previous section for �ϕ,
but for p taking values larger than 2. These improved estimates will be crucial in the
establishment of improved polynomial decay rates for ϕ in Section 9.

Theorem 6.1 For any k ∈ N, any 2k − 2 < p ≤ 2k, any given 0 < η < a and
0 < δ < 1, any R > 0 large enough in terms of p,η, δ, k and any τ1 ≤ τ2, the
following inequality is true for any smooth function ϕ : M → C solving �gϕ = F
and any smooth cut-off χR : M → [0, 1] supported in {r ≥ R}:

E (p,k)bound,R;δ[ϕ](τ2)

+
∫ τ2

τ1

E (p−1,k)
bulk,R,η;δ[ϕ](τ) d τ + lim sup

T ∗→+∞
E (p,k)I+,T ∗,δ[ϕ](τ1, τ2) �p,η,δ,k

�p,η,δ,k E (p,k)bound,R;δ[ϕ](τ2)+
k∑

j=0

∫

R(τ1,τ2)

|∂χR | · r p−2(k− j)|∂ jϕ|2

+
k∑

j=1

∑

k1+k2+k3= j−1

∫

R(τ1,τ2)

χR · (r p+1−2k3−2(k− j) + r1+η
)

×
(
|r−k2∂k1

v ∂
k2
σ ∂k3

u (�F)|2
)
dudvdσ. (6.1)

In the above, the constants implicit in the �p,η,k notation depend only on p,η, k
and on the geometry of (M, g), and the higher order p-energy norms are defined as

E (p,k)bound,R;δ[ϕ](τ)

=
k∑

j=1

∑

k1+k2+k3= j−1

{∫

Sτ

χR

(
r p−2(k− j)

∣∣r−k2−k3∂k1+1
v ∂k2

σ ∂k3
u (�ϕ)

∣∣2

+ r−1−η′ (
r p−2(k− j)

∣∣r−k2−k3−1∂k1
v ∂

k2+1
σ ∂k3

u (�ϕ)
∣∣2
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+
∫

Sτ

+
(
(d − 3)r p−2−2(k− j) + min{r p−2−2(k− j), r−δ−2(k− j)}

)

∣∣∣r−k2−k3∂k1
v ∂

k2
σ ∂k3

u (�ϕ)

∣∣∣
2
))

dvdσ +
∫

Sτ

χR J
T
μ (r

−k2∂k1
v ∂

k2
σ ∂k3

u ϕ)n̄μ

}
(6.2)

E (p−1,k)
bulk,R,η;δ[ϕ](τ)

=
k∑

j=1

∑

k1+k2+k3= j−1

{∫

Sτ

χR

({
pr p−1−2(k− j)

∣∣r−k2−k3∂k1+1
v ∂k2

σ ∂k3
u (�ϕ)

∣∣2

+
(
(2k − p)r p−1−2(k− j) + r p−1−δ−2(k− j)

) ∣∣r−k−1∂k1+k2+1
σ ∂k3

u (�ϕ)
∣∣2

+
(
(2k − p)(d − 3)r p−3−2(k− j)

+ min{r p−3−2(k− j), r−1−δ−2(k− j)}
) ∣∣r−k2−k3∂k1

v ∂
k2
σ ∂k3

u (�ϕ)
∣∣2
})

dvdσ

+
∫

Sτ

χRr
−1−η|∂ j+1

u (�ϕ)|2 dvdσ

}
(6.3)

and

E (p,k)I+,T ∗,δ[ϕ](τ1, τ2)

=
k∑

j=1

∑

k1+k2+k3= j−1

{∫

R(τ1,τ2)∩{t=T ∗}

(
r p−2(k− j)

∣
∣r−k2−k3−1∂k1

v ∂
k2+1
σ ∂k3

u (�ϕ)
∣
∣2

+
(
(d − 3)r p−2−2(k− j) + min{r p−2−2(k− j), r−δ−2(k− j)}

)

×∣∣r−k2−k3∂k1
v ∂

k2
σ ∂k3

u (�ϕ)
∣∣2
)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
J Tμ (r

−k2∂k1
v ∂

k2
σ ∂k3

u ϕ)nμ

}
(6.4)

Applying Theorem 6.1 for ∂ jϕ, j = 0, . . .m − 1 in place of ϕ using Lemma 6.3,
we will deduce the following estimate (the proof of which is straightforward and will
be omitted)

Corollary 6.2 Keeping the same notations as in Theorem 6.1, for any any integer
m ≥ 0, any k ∈ N, any 2k − 2 < p ≤ 2k, any given 0 < η < a and 0 < δ < 1, any
R > 0 large enough in terms of p,η, δ, k,m and any τ1 ≤ τ2, the following inequality
is true for any smooth function ϕ : M → C solving �gϕ = F and any smooth cut-off
χR : M → [0, 1] supported in {r ≥ R}:
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m−1∑

j=0

∑

j1+ j2+ j3= j

{
E (p,k)bound,R;δ[r− j2∂ j1

v ∂
j2
σ ∂

j3
u ϕ](τ2)

+
∫ τ2

τ1

E (p−1,k)
bulk,R,η;δ[r− j2∂ j1

v ∂
j2
σ ∂

j3
u ϕ](τ) d τ

+ lim sup
T ∗→+∞

E (p,k)I+,T ∗,δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ1, τ2)

}

�p,η,δ,k,m

m−1∑

j=0

∑

j1+ j2+ j3= j

E (p,k)bound,R;δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ2)

+
k∑

j=0

m−1∑

i=0

∫

R(τ1,τ2)

|∂χR| · r p−2(k− j)|∂ j+iϕ|2

+
∑

i1+i2+i3≤m−1

k∑

j=1

∑

k1+k2+k3= j−1

∫

R(τ1,τ2)

χR · (r p+1−2k3−2(k− j) + r1+η
)

×
(
|r−k2−i2∂k1+i1

v ∂k2+i2
σ ∂k3+i3

u (�F)|2
)
dudvdσ. (6.5)

The proof of Theorem 6.1 will be presented in Section 6.2. Before that, we will
obtain an expression for the equation satisfied by the derivatives of �ϕ when ϕ solves
�ϕ = F . This will be accomplished in the following section.

6.1 Commutator Expressions

In this section, we will commute the wave operator �g with the coordinate vector
fields ∂u and ∂v in the (u, v, σ) coordinate system, as well as the first order operator
r−1∇Sd−1

(∇Sd−1
denoting here the gradient of a function on (Sd−1, gSd−1)) in the

asymptotically flat region {r � 1}.
We will establish the following lemma:

Lemma 6.3 For any smooth function ϕ : M → C the following expressions are true
in the region {r � 1} for any l ∈ N:

Ω�
(
Ω−1∂ lv(Ωϕ)

)
= ∂ lv (Ω�ϕ)+

l∑

j=1

(−1) j+1
{(

l

j

)
(1 + j)! · r−2− j

×
(
�g

Sd−1+h
Sd−1 ∂

l− j
v (Ωϕ)− (d − 1)(d − 3)

4
∂ l− j
v (Ωϕ)

)}

+
l∑

j=0

r−(l− j)Err(∂ j
v (Ωϕ)), (6.6)

Ω�
(
Ω−1(r−1∇Sd−1

)l(Ωϕ)
)

=
(
r−1∇Sd−1

)l
(Ω�ϕ)+ l · r−l−1∂u

(
(∇Sd−1

)l(Ωϕ)
)
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− l · r−l−1∂v

(
(∇Sd−1

)l(Ωϕ)
)

+ l(l + 1)r−l−2(∇Sd−1
)l(Ωϕ)

+
l∑

j=0

r−(l− j)Err
(
(r−1∇Sd−1

) j (Ωϕ)
)

(6.7)

and

Ω�
(
Ω−1∂ lu(Ωϕ)

)
= (1 + O(r−1−a)) · ∂ lu

(
(1 + O(r−1−a)) ·Ω�ϕ

)

+
l−1∑

j=0

O(r−3)∂σ∂σ

(
∂
j
u (Ωϕ)

)
+

l∑

j=0

Err
(
∂
j
u (Ωϕ)

)
, (6.8)

where∇Sd−1
denotes the gradient on (Sd−1, gSd−1) and the Err terms are of the form:

Err(�) = O(r−2−a) · ∂2
u�+ O(r−1) · ∂2

v�+ O(r−2−a)∂u∂σ�+ O(r−2)∂v∂σ�

+ O(r−3−a)∂σ∂σ�+ O(r−2−a)∂u�

+ O(r−1−a)∂v�+ O(r−2−a) · ∂σ�+ O(r−3)�. (6.9)

Proof Let us set
�

.= �ϕ. (6.10)

In (u, v, σ) coordinates in the region {r � 1}, the wave operator takes the following
form according to (3.14):

� · �ϕ = −
(

1 + O(r−1−a)
)

· ∂u∂v�+ r−2�g
Sd−1+h

Sd−1�

− (d − 1)(d − 3)

4
r−2 ·�+ Err(�). (6.11)

Differentiating (6.11) l times with respect to ∂v , we readily obtain:

∂ lv (��ϕ) = −
(

1 + O(r−1−a)
)

· ∂u∂v(∂ lv�)

+
l∑

j=0

(−1) j
{(

l

j

)
(1 + j)! · r−2− j

×
(
�g

Sd−1+h
Sd−1 ∂

l− j
v �− (d − 1)(d − 3)

4
∂ l− j
v �

)}

+
l∑

j=0

r−(l− j)Err(∂ j
v�), (6.12)
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which (due to the expression (6.11) for the wave operator) can be rewritten in the
desired form (6.6) as:

��
(
�−1∂v�

)
= ∂v (��ϕ)+

l∑

j=1

(−1) j+1
{(

l

j

)
(1 + j)! · r−2− j

×
(
�g

Sd−1+h
Sd−1 ∂

l− j
v �− (d − 1)(d − 3)

4
∂ l− j
v �

)}

+
l∑

j=0

r−(l− j)Err(∂ j
v�). (6.13)

Similarly, applying to (6.11) l times the rescaled angular gradient r−1∇Sd−1
to

(6.11) (notice that ∇Sd−1
commutes with �g

Sd−1 , ∂u, ∂v and r ), we calculate:

(r−1∇Sd−1
)l (��ϕ) = −

(
1 + O(r−1−a)

)
· ∂u∂v(r−l(∇Sd−1

)l�)

+ r−2�g
Sd−1+h

Sd−1 (r
−l(∇Sd−1

)l�)

− (d − 1)(d − 3)

2
r−2 · (r−l(∇Sd−1

)l�)

− l · r−l−1∂u

(
(∇Sd−1

)l�
)

+ l · r−l−1∂v

(
(∇Sd−1

)l�
)

− l(l + 1)r−l−2(∇Sd−1
)l�

+
l∑

j=0

r−(l− j)Err
(
(r−1∇Sd−1

)) j�
)
, (6.14)

(where the O(·) terms in the r−1Err(�) summand should be considered to denote
vector fields on S

d−1 rather than functions). Thus, rearranging the terms we deduce
that:

��
(
�−1(r−1∇Sd−1

)l�
)

=
(
r−1∇Sd−1

)l
(��ϕ)+ l · r−l−1∂u

(
(∇Sd−1

)l�
)

− l · r−l−1∂v

(
(∇Sd−1

)l�
)

(6.15)

+ l(l + 1)r−l−2(∇Sd−1
)l�

+
l∑

j=0

r−(l− j)Err
(
(r−1∇Sd−1

) j�
)

After multiplying (6.11) with 1+O(r−1−a) so as to make the coefficient of ∂u∂v�
equal to 1, differentiating l times with respect to ∂u we eventually obtain (since ∂ur =
−1) that
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��
(
�−1∂ lu�

)
= (1 + O(r−1−a)) · ∂ lu

(
(1 + O(r−1−a)) ·��ϕ

)
(6.16)

+
l−1∑

j=0

O(r−3)∂σ∂σ

(
∂
j
u�
)

+
l∑

j=0

Err
(
∂
j
u�
)
,

��

6.2 Proof of Theorem 6.1

Without loss of generality, we will assume that ϕ is real valued. We will set

�
.= �ϕ. (6.17)

In the case k = 1 the statement of Theorem 6.1 reduces to the statement of Theorem
5.1. Thus, it suffices to assume that k ≥ 2. In order to avoid unnecessarily complicated
notations, we will only establish the case k = 2, since the case k > 2 can be treated
in exactly the same way (through induction on k).

Fix an ε > 0 small enough in terms of p,η, δ. We will assume without loss of
generality that R in terms of ε. Repeating the proof of Lemma 5.4 for �−1∂v� in
place of ϕ, but without absorbing terms of the form

∫
O(r p−1−a)|r−1∂σ∂v�|2 by

the left hand side of the resulting inequality, and without using a Cauchy–Schwarz
inequality to bound terms of the form ∂2� ·� (�∂v�), we readily obtain the following
inequality for any T ∗ ≥ 0 (using the energy norm notation of the proof of Theorem
5.1):

E (p)bound,R,T ∗ [�−1∂v�](τ2)+
∫ τ2

τ1

E (p−1)
bulk,R,η,T ∗ [�−1∂v�](τ) d τ

+ E (p)I+,R,T ∗ [�−1∂v�](τ1, τ2)

≤ (1 + Op,η(ε)
) · E (p)bound,R,T ∗ [�−1∂v�](τ1)

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂∂v�|2 + r p−2|∂v�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r p−1−a |r−1∂σ∂v�|2 + r p−3−a |∂u∂v�|2

+ max{r p−3−a, r−3}|∂v�|2
)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
1

2
f (r)(∂v − ∂u)(�

−1∂v�)

+ (d − 1) f (r)

r
(�−1∂v�)

)
· �(�−1∂v�)�

2dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (∂v + ∂u)(∂v�) ·��(�−1∂v�) dudvdσ
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+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · Op,η,ε(r

p−2−a) · ∂σ∂v� ·��
(
�−1∂v�

)
dudvdσ

−
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p∂2

v� ·��
(
�−1∂v�

)
dudvdσ

+Cp,η,εBound
∂v
p,T ∗ [ϕ](τ1, τ2), (6.18)

where f (r) = rη

1+rη is the function used in the proof of Lemma 4.1 and

Bound∂vp,T ∗ [ϕ](τ1, τ2) =
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−2−a

(
|∂u∂v�|2 + |r−1∂σ∂v�|2

+ |∂v�|2 + r−2�2
)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2−a

(
|∂u∂v�|2 + |r−1∂σ∂v�|2

+ |∂v�|2 + r−2�2
)
dvdσ

+
∫

Sτ1∩{t≤T ∗}
χR J

T
μ (�

−1∂v�)n̄
μ. (6.19)

Notice that since 2 < p ≤ 4, the left hand side of (6.18) is not positive definite, since
the E (p−1)

bulk,R,T ∗ term contains a summand of the form

∫

R(τ1,τ2)∩{t≤T ∗}
(2− p)

(
r p−1|r−1∂σ∂v�|2+ (d−1)(d−3)

4
r p−3|∂v�|2

)
dudvdσ

(6.20)

which has a negative sign.
We will show that the last term of the right hand side of (6.18) can provide us with

extra control over bulk terms of the form
∫
r p−1|r−1∂σ∂v�|2. These terms will then

be moved to the left hand side, rendering it positive definite for 2 < p ≤ 4.
According to Lemma 6.3, �−1∂v� satisfies the following equation:

��
(
�−1∂v�

)
= ∂v(�F)+ 2r−3�g

Sd−1+h
Sd−1�− (d − 1)(d − 3)

2
r−3�

+Err(∂v�)+ r−1Err(�) (6.21)

Therefore (omitting the dudvdσ volume form for the next few lines):

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p∂2

v� ·��
(
�−1∂v�

)

=
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p∂2

v� · ∂v(�F)
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+ 2
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3∂2

v� ·�g
Sd−1+h

Sd−1�

− (d − 1)(d − 3)

2

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3∂2

v� ·�

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p∂2

v� ·
(
Err(∂v�)+ r−1Err(�)

)
. (6.22)

Integrating by parts in ∂σ, ∂v , we have: (note, again, that the volume form used here
is dudvdσ)

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3∂2

v� ·�g
Sd−1 +h

Sd−1�

=
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1|r−1∂σ∂v�|2

− (p − 3)(p − 4)

2

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|r−1∂σ�|2

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
O(r p)|∂2�|2 + O(r p−2)|∂�|2

)

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p)∂v� · Err(�)+Op,η(1) · Bound(n)p,T ∗,ε[ϕ](τ1, τ2)

(6.23)

and

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3∂2

v� ·�

= −
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|∂v�|2

− (p − 3)(p − 4)

2

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−5|�|2

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR| ·

(
O(r p−2)|∂�|2 + O(r p−4)|�|2

)

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p)∂v� · Err(�)+Op,η(1) · Bound(n)p,T ∗,ε[ϕ](τ1, τ2),

(6.24)

where

Bound(n)p,T ∗,ε[ϕ](τ1, τ2)

= ε ·
2∑

i=1

(
E (p)bound,R,T ∗ [�−1∂v�](τi )+ E (p)bound,R,T ∗ [�−1r−1∂σ�](τi )
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+ E (p−2)
bound,R,T ∗ [�−1∂u�](τi )

)
+ −1

ε

2∑

i=1

E (p−2)
bound,R,T ∗ [ϕ](τi ). (6.25)

Therefore, using (6.21), (6.22), (6.23) and (6.24), as well as an integration by parts
scheme similar to the one implemented in the proof of Lemma 5.4, we can estimate:

Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
1

2
f (r)(∂v − ∂u)(�

−1∂v�)+ (d−1) f (r)

r
(�−1∂v�)

)

×�(�−1∂v�)�
2dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (∂v + ∂u)(∂v�) ·��(�−1∂v�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−2−a) · ∂σ∂v� ·��

(
�−1∂v�

)
dudvdσ

−
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p∂2

v� ·��
(
�−1∂v�

)
dudvdσ

≤ −2
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1|r−1∂σ∂v�|2 dudvdσ

− (d − 1)(d − 3)

2

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3|∂v�|2

+ (p − 3)(p − 4)
∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r p−3|r−1∂σ�|2

+ (d − 1)(d − 3)

4
r p−5|�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂2�|2 + r p−2|∂�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r1+η + r p+1

)
· |∂v(�F)|2 dudvdσ

+Cp,η,εBound
∂v
p,T ∗ [ϕ](τ1, τ2)+ Cp,ηBound

(n)
p,T ∗,ε[ϕ](τ1, τ2)

+B(∂v)
p,T ∗,η,ε[ϕ](τ1, τ2), (6.26)

where we have set:

B(∂v)
p,T ∗,η,ε[ϕ](τ1, τ2)

= Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r1+η + r p−1−a

)
· r−2|r−2∂σ∂σ�|2 dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1−a |r−1∂σ∂v�|2 dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−3−a |∂u∂v�|2 dudvdσ
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+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r1+η+r p−1−a

)
· r−2|Err(�)|2 dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · Op,η,ε(r

p)∂2
v� · Err(∂v�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · Op,η,ε(r

p−2−a)∂v∂σ� · Err(�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · Op,η,ε( f (r))∂u∂v� · Err(∂v�) dudvdσ

+Op,η(ε)

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1

(
|∂2
v�|2 + r−2|∂v�|2

)
dudvdσ.

(6.27)

Returning to (6.18), (6.26) implies that

E (p)bound,R,T ∗ [�−1∂v�](τ2)+
∫ τ2

τ1

E (p−1)
bulk,R,η,T ∗ [�−1∂v�](τ) d τ

+ E (p)I+,R,T ∗ [�−1∂v�](τ1, τ2)

≤ (1 + Op,η(ε)
)
E (p)bound,R,T ∗ [�−1∂v�](τ1)+ Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR|

×
(
r p|∂∂v�|2 + r p−2|∂v�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · max{r p−3−a, r−3}|∂v�|2 dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r1+η + r p+1

)
· |∂v(�F)|2 dudvdσ

+ (p − 3)(p − 4)
∫

R(τ1,τ2)∩{t≤T ∗}
χR

×
(
r p−3|r−1∂σ�|2 + (d − 1)(d − 3)

4
r p−5|�|2

)
dudvdσ

+Cp,η,εBound
∂v
p,T ∗ [ϕ](τ1, τ2)

+Cp,ηBound
(n)
p,T ∗,ε[ϕ](τ1, τ2)+ B(∂v)

p,T ∗,η,ε[ϕ](τ1, τ2)

− 2
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1|r−1∂σ∂v�|2 dudvdσ

− (d − 1)(d − 3)

2

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1|∂v�|2. (6.28)

Notice that the last two terms of the right hand side of (6.28) can be moved to the
left hand side, thus providing us with extra control over bulk terms of the form

∫
χR ·

r p−1|r−1∂σ∂v�|2 and (in dimensions d > 3)
∫
χR · r p−3|∂v�|2:
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E (p)bound,R,T ∗ [�−1∂v�](τ2)+
∫ τ2

τ1

E (p−1,∂v)
bulk,R,η,T ∗ [�−1∂v�](τ) d τ

+ E (p)I+,R,T ∗ [�−1∂v�](τ1, τ2)

≤ (1 + Op,η(ε)
)
E (p)bound,R,T ∗ [�−1∂v�](τ1)

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂∂v�|2 + r p−2|∂v�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · max{r p−3−a, r−3}|∂v�|2 dudvdσ

+Cp,η,ε

∫

{τ1≤t̄≤τ2}∩{t≤T ∗}
χR ·

(
r1+η + r p+1

)
· |∂v(�F)|2 dudvdσ

+ (p − 3)(p − 4)
∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r p−3|r−1∂σ�|2

+ (d − 1)(d − 3)

4
r p−5|�|2

)
dudvdσ

+Cp,η,εBound
∂v
p,T ∗ [ϕ](τ1, τ2)+ Cp,ηBound

(n)
p,T ∗,ε[ϕ](τ1, τ2)

+B(∂v)
p,T ∗,η,ε[ϕ](τ1, τ2), (6.29)

where we have set

E (p−1,∂v)
bulk,R,η,T ∗ [�](τ)
.=
∫

Sτ∩{t≤T ∗}
χR

(
pr p−1

∣∣∂v(��)
∣∣2

+ (6 − p)

(
r p−1

∣∣r−1∂σ(��)
∣∣2 + (d − 1)(d − 3)

4
r p−3

∣∣��
∣∣2
))

dvdσ

+
∫

Sτ∩{t≤T ∗}
χRr

−1−η|∂u(��)|2 dvdσ. (6.30)

Notice the (6− p) factor in the E (p−1,∂v)
bulk,R,η,T ∗ bulk energy norm which makes it positive

definite for 2 < p ≤ 4.
We can extract a similar inequality for r−1∂σ� in place of ∂v�. Repeating as before

the proof of Lemma 5.4 for �−1
(
r−1∇Sd−1

�
)

in place of ϕ, we obtain:

E (p)bound,R,T ∗ [�−1r−1∂σ�](τ2)+
∫ τ2

τ1

E (p−1)
bulk,R,η,T ∗ [�−1r−1∂σ�](τ) d τ

+ E (p)I+,R,T ∗ [�−1r−1∂σ�](τ1, τ2)

≤ (1 + Op,η(ε)
)
E (p)bound,R,T ∗ [�−1r−1∂σ�](τ1)

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p−2|∂∂σ�|2 + r p−4|∂σ�|2

)
dudvdσ
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+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r p−1−a |r−2∂σ∂σ�|2 + r p−3−a |r−1∂u∂σ�|2

+ max{r p−3−a, r−3}|r−1∂σ�|2
)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · 1

2
f · (∂v − ∂u)(�

−1r−1∇Sd−1
�)

×�(�−1r−1∇Sd−1
�)�2dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (d − 1) f

r
(�−1r−1∇Sd−1

�)

×�(�−1r−1∇Sd−1
�)�2dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (∂v + ∂u)(r

−1∇Sd−1
�)

×��(�−1r−1∇Sd−1
�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−3−a) · ∂2

σ� ·��
(
�−1r−1∂σ�

)
dudvdσ

−
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p∂v(r−1∇Sd−1

�) ·��
(
�−1r−1∇Sd−1

�
)
dudvdσ

+Cp,η,εBound
r−1∂σ
p,T ∗ [ϕ](τ1, τ2), (6.31)

where the multiplication between derivatives of the Sd−1 gradient ∇Sd−1
� of � in the

last lines of (6.31) is performed with respect to the usual metric gSd−1 of Sd−1, and

Boundr
−1∂σ
p,T ∗ [ϕ](τ1, τ2)=

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−2−a

(
|r−1∂u∂σ�|2 + |r−2∂σ∂σ�|2

+ |r−1∂σ�|2 + r−2�2
)
dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2−a

(
|r−1∂u∂σ�|2

+ |r−2∂σ∂σ�|2 + |r−1∂σ�|2 + r−2�2
)
dvdσ

+
∫

Sτ1∩{t≤T ∗}
χR J

T
μ (�

−1r−1∂σ�)n̄μ. (6.32)

Using Lemma 6.3, we have:

��
(
�−1(r−1∂σ�)

)
= r−1∂σ (��ϕ)+ r−2∂u∂σ�− r−2∂v∂σ�

+Err(r−1∂σ�)+ r−1Err(�). (6.33)
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Remark The term r−2∂u∂σ�
11 in (6.33) will provide us with improved control over

|∂σ∂σ�|2 bulk terms, in the same way that the term r−3�g
Sd−1+h

Sd−1� in (6.21)

eventually provided us with improved control over |∂σ∂v�|2 bulk terms through (6.22)
and (6.23). We should also notice that the term −r−2∂v∂σ� has a bad sign, and will
result in the appearence of bulk terms of the form

∫
χRr p−1|∂σ∂v�|2 with a non-

convenient sign. All the terms with a bad sign, however, will be controlled by the
corresponding terms in the left hand side of (6.29) plus a multiple of (5.1) for p − 2
in place of p, provided p ≤ 4.

Integrating by parts in ∂v and the spherical directions (omitting the dudvdσ volume
form in the next few lines), and then once again in ∂u for the error term, we compute:

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (1 + C · r−a)r p−2∂v

(
r−1∇Sd−1

�
)

· ∂u∇Sd−1
�

=
∫

R(τ1,τ2)∩{t≤T ∗}
χR · (1 + O(r−a))r p−1

(
r−2�g

Sd−1�
)

· ∂u∂v�

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
(p − 2)(4 − p)

2
r p−3 + O(r p−3−a)

) ∣∣r−1∂σ�
∣∣2

+
∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
O(r p)|∂2�|2 + O(r p−2)|∂�|2

)

+ Op,η(1) · Bound(n)p,T ∗,ε[ϕ](τ1, τ2). (6.34)

However, since �gϕ = F , the following equality holds:

(
1 + O(r−1−a)

)
∂u∂v� = −�F + r−2�g

Sd−1+h
Sd−1� (6.35)

−
(
(d − 1)(d − 3)

4
· r−2

)
�+ Err(�).

Using (6.35) to substitute ∂u∂v� in (6.34), as well as the following elliptic-type
estimate on S

d−1

∫

Sd−1
|�g

Sd−1�|2 dσ ≥
∫

Sd−1
|∂σ∂σ�|2 dσ + (d − 2)

∫

Sd−1
|∂σ�|2, (6.36)

we infer after integrating by parts in ∂σ in the term
∫
χR · (d−1)(d−3)

2 ·r p−5�g
Sd−1�·�:

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−2∂v(r

−1∇Sd−1
�) · ∂u∇Sd−1

�

≥
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1|r−2∂σ∂σ�|2

11 Recall that this term is actually r−2L∂u (∇Sd−1
�), see Section 2.
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+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1−a · O

(
|r−2∂σ∂σ�|2 + |r−1∂σ�|2

)

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
(d − 1)(d − 3)+ 2(p − 2)(4 − p)

4

+ (d − 2)+ O(r−a)
) · r p−3|r−1∂σ�|2

+
∫

R(τ1,τ2)∩{t≤T ∗}
O(|∂χR |) ·

(
O(r p)|∂2�|2 + O(r p−2)|∂�|2

)

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−1)

(
r−2∂σ∂σ�

)
· Err(�)

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−1) · ∂v

(
r−1∂σ�

)
·�F

+Cp,η,εBound
r−1∂σ
p,T ∗ [ϕ](τ1, τ2)+ Cp,ηBound

(n)
p,T ∗,ε[ϕ](τ1, τ2). (6.37)

This should be considered as the analogue of (6.23). Proceeding therefore as before,
from (6.31), (6.33) and (6.37) we can extract the following analogue of (6.29):

E (p)bound,R,T ∗ [�−1r−1∂σ�](τ2)+
∫ τ2

τ1

E (p−1,∂σ)
bulk,R,η,T ∗ [�−1r−1∂σ�](τ) d τ

+ E (p)I+,R,T ∗ [�−1r−1∂σ�](τ1, τ2)

≤ (1 + Op,η(ε)
)
E (p)bound,R,T ∗ [�−1r−1∂σ�](τ1)

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p−2|∂∂σ�|2 + r p−4|∂σ�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · max{r p−3−a, r−3}|r−1∂σ�|2 dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r1+η + r p+1

)

·
(
|r−1∂σ(�F)|2 + r−2|�F |2

)
dudvdσ

+Cp,η,ε ·
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1−a |r−1∂σ∂v�|2 dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · (1 + O(r−a))r p−1

(
r−1∂v∇Sd−1

�
)

·(∂v(r−1∇Sd−1
�)) dudvdσ

+Cp,η,εBound
r−1∂σ
p,T ∗ [ϕ](τ1, τ2)+ Cp,ηBound

(n)
p,T ∗,ε[ϕ](τ1, τ2)

+B(r−1∂σ)
p,T ∗,η,ε[ϕ](τ1, τ2), (6.38)
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where we have set

E (p−1,∂σ)
bulk,R,η,T ∗ [�](τ)
.=
∫

Sτ∩{t≤T ∗}
χR

(
pr p−1

∣∣∂v(��)
∣∣2 + max

{
(4 − p), r− a

2

}

×
(
r p−1

∣∣r−1∂σ(��)
∣∣2 + (d − 1)(d − 3)

4
r p−3

∣∣��
∣∣2
))

dvdσ

+
∫

Sτ∩{t≤T ∗}
χRr

−1−η|∂u(��)|2 dvdσ (6.39)

and B(r−1∂σ)
p,T ∗,η,ε[ϕ](τ1, τ2) is of the form:

B(r
−1∂σ)

p,T ∗,η,ε[ϕ](τ1, τ2)

= Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r−1+η (|r−1∂σ∂u�|2 + |r−1∂σ∂v�|2) dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−1−a (|r−2∂σ∂σ�|2 + |r−1∂σ�|2) dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χRr

p−3−a (|r−1∂u∂σ�|2) dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (r1+η + r p−1−a) r−2|Err(�)|2 dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · Op,η,ε(r

p−1)∂v∂σ�
(
Err(r−1∂σ�)+r−1Err(�)

)
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · Op,η,ε(r

p−3)∂σ∂σ� · Err(�) dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · f (r)∂u(r

−1∂σ�)Err(r−1∂σ�) dudvdσ. (6.40)

We can now add (6.29) and (6.38) so as to obtain

E (p)bound,R,T ∗ [�−1∂v�](τ2)+ E (p)bound,R,T ∗ [�−1r−1∂σ�](τ2)

+
∫ τ2

τ1

(
E (p−1,∂v)
bulk,R,η,T ∗ [�−1∂v�](τ)+ E (p−1,∂σ)

bulk,R,η,T ∗ [�−1r−1∂σ�](τ)
)
d τ

+ E (p)I+,R,T ∗ [�−1∂v�](τ1, τ2)+ E (p)I+,R,T ∗ [�−1r−1∂σ�](τ1, τ2)

≤ (1 + Op,η(ε)
) (

E (p)bound,R,T ∗ [�−1∂v�](τ1)+ E (p)bound,R,T ∗ [�−1r−1∂σ�](τ1)
)

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂2�|2 + r p−2|∂�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · max{r p−3−a, r−3}

(
|∂v�|2+|r−1∂σ�|2

)
dudvdσ
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+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR

·
(
r1+η + r p+1

)
·
(
|∂v(�F)|2 + |r−1∂σ(�F)|2 + r−2|�F |2

)
dudvdσ

+ (p − 3)(p − 4)
∫

R(τ1,τ2)∩{t≤T ∗}
χR

·
(
r p−3|r−1∂σ�|2 + (d − 1)(d − 3)

4
r p−5|�|2

)
dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · (1 + O(r−a))r p−1

(
r−1∂v∇Sd−1

�
)

·
(
∂v(r

−1∇Sd−1
�)
)
dudvdσ

+Cp,η,εBound
∂v,∂σ
p,T ∗ [ϕ](τ1, τ2)+ Cp,ηBound

(n)
p,T ∗,ε[ϕ](τ1, τ2)

+B(∂v)
p,T ∗,η,ε[ϕ](τ1, τ2)+ B(r−1∂σ)

p,T ∗,η,ε[ϕ](τ1, τ2), (6.41)

where

Bound∂v,∂σp,T ∗ [ϕ](τ1, τ2)

= Cp,η,ε

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−2−a

×
(
|∂u∂v�|2 + |r−1∂σ∂v�|2 + |∂v�|2 + r−2|�|2

)
dvdσ

+Cp,η,ε

2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−2−a

×
(
|r−1∂u∂σ�|2 + |r−2∂σ∂σ�|2 + |r−1∂σ�|2

)
dvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2−a

×
(
|∂u∂v�|2 + |r−1∂σ∂v�|2 + |∂v�|2 + r−2|�|2

)
dvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−2−a

×
(
|r−1∂u∂σ�|2 + |r−2∂σ∂σ�|2 + |r−1∂σ�|2

)
dvdσ

+Cp,η,ε

∫

Sτ1∩{t≤T ∗}
χR J

T
μ (�

−1∂v�)n̄
μ

+Cp,η,ε

∫

Sτ1∩{t≤T ∗}
χR J

T
μ (�

−1r−1∂σ�)n̄μ. (6.42)

Since 2 < p ≤ 4, the second to the end line of the right hand side of (6.48) can be
absorbed by the left hand side after using a Cauchy–Schwarz inequality, since
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∫

R(τ1,τ2)∩{t≤T ∗}
χR · (1 + O(r−a))r p−1

(
r−1∂v∇Sd−1

�
)

·
(
∂v(r

−1∇Sd−1
�)
)
dudvdσ

≤ 1

2

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
(6 − p)r p−1|r−1∂σ∂v�|2

+ pr p−1|∂v(r−1∂σ�)|2
)
dvdσ. (6.43)

Moreover, the third to the end line of the right hand side of (6.48) can be bounded
by the left hand side of (6.45) for p − 2 in place of p (notice the importance of the
(p−4) factor appearing in front of this term). Therefore, after adding to (6.48) a large
multiple of (5.15) for p − 2 in place of p and a large multiple of (5.38) for p − 2 − δ
in place of p, we obtain:

E (p)bound,R,T ∗ [�−1∂v�](τ2)+ E (p)bound,R,T ∗ [�−1r−1∂σ�](τ2)+ E (p−2)
bound,R,T ∗ [ϕ](τ2)

+
∫ τ2

τ1

(
E (p−1,∂v)
bulk,R,η,T ∗ [�−1∂v�](τ)+ E (p−1,∂σ)

bulk,R,η,T ∗ [�−1r−1∂σ�](τ)

+ E (p−3,∂σ)
bulk,R,η,T ∗ [ϕ](τ)

)
d τ+ E (p)I+,R,T ∗ [�−1∂v�](τ1, τ2)

+ E (p)I+,R,T ∗ [�−1r−1∂σ�](τ1, τ2)+ E (p−2)
I+,R,T ∗ [ϕ](τ1, τ2)

≤ (1 + Op,η(ε)
) (

E (p)bound,R,T ∗ [�−1∂v�](τ1)+ E (p)bound,R,T ∗ [�−1r−1∂σ�](τ1)

+C · E (p−2)
bound,R,T ∗ [ϕ](τ1)

)

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂2�|2 + r p−2|∂�|2 + r p−4|�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r1+η + r p+1

)

×
(
|∂v(�F)|2 + |r−1∂σ(�F)|2 + r−2|�F |2

)
dudvdσ

+Cp,η,εBound
∂v,∂σ
p,T ∗ [ϕ](τ1, τ2)+ Cp,ηBound

(n)
p,T ∗,ε[ϕ](τ1, τ2)

+B(∂v)
p,T ∗,η,ε[ϕ](τ1, τ2)+ B(r−1∂σ)

p,T ∗,η,ε[ϕ](τ1, τ2). (6.44)

Finally, in order to absorb the error terms of the last line the right hand side of
(6.44) into the left hand side, we will need to add to (6.44) a constant multiple of the
estimate (5.1) for �−1∂u� in place of �. By following again the proof of Lemma 5.4
for �−1∂u� in place of ϕ for p − 2 in place of p, we obtain:

E (p−2)
bound,R,T ∗ [�−1∂u�](τ2)+

∫ τ2

τ1

E (p−3)
bulk,R,η,T ∗ [�−1∂u�](τ) d τ

+E (p−2)
I+,R,T ∗ [�−1∂u�](τ1, τ2)
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≤ (1 + Op,η(ε)
)
E (p−2)
bound,R,T ∗ [�−1∂u�](τ1)+ Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR |

×
(
r p−2|∂∂u�|2 + r p−4|∂u�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
r p−3−a |r−1∂σ∂u�|2

+ max{r p−5−a, r−3}|∂u�|2
)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR ·

(
1

2
f (r)(∂v − ∂u)(�

−1∂u�)

+ (d − 1) f (r)

r
(�−1∂u�)

)
· �(�−1∂u�)�

2dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · (∂v + ∂u)(∂u�) ·��(�−1∂u�) dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−4−a) · ∂σ∂u� ·��

(
�−1∂u�

)
dudvdσ

−
∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p−2∂v∂u� ·��

(
�−1∂u�

)
dudvdσ

+Cp,η,εBound
∂u
p−2,T ∗ [ϕ](τ1, τ2), (6.45)

where

Bound∂up−2,T ∗ [ϕ](τ1, τ2) =
2∑

i=1

∫

Sτi ∩{t≤T ∗}
χR · r p−4−a |∂u�|2 dvdσ

+
∫

R(τ1,τ2)∩{t=T ∗}
χR · r p−4−a |∂u�|2 dvdσ

+
∫

Sτ1∩{t≤T ∗}
χR J

T
μ (�

−1∂u�)n̄
μ. (6.46)

Adding to (6.44) a large multiple of the estimate (6.45) (implementing also a Hardy
type inequality for the ∂v∂u� term), and using the fact that according to Lemma 6.3

��
(
�−1∂u�

)
= (1 + O(r−1−a)) ·

(
∂u(�F)+ O(r−1−a)�F

)

+O(r−3)∂σ∂σ�+
1∑

j=0

Err
(
∂
j
u�
)
, (6.47)

we thus obtain:

E (p)bound,R,T ∗ [�−1∂v�](τ2)+ E (p)bound,R,T ∗ [�−1r−1∂σ�](τ2)

+ E (p−2)
bound,R,T ∗ [�−1∂u�](τ2)+ E (p−2)

bound,R,T ∗ [ϕ](τ2)
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+
∫ τ2

τ1

(
E (p−1,∂v)
bulk,R,η,T ∗ [�−1∂v�](τ)+ E (p−1,∂σ)

bulk,R,η,T ∗ [�−1r−1∂σ�](τ)

+E (p−3)
bulk,R,η,T ∗ [�−1∂u�](τ)+ E (p−3,∂σ)

bulk,R,η,T ∗ [ϕ](τ)
)
d τ

+ E (p)I+,R,T ∗ [�−1∂v�](τ1, τ2)+ E (p)I+,R,T ∗ [�−1r−1∂σ�](τ1, τ2)

+ E (p−2)
I+,R,T ∗ [�−1∂u�](τ1, τ2)+ E (p−2)

I+,R,T ∗ [ϕ](τ1, τ2)

≤ (1 + Op,η(ε)
) (

E (p)bound,R,T ∗ [�−1∂v�](τ1)+ E (p)bound,R,T ∗ [�−1r−1∂σ�](τ1)
)

+Cp,η ·
(
E (p−2)
bound,R,T ∗ [ϕ](τ1)+ E (p−2)

bound,R,T ∗ [�−1∂u�](τ1)
)

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
|∂χR | ·

(
r p|∂2�|2 + r p−2|∂�|2 + r p−4|�|2

)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r p+1

(
|∂v(�F)|2 + |r−1∂σ(�F)|2

+ r−2|∂u(�F)|2 + r−2|�F |2
)
dudvdσ

+Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · r1+η

(
|∂v(�F)|2 + |r−1∂σ(�F)|2

+|∂u(�F)|2 + |�F |2
)
dudvdσ

+Cp,η,εBound
∂u
p−2,T ∗ [ϕ](τ1, τ2)+ Cp,η,εBound

∂v,∂σ
p,T ∗ [ϕ](τ1, τ2)

+Cp,ηBound
(n)
p,T ∗,ε[ϕ](τ1, τ2)

+B(∂v)
p,T ∗,η,ε[ϕ](τ1, τ2)+ B(r−1∂σ)

p,T ∗,η,ε[ϕ](τ1, τ2)+ B(∂u)
p−2,T ∗,η,ε[ϕ](τ1, τ2). (6.48)

where

B(∂u)
p−2,T ∗,η,ε[ϕ](τ1, τ2)

= Cp,η,ε

∫

R(τ1,τ2)∩{t≤T ∗}
χR · f (r)

{
(∂v − ∂u)

(
�−1∂u�

)
+ O(r−1)

(
�−1∂u�

)}

×
{
O(r−3)∂σ∂σ�+ Err(∂u�)+ Err(�)

}
�dudvdσ

+
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−3−a)∂σ∂u� ·

{
O(r−3)∂σ∂σ�

+ Err(∂u�)+ Err(�)} dudvdσ

−
∫

R(τ1,τ2)∩{t≤T ∗}
χR · O(r p−2)∂v∂u� ·

{
O(r−3)∂σ∂σ�+ Err(∂u�)

+ Err(�)} dudvdσ. (6.49)

After adding to (6.48) a large (in terms of p,η, ε) multiple of (5.15) for p − 2 in
place of p and of (5.38) for min{p − 2, 2 − δ} in place of p, the
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Cp,ηBound
(n)
p,T ∗,ε[ϕ](τ1, τ2)+ B(∂v)

p,T ∗,η,ε[ϕ](τ1, τ2)+ B(r−1∂σ)
p,T ∗,η,ε[ϕ](τ1, τ2)

+B(∂u)
p−2,T ∗,η,ε[ϕ](τ1, τ2)

summand of the right hand side of (6.48) can be absorbed by the positive terms of the
left hand side using an integration by parts scheme similar to the one used in the proof
of Theorem 5.1 for the top order terms and a simple Cauchy–Schwarz inequality for
the lower order terms. Moreover (in view also of Lemma 4.6, as well as the fact that
η′ < 1 + a), the summand

Cp,η,εBound
∂u
p−2,T ∗ [ϕ](τ1, τ2)+ Cp,η,εBound

∂v,∂σ
p,T ∗ [ϕ](τ1, τ2)

can be bounded by

∫

Sτ1

χR J
T
μ (r

−k2∂k1
v ∂

k2
σ ∂k3

u ϕ)n̄μ

plus Op,η(ε) times the existing terms in the left and right hand side of (6.48) and (5.38)
(for min{p − 2, 2 − δ} in place of p). Therefore, provided ε has been fixed small in
terms of p,η, δ and R is large enough in terms of p,η, δ, the desired inequality (6.1)
for k = 1 readily follows from (6.48), (5.15) (for p − 2 in place of p) and (5.38) (for
min{p − 2, 2 − δ} in place of p) after letting T ∗ → +∞. ��

7 Friedlander Radiation Field on I+

In this section, we will establish the existence of the Friedlander radiation field on
future null infinity I+ for solutions ϕ to �ϕ = F on general asymptotically flat
spacetimes (Md+1, g), d ≥ 3, with the asymptotics (3.3), provided the source term
F decays suitably fast in terms of r . This result is essentially a “soft” corollary of the
results of the previous sections.

7.1 Assumptions on the Spacetimes Under Consideration

Let (Md+1, g), d ≥ 3, be a time oriented smooth Lorentzian manifold, possibly with
non empty piecewise smooth boundary ∂M. We will assume the following condition
on the asymptotics of (M, g):

(G1) Asymptotic flatness There exists an open subset Na f,M ⊂ M such that each
connected component of Na f,M is diffeomorphic to R × (1,+∞) × S

d−1.
Fixing such a diffeomorphism (i.e. a coordinate chart) on each component, we
will denote with (u, r, σ) the associated coordinate functions. Furthermore, we
assume that on each component of Na f,M, the metric g takes the form (3.3):
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g = −4

(
1 − 2M(u, σ)

r
+ O(r−1−a)

)
du2 −

(
4 + O(r−1−a)

)
dudr

+ r2 ·
(
gSd−1 + O(r−1)

)

+ (has3 (u, σ)+ O(r−a)
)
dudσ + O(r−a)drdσ + O(r−2−a)dr2. (7.1)

Thus, (Na f,M, g) should be thought of as a disjoint union of copies of the
manifold (Na f , g) of Section 3.

Remark We do not assume that (M, g) is globally hyperbolic.

We will also set t = u + r and v = t − r on Na f,M. Let also T denote the vector
field ∂t in the (t, r, σ) coordinate system on each component of Na f,M. We extend
r as a smooth function on the whole of M by the requirement that 0 ≤ r ≤ 2 on
M\Na f,M. Finally, we also construct the function t̄η′ : {r � 1} ⊂ Na f,M → R for
some fixed 0 < η′ < 1 + a as in Section 3.

7.2 Existence of the Friedlander Radiation Field on Future Null Infinity

We will prove the following result:

Theorem 7.1 Let (Md+1, g), d ≥ 3 satisfy the assumption (G1), and let R0 > 0 be
large in terms of the geometry of (M, g) (this implies that {r ≥ R0} ⊂ Na f,M). Let
ϕ : M → C be a smooth function solving �gϕ = F, such that for some 0 < δ < 1
and for any integer0 ≤ j ≤ � d

2 � and τ ∈ R the following quantity is finite on each
connected component of Na f,M:

E (1+δ+2 j, j+1)
in [ϕ](0) +

j+1∑

i=1

∑

k1+k2+k3=i−1

∫

J+({t=0})∩J−({t̄=τ})∩{r≥R0}
r δ+2i

×
(
|r−k2−k3∂k1

v ∂
k2
σ ∂k3

u (�F)|2
)
dudvdσ < +∞ (7.2)

where

E (p,k)in [ϕ](0)

=
k∑

j=1

∑

k1+k2+k3= j−1

{∫

{t=0}∩{r≥R0}

(
r p−2(k− j)

∣∣r−k2−k3∂k1+1
v ∂k2

σ ∂k3
u (�ϕ)

∣∣2

+ r−1−η′ (
r p−2(k− j)

∣∣r−k2−k3−1∂k1
v ∂

k2+1
σ ∂k3

u (�ϕ)
∣∣2

+
(
(d − 3)r p−2−2(k− j) + min{r p−2−2(k− j), r−δ−2(k− j)}

)

×∣∣r−k2−k3∂k1
v ∂

k2
σ ∂k3

u (�ϕ)
∣∣2
))

dvdσ

+
∫

{t=0}∩{r≥R0}
J Tμ (r

−k2∂k1
v ∂

k2
σ ∂k3

u ϕ)n̄μ

}
(7.3)
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and the derivatives are considered with respect to the (u, v, σ) coordinate system
on each connected component of {r ≥ R0}. Then for each connected component of
Na f,M, the Friedlander radiation field

�I+(u, σ)
.= lim
v→+∞� · ϕ(u, v, σ) (7.4)

exists on R × S
d−1.

Moreover, if (7.2) holds for all integers 0 ≤ j ≤ l + � d
2 � for some integer l ≥ 0,

then �I+ is Cl−1 in (u, σ) and for all integers j1, j2, j3 ≥ 0 with j1 + j2 + j3 ≤ l
and any (u, σ) ∈ R × S

d−1 the limit

lim
v→+∞ r j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)(u, v, σ) (7.5)

is finite.
In particular, if (7.2) holds for all integers j ≥ 0 (for instance when ϕ solves

�ϕ = 0 with smooth and compactly supported initial data on {t = 0}), then �I+ is
smooth and (7.5) exists for all integers j1, j2, j3 ≥ 0.

Remark In the case j1 ≥ 1 we actually expect that the limit (7.5) is identically 0
when ϕ solves �ϕ = 0 with compactly supported initial data. This expectation is
justified by the fact follows from the fact that on spacetimes admitting a smooth
conformal compactification of future null infinity, the following stronger statement
(in comparison to (7.5)) holds for all integers j1, j2, j3 ≥ 0:

lim
v→+∞ r2 j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)(u, v, σ) < +∞. (7.6)

Notice, however, that in our case we are also including spacetimes which do not
necessarily admit a smooth conformal compactification at I+.

Proof We will assume without loss of generality that ϕ is real valued. We will also
work on a fixed connected component of Na f,M.

Let {vn}n∈N be an increasing sequence of positive real numbers tending to +∞.
Let us also fix a smooth function χR : M → [0, 1] such that χR ≡ 0 on {r ≤ R} and
χR ≡ 1 on {r ≥ R + 1} for some large fixed constant R ≥ R0 � 1.

By repeating the proof of Theorem 6.1 for p = 1 + δ in the spacetime region

D0,τ
.= J+({t = 0}) ∩ J−({t̄ = τ}) ∩ {r ≥ R0} (7.7)

(instead of the region bounded by two hyperboloidal hypersurfaces) for any τ ∈ R,
we can readily bound for any k ∈ N and τ ∈ R:

E (1+δ+2(k−1),k)
bound,R;δ [ϕ](τ)

�k,δ E (1+δ+2(k−1),k)
in [ϕ](0)+

k∑

j=0

∫

D0,τ

|∂χR | · r δ+2 j−1|∂ jϕ|2
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+
k∑

j=1

∑

k1+k2+k3= j−1

∫

D0,τ

χR · r δ+2 j−2k3
(
|r−k2∂k1

v ∂
k2
σ ∂k1

v ∂
k3
u (�F)|2

)
dudvdσ,

(7.8)

where

E (p,k)bound,R;δ[ϕ](τ)

=
k∑

j=1

∑

k1+k2+k3= j−1

{∫

{t̄=τ}
χR

(
r p−2(k− j)

∣∣r−k2−k3∂k1+1
v ∂k2

σ ∂k3
u (�ϕ)

∣∣2

+
(
r p−2(k− j)

∣∣r−k2−k3−1∂k1
v ∂

k2+1
σ ∂k3

u (�ϕ)
∣∣2

+
(
(d − 3)r p−2−2(k− j) + min{r p−2−2(k− j), r−δ−2(k− j)}

)

× ∣∣r−k2−k3∂k1
v ∂

k2
σ ∂k3

u (�ϕ)
∣
∣2
))

dvdσ +
∫

{t̄=τ}
χR J

T
μ (r

−k2∂k1
v ∂

k2
σ ∂k3

u ϕ)n̄μ

}

(7.9)

(the ∂v, ∂σ, ∂u coordinate vector fields are a priori only defined in the region {r ≥ R},
but since the integrand is multiplied with the cut-off χR the expression in (7.9) is well
defined).

Using the fundamental theorem of calculus and the expression (3.7) for t̄ , we can
bound for any C1 function � : M → R and any τ ∈ R, n0 ∈ N:

n0∑

n=1

∫

Sd−1

∣∣∣χR��|{t̄=τ}(vn+1, σ)− χR��|{t̄=τ}(vn, σ)
∣∣∣ dσ

�
∫

{t̄=τ}∩{v≤vn0 }

(
|∂v(χR��)| + r−1|∂u(χR��)|

)
dvdσ �δ

�δ

∫

{t̄=τ}
|∂χR | · |��| dσ

+
(∫

{t̄=τ}∩{v≤vn0 }
r1+δχR

(
|∂v(��)|2 + r−2|∂u(��)|2

)
dvdσ

)1/2

.

(7.10)

In the above, χR��|{t̄=τ} is considered as a function of (v, σ), since (v, σ) is a valid
parametrisation of {t̄ = τ} ∩ {r ≥ R} where χR�� is supported. Moreover, the
coordinate derivatives ∂u, ∂v in the right hand side are defined in the (u, v, σ) coordinate
system in the region {r ≥ R}.
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Therefore, from (7.8), (7.9) and (7.10) for �−1r j1∂
j1
v ∂

j3
σ ∂

j3
u (�ϕ) in place of � we

readily deduce that for any k ∈ N and any n0 ∈ N:

⎛

⎝
n0∑

n=1

k−1∑

j=0

∑

j1+ j2+ j3= j

∫

Sd−1

∣∣∣χRr
j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)|{t̄=τ}(vn+1, σ)

−χRr
j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)|{t̄=τ}(vn, σ)

∣∣∣ dσ

)2

�k,δ

�k,δ E (1+δ+2(k−1),k)
in [ϕ](0)+

k∑

j=0

∫

D0,τ

|∂χR | · r δ+2 j−1|∂ jϕ|2

+
⎛

⎝
k−1∑

j=0

∫

{t̄=τ}
|∂χR |r j |∂ jϕ|

⎞

⎠

2

+
k∑

j=1

∑

k1+k2+k3= j−1

∫

D0,τ

χR · r δ+2 j−2k3
(
|r−k2∂k1

v ∂
k2
σ ∂k1

v ∂
k3
u (�F)|2

)
dudvdσ.

(7.11)

Using the Sobolev inequality on S
d−1

||�||2L∞(Sd−1)
�

� d
2 �∑

j=0

∫

Sd−1
|∂ j

σ�|2 dσ, (7.12)

from (7.11) (and the fact that ||�||L1(Sd−1) �d ||�||L2(Sd−1)) we infer that for any
k0, n0 ∈ N:

sup
σ∈Sd−1

⎧
⎨

⎩

n0∑

n=1

k0∑

j=0

∑

j1+ j2+ j3= j

∣∣∣χRr
j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)|{t̄=τ}(vn+1, σ)

−χRr
j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)|{t̄=τ}(vn, σ)

∣
∣∣
2
}

�k,δ

�k,δ E
(1+δ+2(k0+� d

2 �),k0+� d+2
2 �)

in [ϕ](0)+
k0+� d+2

2 �∑

j=0

∫

D0,τ

|∂χR| · r δ+2 j−1|∂ jϕ|2

+
⎛

⎜
⎝

k0+� d
2 �∑

j=0

∫

{t̄=τ}
|∂χR |r j |∂ jϕ|

⎞

⎟
⎠

2

+
k0+� d+2

2 �∑

j=1

∑

k1+k2+k3= j−1

∫

D0,τ

χR · r δ+2 j−2k3

×
(
|r−k2∂k1

v ∂
k2
σ ∂k1

v ∂
k3
u (�F)|2

)
dudvdσ. (7.13)
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In view of (7.2) and the fact that D0,τ ∩ supp(∂χR) and {t̄ = τ} ∩ supp(∂χR) are
compact subsets of M, from (7.13) we deduce that for all τ0 ∈ R and all k0 ∈ N such
that (7.2) holds for all k ≤ k0 + � d

2 �, the following quantity is finite independently of
n0:

sup
σ∈Sd−1,τ≤τ0

⎧
⎨

⎩

n0∑

n=1

k0∑

j=0

∑

j1+ j2+ j3= j

∣∣∣χRr
j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)|{t̄=τ}(vn+1, σ)

−χRr
j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)|{t̄=τ}(vn, σ)

∣
∣∣
2
}

≤ Ck0,δ[ϕ](τ0) < +∞. (7.14)

Therefore, by letting n0 → +∞ (7.14) yields that for any τ ∈ R, σ ∈ S
d−1, any

k0 ∈ N such that (7.2) holds for all k ≤ k0 + � d
2 � and any j1 + j2 + j3 = k0, the

sequence

{
r j1∂ j1

v ∂
j3
σ ∂

j3
u (�ϕ)|{t̄=τ}(vn, σ)

}

n∈N (7.15)

is a Cauchy sequence (and hence (7.5) follows).
Moreover, since t̄ − u = O(r−η′

), from (7.14) we infer the limit

�I+(u, σ) = lim
v→+∞�ϕ(v, u, σ) (7.16)

exists and is a Ck0−1 function of (u, σ) (if k0 �= 0). ��

7.3 Estimates for �I+ Provided by Lemma 5.1

The following corollary is a straightforward consequence of Theorems 6.1 and 7.1:

Corollary 7.2 Let N be any connected component of Na f,M. Then for any k ∈ N,
any 2k − 2 < p ≤ 2k, any given 0 < η < a and 0 < δ < 1, any R > 0 large enough
in terms of p,η, δ, k, any τ1 ≤ τ2 and any smooth cut-off χR : M → [0, 1] supported
in {r ≥ R} ∩ N , the following inequality holds for any smooth function ϕ : M → C

solving �gϕ = F with suitably decaying initial data on {t = 0}:
∑

k1+k2=k

∫

I+∩{τ1≤u≤τ2}
r p−2k

∣∣∂k1
σ ∂k2

u �I+
∣∣2 dudσ �p,η,δ,k

�p,η,δ,k E
(p,k)
bound,R;δ[ϕ](τ2)+

k∑

j=0

∫

R(τ1,τ2)

|∂χR | · r p−2(k− j)|∂ jϕ|2

+
k∑

j=1

∑

k1+k2+k3= j−1

∫

R(τ1,τ2)

χR · (r p+1−2k3−2(k− j) + r1+η
)

(
|r−k2∂k1

v ∂
k2
σ ∂k1

v ∂
k3
u (�F)|2

)
dudvdσ, (7.17)
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where we have adopted the convention

r p−2k |I+ =
{

1, p = 2k

0, p < 2k.

8 Polynomial Decay t̄−1 for Solutions to �gϕ = 0

In this Section, we will generalise the results of [11] by showing that on asymptotically
flat spacetimes M with possibly non-empty timelike boundary ∂timM, a t̄−1 polyno-
mial decay rate hols for solutions ϕ to �ϕ = 0 with suitable boundary conditions on
∂timM, provided some specific geometric conditions on the interior region of (M, g)
hold and assuming that an integrated local energy decay statement (possibly with loss
of derivatives) holds for ϕ.

8.1 Assumptions on the Class of Spacetimes (M, g) Under Consideration

8.1.1 Geometric Assumptions on (M, g) and Related Geometric Constructions

Let (Md+1, g), d ≥ 3, be a smooth Lorentzian manifold with possibly non empty
piecewise smooth boundary ∂M. We assume that (M, g) satisfies the Assumption
(G1) on asymptotic flatness. We will now proceed to state a few more assumptions
on the geometric structure of (M, g), and present some geometric constructions that
will be used later.

Assumptions on the causal structure of (M, g) and (∂M, g|∂M) Since we will
need to establish some global estimates for solutions to the wave equation (1.1) on
(M, g), we will need to impose some conditions on the causal structure of (M, g)
and its boundary.

(G2) Partition of the boundary. We assume that the boundary ∂M (if non-empty)
can be split into two components (not necessarily connected)

∂M = ∂timM ∪ ∂horM, (8.1)

where (∂timM, g|∂timM) is a smooth Lorentzian manifold (i.e. ∂timM is a
smooth timelike hypersurface with respect to g) and (∂horM, g|∂horM) is piece-
wise smooth and degenerate pseudo-Riemannian manifold (i.e. ∂horM is a null
hypersurface with respect to g).

(G3) Global Hyperbolicity. Let M̃tim denote the double of M along ∂timM. We
will denote as ior : M → M̃tim the natural inclusion of M into M̃tim , while
ire f : M → M̃tim will denote the reflection map along ∂timM. We assume
thatM̃tim is globally hyperbolic. Let 	̃ be a Cauchy hypersurface ofM̃tim . We
will denote with 	 the restriction of 	̃ on M. We will also fix a time function
t associated with 	̃ on M̃tim , i.e. g(∇t,∇t) < 0 on M̃tim and 	̃ ≡ {t = 0}.
Notice that with the help of t we can identify M̃tim with R × 	̃ and M with
R ×	.
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(G4) Domain of outer communications. Let Na f,M be the open subset of M defined
in Assumption (G1), where g has the asymptotically flat form (7.1), and let
Ña f,M = ior (Na f,M) ∪ ire f (Na f,M). Having identified M̃tim with R × 	̃,
we assume that Ña f,M = R × (	̃\K ) for some compact K ⊂ 	̃, and that
Ña f,M has a finite number of connected components.12 Moreover, we assume
that the domain of dependence of R × (	̃\K ) is the whole of M̃tim .

In view of Assumption (G4), ior (∂horM)∪ ire f (∂horM) (if non-empty) constitutes
the event horizon of M̃tim . From now on we will use the notation H for ∂horM and
we will callH the event horizon ofM. Using the fact that ior (H)∪ ire f (H) constitutes
the event horizon of a globally hyperbolic spacetime, we can define the future event
horizon H+ and the past event horizon H− of M by the requirement that

• H+,H− are piecewise smooth achronal hypersurfaces (possibly with boundary
and not necessarily connected) such that H+ ∪ H− = H

• H− ⊂ J−(H+)
We will also assume that H+ is smooth (if non-empty).

Assumptions on the existence of a well behaved foliation by hyperboloidal hyper-
surfaces Fixing η′ = 1, we will assume that the function t̄η′ originally defined on the
subset {r � 1} of Na f,M can be extended as a smooth function on M satisfying the
following conditions:

(G5) t̄ is given by the relation (3.7) in the region {r ≥ R} of each connected com-
ponent of Na f,M for some R � 1.

(G6) For any 0 ≤ τ1 ≤ τ2, {t̄ = τ2} is contained in the future domain of dependence
of {t̄ = τ1}.13

(G7) g(∇ t̄,∇ t̄) < 0 everywhere on M ∩ {t̄ ≥ 0}, where ∇ t̄ denotes the gradient
of t̄ with respect to g. Moreover, −C ≤ g(∇ t̄,∇ t̄) ≤ −c < 0 in the region
{t̄ ≥ 0}\Na f,M, for some C, c > 0.

It will be convenient to have a globally defined future directed timelike vector field
N adjusted to the choice of our foliation {t̄ = const}. Therefore, we will fix N to
be a timelike future directed vector field on M such that N ≡ (−g(∇ t̄,∇ t̄)

)−1 · ∇ t̄
on {t̄ ≥ 0}\Na f,M, N ≡ T in the region {t̄ ≥ 0} ∩ {r ≥ 2R} of Na f,M, and the
relations −C ≤ g(N , N ) ≤ −C−1 < 0 and dt̄(N ) = 1 hold everywhere on M for
some C > 0. The existence of such a vector field follows from time orientability of
M and the convexity of the set

Fp = {X ∈ TpM|g(X, X) < 0 and dt̄(X) = 1}

for each p ∈ M.

12 If ∂M �= ∅, then it is necessary that K ∩ ∂M �= ∅.
13 The future domain of dependence D+(B) of a set B ⊂ M is defined as the set of all points p ∈ M such
that all past inextendible causal curves γ emanating from p intersect B, where now γ is not considered past
inextendible if it has a past endpoint q on ∂timM, since from q one can further extend γ by a causal path
inside J−(q)\∂timM.
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We also extend the function r (defined originally in the region Na f,M) as a Morse
function (but not necessarily as a coordinate function) on the whole of M, under the
assumption that r ≥ 0 everywhere on M, r ≡ 0 on ∂M and N (r) = 0. In this way,
the asymptotically flat region Na f,M of M will correspond to the region {r � 1}.

Assumption (G7) implies that, if dgt̄ denotes the volume form of the induced
Riemannian metric gt̄ on the {t̄ = const} hypersurfaces, then there exists a C > 0
such that for any measurable function f : M → [0,+∞) and any 0 ≤ τ1 ≤ τ2 we
have the equivalence

∫

{τ1≤t̄≤τ2}∩{r≤R}
f dvolg ∼R

∫ τ2

τ 1

(∫

{t̄=σ}∩{r≤R}
f dgt̄

)
dσ. (8.2)

Notice that Assumptions (G6) and (G7) also imply that for t̄ ≥ 0 the level sets of
the extended t̄ intersect transversely H+ (if H+ �= ∅).14 It will be useful to denote

Hτ
.= H+ ∩ {t̄ = τ}. (8.3)

We will also denote

∂timMτ .= ∂timM ∩ {t̄ = τ} (8.4)

and

∂Mτ
.= Hτ ∪ ∂timMτ. (8.5)

Without loss of generality, we also assume that the function r has been extended in
such a way in the region {r � 1} so that dr �= 0 on H ∩ {t̄ ≥ 0}. We will also use the
shorthand notation

r+
.=
(

1 + r2
)1/2

. (8.6)

Finally, we will also need to assume that the deformation tensor of N and its
derivatives are bounded on {t̄ ≥ 0} when measured with the reference Riemannian
metric (8.11) (that will be constructed in a moment):

(G8) For any l ∈ N, there exists a Cl > 0 such that

sup
{t̄≥0}

l∑

j=0

∣∣∇l− j
g L j

N g
∣∣
h ≤ Cl . (8.7)

Remark Assumption (G8) holds in the case when the spacetime M is near stationary
or time periodic. Moreover, this is an assumption regarding the structure of the foliation
in the region {r � 1}.

14 As an example, on Schwarzschild exterior the function t̄ could not have been chosen to coincide with
the coordinate function t in a neighborhood horizon, but it can coincide with t∗ (see i.e. [13]).
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It will be convenient to fix a vector field Y in a neighborhood of H+ ∪ ∂timM so
that for any τ ≥ 0, Y is tangent to {t̄ = τ}, orthogonal to Hτ and ∂timMτ and satisfies
g(Y,Y )|Hτ

= 1 and g(Y,Y )|∂timMτ = 1.

Boundary conditions on ∂timM for �ϕ = F Assumptions (G6) and (G7) guarantee
that for any τ ≥ 0, we can solve the inhomogeneous wave equation

�gϕ = F (8.8)

on J+({t̄ = τ}) with Cauchy initial data on {t̄ = τ}, provided suitable boundary
conditions (e.g. Dirichlet conditions) have been imposed on ∂timM. In particular, we
will introduce the following definition:

Definition We define the class of admissible boundary conditions on ∂timM to be
the set Cadm of all families of linear functions

Fτ : C∞(∂timMτ)× C∞(∂timMτ) → C∞(∂timMτ) (8.9)

depending smoothly on τ ≥ 0 such that for any τ0 ≥ 0, any F ∈ C∞({t̄ ≥ τ0}) and
any ϕ0,ϕ1 ∈ C∞({t̄ = τ0}), the inititial-boundary value problem

⎧
⎪⎨

⎪⎩

�ϕ = F on {t̄ ≥ τ0}
(ϕ|t̄=τ0 , Nϕ|t̄=τ0) = (ϕ0,ϕ1)

Fτ(ϕ|∂timM,Yϕ|∂timM) = 0 for τ ≥ τ0

(8.10)

is well posed.

Notice that the usual Dirichlet and Neumann boundary condition belong to the class
Cadm , corresponding to Fτ = I d ⊕ 0 and Fτ = 0 ⊕ I d respectively.

Construction of the reference Riemannian metric h on M In Section A of the
Appendix we establish the existence of a natural Riemannian metric hτ,N defined on
the hypersurfaces {t̄ = τ} (wich we will sometimes denote with hN for simplicity),
associated to g and N (and distinct from the induced metric gt̄ , which degenerates as
on approaches I+).

Remark Notice that hN is non singular up to Hτ, since N is timelike everywhere up
to H+. Thus, in the language of Section B of the Appendix, hN corresponds to the h̃
metric of that section.

We will extend hN to a Riemannian metric h on M by setting

h
.= (dt̄)2 + hN . (8.11)

This Riemannian metric will be used to measure the norms of tensors onM. Moreover,
we will denote with hHτ

the Riemannian metric induced by h on Hτ.
Due to the expression (3.4) for g in the region {r � 1} and (A.2) for �g , we can

bound for any smooth ϕ : M → C and any l ∈ N:
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∣∣∇l
hτ,N

(�hτ,N ,Nϕ)
∣∣2
hτ,N

≤ C(τ)

⎧
⎨

⎩

2∑

j=1

r−2+ |∇l
hτ,N

(N jϕ)|2hτ,N
+

l∑

i=0

(
|∇ i+1

hτ,N
(Nϕ)|2hτ,N

+ |∇ i+1
hτ,N

ϕ|2hτ,N

)

+ ∣∣∇l
hτ,N

(�ϕ)
∣∣2
hτ,N

}

, (8.12)

where the operator �hτ,N ,N on {t̄ = τ} is defined as:

�hτ,N ,N = 1√−g(N , N )
divhτ,N

(√−g(N , N )d
)
. (8.13)

Notice that in the right hand side of (8.12) there is no term of order l + 2 in the spatial
derivatives (i.e. ∇hτ,N ).

Assumptions on the uniformity of elliptic, Poincare and Sobolev type estimates
on the leaves of the foliation {t̄ = τ} We will also need to ensure that we can establish
elliptic, Poincare and Sobolev type estimates on the leaves of the foliation {t̄ = τ} with
constants that do not depend on τ. We will assume the following uniformity condition
on Y :

(G9) For any l ∈ N the following uniform bound holds:

sup
{t̄≥0}

∣∣∇l
gY
∣∣
h ≤ Cl . (8.14)

According to Proposition B.2 of the Appendix and the estimate (8.12), without
imposing any extra assumptions the following statement holds:

Lemma For any integer l ≥ 2 and any β ∈ [0, 1) we can bound for any τ ≥ 0 and
any ϕ ∈ C∞(M) satisfying for any j1 + j2 ≤ l the finite radiation field condition

lim supr→+∞
∣
∣r

d−1
2 + j1∇ j1

hτ,N
(N j2ϕ)

∣
∣
hτ,N

< +∞:

∫

{t̄=τ}
r−β
+ |∇l

gϕ|2h dhN ≤ Cβ,n0(τ)

⎧
⎨

⎩

∫

{t̄=τ}
r−β
+

⎧
⎨

⎩

l∑

j=1

l− j∑

i=0

r−2+ |∇ i
hτ,N

(N jϕ)|2hτ,N

+
∑

0≤ j1+ j2≤l−2

(
|∇ j1+1

hτ,N
(N j2+1ϕ)|2hτ,N

+ |∇ j1+1
hτ,N

(N j2ϕ)|2hτ,N
+ ∣∣∇ j1

hτ,N
(N j2�ϕ)

∣∣2
hτ,N

)}
dhN

+
l−1∑

j=0

∣∣∣
∫

∂Mτ

h∂Mτ

(
∇ j
h∂Mτ

(Yu),∇ j
h∂Mτ

u
)
dh∂Mτ

∣∣∣

⎫
⎬

⎭
. (8.15)

Our final assumtions on the geometry of (M, g) in the region {t̄ ≥ 0} will be the
following:
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(G10) The constants appearing in the right hand side of (8.15) do not depend on
τ ≥ 0.

(G11) The following elliptic estimate holds for any l ∈ N and any smooth function u
on the submanifolds ∂Mτ with a constant Cl not depending on τ ≥ 0:

l∑

j=1

∫

∂Mτ

∣∣∇ j
h∂Mτ

u
∣∣2
h∂Mτ

dh∂Mτ
≤ Cl ·

∫

∂Mτ

∣∣∇l−2
h∂Mτ

(�h∂Mτ
u)
∣∣2
h∂Mτ

dh∂Mτ
.

(8.16)

(G12) For C1 functions u on M, the Poincare inequality

∫

{t̄=τ}∩{r≤R}
|u|2 dhN ≤ C(R) ·

(∫

{t̄=τ}∩{r≤R}
|∇hN u|2hN dhN

+
∫

{t̄=τ}∩{R≤r≤2R}
|u|2 dhN

)
(8.17)

and the trace inequality

∫

∂Mτ

|(∇h∂Mτ
)1/2u|2 dh∂Mτ

≤ C(ε) ·
(∫

∂M∩{τ − ε≤t̄≤τ}
|∇h∂Mu|2h∂M dh∂M

+
∫

∂M∩{τ − ε≤t̄≤τ}
|u|2 dh∂M

)
(8.18)

(where h∂M is the Riemannian metric on ∂M induced by h) hold for constants
C(R) and C(ε) that do not depend on τ ≥ 0. In the above

(G13) The following Sobolev inequality holds for smooth and compactly supported
functions u on the hypersurfaces {t̄ = τ}τ≥0

sup
{t̄=τ}

|u|2 ≤ C ·
� d+1

2 �∑

j=0

∫

{t̄=τ}
|∇ j

hN
u|2hN dhN

(see [19]) with the constant C in the right hand side independent of τ.

Remark Assumptions (G10)–(G13) are automatically satisfied in the case the space-
time M is near stationary or time periodic. Moreover, these assumptions are only tied
to the structure of the foliation in the region {r � 1}.

8.1.2 Integrated Local Energy Decay Statement on (M, g)

We assume that the following integrated local energy decay statement holds on the
spacetime (M, g) under consideration:

(ILED1) Integrated local energy decay with loss of derivatives: We assume that there
exists a (non-empty) class CI LED of boundary conditions on ∂timM, which
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is contained in the class of admissible boundary conditions Cadm , so that the
following statement holds: There exists an integer k ≥ 0 such that for any
R, R f > 0, any integer m ≥ 0, any 0 < η < a, any smooth ϕ : M → C

solving �gϕ = F satisfying boundary conditions on ∂timM belonging to
the class CI LED and any 0 ≤ τ1 ≤ τ2 we can bound:

m∑

j=1

∫

{τ1≤t̄≤τ2}∩{r≤R}

(
|∇ j

gϕ|2h + |ϕ|2
)

+
m∑

j=1

∫

{τ1≤t̄≤τ2}∩∂t imM

(
|∇ j

gϕ|2h + |ϕ|2
)

≤ Cm,η(R, R f )

m+k−1∑

j=0

(∫

{t̄=τ1}
J N
μ (N jϕ)n̄μ +

∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g F |2h dh
)

≤ +Cm,η

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ1}∩{r≥R f }
r−1+

(∣
∣∇ j1+1

hτ,N
(N j2ϕ)

∣
∣2

+ r−2+
∣∣∇ j1

hτ,N
(N j2ϕ)

∣∣2 + r−2+
∣∣N j+1ϕ

∣∣2
)
dg. (8.19)

Using Lemma 4.1 and 4.5, as well as a trace theorem for
∫
∂timM |ϕ|2, (8.19) can be

improved into the statement that for any 0 < η < a and R � 1:

∫

{τ1≤t̄≤τ2}
r−1−η
+

⎛

⎝
m∑

j=1

|∇ j
gϕ|2h + r−2|ϕ|2

⎞

⎠+
m∑

j=1

∫

{τ1≤t̄≤τ2}∩∂timM

(
|∇ j

gϕ|2h + |ϕ|2
)

≤ Cm,η(R)
m+k−1∑

j=0

(∫

{t̄=τ1}
J N
μ (N jϕ)n̄μ +

∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g F |2h dh
)

+Cm,η ·
m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ1}∩{r≥R}
r−1+

(∣∣∇ j1+1
hτ,N

(N j2ϕ)
∣∣2

+ r−2+
∣∣∇ j1

hτ,N
(N j2ϕ)

∣∣2 + r−2+
∣∣N j+1ϕ

∣∣2
)
dg. (8.20)

We should also notice that the results of this section can be readily established in case
one replaces Assumption (ILED1) by the following pair of integrated local energy
decay statements:

Alternative integrated local energy decay statement: With the notations as in
Assumption (ILED1), we assume that there exists an integer k ≥ 0 and an Rc > 0
such that for any R, R f > 0, any integer m ≥ 0, any 0 < η < a, any smooth ϕ :
M → C solving �gϕ = F satisfying boundary conditions on ∂timM belonging
to the class CI LED and any 0 ≤ τ1 ≤ τ2 we can bound:

m∑

j=1

∫

{τ1≤t̄≤τ2}∩{r≤R}

(
|∇ j

gϕ|2h + |ϕ|2
)

+
m∑

j=1

∫

{τ1≤t̄≤τ2}∩∂timM

(
|∇ j

gϕ|2h + |ϕ|2
)
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≤ Cm,η(R, R f )

m+k−1∑

j=0

(∫

{t̄=τ1}
J N
μ (N jϕ)n̄μ +

∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g F |2h dh
)

+Cm,η

m+k−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ1}∩{r≥R f }
r−1+

×
(∣∣∇ j1+1

hτ,N
(N j2ϕ)

∣∣2 + r−2+
∣∣∇ j1

hτ,N
(N j2ϕ)

∣∣2 + r−2+
∣∣N j+1ϕ

∣∣2
)
dg (8.21)

and

m∑

j=1

∫

{τ1≤t̄≤τ2}∩{Rc≤r≤R}

(
|∇ j

gϕ|2h + |ϕ|2
)

+
m∑

j=1

∫

{τ1≤t̄≤τ2}∩∂t imM

(
|∇ j

gϕ|2h + |ϕ|2
)

≤ Cm,η(R, R f )

m−1∑

j=0

(∫

{t̄=τ1}
J N
μ (N jϕ)n̄μ +

∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g F |2h dh
)

+Cm,η

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ1}∩{r≥R f }
r−1+

(∣∣∇ j1+1
hτ,N

(N j2ϕ)
∣∣2

+ r−2+
∣∣∇ j1

hτ,N
(N j2ϕ)

∣∣2 + r−2+
∣∣N j+1ϕ

∣∣2
)
dg. (8.22)

However, we will not pursue this issue again in the paper.

8.2 A First Polynomial Decay Result

On any spacetime (M, g) satisfying the geometric assumptions (G1)–(G13) and
Assumption (ILED1) on integrated local energy decay with loss of derivatives, we
will establish the following polynomial decay estimates:

Theorem 8.1 Let (Md+1, g), d ≥ 3, satisfy Assumptions (G1)–(G13) and (ILED1).
For any smooth solution ϕ to �gϕ = F on J+({t̄ = 0}) with suitably decaying initial
data on {t̄ = 0} (and satisfying boundary conditions on ∂timM belonging to the class
CI LED), the following decay estimates hold for any τ ≥ 0, any integer m ≥ 0 and any
ε > 0, 0 < η < a, provided (7.2) holds for all 0 ≤ j ≤ m + 1 + d + 3k:

m−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ}

(∣∣∇ j1+1
hτ,N

(N j2ϕ)
∣∣2 + r−2+

∣∣N j+1ϕ
∣∣2 + r−2+ |ϕ|2

)
dhN

�m,ε,η τ−2+εE (2,m+3k)
bound [ϕ](0)+ F (2,m,k)

η,ε [F](τ), (8.23)

sup
{t̄=τ}

∣∣r
d−2

2+ ∇m
g ϕ
∣∣2
h �m,ε,η τ−2+εE (2,m+� d+2

2 �+3k)
bound [ϕ](0)F (2,m+� d+2

2 �,k)
η,ε [F](τ)

(8.24)
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and

sup
{t̄=τ}

∣∣r
d−1

2+ ∇m
g ϕ
∣∣2
h �m,η

τ−1E (2,m+� d+2
2 �+2k)

bound [ϕ](0)+ F (1,m+� d+2
2 �,k)

η [F](τ). (8.25)

In the above, k is the integer measuring the derivative loss in the integrated local
energy decay statement (8.19) and for some fixed R,C > 1:

E (p,m)bound [ϕ](τ) =
m∑

j=0

∫

{t̄=τ}∩{r≤R+1}
∣
∣∇ j1

hτ,N
(N j2ϕ)

∣
∣2
hτ,N

dhN

+
∑

components
o f Na f,M

m−1∑

j=0

∑

j1+ j2+ j3= j

E (p,1)bound,R;δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ) (8.26)

(where the derivatives in the second term are with respect to the (u, v, σ) coordinate
charts over each connected component of Na f,M),

F (2,m,k)
η,ε [F](τ) = τ−2+ε

m+3k−1∑

j=0

∫

{0≤t̄≤τ}
r3
∣∣∇ j

g F
∣∣2
h dg

+ τ−1+ε
m+2k−1∑

j=0

∫

{C−1 τ≤t̄≤τ}
r2
∣∣∇ j

g F
∣∣2
h dg

+
m+2k−1∑

j=0

∫

{C−1 τ≤t̄≤τ}
(r1+ε + r1+η

)
∣∣∇ j

g F
∣∣2
h dg (8.27)

and

F (1,m,k)
η [F](τ) = τ−1

m+2k−1∑

j=0

∫

{0≤t̄≤τ}
r3
∣∣∇ j

g F
∣∣2
h dg

+
m+2k−1∑

j=0

∫

{C−1 τ≤t̄≤τ}
r2
∣∣∇ j

g F
∣∣2
h dg. (8.28)

Remark In case there exists some small δ0 > 0 such that the deformation tensor of
the vector field T in the region {r � 1} satisfies the following bound for any integer
m ≥ 1:

Lm
T g = O(t̄−δ0)

{
O(r−1−a)dvdu + O(r)dσdσ + O(1)dudσ

+ O(r−a)dvdσ + O(r−1)du2 + O(r−2−a)dv2
}

(8.29)
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and the last term in the right hand side of the integrated local energy decay estimate
(8.19) is replaced by

Cm,η

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ1}∩{r≥R f }
t̄−δ0r−1+

(∣
∣∇ j1+1

hτ,N
(N j2ϕ)

∣
∣2

+ r−2+
∣
∣∇ j1

hτ,N
(N j2ϕ)

∣
∣2 + r−2+

∣
∣N j+1ϕ

∣
∣2
)
dg (8.30)

(this is consistent with the remark below Lemma 4.1), then the ε loss in the exponent
of τ in (8.23) and (8.24) can be removed. This follows readily the fact that, in this case,
the second summand of the right hand side of (4.30) comes with a O(t̄−δ0) factor,
which enables us to deduce (8.23) from (8.55) and (8.56) for some ε � δ0.

The proof of Theorem 8.1 will be presented in Section 8.4.
We will also establish the following generalisation of Theorem 8.1 with improved

weights in r associated to higher derivatives of ϕ:

Theorem 8.2 Let (Md+1, g), d ≥ 3, satisfy Assumptions (G1)–(G13) and (ILED1).
For any smooth solution ϕ to �gϕ = F on J+({t̄ = 0}) ⊂ (M, g) with suitably
decaying initial data on {t̄ = 0} (and satisfying boundary conditions on ∂timM
belonging to the class CI LED), the following decay estimates hold for any τ ≥ 0,
any integers q,m ≥ 1 and any ε > 0, 0 < η < a provided (7.2) holds for all
0 ≤ j ≤ q + m + d + 3k:

∑

0≤i1+i2≤m−1

q−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ}

(
r2 j1

∣∣∇ i1+ j1+1
hτ,N

(Ni2+ j2ϕ)
∣∣2

+ r−2+
∣∣N j+i1+i2+1ϕ

∣∣2 + r−2+ |ϕ|2
)
dhN �m,q,ε,η

�m,q,ε,η τ−2+εE (2q,q,m−1+3k)
bound [ϕ](0)+ F (2,q,m−1+k)

η,ε [F](τ), (8.31)
∑

0≤i1+i2≤m−1

∑

j1+ j2=q

sup
{t̄=τ}

∣∣r
d−2

2 + j1
+ ∇ j1+i1

hτ,N
(N j2+i2ϕ)

∣∣2
h

�m,q,ε,η τ−2+εE (2q,q,m−1+� d+2
2 �+3k)

bound [ϕ](0)+ F (2,q,m−1+� d+2
2 �,k)

η,ε [F](τ)(8.32)

and

∑

0≤i1+i2≤m−1

∑

j1+ j2=q

sup
{t̄=τ}

∣∣r
d−1

2 + j1
+ ∇ j1+i1

hτ,N
(N j2+i2ϕ)

∣∣2
h �m,q,η

τ−1E (2q,q,m−1+� d+2
2 �+2k)

bound [ϕ](0)+ F (1,q,m−1+� d+2
2 �,k)

η [F](τ). (8.33)

In the above, k is the integer measuring the derivative loss in the integrated local
energy decay statement (8.19) and for some fixed R,C > 1:

123



6 Page 104 of 194 G. Moschidis

E (p,q,m)bound [ϕ](τ) =
q+m−1∑

j=0

∫

{t̄=τ}∩{r≤R+1}
∣∣∇ j1

hτ,N
(N j2ϕ)

∣∣2
hτ,N

dhN

+
∑

components
o f Na f,M

m−1∑

j=0

∑

j1+ j2+ j3= j

E (p,q)bound,R;δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ) (8.34)

(where the derivatives in the second term are with respect to the (u, v, σ) coordinate
charts over each connected component of Na f,M),

F (2,q,m,k)
η,ε [F](τ)

= τ−2+ε
m+3k−1∑

j=0

∑

j1+ j2= j

∑

i1+i2≤q−1

∫

{0≤t̄≤τ}
r3+2i1

∣
∣∇ j1+i1

hτ,N
(N j2+i2 F)

∣
∣2
hτ,N

dg

+ τ−1+ε
m+2k−1∑

j=0

∑

j1+ j2= j

∑

i1+i2≤q−1

∫

{C−1 τ≤t̄≤τ}
r2+2i1

∣
∣∇ j1+i1

hτ,N
(N j2+i2 F)

∣
∣2
hτ,N

dg

+
m+2k−1∑

j=0

∑

j1+ j2= j

∑

i1+i2≤q−1

∫

{C−1 τ≤t̄≤τ}
(r1+ε +2i1 + r1+η

)
∣
∣∇ j1+i1

hτ,N
(N j2+i2 F)

∣
∣2
hτ,N

dg

(8.35)

and

F (1,q,m,k)
η [F](τ)

= τ−1
m+2k−1∑

j=0

∑

j1+ j2= j

∑

i1+i2≤q−1

∫

{0≤t̄≤τ}
r3+2i1

∣
∣∇ j1+i1

hτ,N
(N j2+i2 F)

∣
∣2
hτ,N

dg

+
m+2k−1∑

j=0

∑

j1+ j2= j

∑

i1+i2≤q−1

∫

{C−1 τ≤t̄≤τ}
r2+2i1

∣∣∇ j1+i1
hτ,N

(N j2+i2 F)
∣∣2
hτ,N

dg. (8.36)

Remark Notice that each derivative of ϕ tangential to {t̄ = τ} carries an extra r -weight.
Again, as before, in case there exists some small δ0 > 0 such that the deformation
tensor of the vector field T in the region {r � 1} satisfies the bound (8.29) for any
m ∈ N and the last term in the right hand side of the integrated local energy decay
estimate (8.19) is replaced by

Cm,η

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ1}∩{r≥R f }
t̄−δ0r−1+

(∣
∣∇ j1+1

hτ,N
(N j2ϕ)

∣
∣2

+ r−2+
∣
∣∇ j1

hτ,N
(N j2ϕ)

∣
∣2 + r−2+

∣
∣N j+1ϕ

∣
∣2
)
dg, (8.37)

then the ε loss in the exponent of τ in (8.31) and (8.32) can be removed.
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The proof of this theorem follows exactly as that of Theorem 8.1, the only difference
being that Corollary 6.2 is used in place of 5.2, and Lemma 4.7 in place of 4.5. Thus,
the details of the proof will be omitted.

8.3 Energy Boundedness with Loss of Derivatives

The integrated local energy decay assumption (8.20) on (M, g) allows us to establish
the following energy boundedness statement with loss of derivatives on (M, g):

Lemma 8.3 For any R > 0, any integer m ≥ 1 and any 0 < η < a we can bound for
any 0 ≤ τ1 ≤ τ2 and any smooth function ϕ satisfying �ϕ = F on (M, g) with finite
energy norm on {t̄ = τ1} (and satisfying boundary conditions on ∂timM belonging to
the class CI LED), we can bound provided (7.2) holds for all 0 ≤ j ≤ m + d + k:

m−1∑

j=0

∑

j1+ j2= j

∫

H+(τ1,τ2)

(∣
∣∇ j1+1

hH (N j2ϕ)
∣
∣2
hH + |ϕ|2

)
dhH

+
m∑

j=0

∑

j1+ j2= j

∫

∂timM∩{τ1≤t̄≤τ2}
∣∣∇ j

gϕ
∣∣2
h dh∂Mtim

+
m−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ2}

(∣∣∇ j1+1
hN

(N j2ϕ)
∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2

)
dhN

≤ Cm,R

m+k−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ1}

(∣∣∇ j1+1
hN

(N j2ϕ)
∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2

)
dhN

+
m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ2}∩{r≥R}
r−1+

×
(∣∣∇ j1+1

hN
(N j2ϕ)

∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2 + r−2+ |ϕ|2

)
dh

+Cm,R

m+k−1∑

j=0

∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g F |2h dh. (8.38)

where H+(τ1, τ2) = H+ ∩ {τ1 ≤ t̄ ≤ τ2} and k is the integer measuring the loss of
derivatives in (8.19).

Proof Without loss of generality, we can assume that R is large in terms of the geometry
of (M, g). Let us fix a second smooth vector field N1 on (M, g), such that:

• N1 ≡ N on {r ≥ 1}
• |N1|h ≤ 2 on (M, g)
• g(N1, N1) ≤ −c < 0 everywhere on (M, g)
• For any l ∈ N:

∣∣Ll
N1
g
∣∣
h ≤ Cl .15

15 This is possible in view of Assumptions (G8) and (G9).
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• N1 and N are linearly independent on H+ and their span intersects the tangent
space of the surfaces H+ ∩ {t̄ = const} transversally

•
∣∣∣ (g(N1, N ))2 − g(N1, N1)g(N , N )

∣∣∣ ≥ c > 0 on H+.

Notice that in the case H+ = ∅ we can simply choose N1 = N .
Fix a smooth cut-off function χ : [0,+∞) → [0, 1] such that χ(x) = 1 for x ≤ 1

and χ(x) = 0 for x ≥ 2, and define:

χR(r)
.= χ(

r

R
). (8.39)

Define also the energy current

Jmμ [ϕ] =
m−1∑

j=0

∑

j1+ j2= j

(
J N
μ (N j1

1 N j2ϕ)
)
. (8.40)

By integrating ∇μ
g
(
χR Jmμ [ϕ]) over the region {τ1 ≤ t̄ ≤ τ2}, we obtain (due to the

boundedness of the derivatives of the deformation tensors of N1, N ):

∫

H+(τ1,τ2)

Jmμ [ϕ]nμ

H +
∫

{t̄=τ2}∩{r≤R}
Jmμ [ϕ]n̄μ

≤
∫

{t̄=τ1}∩{r≤2R}
Jmμ [ϕ]n̄μ + Cm

∫

J+({t̄=τ1})∩{r≤2R}

m∑

j=0

|∇ j
gϕ|2h

+
∣∣∣
∫

∂timM∩{τ1≤t̄≤τ2}
Jmμ [ϕ]nμ

∂timM

∣∣∣. (8.41)

Adding to (8.41) the integrated local energy decay statement (8.20), and using
Lemma 4.5, we obtain:

∫

H+(τ1,τ2)

Jmμ [ϕ]nμ
H +

∫

{t̄=τ2}
Jmμ [ϕ]n̄μ +

∫

{τ1≤t̄≤τ2}∩{r≤2R}

m∑

j=0

|∇ j
gϕ|2h dh

+
∫

∂t imM∩{τ1≤t̄≤τ2}

m∑

j=0

|∇ j
gϕ|2h dh∂t imM

≤ Cm,R

∫

{t̄=τ1}
Jm+k
μ [ϕ]n̄μ +

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ2}∩{r≥2R}
r−1+

(∣∣∇ j1+1
hN

(N j2ϕ)
∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2 + r−2+ |ϕ|2

)
dh + Cm,R

m+k−1∑

j=0

∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g F |2h dh. (8.42)

In view of the assumptions on N1, N (it is here that we make use of the fact that
their span is transversal to H+ ∩ {t̄ = const}), as well Assumption (G11) on the
uniformity of the elliptic estimates on sections of H+ (note that Theorem 7.1 applies
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to yield lim supr→+∞
∣∣r

d−1
2 + j1∇ j1

hτ,N
(N j2ϕ)

∣∣
hτ,N

< +∞ for all j1 + j2 ≤ m + k), we
can bound:

∫

H+(τ1,τ2)

Jmμ [ϕ]nμ

H +
m−2∑

j=0

∫

H+(τ1,τ2)

|∇ j
g F |h dhH

≥ cm ·
m−1∑

j=0

∑

j1+ j2= j

∫

H+(τ1,τ2)

∣
∣∇ j1+1

hH (N j2ϕ)
∣
∣2
hH dhH. (8.43)

Thus, from (8.42) and (8.43), as well as a trace theorem on the horizon, we obtain:

m−1∑

j=0

∑

j1+ j2= j

∫

H+(τ1,τ2)

(∣∣∇ j1+1
hH (N j2ϕ)

∣∣2
hH + |ϕ|2

)
dhH +

∫

{t̄=τ2}
Jmμ [ϕ]n̄μ

+
∫

{τ1≤t̄≤τ2}∩{r≤2R}

m∑

j=0

|∇ j
gϕ|2h dh +

∫

∂timM∩{τ1≤t̄≤τ2}

m∑

j=0

|∇ j
gϕ|2h dh∂timM

≤ Cm,R

∫

{t̄=τ1}
Jm+k
μ [ϕ]n̄μ +

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ2}∩{r≥R}
r−1+

×
(∣
∣∇ j1+1

hN
(N j2ϕ)

∣
∣2
hN

+ r−2+
∣
∣N j+1ϕ|2 + r−2+ |ϕ|2

)
dh

+Cm,R

m−2∑

j=0

∫

H+(τ1,τ2)

|∇ j
g F |h dhH. (8.44)

Moreover, using Assumptions (G10), (G11) and (G12) on the uniformity of elliptic
estimates and trace inequalities, we can bound:

m−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ2}

(∣∣∇ j1+1
hN

(N j2ϕ)
∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2

)
dhN ≤ Cm

(∫

{t̄=τ2}
Jmμ [ϕ]n̄μ

+
m−1∑

j=0

∑

j1+ j2= j

∫

H+(τ1,τ2)

(∣
∣∇ j1+1

hH (N j2ϕ)
∣
∣2
hH + |ϕ|2

)
dhH

+
∫

∂t imM∩{τ1≤t̄≤τ2}

m∑

j=0

|∇ j
gϕ|2h dh∂t imM +

m−2∑

j=0

∫

{t̄=τ2}
|∇ j

g F |2h dhN

⎞

⎠ . (8.45)

Thus, using (8.44) and (8.45) and a trace theorem for the terms

m−2∑

j=0

(∫

{t̄=τ2}
|∇ j

g F |2h dhN +
∫

H+(τ1,τ2)

|∇ j
g F |h dhH

)
,
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we deduce the required energy boundedness estimate:

m−1∑

j=0

∑

j1+ j2= j

∫

H+(τ1,τ2)

(∣∣∇ j1+1
hH (N j2ϕ)

∣∣2
hH

+|ϕ|2
)
dhH +

m−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ2}

(∣∣∇ j1+1
hN

(N j2ϕ)
∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2

)
dhN

+
∫

∂timM∩{τ1≤t̄≤τ2}

m∑

j=0

|∇ j
gϕ|2h dh∂timM

≤ Cm,R

m+k−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ1}

(∣∣∇ j1+1
hN

(N j2ϕ)
∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2

)
dhN

+
m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ2}∩{r≥R}
r−1

×
(∣∣∇ j1+1

hN
(N j2ϕ)

∣∣2
hN

+ r−2+
∣∣N j+1ϕ|2 + r−2+ |ϕ|2

)
dh

+Cm,R

m+k−1∑

j=0

∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g F |2h dh. (8.46)

��

8.4 Proof of Theorem 8.1

We will assume without loss of generality that ϕ is real valued. We will also set
� = �ϕ.

Fix an R > 0 large enough in terms of the geometry of (M, g). Fix also a smooth
cut-off χR : M → [0, 1] which is only a function of r , such that χR ≡ 0 on {r ≤ R}
and χR ≡ 1 on {r ≥ R + 1}. Fix also a small number 0 < δ � 1.

We will use the following notations for the r p-weighted energy norms for any
τ ≥ 0:

E (p,m)bound [ϕ](τ)

=
m∑

j=0

∫

{t̄=τ}∩{r≤R+1}
∣∣∇ j1

hτ,N
(N j2ϕ)

∣∣2
hτ,N

dhN

+
∑

components
o f Na f,M

m−1∑

j=0

∑

j1+ j2+ j3= j

E (p,0)bound,R;δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ), (8.47)
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E (p,m)bulk,η[ϕ](τ)

=
m∑

j=0

∫

{t̄=τ}∩{r≤R+1}
∣∣∇ j1

hτ,N
N j2ϕ

∣∣2
hτ,N

dhN

+
m∑

j=1

∑

j1+ j2= j−1

∫

{t̄=τ}∩H
∣
∣∇ j1+1

hH (N j2ϕ)
∣
∣2
hH dhHτ

+
m∑

j=0

∫

{t̄=τ}∩∂timM
∣∣∇ j

gϕ
∣∣2
h dh∂timM,τ

+
∑

components
o f Na f,M

m−1∑

j=0

∑

j1+ j2+ j3= j

E (p,0)bulk,R,η;δ[r− j2∂ j1
v ∂

j2
σ ∂

j3
u ϕ](τ) (8.48)

and

E (m)en [ϕ](τ) =
m∑

j=1

∑

j1+ j2= j−1

∫

{t̄=τ}

(∣∣∇ j1+1
hτ,N

(N j3ϕ)
∣∣2
hτ,N

+ r−2+
(∣∣N jϕ

∣∣2 + |ϕ|2
))

dhN . (8.49)

We will also use the norm

F (p,m)
η [ϕ](τ) =

m−1∑

j=0

∫

{t̄=τ}
(r p+1 + r1+η

)
∣∣∇ j

g (�ϕ)
∣∣2
h dhN . (8.50)

Using Corollary 5.2 and Lemma 8.3, we can bound for any integer m ≥ 0, any
0 ≤ τ1 ≤ τ2 and any 0 < p ≤ 2:

E (p,m)bound [ϕ](τ2)+
∫ τ2

τ1

E (p−1,m)
bulk,η [ϕ](τ) d τ

�p,m,η E (p,m+k)
bound [ϕ](τ1)+

∫ τ2

τ1

F (p,m+k)
η [ϕ](τ) d τ . (8.51)

Starting from (8.51) for τ1 = 0 and letting τ2 → +∞, we obtain for any m ∈ N

and any T ≥ 0:

∫ T

0
E (1,m)bulk,η[ϕ](τ) d τ �m,η E (2,m+k)

bound [ϕ](0)+
∫ T

0
F (2,m+k)

η [ϕ](τ) d τ . (8.52)

An application of the pigeonhole principle on (8.52) readily yields that there exists a
sequence of positive numbers {τn}n∈N with τ0 ≥ 1 and 2τn ≤ τn+1 ≤ 4τn such that

E (1,m)bulk,η[ϕ](τn) �m,η τ−1
n

(
E (2,m+k)
bound [ϕ](0)+

∫ τn

0
F (2,m+k)

η [ϕ](τ) d τ

)
. (8.53)
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Applying (8.51) in the intevals {τn ≤ t̄ ≤ τn+1} for p = 1 and using (8.53) for
m + k in place of m to bound the first term of the right hand side,16 we obtain for any
τ̄ ∈ [τn, τn+1]:

∫ τ̄

τn

E (0,m)bulk,η[ϕ](τ) d τ �m,η τ−1
n

(
E (2,m+2k)
bound [ϕ](0)

+
∫ τn

0
F (2,m+2k)

η [ϕ](τ) d τ

)
+
∫ τ̄

τn

F (1,m+k)
η [ϕ](τ) d τ . (8.54)

Using the mean value theorem on the intervals {τn ≤ t̄ ≤ τn+1}, we thus obtain on a
possibly different sequence τ̄n ∈ [τn + τn+1−τn

4 , τn+1 − τn+1−τn
4 ]:

E (0,m)bulk,η[ϕ](τ̄n) �m,η τ̄−2
n

(

E (2,m+2k)
bound [ϕ](0)+

∫ τ̄n

0
F (2,m+2k)

η [ϕ](τ) d τ

)

+ τ̄−1
n

∫ τ̄n

1
4 τ̄n

F (1,m+k)
η [ϕ](τ) d τ . (8.55)

Notice that by interpolating between (8.55) for p = 2 on the intervals {τ̄n ≤ t̄ ≤
τ̄n+1}, we can also bound:

E (ε,m)bound,η[ϕ](τ̄n) �m,ε τ̄−2+ε
n

(

E (2,m+2k)
bound [ϕ](0)+

∫ τ̄n

0
F (2,m+2k)

η [ϕ](τ) d τ

)

+ τ̄−1+ε
n

∫ τ̄n

1
4 τ̄n

F (1,m+k)
η [ϕ](τ) d τ . (8.56)

Applying (8.51) for p = ε on the intervals {τ̄n ≤ t̄ ≤ τ̄n+1} and using (8.56), we
obtain for any τ̄ ∈ [τ̄n, τ̄n+1]:
∫ τ̄

τ̄n

E (−1+ε,m)
bulk,η [ϕ](τ) d τ �m,ε,η τ̄−2+ε

n

(

E (2,m+2k)
bound [ϕ](0)+

∫ τ̄n

0
F (2,m+2k)

η [ϕ](τ) d τ

)

+ τ̄−1+ε
n

∫ τ̄n

1
4 τ̄n

F (1,m+k)
η [ϕ](τ) d τ

+
∫ τ̄

τ̄n

F (ε,m+k)
η [ϕ](τ) d τ . (8.57)

Using the fact that

E (m)en [ϕ](τ) �m,η E (0,m)bulk,η[ϕ](τ), (8.58)

16 Notice the trivial inequality E(p,m)bound [ϕ](τ) �p,m,η E(p,m)bulk,η[ϕ](τ).
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by applying Lemma 8.3 on the intervals {τ̄n ≤ t̄ ≤ τ̄n+1} and using (8.55) and (8.57)
(for m + k in place of k), we obtain (8.23) for some C > 1 and any τ ≥ 1 in view of
the fact that 5

4 τ̄n ≤ τ̄n+1 ≤ 8τ̄n :

E (m)en [ϕ](τ) �m,ε,η τ−2+ε

(
E (2,m+3k)
bound [ϕ](0)+

∫ τ

0
F (2,m+3k)

η [ϕ](τ) d τ

)

+ τ−1+ε

∫ τ

C−1 τ

F (1,m+2k)
η [ϕ](τ) d τ +

∫ τ

C−1 τ

F (ε,m+2k)
η [ϕ](τ) d τ .

(8.59)

In view of Assumption (G13), we obtain from (8.59) for any integer m ≥ 0 and
any τ ≥ 0 using the Sobolev embedding theorem:

sup
{t̄=τ}

∣∣∇mϕ
∣∣2
h

�m,ε,η τ−2+ε

(
E (2,m+� d+1

2 �+3k)
bound [ϕ](0)+

∫ τ

0
F (2,m+� d+1

2 �+3k)
η [ϕ](τ) d τ

)

+ τ−1+ε

∫ τ

C−1 τ

F (1,m+� d+1
2 �+2k)

η [ϕ](τ) d τ +
∫ τ

C−1 τ

F (ε,m+� d+1
2 �+2k)

η [ϕ](τ) d τ .

(8.60)

Using the fundamental theorem of calculus and applying the product rule for deriv-
atives, we can bound for any function � on M and any 1 � R1 < R2:

∫

{t̄=τ}∩{r=R2}
|r d−2

2 �|2 dσ �
∫

{t̄=τ}∩{r=R1}
|r d−2

2 �|2 dσ

+
∫

{t̄=τ}∩{R1≤r≤R2}
|r d−3

2 �|
(
|∂v(r d−1

2 �)|

+ r−2|∂u(r d−1
2 �)| + |r d−3

2 �|
)
dvdσ. (8.61)

Hence, using a Sobolev inequality on S
d−1, a trace inequality for the first term of the

right hand side of (8.61) and a Cauchy–Schwarz inequality for the second term, we
infer from (8.61) for any integer m ≥ 0:

sup
{t̄=τ}

∣∣r
d−2

2+ ∇m
g ϕ
∣∣2
h �m E (m+� d+2

2 �)
en [ϕ](τ). (8.62)

Thus, (8.59) yields:

sup
{t̄=τ}

∣
∣r

d−2
2+ ∇m

g ϕ
∣
∣2
h �m,ε,η τ−2+ε

(
E (2,m+� d+2

2 �+3k)
bound [ϕ](0)

+
∫ τ

0
F (2,m+� d+2

2 �+3k)
η [ϕ](τ) d τ

)
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+ τ−1+ε

∫ τ

C−1 τ

F (1,m+� d+2
2 �+2k)

η [ϕ](τ) d τ

+
∫ τ

C−1 τ

F (ε,m+� d+2
2 �+2k)

η [ϕ](τ) d τ . (8.63)

Using (8.53) and (8.51) for p = 1 on the intervals {τn ≤ t̄ ≤ τn+1}, we can bound
for any integer m ≥ 0 and any τ ≥ 0 (for some fixed C > 1):

E (1,m)bound [ϕ](τ) �m,η τ−1
(
E (2,m+2k)
bound [ϕ](0)+

∫ τ

0
F (2,m+2k)

η [ϕ](τ) d τ

)

+
∫ τ

C−1 τ

F (1,m+2k)
η [ϕ](τ) d τ . (8.64)

Again, using the fundamental theorem of calculus we can bound for any any function
� on M and any 1 � R1 < R2:

∫

{t̄=τ}∩{r=R2}
|r d−1

2 �|2 dσ �
∫

{t̄=τ}∩{r=R1}
|r d−1

2 �|2 dσ

+
∫

{t̄=τ}∩{R1≤r≤R2}
|r d−1

2 �|
(
|∂v(r d−1

2 �)| + r−2|∂u(r d−1
2 �)|

)
dvdσ, (8.65)

and thus from (8.64), (8.65) and a Sobolev inequality on S
d−1, we obtain the desired

decay rate for r
d−1

2 ϕ:

sup
{t̄=τ}

∣∣r
d−1

2+ ∇m
g ϕ
∣∣2
h

�m,η τ−1
(
E (2,m+� d+2

2 �+2k)
bound [ϕ](0)+

∫ τ

0
F (2,m+� d+2

2 �+2k)
η [ϕ](τ) d τ

)

+
∫ τ

C−1 τ

F (1,m+� d+2
2 �+2k)

η [ϕ](τ) d τ . (8.66)

9 Improved Polynomial Decay t̄− d
2 for Solutions to �gϕ = 0 in

Dimensions d ≥ 3

In this section, we will establish t̄− d
2 polynmial decay estimates for solutions ϕ to

�ϕ = 0 on spacetimes (Md+1, g), d ≥ 3, satisfying Assumptions (G1)–(G13) and
(ILED1), which in addition possess two “almost Killing” vector fields T, K (not
necessarily distinct) with timelike span on M\H+ and for which H+ becomes a non-

degenerate “almost Killing” horizon. These estimates extend the t̄− 3
2 +ε decay rate

established in the region {r � 1} of Schwarzschild spacetime by Schlue in [34].
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9.1 Further Assumptions and Geometric Constructions on (M, g)

Let (Md+1, g), d ≥ 3, be a smooth Lorentzian manifold with possibly non-empty
piecewise smooth boundary ∂M. We assume that (M, g) satisfies the geometric
assumptions (G1)–(G13) stated in Sections 7 and 8, as well as Assumption (ILED1)
on integrated local energy decay with loss of derivatives. We will use the same notation
as in Section 8 for the subsetsNa f,M,H,H+, ∂timM,Hτ, ∂timMτ ofM, the functions
r , r+, t̄ on M and the vectorfields N , T , Y .

Recall that in the coordinate chart (u, v, σ) on each connected component of the
region {r � 1}, the metric g takes the form:

g = −
(

4 + O(r−1−a)
)
dvdu + r2 · (gSd−1 +hSd−1

)+(has(u, σ)+O(r−a)
)
dudσ

+O(r−a)dvdσ + 4

(
−2M(u, σ)

r
+ O(r−1−a)

)
du2 + O(r−2−a)dv2, (9.1)

with hSd−1 = O(r−1).

Assumptions on the vector fields T , K We will also assume that (M, g) possesses
two smooth vector fields, T and K , not necessarily distinct, such that:

(EG1) The following equality holds: dt̄(K ) = dt̄(T ) = 1
(EG2) In the region {r � 1}, T is as in Section 7 and K = � + T , where � is a

generator of a rotation of Sd−1 (possibly being identically 0).
(EG3) The span of T and K everywhere on M\H contains a timelike direction.
(EG4) The span of {T, K } is tangential to H. Moreover, H+ is non degenerate with

respect to K , in the sense that g(K , K ) = 0 and d(g(K , K )) �= 0 on H+ ∩
{t̄ ≥ 0} and the following red-shift type estimate holds for some r1 > 0, any
0 ≤ τ1 ≤ τ2, any l ∈ N and any ϕ ∈ C∞(M) (see also [9]):

l∑

j=1

∫

{τ1≤t̄≤τ2}∩{r≤r1}
∣∣∇ jϕ

∣∣2
h dg ≤ Cl

⎧
⎨

⎩

l∑

j=1

∫

{t̄=τ1}∩{r≤2r1}
∣∣∇ jϕ

∣∣2
h dhN

+
l∑

j=1

∫

{τ1≤t̄≤τ2}∩{r1≤r≤2r1}
∣∣∇ jϕ

∣∣2
h dg

+
l−1∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≤2r1}
∣∣∇ j (�ϕ)

∣∣2
h dg

⎫
⎬

⎭
. (9.2)

Convention Since we have not assumed that T, K commute in the near region
{r � 1}, iterated Lie derivatives in the directions of T, K will not necessarily commute.
Hence, it will be useful to introduce the following pointwise norms for smooth tensors
m on M for any l ∈ N and any two vector fields X (0), X (1):
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∣∣m
∣∣(l)
X (0),X (1)

.=
⎛

⎝
∑

(e1,...ed )∈{0,1}l

∣∣LX (e1) . . .LX (ed )m
∣∣2
h

⎞

⎠

1/2

(9.3)

and for any l, n ∈ N:

∣∣m
∣∣(l;n)
X (0),X (1)

.=
⎛

⎝
n∑

j=0

∑

(e1,...ed )∈{0,1}l

∣∣∇ j
g (LX (e1) . . .LX (ed )m)

∣∣2
h

⎞

⎠

1/2

(9.4)

(EG5) We assume that we can bound for some small δ0 > 0, any pair of integers
j1, j2 ≥ 0 and any τ ≥ 0:

sup
{t̄=τ}

∣∣g
∣∣( j1; j2)
T,K � j1, j2 (1 + τ)− max{0, j1+δ0−1}. (9.5)

Moreover, in the (u, v, σ) coordinate chart on each connected component of
the region {r � 1} the following precise bounds on the derivatives of g are
assumed to hold for j1 ≥ 1 and any (e1, . . . , e j1) ∈ {0, 1} j1 :

LX (e1) . . .LX
(e j1

)g

= O(t̄−( j1+δ0−1))
{
O(r−1−a)dvdu + O(r)dσdσ + O(1)dudσ

+O(r−a)dvdσ + O(r−1)du2 + O(r−2−a)dv2
}

(9.6)

where X (0) = T and X (1) = K .

Remark For any m0 ∈ N and δ0 ∈ (0, 1), inequalities (9.5) and (9.6) can be relaxed
to hold only for j1, j2 less than some large constant M = M(m0, δ0) ∈ N depending
on m0, and then Theorem 9.1 will still hold provided m is restricted to take values
up to m0. This fact will also apply to all the assumptions regarding estimates on the
derivatives of the metric g appearing in the text, and will not be highlighted again.
In all the assumptions that are stated in this section, the number of derivatives of the
metric M = M(m0, δ0) that need to appear in the related estimates can be bounded
from above by

m0 + 12�δ−1
0 · d�d · k, (9.7)

where k is the number expressing the loss of derivatives in Assumption (ILED1).

Let us define the vector field
�

.= K − T (9.8)

on M. Recall that � is a rotation vector field in the region {r � 1} in view of
Assumption (EG2). Notice that (9.5) and (9.6) hold for � in place of K . Moreover,
due to Assumption (EG1) we have dt̄(�) = 0, and thus � is tangent to the level sets
of t̄ .
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Definition of the KRc vector field and the | · |(l)T,K ,Rc
norm Let us introduce the (large)

parameter Rc > 0. This parameter will be fixed after Lemma 9.4 has been established.
Fixing a smooth cut-off function χ : [0,+∞) → [0, 1] such that χ ≡ 1 on [0, 1] and
χ ≡ 0 on [2,+∞), and defining χRc : M → [0, 1] by the relation

χRc

.= χ

(
r

Rc

)
, (9.9)

we introduce the following vector field:

KRc

.= χRc K + (1 − χRc )T . (9.10)

Notice that for any τ ≥ 0, the set {t̄ = τ} ∩ {g(KRc , KRc ) > 0} is precompact and its
closure does not intersect the horizon.

Provided Rc � 1, due to (9.5) we can bound for any pair of integers j1, j2 ≥ 0
(using the (9.4) norm)

sup
{t̄=τ}∩{r /∈[Rc,2Rc]}

∣∣g
∣∣( j1; j2)
T,KRc

� j1, j2 (1 + τ)− max{0, j1+δ0−1}, (9.11)

while when restricted in the region {r � 1}, the following refined bounds hold (in the
(u, v, σ) coordinate chart on each connected component of {r � 1}) due to (9.6) for
j1 ≥ 1 and any (e1, . . . , e j1) ∈ {0, 1} j1 (with X (0) = T and X (1) = KRc )

17:

• For r /∈ [Rc, 2Rc]:

LX (e1) . . .LX
(e j1

)g = O(τ−( j1+δ0−1))

×
{
O(r−1−a)dvdu + O(r)dσdσ + O(1)dudσ

+ O(r−a)dvdσ + O(r−1)du2 + O(r−2−a)dv2
}
. (9.12)

• For {Rc ≤ r ≤ 2Rc}:

LX (e1) . . .LX
(e j1

)g =
(
O(r−1)+ O(τ−( j1+δ0−1))

)

×
{
O(r)dvdu + O(r)dσdσ + O(r2)dudσ

+ O(r2)dvdσ + O(r)du2 + O(r)dv2
}
. (9.13)

Moreover, it will be convenient to introduce the following truncated version of the
pointwise norm (9.3) for any smooth tensor k on M:

∣∣k
∣∣(l)
T,K ,Rc

.= ∣∣χRck
∣∣(l)
T,K + |Ll

T k|h . (9.14)

17 For the calculation of the Lie derivatives in the direction of KRc it is convenient to use the formula
L f ·X (ω) = fLX (ω)+ d f · iX (ω) for any smooth function f , vector field X and 1-form ω.
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The Riemannian metric hτ,KRc ,�
on the hyperboloids {t̄ = τ} According to Section

A of the Appendix, for any τ ≥ 0 we can define the Riemannian metric hτ,KRc ,�
on

the hypersurfaces {t̄ = τ} associated to KRc ,�. Due to the fact that g(K , K ) = 0
and dg(K , K ) �= 0 on H+, for any τ ≥ 0 there exists some r0(τ) > 0 such that in
a neighborhood of Hτ of the form {r ≤ r0(τ)} ∩ {t̄ = τ} the metric hτ,KRc ,�

has the
form:

hτ,KRc ,�
=
(
r−1 + O(1)

)
dr2 + hHτ,r , (9.15)

where hHτ,r is a symmetric (0, 2)-tensor on {r ≤ r0(τ)} ∩ {t̄ = τ}, smooth up to
Hτ, satisfying hHτ,r (Y, ·) ≡ 0 (where the vector field Y is transversal to Hτ and was
defined in Section 8.1). Hence, in the language of Section B of the Appendix, hτ,KRc ,�

corresponds to the singular metric h. For notational simplicity, from now on we will
adopt the shorthand notation hRc = hτ,KRc ,�

.
While hRc will be useful to define certain elliptic operators, we will mostly measure

the norms of tensors on the {t̄ = τ} hypersurfaces with the previously defined non
singular metric hτ,N associated to N .

In view of the aforementioned assumptions on the almost-Killing vector fields
K , T,�, as well as the expression (9.1) for the asymptotics of g and the expression
(A.15) for �g , we can bound for any smooth ϕ : M → C and any integer l ≥ 0 and
Rc � 1:

∣
∣∇l

hτ,N
(�hRc ,modϕ)

∣
∣2
hτ,N

≤ C(τ, Rc)
∣∣∇l

hτ,N
(�ϕ)

∣∣2
hτ,N

+ C(τ, Rc) · T (l+2)
T,K ,Rc

[ϕ]

+C(τ)χr∼Rc

l+1∑

j1=0

l+2− j1∑

j2=1

(∣∣∇ j2
hτ,N

ϕ
∣∣( j1)
T,K ,Rc

)2
, (9.16)

where

T (m)
T,K ,Rc

[ϕ]
= r−2+

(∣∣ϕ
∣∣(m)
T,K ,Rc

)2 +
∑

j1+ j2=m−2

(
|∇ j1+1

hτ,N
ϕ|( j2+1)

T,K ,Rc

)2

+
∑

0≤ j1+ j2≤m−2

(
r−2(m− j1− j2−1)
+ + r−2+ τ−2(δ0+m− j1− j2−2)

) (
|∇ j1

hτ,N
ϕ|( j2+1)

T,K ,Rc

)2

+
∑

0≤ j≤m−2

(
r−2−2(m−2− j)
+ τ−2δ0 + r−2+ τ−2(δ0+m−2− j)

) ∣∣∇ j+1
hτ,N

ϕ
∣∣2
hτ,N

, (9.17)

χr∼Rc is identically 1 on {Rc ≤ r ≤ 2Rc} and 0 elsewhere, and the elliptic operator
�hRc ,mod on {t̄ = τ}\Hτ is defined as:

�hRc ,mod� = w−1
τ,KRc ,�

· divhRc
(
wτ,KRc ,�

· d�) , (9.18)
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with wτ,KRc ,�
> 0 on {t̄ = τ}\Hτ satisfying wτ,KRc ,�

∼τ r
1
2 near H+ and

wτ,KRc ,�
∼Rc 1 in the region r � 1 (for its precise form, see Section A of the

Appendix).18

It will also be convenient to introduce the higher order pointwise norm

T (m,n)
T,K ,Rc

[ϕ] .=
∑

j1+ j2≤n

T (m)
T,K ,Rc

[∇ j1
hτ,N

(T j2ϕ)] (9.19)

for any pair of integers m, n ≥ 0 and ϕ ∈ C∞(M).
Similarly, in the region {r ≥ R0} for some R0 � 1 we can bound:

∣
∣∇l

hτ,N
(�hτ,T ,Tϕ)

∣
∣2
hτ,N

≤ C(τ)
∣
∣∇l

hτ,N
(�ϕ)

∣
∣2
hτ,N

+ C(τ) · T (l+2)
T [ϕ], (9.20)

where

T (m)
T [ϕ]

= r−2+
∣∣Tmϕ

∣∣2 +
∑

j1+ j2=m−2

∣∣∇ j1+1
hτ,N

(T j2+1ϕ)
∣∣2
hτ,N

+
∑

0≤ j1+ j2≤m−2

(
r−2(m− j1− j2−1)
+ + r−2+ τ−2(δ0+m− j1− j2−2)

) ∣∣∇ j1
hτ,N

(T j2+1ϕ)
∣∣2
hτ,N

+
∑

0≤ j≤m−2

(
r−2−2(m−2− j)
+ τ−2δ0 + r−2+ τ−2(δ0+m−2− j)

) ∣∣∇ j+1
hτ,N

ϕ
∣∣2
hτ,N

(9.21)

and the operator �hτ,T ,T on {t̄ = τ} ∩ {r ≥ R0} is defined as:

�hτ,T ,T� =
(√−g(T, T )

)−1 · divhτ,T

(√−g(T, T ) · d�
)
. (9.22)

The following higher order pointwise norm will also be useful:

T (m,n)
T [ϕ] .=

∑

j1+ j2≤n

T (m)
T [∇ j1

hτ,N
(T j2ϕ)] (9.23)

for any pair of integers m, n ≥ 0 and ϕ ∈ C∞(M).

Assumptions on the uniformity of the degenerate elliptic estimates on the hyper-
boloids {t̄ = τ} Let us introduce the functions rhor , rtim : M → [0, 1] by the
relations

rhor (x) = disth(x,H)
1 + disth(x,H)

(9.24)

18 It is obivious that we do not need all the terms of T (m)
T,K ,Rc

[ϕ] to bound the left hand side of (9.16), but
since this expression will appear frequently in what follows, we chose to introduce it here.

123



6 Page 118 of 194 G. Moschidis

and

rtim(x) = disth(x, ∂timM)

1 + disth(x, ∂timM)
. (9.25)

Notice that this definition does not guarantee that rhor and rtim are smooth functions
away from ∂M. For this reason, we will mollify rhor and rtim way from ∂M so that
they are smooth functions on M, and we will replace the original rhor and rtim by the
corresponding mollified functions.

Using Propositions B.1 and B.3 of the Appendix, together with (9.15), (9.16) and
(9.20), we can deduce the following elliptic estimate:

Lemma For any l ∈ N with l ≤ � d+1
2 �, any n0 ∈ N, any β ∈ (−δ̄n0 , 1) (for some

δ̄n0 > 0 depending on n0 and τ) and any R0 � 1 large in terms of the geometry of
(M, g), we can bound for any ϕ ∈ C∞(M) satisfying for all j1 + j2 ≤ l + n0 the

finite radiation field condition lim supr→+∞
∣∣r

d−1
2 + j1∇ j1

hτ,N
(N j2ϕ)

∣∣
hτ,N

< +∞:

n0∑

n=0

l−1∑

j=0

∫

{t̄=τ}
r−β−2 j
+ |∇n+l− j

hτ,N
ϕ|2(1−log(rtim ))·hRc dhN

≤ Cβ,n0 (τ, Rc)

∫

{t̄=τ}
r−β
+

{
n0∑

n=0

∣∣∇n+l−2
hτ,N

(�ϕ)
∣∣2
(1−log(rtim ))·hτ,N

+ T (l,n0)
T,K ,Rc

[ϕ]
}

dhN

+Cβ,n0 (τ)

n0∑

n=0

l−1∑

j1=0

l− j1∑

j2=1

∫

{t̄=τ}∩{Rc≤r≤2Rc}
r−β
+
(∣
∣∇ j2+n

hτ,N
ϕ
∣
∣( j1)
T,K ,Rc

)2
dhN

+Cβ,n0 (τ)

1∑

j=0

max

{
−Re

{∫

∂timMτ
h∂timMτ

(
∇ j
h∂timMτ

(Yϕ),∇ j
h∂timMτ

ϕ̄
)
dh∂timMτ

}
, 0

}

(9.26)

and for any 0 < ε � 1 − β (provided that Rc � R0):

n0∑

n=0

l∑

j=1

∫

{t̄=τ}∩{Rc≤r≤2Rc}
r

2( j−1)−β+ ε
2+
∣
∣∇ j+n

g ϕ
∣
∣2
h dhN

≤ Cβ,ε, n0(τ, Rc)

∫

{t̄=τ}∩{r≥2R0}
r−β
+

{
n0∑

n=0

∣∣∇n+l−2
hτ,N

(�ϕ)
∣∣2
hτ,N

+ T (l,n0)
T [ϕ]

}

dhN

+Cβ,ε,n0(τ)R
− ε

2
c

n0+l∑

j=1

∫

{t̄=τ}∩{2R0≤r≤4R0}
|∇ j

gϕ|2h dhN . (9.27)

Our extra assumptions will be the following uniformity conditions on the elliptic
estimates (9.26) and the Sobolev-type estimates of Lemmas 9.10 and 9.11:

(EG6) The constants δ̄n0 , Cβ,n0(τ), Cβ,ε,n0(τ) and Cβ,ε,n0(τ, Rc) in Lemma 9.1 can
be chosen not to depend on τ.
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(EG7) The constants in the estimates of Lemmas 9.10 and 9.11 can be chosen not to
depend on τ.

We will also need the following assumption regarding the volume of the domains
{t̄ = τ} ∩ {r ≤ 1} as τ → +∞:

(EG8) There exists some C > 0 such that for any τ ≥ 0 the hτ,N -volume of the
{t̄ = τ} ∩ {r ≤ 1} region is uniformly bounded in τ:

Volhτ,N

({t̄ = τ} ∩ {r ≤ 1}) ≤ C. (9.28)

The higher order integrated local energy decay estimate assumption In Section
8.1.2 we defined the class CI LED of admissible boundary conditions on ∂timM for
which the integrated local energy decay statement (8.19) holds, and we assumed
that CI LED �= ∅. However, since the class CI LED was not necessarily closed under
differentiation with respect to the vector fields T , K introduced in this section, we do
not know a priori that (8.19) holds for T and K derivatives of functions belonging
to CI LED . the In this section, therefore, we will assume that a slightly stronger form
of the integrated local energy decay statement (8.19) (including also higher order T
and K derivatives of ϕ) holds on (M, g), which further restricts the class of allowed
boundary conditions imposed on ∂timM:

(ILED2) We assume that there exists a non empty class C(T,K )I LED of boundary conditions
on ∂timM, which is contained in the class of admissible boundary conditions
Cadm , so that the following integrated local energy decay statement holds
on (M, g): There exists an integer k ≥ 0 such that for any R, R f > 0, any
integers m ≥ 0 and j1, j2 ≥ 0, any 0 < η < a, any smooth ϕ : M → C

solving �gϕ = F satisfying boundary conditions on ∂timM belonging to

the class C(T,K )I LED and any 0 ≤ τ1 ≤ τ2, we can bound

m∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≤R}
|∇ j

g (T
j1 K j2

Rc
ϕ)|2h+

m∑

j=1

∫

{τ1≤t̄≤τ2}∩∂timM
|∇ j

g (T
j1 K j2

Rc
ϕ)|2h

≤ Cm,η,i1,i2 (R, R f ) ·
m+k−1∑

j=0

(∫

{t̄=τ1}
J N
μ (N j (T j1 K j2

Rc
ϕ))n̄μ

+
∫

{τ1≤t̄≤τ2}
r1+η
+ |∇ j

g

(
�g(T

j1 K j2
Rc

ϕ)
)

|2h dh
)

+Cm,ηi1,i2

m−1∑

i=0

∑

i1+i2=i

∫

{τ1≤t̄≤τ1}∩{r≥R f }
t̄−δ0r−1+

(∣∣∇ i1+1
hτ,N

(T i2+ j1 K j2
Rc

ϕ)
∣∣2

+ r−2+
∣
∣∇ i1

hτ,N
(T i2+ j1 K j2

Rc
ϕ)
∣
∣2 + r−2+

∣
∣T i+ j1+1K j2

Rc
ϕ
∣
∣2
)
dh. (9.29)
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Remark Notice that (9.29) follows trivially from (8.19) (provided that the last term in
the right hand side of (8.19) is replaced by

Cm,η

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ1}∩{r≥R f }
t̄−δ0r−1+

(∣∣∇ j1+1
hτ,N

(N j2ϕ)
∣∣2

+ r−2+
∣∣∇ j1

hτ,N
(N j2ϕ)

∣∣2 + r−2+
∣∣N j+1ϕ

∣∣2
)
dg, (9.30)

which is consistent with the remark below Lemma 4.1 in view of the assumptions on
the vector field T ) in the case when ∂timM = ∅, or in the case when T and K are
tangential to ∂timM and CI LED is restricted to include only the Dirichlet boundary
conditions. In these cases, C(T,K )I LED = CI LED . Furthermore, the results of this section
also hold if one replaces Assumption (ILED2) by a pair of alternative integrated local
energy decay assumptions similar to (8.21) and (8.22), but we will not pursue this
issue any further.

9.2 Shorthand Notation for Energy Norms

In order to state and prove Theorem 9.1 conveniently, it will be useful to introduce
some shorthand notation for a variety of energy norms on the hyperboloids {t̄ = τ}.
More precisely, we will make use of the following notations for p ∈ R, ε ∈ (0, 1) and
q, l,m, k ∈ N:

1. The following energy norms will appear when using the r p-weighted estimates of
Sections 5 and 6:

E (p,q,m)bulk,R [ϕ](τ)
.=

m∑

j=0

∑

0≤ j1+ j2≤q+ j

∫

{t̄=τ}∩{r≥R}
r p−2(q+ j− j1)

∣∣∇ j1
hτ,N

T j2(�ϕ)
∣∣2
hτ,N

�−2dhN

(9.31)

and

E (p,q,m)bound,R[ϕ](τ)
.=

m∑

j=0

∑

0≤ j1+ j2≤q+ j−1

∫

{t̄=τ}∩{r≥R}
r p−2(q+ j− j1−1)

(∣∣∇ j1
hτ,N

T j2∂v(�ϕ)
∣∣2
hτ,N

+ r−2
∣∣∇ j1+1

hτ,N
T j2(�ϕ)

∣∣2
hτ,N

+ r−4
∣∣∇ j1

hτ,N
T j2+1(�ϕ)

∣∣2
hτ,N

+ r−4
∣∣∇ j1

hτ,N
T j2(�ϕ)

∣∣2
hτ,N

)
�−2dhN . (9.32)

2. The following weighted non degenerate energy norms on {t̄ = τ} will also appear
frequently (fixing some R1 large in terms of the geometry of (M, g)):
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E (p,q,m)en [ϕ](τ) .=
m∑

j=0

∑

1≤ j2+ j3≤q+ j−1

∫

{t̄=τ}
r p−2(q+ j−1− j2− j3)+

×
(∣∣∇ j2+1

hτ,N
(N j3ϕ)

∣∣2
hτ,N

+ r−2+
∣∣Nq+ jϕ

∣∣2
)
dhN , (9.33)

E (p,q,m)bulk [ϕ](τ) .= E (p,q,m)bulk,R1
[ϕ](τ)

+
m∑

j=0

∑

0≤ j1+ j2≤q+ j

∫

{t̄=τ}∩{r≤R1}
∣
∣∇ j1

hτ,N
N j2ϕ

∣
∣2
hτ,N

dhN

(9.34)

and

E (p,q,m)bound [ϕ](τ) .= E (p,q,m)bound,R1
[ϕ](τ)

+
m∑

j=0

∑

0≤ j1+ j2≤q+ j

∫

{t̄=τ}∩{r≤R1}
∣∣∇ j1

hτ,N
N j2ϕ

∣∣2
hτ,N

dhN .

(9.35)

3. The following energy norm (associated to the vector fields KRc ,�) which degen-
erates at H and ∂timM will also appear:

E (p,q,m)en,deg [ϕ](τ) .=
m∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ}
r p−2(l+ j−1− j2− j3)+

×
(∣∣∇ j2+1

hτ,N
(K j3

Rc
ϕ)
∣∣2
(1−log(rtim))·hRc + r−2+

∣∣Kl+ j
Rc

ϕ
∣∣2
)
dhN .

(9.36)

4. Finally, we will make use of the following spacetime norms for the source terms,
for some C = Cl,q,m,k > 0 that will be fixed in the statement of Theorem 9.1:

F (2l,q,m,k)
η,ε [F](τ)

= τ−2l+ε

m+(2l+1)k−1∑

j=0

∑

j1+ j2= j

∑

i1+i2≤q−1

∫

{0≤t̄≤τ}
r3+2i1

∣
∣∇ j1+i1

hτ,N
(N j2+i2 F)

∣
∣2
hτ,N

dg

+
l−1∑

s=1

τ−2s+ε

m+(2s+1)k−1∑

j=0

∑

j1+ j2= j

q−(l−s)−1∑

i1=0

l−s∑

i2=0

∫

{C−1 τ≤t̄≤τ}
r3+2i1

×∣∣∇ j1+i1
hτ,N

(N j2+i2 F)
∣
∣2
hτ,N

dg

+
l∑

s=1

τ−2s+1+ε
m+2sk−1∑

j=0

∑

j1+ j2= j

q−(l−s)−1∑

i1=0

l−s∑

i2=0

∫

{C−1 τ≤t̄≤τ}
r2+2i1

×∣∣∇ j1+i1
hτ,N

(N j2+i2 F)
∣
∣2
hτ,N

dg
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+
m+2k−1∑

j=0

∑

j1+ j2= j

q−l∑

i1=0

l−1∑

i2=0

∫

{C−1 τ≤t̄≤τ}
(r1+ε +2i1 + r1+η

)

×∣∣∇ j1+i1
hτ,N

(N j2+i2 F)
∣∣2
hτ,N

dg (9.37)

and

F (2l,q,m,k)
deg,η [F](τ)

= τ−2l
m+(2l+1)k−1∑

j=0

∑

j1+ j2= j

∑

i1+i2≤q−1

∫

{0≤t̄≤τ}
r3+2i1

∣∣∇ j1+i1
hτ,N

(K j2+i2
Rc

F)
∣∣2
hτ,N

dg

+
l−1∑

s=1

τ−2s
m+(2s+1)k−1∑

j=0

∑

j1+ j2= j

q−(l−s)−1∑

i1=0

l−s∑

i2=0

∫

{C−1 τ≤t̄≤τ}
r3+2i1

×∣∣∇ j1+i1
hτ,N

(K j2+i2
Rc

F)
∣∣2
hτ,N

dg

+
l∑

s=1

τ−2s+1
m+2sk−1∑

j=0

∑

j1+ j2= j

q−(l−s)−1∑

i1=0

l−s∑

i2=0

∫

{C−1 τ≤t̄≤τ}
r2+2i1

×∣∣∇ j1+i1
hτ,N

(K j2+i2
Rc

F)
∣∣2
hτ,N

dg

+
m+2k−1∑

j=0

∑

j1+ j2= j

q−l∑

i1=0

l−1∑

i2=0

∫

{C−1 τ≤t̄≤τ}
(r1+2i1 + r1+η

)

×∣∣∇ j1+i1
hτ,N

(K j2+i2
Rc

F)
∣∣2
hτ,N

dg. (9.38)

9.3 Statement of the Results on Improved Polynomial Decay

In this class of spacetimes (M, g) we will establish the following result:

Theorem 9.1 Assume that (Md+1, g), d ≥ 3, satisfies Assumptions (G1)–(G13),
(EG1)–(EG8) and (ILED2). Then for any smooth function ϕ onM solving �gϕ = F
on J+({t̄ = 0})with suitably decaying initial data on {t̄ = 0} and satisfying boundary
conditions on ∂timM belonging to the class C(T,K )I LED and such that

Re
{ ∫

∂timMτ
Yϕ · ϕ̄ dh∂timMτ

}
≥ 0 and

Re
{ ∫

∂timMτ
h∂timMτ

(
∇h∂timMτ (Yϕ),∇h∂timMτ

ϕ̄
)
dh∂timMτ

}
≥ 0, (9.39)

the following bounds hold for any integer 1 ≤ q ≤ � d+1
2 �, any 0 < ε � δ0, any

integer m ≥ 1 and any τ ≥ 0, provided (7.2) holds for all 0 ≤ j ≤ q + � d
2 � + m +

�δ−1
0 · 2(q − 1)�(3q + 1) · k:
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E (0,q,m)en [ϕ](τ)+ E (ε,q,m)bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q,m)
en [ϕ](s) ds

�m,ε τ−2q+Cm εE (2q,q,m+�δ−1
0 ·2(q−1)�(3q+1)·k)

bound [ϕ](0)
+F (2q,q,m+�δ−1

0 ·2(q−1)�(3q+1)·k,k)
ε,ε [F](τ) (9.40)

and

E (0,q,m)en,deg [ϕ](τ) �m,ε τ−2qE (2q,q,m+�δ−1
0 ·2(q−1)�(3q+1)·k)

bound [ϕ](0)
+F (2q,q,m+�δ−1

0 ·2(q−1)�(3q+1)·k,k)
deg,ε [F](τ). (9.41)

See Section 9.2 for the notations on the energy norms used.

Remark Notice that the condition (9.39) is satisfied when ϕ is subject to Dirichlet or
Neumann boundary conditions. Theorem 9.1 still holds if one replaces the condition
(9.39) with any boundary condition for which Lemma 9.5 can still be established.

Let us also remark in the case the integrated local energy decay statement in
Assumption (ILED2) does not lose derivatives (i.e. k = 0), we can replace Assump-
tion (EG5) on the t̄−δ0 decay of the deformation tensors of T and K with the following
O(ε0)-smallness assumption:
Uniform smallness of the deformation tensor: There exists some (small) ε0 > 0 so
that:

sup
{t̄=τ}

(∣∣LT g
∣∣+ ∣∣LK g

∣∣) = O(ε0) (9.42)

and in the (u, r, σ) coordinate chart on each connected component of the region
Na f,M:

LT g = O(ε0)
{
O(r−1−a)drdu + O(r)dσdσ + O(1)dudσ

+ O(r−a)drdσ + O(r−1)du2 + O(r−2−a)dr2
}

(9.43)

and

LK g = O(ε0)
{
O(r−1−a)drdu + O(r)dσdσ + O(1)dudσ

+ O(r−a)drdσ + O(r−1)du2 + O(r−2−a)dr2
}
. (9.44)

Moreover, any further Lie differentiation of g in the direction of T or K should improve
the above decay rates by a factor of t̄−1.

In this case, we also relax the integrated local energy decay assumption (ILED2),
by replacing the t̄−δ0 factor in the last term of the right hand side of (9.29) with ε0.
Under these weaker assumptions, we can still obtain (9.40) and (9.41), but with an
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O(ε0) loss in the exponents of both inequalities. The proof in this case is similar, and
actually easier.

The proof of Theorem 9.1 will be presented in Section 9.7.
As a Corollary of Theorem 9.1, we will establish improved pointwise decay rates

for ϕ and its derivatives:

Corollary 9.2 Assume that (Md+1, g), d ≥ 3, satisfies Assumptions (G1)–(G13),
(EG1)–(EG8) and (ILED2). Then for any smooth function ϕ onM solving �gϕ = F
on J+({t̄ = 0})with suitably decaying initial data on {t̄ = 0} and satisfying boundary
conditions on ∂timM belonging to the class C(T,K )I LED and such that

Re
{ ∫

∂timMτ
Yϕ · ϕ̄ dh∂timMτ

}
≥ 0 and

Re
{ ∫

∂timMτ
h∂timMτ

(
∇h∂timMτ (Yϕ),∇h∂timMτ

ϕ̄
)
dh∂timMτ

}
≥ 0, (9.45)

the following pointwise decay estimates hold for any 0 < ε � δ0, any integer m ≥ 0
and any τ ≥ 0, provided (7.2) holds for all 0 ≤ j ≤ d+1+m+�δ−1

0 ·2(q−1)�(3q+
1) · k:
1. In case the dimesion d is odd, we can bound:

sup
{t̄=τ}

∣∣ϕ
∣∣2 �ε τ−d · E0,d [ϕ](0)+ Fdeg,ε,0,d [F](τ), (9.46)

and if m ≥ 1:

sup
{t̄=τ}

∣∣∇m
g ϕ
∣∣2
h �m,ε τ−d−1 · Em+2,d [ϕ](0)+ Fdeg,ε,m+2,d [F](τ). (9.47)

2. In case the dimension d is even, we can bound:

sup
{t̄=τ}

∣∣∇m
g ϕ
∣∣2
h �m,ε τ−d+Cm ε · Em,d [ϕ](0)+ Fε,m,d [F](τ). (9.48)

In the above,

Em,d [ϕ](0) .= E (2� d+1
2 �,� d+1

2 �,m+�δ−1
0 ·2(� d+1

2 �−1)�(3� d+1
2 �+1)·k)

bound [ϕ](0), (9.49)

Fdeg,η,m,d [F](τ) .= F (2� d+1
2 �,� d+1

2 �,m+�δ−1
0 ·2(� d+1

2 �−1)�(3q+1)·k,k)
deg,η [F](τ) (9.50)

and

Fε,m,d [F(τ) .= F (2� d+1
2 �,� d+1

2 �,m+�δ−1
0 ·2(� d+1

2 �−1)�(3q+1)·k,k)
ε,ε [F](τ). (9.51)

See Section 9.2 for the notations on the energy norms used.
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Remark Again, Corollary 9.2 still holds if one replaces the condition (9.45) with any
boundary condition for which Lemma 9.5 can still be established. Moreover, in case
the integrated local energy decay statement in Assumption (ILED2) does not lose
derivatives (i.e. k = 0), Assumption (EG5) can be replaced by (9.42)–(9.44) and the
integrated local energy decay assumption (ILED2) can be relaxed by replacing the t̄−δ0

factor in the last term of the right hand side of (9.29) with ε0. In this case, inequalities
(9.46), (9.47) and (9.48) still hold with an O(ε0) loss in the exponent of τ.

The proof of Corollary 9.2 will be presented in Section 9.9.

9.4 Sketch of the Proof of Theorem 9.1 and Corollary 9.2

In this Section, we will first sketch the proof of Theorem 9.1 and Corollary 9.2 under
some simplifying assumptions on the structure of the spacetime (M, g), and then we
will highlight the main difficulties arising in the general case.

Let us assume first that d = 3, ∂M = ∅, F = 0, k = 0 (i.e. there is no derivative
loss in the integrated local energy decay statement (8.19)), m = 1 and the vector field
T is globally timelike and Killing. In this case, there is no condition on ∂timM that
ϕ is assumed to satisfy, and we can assume without loss of generality that the vector
field K has been fixed so that T ≡ K . Let us also note that in this case, the ε-loss in
(9.40) can be dropped, and the estimates of Theorem 9.1 and Corollary 9.2 read as
follows:

∑

i1+i2=1

∫

{t̄=τ}

(∣∣∇ i1+1
hτ,T

(T i2ϕ)
∣∣2
hT

+ r−2
∣∣T 2ϕ

∣∣2
)
dhT � τ−4Ein[ϕ](0), (9.52)

sup
{t̄=τ}

|ϕ| � τ− 3
2 (9.53)

and:

sup
{t̄=τ}

|∇gϕ|h � τ−2. (9.54)

The main idea for the proof of (9.52) is the following (assuming without loss of
generality that ϕ is real valued): From Theorem 8.2 we deduce that:

∑

i1+i2=1

∫

{t̄=τ}

(
r2
∣∣∇2

hτ,T
ϕ
∣∣2
hT

+ ∣∣∇ i1
hτ,T

(T 1+i2ϕ)
∣∣2
hT

)
dhT � τ−2Ein[ϕ](0). (9.55)

Let us fix a vector field L on M so that [T, L] = 0 and L = ∂v in the (t̄, v, σ)
coordinate system on each connected component of the region (r � 1). Using the
expression for the equation �ϕ = 0, from (9.55) we deduce that

∑

i1+i2=1

∫

{t̄=τ}

(
r2
∣
∣L(Tϕ)

∣
∣2 + ∣∣∇ i1

hτ,T
(T 1+i2ϕ)

∣
∣2
hT

)
dhT � τ−2Ein[ϕ](0). (9.56)
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Fixing a dyadic sequence {τn}n∈N, by repeating the proof Theorem 8.1 on the
intervals {τn ≤ t̄ ≤ τn+1} with Tϕ in place of ϕ and using the estimate (9.56)
(notice that for the sketch of the proof we have assumed that T is Killing, and thus
[T,�g] = 0), we readily obtain:

∫

{t̄=τ}

(∣∣∇hτ,T (Tϕ)
∣∣2
hT

+ r−2
∣∣T 2ϕ

∣∣2
)
dhT � τ−4Ein[ϕ](0). (9.57)

Using again the expression for the wave equation �ϕ = 0, from (9.57) we deduce
that

∫

{t̄=τ}
(�ellϕ)

2 dhT � τ−4Ein[ϕ](0) (9.58)

for a suitable elliptic operator �ell on the hyperboloids {t̄ = τ}. The elliptic estimates
of Section B of the Appendix then yield:

∫

{t̄=τ}
∣∣∇2

hτ,T
ϕ
∣∣
hT

dhT � τ−4Ein[ϕ](0), (9.59)

which combined with (9.57) yields (9.52).
The estimate (9.54) for ∇gϕ follows readily from a Sobolev inequality applied on

(9.52) for ϕ and Tϕ (combined with elliptic estimates). The zeroth order estimate
(9.53), on the other hand, follows from (9.52), the decay estimate from Theorem 8.1:

∫

{t̄=τ}

(∣
∣∇hτ,T

ϕ
∣
∣2
hT

+ r−2
∣
∣Tϕ

∣
∣2
)
dhT � τ−2Ein[ϕ](0)

and the following Gagliardo–Nirenberg type estimate on {t̄ = τ} (see Section 9.8):

sup
{t̄=τ}

|ϕ|2 �
(∫

{t̄=τ}

(∣∣∇hτ,T
ϕ
∣∣2
hT

+ r−2
∣∣Tϕ

∣∣2
)
dhT

)1/2

×
⎛

⎝
∑

i1+i2=1

∫

{t̄=τ}

(∣∣∇ i1+1
hτ,T

(T i2ϕ)
∣∣2
hT

+ r−2
∣∣T 2ϕ

∣∣2
)
dhT

⎞

⎠

1/2

+
∑

i1+i2=1

∫

{t̄=τ}

(∣∣∇ i1+1
hτ,T

(T i2ϕ)
∣∣2
hT

+ r−2
∣∣T 2ϕ

∣∣2
)
dhT . (9.60)

One important difficulty arising in the proof of Theorem 9.1 in the more general
class of spacetimes (M, g) under consideration comes from the fact that T is not in
general a Killing vector field, and in fact its deformation tensor decays only like t̄−δ0

for some small δ0 > 0. This results in a number of error terms appearing each time �
is commuted with T , which can only be controlled in the final step of the estimates,
using also some refined elliptic estimates leading to the ε-loss in (9.40) (however, we
avoid this loss in (9.41)). Furthermore, the slow O(t̄−δ0) decay of the deformation
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tensor of T combined with the loss of derivatives in the integrated local energy decay
statement (8.19) require an iteration of the above procedure ∼ δ

−1
0 · k times, leading

to the corresponding derivative loss in the estimates of Theorem 9.1. Notice, however,
that in case where the integrated local energy decay statement (8.19) does not lose
derivatives, the same steps can be applied (without the need of the extra iterations of
the procedure) even when the deformation tensor of T does not decay at all, but is,
instead, merely bounded by some small constant ε0 > 0.

We should also notice that in the general case where T is not everywhere non-
spacelike (and thus we necessarily have K �= T ), one extra difficulty arises from the
fact that, in order to avoid losing unnecessary r -weights in the estimates of Theorem
9.1, we only commute � with χK instead of K , for a cut-off function χ supported in
the far away region {r � 1} (notice that g(K , K ) ∼ r2 in case K �= T in the far away
region). However, commutation with χK leads to additional error terms which do not
decay in time. A key element in dealing with these terms are the elliptic estimates of
Lemma B.3.

9.5 Commutation with T , KRc and Control of the Error Terms

The following Lemma will provide us with some useful estimates for the commutator
of �g with the almost Killing vector field T and the vector field KRc which fails to be
almost Killing in the region r ∼ Rc of M.

Lemma 9.3 Provided that 1 � R0 � Rc, let us fix χR0 , χ∼Rc : M → [0, 1] so that

χR0 = χ ◦
(

r

R0

)
(9.61)

for some smooth χ : [0,+∞) → [0, 1] satisfying χ ≡ 1 on [0, 1] and χ ≡ 0 on
[2,+∞) and

χ∼Rc =
{

0, on {r /∈ [Rc, 2Rc]}
1, on {r ∈ [Rc, 2Rc]}. (9.62)

Then the following commutation relations hold for any ϕ ∈ C∞(M) and any integer
l ≥ 0:

�g(T
lϕ) = T l(�gϕ)+ χR0 ·

l∑

j=1

O(τ−(l− j)−δ0)
(
|∇ j+1ϕ|h + |∇ jϕ|h

)

+ (1 − χR0)E
(l)
(T,...T )[ϕ] (9.63)

and for any (e1, . . . el) ∈ {0, 1}l setting X (0) = T and X (1) = KRc:

�g(X
(e1) · · · X (el )ϕ) = X (e1) · · · X (el )(�gϕ)+ χR0
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×
l∑

j=1

O(τ−(l− j)−δ0)
(
|∇ j+1ϕ|h + |∇ jϕ|h

)

+ (1 − χR0)(1 − χr∼Rc )E
(l)
(X (e1),...X (el ))

[ϕ]

+χr∼Rc

l∑

j=0

O(r j−1)
∣∣∇ j+1ϕ

∣∣
h, (9.64)

where (setting for simplicity ϕi1...i j = X (ei1 ) · · · X (ei j )ϕ)

E (l)
(X (e1),...X (el ))

[ϕ]

=
∑

components
o f Na f,M

l−1∑

j=0

∑

{i1,...i j }⊂{1,...l}
O(τ−(l− j−1)−δ0)

×
{
O(r−1)∂2

v (ϕi1...i j )+ O(r−2)∂v∂σ(ϕi1...i j )

+ O(r−3)∂σ∂σ(ϕi1...i j )+ O(r−1−a)∂u∂v(ϕi1...i j )

+ O(r−2−a)∂u∂σ(ϕi1...i j )+ O(r−2−a)∂2
u (ϕi1...i j )

+ O(r−1−a)∂v(ϕi1...i j )+O(r−2−a)∂σ(ϕi1...i j )+O(r−2−a)∂u(ϕi1...i j )
}
. (9.65)

Proof The relations (9.63) and (9.64) follow readily by differnetiating the expression
for the wave equation

�ϕ = gμν∂μ∂νϕ + 1√− det(g)
∂μ

(√− det(g) · gμν
)
∂νϕ (9.66)

with respect to T and KRc , using Assumption (EG5) on the almost Killing vector fields
T, K and the relation KRc = χRc K + (1 − χRc )T . ��

The error term obtained from the commutation of � with KRc on the region r ∼ Rc

(where KRc fails to be almost Killing) will be controlled with the use of suitable elliptic
estimates. In particular, we will establish the following Lemma:

Lemma 9.4 For any l ∈ N with l ≤ � d+1
2 �, any n0 ∈ N, any β ∈ (−δ̄n0 , 1) (for some

δ̄n0 > 0 depending on n0) and any 0 < ε � 1 − β, if Rc is large in terms of β, ε and
the geometry of (M, g)we can bound for any ϕ ∈ C∞(M) satisfying for all j1 + j2 ≤
l + n0 the finite radiation field condition lim supr→+∞

∣∣r
d−1

2 + j1∇ j1
hτ,N

(N j1ϕ)
∣∣
hτ,N

<

+∞:

n0∑

n=0

l−3∑

j=0

∫

{t̄=τ}
r−β−2 j
+ |∇n+l− j

hτ,N
ϕ|2(1−log(rtim ))·hRc dhN

+
n0∑

n=0

l∑

j=1

∫

{t̄=τ}∩{Rc≤r≤2Rc}
r2( j−1)−β+2 ε
+

∣
∣∇ j+n

g ϕ
∣
∣2
h dhN
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≤ Cβ,n0 (Rc)

∫

{t̄=τ}
r−β
+

{
n0∑

n=0

∣
∣∇n+l−2

hτ,N
(�ϕ)

∣
∣2
(1−log(rtim ))·hτ,N

+ T (l,n0)
T,K ,Rc

[ϕ]
}

dhN

+Cβ,n0 (Rc)

1∑

j=0

max

{
−Re

{∫

∂timMτ
h∂timMτ

(
∇ j
h∂timMτ

(Yϕ),∇ j
h∂timMτ

ϕ̄
)
dh∂timMτ

}
, 0

}
,

(9.67)

where T (l,k)
T,K ,Rc

[ϕ] is given by (9.17).

Remark From now on, we will assume that Rc has been fixed large in terms of β
and the geometry of (M, g). Hence, we will drop the dependence of constants on Rc

(replacing it with dependence on the parameters on which β will depend on).

Proof Inequality (9.67) follows readily after adding (9.26) and (9.27) (for 4 ε in place
of ε), and absorbing the last term of the right hand side of (9.27) into the left hand side
of (9.26), which can be done provided Rc has been fixed large in terms of β, R0 and
0 < ε � 1 − β. Recall that in view of Assumption (EG6), the constants in the right
hand sides of (9.26) and (9.27) do not depend on τ. ��

9.6 Integrated Local Energy Decay After Commuting with T, KRc

Let us fix a vector field L on M such that [L , T ] = 0 everywhere, L ≡ 0 in the region
{r ≤ 2Rc} and L ≡ ∂v in the coordinate chart (t̄, v, σ) on each connected component
of the region {r ≥ 2Rc + 1}.
Lemma 9.5 For any l ∈ N with l ≤ � d+1

2 �, and any 0 < ε < 1, if Rc is large in
terms of ε and the geometry of (M, g) we can bound for any integer m ≥ 1, any
0 ≤ τ1 ≤ τ2 and any ϕ ∈ C∞(M) solving �ϕ = F satisfying boundary conditions
on ∂timM belonging to the class C(T,K )I LED and such that

Re
{ ∫

∂timMτ
Yϕ · ϕ̄ dh∂timMτ

}
≥ 0 and

Re
{ ∫

∂timMτ
h∂timMτ

(
∇h∂timMτ (Yϕ),∇h∂timMτ

ϕ̄
)
dh∂timMτ

}
≥ 0 (9.68)

(provided (7.2) holds for all 0 ≤ j ≤ m + l + k + � d
2 �):

m−1∑

j=0

∫

{τ1≤t̄≤τ2}

⎛

⎝
∑

j2+ j3=l+ j−1

r−1+ε
+

∣∣∇ j2+1
hτ,N

(N j3ϕ)
∣∣2
hτ,N

+
∑

1≤ j2+ j3≤l+ j−1

r−1+ε−2(l+ j− j2− j3)+
∣∣∇ j2

hτ,N
(N j3ϕ)

∣∣2
hτ,N

+ r−1−ε
+

∣∣Nl+ jϕ
∣∣2
⎞

⎠ dg

+
m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ2}
r−2(l+ j−1− j2− j3)+

(
r ε+|LL∇ j2

hτ,N
(N j3ϕ)|2

123



6 Page 130 of 194 G. Moschidis

+∣∣∇ j2+1
hτ,N

(N j3ϕ)
∣
∣2
hτ,N

+ r−2+
∣
∣Nl+ jϕ

∣
∣2
)
dhN

+
m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

H+(τ1,τ2)

∣∣∇ j2+1
hH (K j3

Rc
ϕ)
∣∣2
hH dhH

≤ Cε,m

{ k+m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ1}
r ε−2(l+ j−1− j2− j3)+

×
(∣
∣∇ j2+1

hτ,N
(N j3ϕ)

∣
∣2
hτ,N

+ r−2+
∣
∣Nl+ jϕ

∣
∣2
)
dhN

+ τ
−δ0
1

∫

{τ1≤t̄≤τ2}
r−1+ε
+ T (l,m+k−1)

T,K ,Rc,sl
[ϕ] dg +

m+k+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}
r1+ε
+
∣∣∇ j

g F
∣∣2
h dg

}

(9.69)

(where LL denotes the Lie derivative in the direction of the outgoing vector field L)
and

m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ2}
r−2(l+ j−1− j2− j3)+

×
(∣
∣∇ j2+1

hτ,N
(K j3

Rc
ϕ)
∣
∣2
(1−log(rtim ))·hRc + r−2+

∣
∣Kl+ j

Rc
ϕ
∣
∣2
)
dhN

≤ Cε,m

⎧
⎨

⎩

k+m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ1}
r−2(l+ j−1− j2− j3)+

×
(∣∣∇ j2+1

hτ,N
(N j3ϕ)

∣∣2
hτ,N

+ r−2+
∣∣Nl+ jϕ

∣∣2
)
dhN

+ τ
−δ0
1

m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ1}
r ε−2(l+ j−1− j2− j3)+

×
(∣
∣∇ j2+1

hτ,N
(N j3ϕ)

∣
∣2
hτ,N

+ r−2+
∣
∣Nl+ jϕ

∣
∣2
)
dhN

+ τ
−δ0
1

∫

{τ1≤t̄≤τ2}
r−1+ε+ T (l,m+k−1)

T,K ,Rc,sl
[ϕ] dg+

m+k+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}
r1+ε+

∣
∣∇ j

g F
∣
∣2
h dg

⎫
⎬

⎭
.

(9.70)

In the above,

T (l,m+k−1)
T,K ,Rc,sl

[ϕ]
.= T (l,m+k−1)

T,K ,Rc
[ϕ] +

∑

0≤i1+i2≤m

∑

0≤ j≤l−2

∫

{τ1≤t̄≤τ2}

(
r−2−2(l−2− j)
+
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+ r−2+ τ−2(l−2− j)
) ∣
∣∇ j+i1+1

hτ,N
(Ki2

Rc
ϕ)
∣
∣2
hτ,N

dg

+
∑

0≤i1+i2≤m

∑

0≤ j1+ j2≤l−2

∫

{τ1≤t̄≤τ2}
r−2+ τ−2(l− j1− j2−2)

(
|∇ j1+i1

hτ,N
ϕ|( j2+i2+1)

T,K ,Rc

)2
dg.

(9.71)

Remark Notice that in comparison to (9.69), the left hand side of (9.70) controls only
a degenerate energy norm of ϕ on {t̄ = τ2} and no bulk terms. However, in the right
hand side of (9.70) the dependence on the r ε-weighted initial energy comes with a
factor decaying polynomially in time.

Proof Without loss of generality, we will assume that τ1 is large in terms of ε,m.
Moreover, we will assume that ϕ is real valued.

Recall that according to Assumption (G8), in each connected component of the
region {r � 1} we have:

LT g = O(τ−δ0)
{
O(r−1−a)dvdu + O(r)dσdσ + O(1)dudσ

+O(r−a)dvdσ + O(r−1)du2 + O(r−2−a)dv2
}
. (9.72)

Thus, in view of the integrated local energy decay assumption (ILED2) (which is
satisfied in view of our assumption that ϕ has boundary conditions on ∂timMbelonging
to the class C(T,K )I LED) and Lemma 4.1 in the region {r � 1} (see the remark below that
Lemma for the case when T has deformation tensor with slow polynomial decay in
t̄), we can bound for any (e1, . . . el−1) ∈ {0, 1}l−1 and any R f > 0 to be fixed later
(setting X (0) = T and X (1) = KRc ):

m∑

j=1

∫

{τ1≤t̄≤τ2}
r−1−ε
+

(∣∣∇ j
g (LX (e1)...X (el−1)

ϕ)
∣∣2
h

+ r−2+
∣
∣LX (e1)...X (el−1)

ϕ
∣
∣2
)
dg

+
m∑

j=0

∑

j1+ j2= j

∫

∂timM∩{τ1≤t̄≤τ2}
∣∣∇ j

g (LX (e1)...X (el−1)
ϕ)
∣∣2
h dh∂timM

≤ Cε,m,R f

m+k−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ1}

(∣
∣∇ j1+1

hN
(N j2LX (e1)...X (el−1)

ϕ)
∣
∣2
hN

)

+r−2+
∣∣N j+1LX (e1)...X (el−1)

ϕ|2 dhN

+Cε,mτ
−δ0
1

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ2}∩{r�1}
r−1+

(∣∣∇1+ j1
hτ,N

(
T j2(LX (e1)...X (el−1)

ϕ)
) ∣∣2

hτ,N
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+ r−2+
(∣
∣Tm (LX (e1)...X (el−1)

ϕ
) ∣∣2 + ∣∣LX (e1)...X (el−1)

ϕ
∣
∣2
))

dg

+Cε,m,R f

k+m−1∑

j=0

∫

{τ1≤t̄≤τ2}
r1+ε
+
∣
∣∇ j

g (�LX (e1)...X (el−1)
ϕ)
∣
∣2
h dg. (9.73)

Using Lemma 8.3 for LX (e1)...X (el−1)
ϕ in place of ϕ (and adapting the proof a bit so

as to use (9.73) instead of simply (8.19) and repeating the proof of Lemma 4.1), we
obtain the following energy boundedness statement for any γ0 > 0 to be fixed small
later:

m−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ2}

(∣
∣∇ j1+1

hN
(N j2LX (e1)...X (el−1)

ϕ)
∣
∣2
hN

+ r−2+
∣
∣N j+1LX (e1)...X (el−1)

ϕ|2
)
dhN

≤ Cm,ε

⎧
⎨

⎩

m+k−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ1}

(∣∣∇ j1+1
hN

(N j2LX (e1)...X (el−1)
ϕ)
∣∣2
hN

+r−2+
∣∣N j+1LX (e1)...X (el−1)

ϕ|2
)
dhN

+ τ
−δ0
1

m−1∑

j=0

∑

j1+ j2= j

∫

{τ1≤t̄≤τ2}
r−1+ε
+

×
(∣
∣∇ j1+1

hN
(N j2LX (e1)...X (el−1)

ϕ)
∣
∣2
hN

+ r−2+
(∣
∣N j+1 (LX (e1)...X (el−1)

ϕ
) ∣∣2

+ ∣∣LX (e1)...X (el−1)
ϕ
∣
∣2
))

dg +
m+k−1∑

j=0

∫

{τ1≤t̄≤τ2}
r1+ε
+
∣
∣∇ j

g (�LX (e1)...X (el−1)
ϕ)
∣
∣2
h dg

⎫
⎬

⎭
.

(9.74)

Fixing some δ,η > 0 small in terms of ε, we obtain from (5.1) for p = ε and for
T jϕ in place of ϕ for j = l − 1, . . .m + l − 2:

m+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}∩{r≥2Rc}

(
r−1+ε
+

∣
∣∇hτ,N (T

jϕ)
∣
∣2
hτ,N

+ r−1−ε
+ |T j+1ϕ|2 + r−3+ε

+
∣
∣T jϕ

∣
∣2
)
dg

+
m+l−2∑

j=l−1

∫

{t̄=τ2}∩{r≥2Rc}
r ε+
(∣
∣L(T jϕ)

∣
∣2 + r−2+

∣
∣∇hτ,N (T

jϕ)
∣
∣2
hτ,N

+ r−2+ |T jϕ|2
)
dhN

≤ Cε,m

⎧
⎨

⎩

m+l−2∑

j=l−1

∫

{t̄=τ1}∩{r≥Rc}

(
r ε+
∣∣∇hτ,N (T

jϕ)
∣∣2
hτ,N

+ r−2+ |T j+1ϕ|2 + r−2+ε
+

∣∣T jϕ
∣∣2
)
dhN

+
m+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}∩{Rc≤r≤2Rc}
r−1+ε
+

(∣
∣∇hτ,N (T

jϕ)
∣
∣2
hτ,N

+ |T j+1ϕ|2 + r−2+
∣
∣T jϕ

∣
∣2
)
dg

+
m+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}
r1+ε+

∣∣�(T jϕ)
∣∣2 dg

⎫
⎬

⎭
. (9.75)
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Using the elliptic estimate (9.67) repeatedly together with the expression (9.64) for
the commutation of � with LX (ei ) at each step (notice that Theorem 7.1 applies to

yield lim supr→+∞
∣
∣r

d−1
2 + j1∇ j1

hτ,N
(T j2ϕ)

∣
∣
hτ,N

< +∞ for all j1 + j2 ≤ l + m + k),
in view of the condition (9.68) for ϕ at ∂timM, we can bound after summing over all
possible combinations of (e1, . . . el−1) ∈ {0, 1}l−1:

∑

0≤ j1+ j2≤m−1

∑

0≤i1+i2≤l−1

∫

{τ1≤t̄≤τ2}

(
r−1+ε−2(l−1−i1−i2)+

∣∣∇ i1+ j1+1
hτ,N

(K i2+ j2
Rc

ϕ)
∣∣2
(1−log(rtim ))·hRc

+ r−1−ε+ |Kl+ j1+ j2
R

ϕ|2
)
dg

≤
∑

(e1,...el−1)∈{0,1}l−1

⎧
⎨

⎩

m∑

j=1

∫

{τ1≤t̄≤τ2}
r−1−ε
+

(∣∣∇ j
g (LX (e1)...X (el−1)

ϕ)
∣∣2
h + r−2+

∣∣LX (e1)...X (el−1)
ϕ
∣∣2
)
dg

⎫
⎬

⎭

+Cε,m

m+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}∩{r≥2Rc}
r−1+ε
+

(∣
∣∇hτ,N (T

jϕ)
∣
∣2
hτ,N

+ r−2+
∣
∣T jϕ

∣
∣2
)
dg

+Cε,m

∑

0≤i1+i2≤m−1

∑

0≤ j≤l−2

∫

{τ1≤t̄≤τ2}
r−1+ε
+

(
r−2−2(l−2− j)
+ τ−2δ0

+ r−2+ τ−2(δ0+l−2− j)
) ∣
∣∇ j+i1+1

hτ,N
(K i2

Rc
ϕ)
∣
∣2
hτ,N

dg

+Cε,m

∑

0≤i1+i2≤m−1

∑

0≤ j1+ j2≤l−2

∫

{τ1≤t̄≤τ2}
r−3+ε
+ τ−2(δ0+l− j1− j2−2)

(
|∇ j1+i1

hτ,N
ϕ|( j2+i2+1)

T,K ,Rc

)2
dg

+Cε,m

m+l−3∑

j=l−2

∫

{τ1≤t̄≤τ2}
r−1+ε
+

∣∣∇ j
g F
∣∣2
h dg, (9.76)

and

∑

0≤ j1+ j2≤m−1

∑

0≤i1+i2≤l−1

∫

{t̄=τ2}
r−2(l−1−i1−i2)+

(∣∣∇ i1+ j1+1
hτ,N

(Ki2+ j2
Rc

ϕ)
∣∣2
(1−log(rtim ))·hRc

+ r−2+
∣∣Kl+ j

Rc
ϕ
∣∣2
)
dhN

≤ Cm

∑

(e1,...el−1)∈{0,1}l−1

⎧
⎨

⎩

m−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ2}

(∣∣∇ j1+1
hN

(N j2LX (e1)...X (el−1)
ϕ)
∣∣2
hN

+ r−2+
∣∣N jLX (e1)...X (el−1)

ϕ|2
)
dhN

}

+Cm

∑

0≤i1+i2≤m−1

∑

0≤ j≤l−2

∫

{t̄=τ2}

(
r−2−2(l−2− j)
+ τ−2δ0 + r−2+ τ−2(δ0+l−2− j)

)

× ∣∣∇ j+i1+1
hτ,N

(Ki2
Rc

ϕ)
∣∣2
hτ,N

dhN

+Cm

∑

0≤i1+i2≤m−1

∑

0≤ j1+ j2≤l−2

∫

{t̄=τ2}
r−2+ τ−2(δ0+l− j1− j2−2)

(
|∇ j1+i1

hτ,N
ϕ|( j2+i2+1)

T,K ,Rc

)2
dhN

+Cm

m+l−3∑

j=l−2

∫

{t̄=τ2}
∣∣∇ j

g F
∣∣2
h dhN . (9.77)
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Moreover, using the expression (3.14) for the wave equation in the region {r � 1} and
Lemma 6.3 to estimate the commutator of � with L (and recalling that L is supported
in the region {r ≥ 2Rc}), we can also bound in view of Lemma 9.4:

m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ2}
r ε−2(l+ j−1− j2− j3)+

∣∣LL∇ j2
hτ,N

(K j3
Rc

ϕ)
∣∣2
(1−log(rtim ))·hRc dhN

≤ Cε,m

⎧
⎨

⎩

m+l−2∑

j=l−1

∫

{t̄=τ2}∩{r≥2Rc}
r ε+
(∣∣L(T jϕ)

∣∣2 + r−2+
∣∣∇hτ,N (T

jϕ)
∣∣2
hτ,N

+r−2−ε+ |T j+1ϕ|2dhN

+
∑

(e1,...el−1)∈{0,1}l−1

m−1∑

j=0

∑

j1+ j2= j

∫

{t̄=τ2}

(∣∣∇ j1+1
hN

(N j2LX (e1)...X (el−1)
ϕ)
∣∣2
hN

+ r−2+
∣∣N jLX (e1)...X (el−1)

ϕ|2
)
dhN

+
∑

0≤i1+i2≤m−1

∑

0≤ j≤l−2

∫

{t̄=τ2}

(
r ε −2−2(l−2− j)
+ τ−2δ0 + r ε −2+ τ−2(δ0+l−2− j)

)

× ∣∣∇ j+i1+1
hτ,N

(Ki2
Rc

ϕ)
∣∣2
hτ,N

dhN

+
∑

0≤i1+i2≤m−1

∑

0≤ j1+ j2≤l−2

∫

{t̄=τ2}
r ε −2+ τ−2(δ0+l− j1− j2−2)

(
|∇ j1+i1

hτ,N
ϕ|( j2+i2+1)

T,K ,Rc

)2
dhN

+
m+l−3∑

j=l−2

∫

{t̄=τ2}
r ε+
∣∣∇ j

g F
∣∣2
h dhN

⎫
⎬

⎭
. (9.78)

Therefore, fixing R f large enough in terms of ε,m, after adding (for all possible
combinations of (e1, . . . el−1) ∈ {0, 1}l−1) the estimates (9.73), (9.74) and a small
multiple (in terms of ε,m) of (9.75), and using the expression (9.64) for the commu-
tation of � with LX (ei ) , we obtain in view of (9.76), (9.77) and (9.78) as well as a

trace-type inequality for the terms
∫
{t̄=τ2} |∇ j F |2,

∫
{t̄=τ2}

∣∣∇ j+i1+1
hτ,N

(Ki2
Rc

ϕ)
∣∣2
hτ,N

and
∫
{t̄=τ2}

(
|∇ j1+i1

hτ,N
ϕ|( j2+i2+1)

T,K ,Rc

)2
(and recalling that τ1was assumed to be large in terms

of ε,m):

m−1∑

j=0

∫

{τ1≤t̄≤τ2}

⎛

⎝
∑

j2+ j3=l+ j−1

r−1+ε
+

∣∣∇ j2+1
hτ,N

(K j3
Rc

ϕ)
∣∣2
(1−log(rtim ))·hRc

+
∑

1≤ j2+ j3≤l+ j−1

r−1+ε−2(l+ j− j2− j3)+
∣∣∇ j2

hτ,N
(K j3

Rc
ϕ)
∣∣2
(1−log(rtim ))·hRc + r−1−ε

+
∣∣Kl+ j

Rc
ϕ
∣∣2
⎞

⎠ dg

+
m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ2}
r−2(l+ j−1− j2− j3)+

(
r ε|LL∇ j2

hτ,N
(K j3

Rc
ϕ)|2(1−log(rtim ))·hRc
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+ ∣∣∇ j2+1
hRc

(K j3
Rc

ϕ)
∣∣2
(1−log(rtim ))·hRc + r−2+

∣∣Kl+ j
Rc

ϕ
∣∣2
)
dhN

≤ Cε,m

⎧
⎨

⎩

k+m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ1}
r ε−2(l+ j−1− j2− j3)+

(∣∣∇ j2+1
hτ,N

(N j3 ϕ)
∣∣2
hτ,N

+ r−2+
∣∣Nl+ jϕ

∣∣2
)
dhN

+ τ
−δ0
1

∫

{τ1≤t̄≤τ2}
r−1+ε
+ T (l,m+k−1)

T,K ,Rc,sl
[ϕ] dg +

m+k+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}
r1+ε
+
∣∣∇ j

g F
∣∣2
h dg

⎫
⎬

⎭
. (9.79)

Let r1 > 0 be the small constant appearing in (9.2), and fix a smooth cut-off function
χr1 : M → [0, 1] such that χr1 is a function of r satisfying χr1 ≡ 1 on {r ≤ r1} and
χr1 ≡ 0 on {r ≥ 2r1}. Integrating ∇μ(χr1 J

m+l
μ [ϕ]) over M (where Jm+l

μ [ϕ] is given
by 8.40), and using the red shift estimate (9.2), we obtain:

∫

H+(τ1,τ2)

Jm+l
μ [ϕ]nμ

H +
∫

{t̄=τ2}∩{r≤r1}
Jm+l
μ [ϕ]n̄μ +

m+l−1∑

j=1

∫

{τ1≤t̄≤τ2}∩{r≤r1}
∣
∣∇ j

gϕ
∣
∣2
h dg

≤ Cm

⎧
⎨

⎩

m+l−1∑

j=1

∫

{t̄=τ1}∩{r≤2r1}
∣∣∇ j

gϕ
∣∣2
h dhN +

m+l−1∑

j=1

∫

{τ1≤t̄≤τ2}∩{r1≤r≤2r1}
∣∣∇ j

gϕ
∣∣2
h dg

+
m+l−2∑

j=0

∫

{τ1≤t̄≤τ2}∩{r≤2r1}
∣∣∇ j

g F
∣∣2
h dg

⎫
⎬

⎭
. (9.80)

Adding to (9.79) a small multiple of the non degenerate estimate 9.80, and using
Assumptions (G10) and (G11) (together with a Hardy type inequality for the terms
∑l−2

j=0

∫
{r≤2r1}

∣∣∇ j
g F
∣∣2
h dg), we obtain (9.69):

m−1∑

j=0

∫

{τ1≤t̄≤τ2}

⎛

⎝
∑

j2+ j3=l+ j−1

r−1+ε
+

∣∣∇ j2+1
hτ,N

(N j3ϕ)
∣∣2
hτ,N

+
∑

1≤ j2+ j3≤l+ j−1

r−1+ε−2(l+ j− j2− j3)+
∣∣∇ j2

hτ,N
(N j3ϕ)

∣∣2
hτ,N

+ r−1−ε
+

∣∣Nl+ jϕ
∣∣2
⎞

⎠ dg

+
m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ2}
r−2(l+ j−1− j2− j3)+

(
r ε+|LL∇ j2

hτ,N
(N j3ϕ)|2

+∣∣∇ j2+1
hτ,N

(N j3ϕ)
∣∣2
hτ,N

+ r−2+
∣∣Nl+ jϕ

∣∣2
)
dhN

+
m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

H+(τ1,τ2)

∣∣∇ j2+1
hH (K j3

Rc
ϕ)
∣∣2
hH dhH
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≤ Cε,m

⎧
⎨

⎩

k+m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ1}
r ε−2(l+ j−1− j2− j3)+

×
(∣∣∇ j2+1

hτ,N
(N j3ϕ)

∣∣2
hτ,N

+ r−2+
∣∣Nl+ jϕ

∣∣2
)
dhN

+ τ
−δ0
1

∫

{τ1≤t̄≤τ2}
r−1+ε
+ T (l,m+k−1)

T,K ,Rc,sl
[ϕ] dg+

m+k+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}
r1+ε
+
∣∣∇ j

g F
∣∣2
h dg

⎫
⎬

⎭
.

(9.81)

Moreover, by adding (for all possible combinations of (e1, . . . el−1) ∈ {0, 1}l−1)
the estimates (9.73), (9.74) and τ

−δ0
1 times a small multiple of (9.75), we also obtain

the degenerate energy boundedness statement (9.70):

m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ2}
r−2(l+ j−1− j2− j3)+

(∣∣∇ j2+1
hτ,N

(K j3
Rc

ϕ)
∣∣2
(1−log(rtim ))·hRc + r−2+

∣∣Kl+ j
Rc

ϕ
∣∣2
)
dhN

≤ Cε,m

⎧
⎨

⎩

k+m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ1}
r−2(l+ j−1− j2− j3)+

(∣
∣∇ j2+1

hτ,N
(N j3ϕ)

∣
∣2
hτ,N

+ r−2+
∣
∣Nl+ jϕ

∣
∣2
)
dhN

+ τ
−δ0
1

m−1∑

j=0

∑

1≤ j2+ j3≤l+ j−1

∫

{t̄=τ1}
r ε −2(l+ j−1− j2− j3)+

(∣∣∇ j2+1
hτ,N

(N j3ϕ)
∣∣2
hτ,N

+ r−2+
∣∣Nl+ jϕ

∣∣2
)
dhN

+ τ
−δ0
1

∫

{τ1≤t̄≤τ2}
r−1+ε+ T (l,m+k−1)

T,K ,Rc,sl
[ϕ] dg +

m+k+l−2∑

j=l−1

∫

{τ1≤t̄≤τ2}
r1+ε+

∣∣∇ j
g F
∣∣2
h dg

⎫
⎬

⎭
. (9.82)

��

9.7 Proof of Theorem 9.1 on Improved Polynomial Decay

Without loss of generality, we will assume that ϕ is real valued. Moreover, in order to
avoid confusion with unnecessarily complicated notations, we will assume that F ≡ 0,
since the proof of (9.40) and (9.41) in the case F �= 0 follows by repeating exactly
the same steps.

The proof of Theorem 9.1 will proceed by induction on q, from q = 1 up to
q = � d+1

2 �.
More precisely, we will assume the following inductive hypothesis for some integer

1 ≤ q0 ≤ � d+1
2 �:

Inductive hypothesis: For any integer 1 ≤ q ≤ q0 − 1, any 0 < ε � δ0, any integer
m ≥ 1, any 0 ≤ p < 2q − 1 and any 0 ≤ τ1 ≤ τ2 the following bounds hold:

E (p,q,m)en [ϕ](τ2)+
∫ τ3

τ2

E (p−1,q,m)
en [ϕ](τ) d τ

�m,ε (τ2 − τ1)
−2q+p+Cm εE (2q,q,m+�δ−1

0 ·2(q−1)�(3q+1)·k)
bound [ϕ](τ1), (9.83)
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{
E (0,q,m)en [ϕ](τ2)+ E (ε,q,m)bound [ϕ](τ2)+

∫ +∞

τ2

E (−1+ε,q,m)
en [ϕ](s) ds

}

�m,ε (τ2 − τ1)
−2q+Cm εE (2q,q,m+�δ−1

0 ·2(q−1)�(3q+1)·k)
bound [ϕ](τ1) (9.84)

and

E (0,q,m)en,deg [ϕ](τ2) �m (τ2 − τ1)
−2qE (2q,q,m+�δ−1

0 ·2(q−1)�(3q+1)·k)
bound [ϕ](τ1). (9.85)

Granted this inductve hypothesis, the inductive step of our induction scheme will be
the following:

Inductive step: For any 0 < ε � δ0, any integer m ≥ 1, any 0 ≤ p < 2q0 − 1 and
any 0 ≤ τ1 ≤ τ2 the following bounds hold:

E (p,q0,m)
en [ϕ](τ2)+

∫ τ3

τ2

E (p−1,q0,m)
en [ϕ](τ) d τ

�m,ε (τ2 − τ1)
−2q0+p+Cm εE (2q0,q0,m+�δ−1

0 ·2(q0−1)�(3q0+1)·k)
bound [ϕ](τ1),

(9.86)
{
E (0,q0,m)
en [ϕ](τ2)+ E (ε,q0,m)

bound [ϕ](τ2)+
∫ +∞

τ2

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε (τ2 − τ1)
−2q0+Cm εE (2q0,q0,m+�δ−1

0 ·2(q0−1)�(3q0+1)·k)
bound [ϕ](τ1) (9.87)

and

E (0,q0,m)
en,deg [ϕ](τ2) �m (τ2 − τ1)

−2q0E (2q0,q0,m+�δ−1
0 ·2(q0−1)�(3q0+1)·k)

bound [ϕ](τ1).

(9.88)

Note that for q = 1 Theorem 9.1 degenerates to Theorem 8.2, and thus the basis of
the induction has already been established.

9.7.1 Proof of the Inductive Step

In order to establish inequalities (9.86), (9.87) and (9.88) of the inductive step, we will
first need to prove a series of lemmas. Without loss of generality, we will assume that
τ1 = 0 in (9.86), (9.87) and (9.88).

Lemma 9.6 There exists a C > 1 such that for any integer 1 ≤ l ≤ q0, any integer
m ≥ 1, and any ϕ ∈ C∞(M) solving �ϕ = 0, there exists a sequence {τn}n∈N of
positive numbers satisfying (1 + C−1)τn ≤ τn+1 ≤ (1 + C)τn such that
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∑

(e1,...el−1)∈{0,1}l−1

E(2(q0−l),q0−l+1,m)
bulk [LX (e1)...X (el−1)

ϕ](τn)

�m τ−2l
n E(2q0,q0,m+3l·k)

bound [ϕ](0)+ τ−δ0
n

2l∑

i=1

q0−1∑

j=0

τ
−2 j−(2l−i)
n E(2q0−i,q0− j,m+3l·k)

en [ϕ](τn)

+τ−δ0
n

2l∑

i=1

q0−1∑

j=0

τ
−2 j−(2l−i)
n

∫ τn+1

τn−2

E(2q0−i−1,q0− j,m+3l·k)
en [ϕ](s) ds, (9.89)

where X (0) = T and X (1) = KRc .

Proof The proof of (9.89) will follow by induction on l.
Inequality (9.89) for l = 1 follows directly from the proof of Lemma 8.2 (using also

Hardy-type inequalities of the form established in Lemma C.3) adapted to the case
when

∣∣L j
T g
∣∣
h � j τ−δ0 for all integers j ≥ 0 (see also the remark below Lemma 8.2).

It thus remains to prove (9.89) for any 1 < lind ≤ q0, assuming the cases l ≤ lind − 1
have been established. Without loss of generality, we will assume that lind = q0, since
this is the hardest case. The case lind < q0 will follow in the same way, and hence the
relevant details will be omitted.

Since we have assumed that (9.89) holds for l = q0 − 1 and any integer m ≥ 1, we
can bound on a sequence {τn}n∈N satisfying (1 + C−1)τn ≤ τn+1 ≤ (1 + C)τn :

∑

(e1,...eq0−2)∈{0,1}q0−2

E (2,2,m)bulk [L
X (e1)...X

(eq0−2)
ϕ](τn)

�m τ
−2(q0−1)
n E (2q0,q0,m+3(q0−1)·k)

bound [ϕ](0)

+ τ−δ0
n

2(q0−1)∑

i=1

q0−1∑

j=0

τ
−2 j−(2(q0−1)−i)
n E (2q0−i,q0− j,m+3(q0−1)·k)

en [ϕ](τn)

+ τ−δ0
n

2(q0−1)∑

i=1

q0−1∑

j=0

τ
−2 j−(2(q0−1)−i)
n

∫ τn+1

τn−2

E (2q0−i−1,q0− j,m+3(q0−1)·k)
en [ϕ](s) ds.

(9.90)

Using the expression (A.2) for the wave operator in the region {r � 1} (and hence
morally interchanging ∇2

hτ,N
+ � → ∂vT ), we can bound (using also some Hardy

type inequalities of the form established in Lemma C.3):

∑

(e1,...eq0−1)∈{0,1}q0−1

E (2,1,m)bound [L
X (e1)...X

(eq0−1)
ϕ](τn)

�m

∑

(e1,...eq0−2)∈{0,1}q0−2

E (2,2,m)bulk [L
X (e1)...X

(eq0−2)
ϕ](τn)
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+
∑

(e1,...eq0−2)∈{0,1}q0−2

m−1∑

j=0

∑

0≤ j1+ j2≤ j

∫

{t̄=τn}∩{r≥Rc}
r2−2(q+ j−2− j1)

× ∣∣∇ j1
hτ,N

(
T j2�(L

X (e1)...X
(eq0−2)

ϕ)
) ∣∣2

hτ,N
dhN . (9.91)

Thus, from (9.90) and (9.91), we obtain in view of the expression (9.64) for the
commutator of � with LX (ei ) :

∑

(e1,...eq0−1)∈{0,1}q0−1

E (2,1,m)bound [L
X (e1)...X

(eq0−1)
ϕ](τn)

�m τ
−2(q0−1)
n E (2q0,q0,m+3(q0−1)·k)

bound [ϕ](0)

+ τ−δ0
n

2(q0−1)∑

i=1

q0−1∑

j=0

τ
−2 j−(2(q0−1)−i)
n E (2q0−i,q0− j,m+3(q0−1)·k)

en [ϕ](τn)

+ τ−δ0
n

2(q0−1)∑

i=1

q0−1∑

j=0

τ
−2 j−(2(q0−1)−i)
n

∫ τn+1

τn−2

E (2q0−i−1,q0− j,m+3(q0−1)·k)
en [ϕ](s) ds.

(9.92)

Repeating the first steps of the proof of Theorem 8.1 for L
X (e1)...X

(eq0−1)
ϕ in place

of ϕ, using Lemma 9.5 (and in particular the estimate (9.69)) in place of the simple
integrated local energy decay assumption 8.19, in view of (9.64) we can bound on a
sequence {τn}n∈N with (1 +C−1)τn ≤ τn+1 ≤ (1 +C)τn (possibly different than the
one appearing before):

∑

(e1,...eq0−1)∈{0,1}q0−1

E (0,1,m)bulk [L
X (e1)...X

(eq0−2)
ϕ](τn)

�m τ−2
n

∑

(e1,...eq0−1)∈{0,1}q0−1

E (2,1,m+2k)
bound [L

X (e1)...X
(eq0−1)

ϕ](τn)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n E (2q0−i,q0− j,m+(3q0−1)·k)

en [ϕ](τn)

+τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n

∫ τn+1

τn−2

E (2q0−i−1,q0− j,m+(3q0−1)·k)
en [ϕ](s) ds. (9.93)

Using the bound (9.92) with m + 2k in place of m, we finally obtain the desired
inequality:
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∑

(e1,...eq0−1)∈{0,1}q0−1

E (0,1,m)bulk [L
X (e1)...X

(eq0−1)
ϕ](τn)

�m τ
−2q0
n E (2q0,q0,m+(3q0−1)·k)

bound [ϕ](0)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n E (2q0−i,q0− j,m+(3q0−1)·k)

en [ϕ](τn)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n

∫ τn+1

τn−2

E (2q0−i−1,q0− j,m+(3q0−1)·k)
en [ϕ](s) ds. (9.94)

Thus, the proof of the Lemma is complete. ��
Lemma 9.7 For any integer m ≥ 1, any 0 < ε � δ0 small in terms of m and any
smooth function ϕ on M solving �ϕ = 0 we can bound:

{
E (0,q0,m)
en [ϕ](τ)+ E (ε,q0,m)

bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε τ−2q0+Cm ·εE (2q0,q0,m+(3q0+1)·k)
bound [ϕ](0)

+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)E (2q0−i+ε,q0− j,m+(3q0+1)·k)
en [ϕ](τ)

+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)
∫ +∞

C−1
ε,m τ

E (2q0−i−1+ε,q0− j,m+(3q0+1)·k)
en [ϕ](s) ds (9.95)

and

E (0,q0,m)
en,deg [ϕ](τ) �m τ−2q0E (2q0,q0,m+(3q0+1)·k)

bound [ϕ](0)

+τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)E (2q0−i+ε,q0− j,m+(3q0+1)·k)
en [ϕ](τ)

+τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)
∫ +∞

C−1
ε,m τ

E (2q0−i−1+ε,q0− j,m+(3q0+1)·k)
en [ϕ](s) ds.

(9.96)

Proof From Lemma (9.6), we can bound on a sequence {τn}n∈N satisfying (1 +
C−1)τn ≤ τn+1 ≤ (1 + C)τn for some large C > 0:

∑

(e1,...el−1)∈{0,1}q0−1

E (0,1,m)bulk [L
X (e1)...X

(eq0−1)
ϕ](τn)

�m τ
−2q0
n E (2q0,q0,m+3q0·k)

bound [ϕ](0)
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+τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n E (2q0−i,q0− j,m+3q0·k)

en [ϕ](τn)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n

∫ τn+1

τn−2

E (2q0−i−1,q0− j,m+3q0·k)
en [ϕ](s) ds. (9.97)

Using (9.67) successively for L
X (e2)...X

(eq0−1)
ϕ, L

X (e3)...X
(eq0−1)

ϕ, . . ., ϕ (in place of
ϕ), making also use of (9.64) for the commutator of � with LX (ei ) , we can bound
(assuming without loss of generality that τ1 is large enough in terms of m):

E (0,q0,m)
en [ϕ](τn) �m

∑

(e1,...el−1)∈{0,1}l−1

E (0,1,m)bulk [L
X (e1)...X

(eq0−1)
ϕ](τn). (9.98)

Therefore, from (9.97) and (9.98) we obtain:

E (0,q0,m)
en [ϕ](τn) �m τ

−2q0
n E (2q0,q0,m+3q0·k)

bound [ϕ](0)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n E (2q0−i,q0− j,m+3q0·k)

en [ϕ](τn)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n

∫ τn+1

τn−2

E (2q0−i−1,q0− j,m+3q0·k)
en [ϕ](s) ds. (9.99)

From (6.1) and (8.19), we also obtain after repeating the first steps of the proof of
Theorem 8.1 on a sequence {τ̄n}n∈N with (1 + C−1)τ̄n ≤ τ̄n+1 ≤ (1 + C)τ̄n :

E (2q0−1−ε,q0,m)
bulk [ϕ](τ̄n) �ε,m τ̄−1

n E (2q0,q0,m+k)
bound [ϕ](0). (9.100)

Notice that, a priori, {τ̄n}n∈N might be different than {τn}n∈N. However, we can run
the pigeonhole principle argument leading to the choice of these sequences more
carefully and arrange so that τn = τ̄n provided C > 0 had been fixed large enough in
terms of ε, m and the geometry of (M, g) (henceforth we will thus assume without
loss of generality that τ̄n = τn); this follows from the following general fact: If
f1, f2 : (0,+∞) → (0,+∞) are measurable functions satisfying

∫ +∞

0
fi (x) dx ≤ Ci (9.101)

for i = 1, 2, then there exists a sequence {xn}n∈N with 2xn ≤ xn+1 ≤ 4xn such that
for all n ∈ N and for i = 1, 2:

fi (xn) ≤ log−1(
4

3
) · Ci

xn
. (9.102)

��
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Proof of (9.102): This is established by contradiction: If there exists an interval
[a, 2a] ⊂ (0,+∞) such that the measurable sets

I (a)i =
{
x ∈ [a, 2a] ∣∣ fi (x) ≤ log−1(

4

3
) · Ci

x

}
(9.103)

for i = 1, 2 are disjoint, then there exists an i0 ∈ {1, 2} such that the complement of
I (a)i0

on [a, 2a] is at least of half measure, i.e.

m
{ (

I (a)i0

)c ∩ [a, 2a]
}

≥ a

2
. (9.104)

But then one obtains

Ci0 ≥
∫ +∞

0
fi (x) dx ≥

∫
(
I (a)i0

)c∩[a,2a]
fi0(x) dx (9.105)

>

∫
(
I (a)i0

)c∩[a,2a]
log−1(

4

3
) · Ci0

x
dx ≥ log−1(

4

3
) · Ci0

∫

[ 3a
2 ,2a]

1

x
dx = Ci0 ,

(the second to last inequality following because the integral of 1
x over subsets of

[a, 2a] of measure at least a
2 is minimized over [ 3a

2 , 2a]), which is a contradiction.
Thus, there exists an infinite sequence {xn}n∈N with 2xn ≤ xn+1 ≤ 4xn on which
(9.102) is satisfied.

By interpolating between (9.99) and (9.100) (note again that we have assumed
τn = τ̄n), we obtain:

E (ε,q0,m)
en [ϕ](τn) �m τ

−2q0+Cm ε
n E (2q0,q0,m+3q0·k)

bound [ϕ](0)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n E (2q0−i,q0− j,m+3q0·k)

en [ϕ](τn)

+ τ−δ0
n

2q0∑

i=1

q0−1∑

j=0

τ
−2 j−(2q0−i)
n

∫ τn+1

τn−2

E (2q0−i−1,q0− j,m+3q0·k)
en [ϕ](s) ds.(9.106)

By applying Lemma 9.5 in the regions {τn ≤ t̄ ≤ τn+1} and using (9.99), (9.106)
and the fact that τn ∼ε,m τn+1, we thus obtain provided ε has been chosen small in
terms of m and δ0:

{
E (0,q0,m)
en [ϕ](τ)+ E (ε,q0,m)

bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε τ−2q0+Cm εE (2q0,q0,m+(3q0+1)·k)
bound [ϕ](0)

+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)E (2q0−i+ε,q0− j,m+(3q0+1)·k)
en [ϕ](τ)
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+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)
∫ +∞

C−1
ε,m τ

E (2q0−i−1+ε,q0− j,m+(3q0+1)·k)
en [ϕ](s) ds

(9.107)

and

E (0,q0,m)
en,deg [ϕ](τ)
�m τ−2q0E (2q0,q0,m+(3q0+1)·k)

bound [ϕ](0)

+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)E (2q0−i+ε,q0− j,m+(3q0+1)·k)
en [ϕ](τ)

+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)
∫ +∞

C−1
ε,m τ

E (2q0−i−1+ε,q0− j,m+(3q0+1)·k)
en [ϕ](s) ds.

(9.108)

��
We are now ready to establish inequalities (9.84) and (9.85) of the inductive step:

Lemma 9.8 For any integer m ≥ 1, any 0 < ε � δ0 small in terms of m and any
smooth function ϕ on M solving �ϕ = 0 we can bound:

{
E (0,q0,m)
en [ϕ](τ)+ E (ε,q0,m)

bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε τ−2q0+Cm ·εE (2q0,q0,m+�δ−1
0 ·2(q0−1)�(3q0+1)·k)

bound [ϕ](0) (9.109)

and

E (0,q0,m)
en,deg [ϕ](τ) �m τ−2q0E (2q0,q0,m+�δ−1

0 ·2(q0−1)�(3q0+1)·k)
bound [ϕ](0). (9.110)

Proof From Lemma 9.6 we can bound:

{
E (0,q0,m)
en [ϕ](τ)+ E (ε,q0,m)

bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε τ−2q0+Cm ·εE (2q0,q0,m+(3q0+1)·k)
bound [ϕ](0)

+τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2l−i)E (2q0−i+ε,q0− j,m+(3q0+1)·k)
en [ϕ](τ)

+τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)
∫ +∞

C−1
ε,m τ

E (2q0−i−1+ε,q0− j,m+(3q0+1)·k)
en [ϕ](s) ds

(9.111)
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and

E (0,q0,m)
en,deg [ϕ](τ)

�m τ−2q0E (2q0,q0,m+(3q0+1)·k)
bound [ϕ](0)

+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)E (2q0−i+ε,q0− j,m+(3q0+1)·k)
en [ϕ](τ)

+ τ−δ0

2l∑

i=1

q0−1∑

j=0

τ−2 j−(2q0−i)
∫ +∞

C−1
ε,m τ

E (2q0−i−1+ε,q0− j,m+(3q0+1)·k)
en [ϕ](s) ds.

(9.112)

Using the inductive hypothesis (i.e. (9.83), (9.84) and (9.85)) as well as Theorem
8.1 and the integrated local energy decay statement (8.19), we obtain from (9.111)
and (9.112):

{
E (0,q0,m)
en [ϕ](τ)+ E (ε,q0,m)

bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε τ− min{2+δ0,2q0−Cm ·ε}E (2q0,q0,m+(3q0+1)·k)
bound [ϕ](0) (9.113)

and

E (0,q0,m)
en,deg [ϕ](τ) �m τ− min{2+δ0,2q0}E (2q0,q0,m+(3q0+1)·k)

bound [ϕ](0). (9.114)

Going back to (9.111) and (9.112) and using (9.113) (with m + (3q0 + 1) · k) in place
of m) for the error terms in the right hand side, combined with the inductive hypoth-
esis’ inequalities (9.83), (9.84) for the lower order terms, we obtain the following
improvement of (9.113) and (9.114):

{
E (0,q0,m)
en [ϕ](τ)+ E (ε,q0,m)

bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε τ− min{2+2δ0,2q0−Cm ·ε}E (2q0,q0,m+2(3q0+1)·k)
bound [ϕ](0) (9.115)

and

E (0,q0,m)
en,deg [ϕ](τ) �m τ− min{2+2δ0,2q0}E (2q0,q0,m+2(3q0+1)·k)

bound [ϕ](0). (9.116)

Repeating the same procedure �δ−1
0 · 2(q0 − 1)� times, we finally obtain the desired

decay statement:

{
E (0,q0,m)
en [ϕ](τ)+ E (ε,q0,m)

bound [ϕ](τ)+
∫ +∞

τ

E (−1+ε,q0,m)
en [ϕ](s) ds

}

�m,ε τ−2q0+Cm ·εE (2q0,q0,m+�δ−1
0 ·2(q0−1)�(3q0+1)·k)

bound [ϕ](0) (9.117)
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and

E (0,q0,m)
en,deg [ϕ](τ) �m τ−2q0E (2q0,q0,m+�δ−1

0 ·2(q0−1)�(3q0+1)·k)
bound [ϕ](0). (9.118)

��

Finally, we will establish inequality (9.83) of the inductive step:

Lemma 9.9 For any 0 ≤ p ≤ 2q0 − 2, any integer m ≥ 1, any 0 < ε � δ0 small in
terms of m and any smooth function ϕ on M solving �ϕ = 0 we can bound:

E (p,q0,m)
en [ϕ](τ)+

∫ +∞

τ

E (p−1,q0,m)
en [ϕ](s) ds

�m,ε τ−2q0+p+Cm εE (2q0,q0,m+�δ−1
0 ·2(q0−1)�(3q0+1)·k)

bound [ϕ](0). (9.119)

Proof Inequality (9.119) follows readily after interpolating between (9.109) and
(8.31). ��

9.8 Gagliardo–Nirenberg Type Inequalities on the Hyperboloids { t̄ = const}

In the proof of Corollary 9.2, we need to obtain refined pointwise control for functions
� on the hyperboloids {t̄ = const} by estimating the L2 norms of higher order deriv-
atives of them. To this end, we will make use of the following Gagliardo–Nirenberg
type estimates:

Lemma 9.10 For any r0 ≥ 0, any τ > 0 and any smooth function � : Sτ,r0 → C

(where Sτ,r0

.= {t̄ = τ} ∩ {r ≥ r0}) satisfying r
d−1

2 |∇l
hτ,N

�| = O(1) for 0 ≤ l ≤
� d+1

2 � − 1 as r → +∞:

1. If d is odd, we can bound19:

sup
Sτ,r0

|�|2 ≤ C(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇
d−1

2
hτ,N

�|2hτ,N
dhN

) 1
2
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) 1
2

+
∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

}

. (9.120)

19 Recall that d is the dimension of the hypersurface {t̄ = τ}.

123



6 Page 146 of 194 G. Moschidis

and

sup
Sτ,r0

|�|2 ≤C(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) 1
d−1
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) d−2
d−1

+
∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

}

(9.121)

2. If d is even, we can bound for any ε > 0:

sup
Sτ,r0

|�|2

≤ Cε(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) ε
d−2

×
(∫

Sτ,r0

(
|∇

d
2 +1
hτ,N

�|2hτ,N
+ |∇

d
2
hτ,N

�|2hτ,N

)
dhN

)1− ε ·(2d−2)
2(d−2)

+
∫

Sτ,r0

(
|∇

d
2 +1
hτ,N

�|2hτ,N
+ |∇

d
2
hτ,N

�|2hτ,N

)
dhN +

∫

Sτ,r0

r ε+|L d
2 �|2 dhN

}

.

(9.122)

In the above, L is a vector field which is identically 0 in the region {r � 1} and equals
the coordinate vector field ∂v of the coordinate system (v, σ) on {t̄ = τ} ∩ {r � 1}.

Proof Let us fix an R0 > 0 large in terms of the geometry of (M, g).
On R

d , the following Gagliardo–Nirenberg type inequalities hold for f ∈ C∞
0 (Rd)

(see [30] and [36]):

1. If d is odd:

|| f ||L∞ ≤ C || f ||
1
2

Ḣ
d−1

2 (Rd )
· || f ||

1
2

Ḣ
d+1

2 (Rd )
. (9.123)

and

|| f ||L∞ ≤ C || f ||
1

d−1

Ḣ1(Rd )
· || f ||

d−2
d−1

Ḣ
d+1

2 (Rd )
(9.124)

2. If d is even:

|| f ||L∞ ≤ Cε|| f ||
1
2

Ḣ
d
2 −ε

(Rd )
· || f ||

1
2

Ḣ
d
2 +ε

(Rd )
. (9.125)

In the above, we have used the homogeneous norms Ḣa(Rd) defined with the use of
the Fourier transform as
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|| f ||2
Ḣa(Rd )

.=
∫

Rd
|ξ |2a∣∣ f̂ ∣∣2 dξ, (9.126)

where f̂ is the Fourier transform of f .
Using a simple interpolation argument, we can also bound

|| f ||
Ḣ

d
2 −ε

(Rd )
≤ Cε|| f ||

2 ε
d−2

Ḣ1(Rd )
· || f ||

d−2−2 ε
d−2

Ḣ
d
2 (Rd )

(9.127)

and
|| f ||

Ḣ
d
2 +ε

(Rd )
≤ Cε|| f ||1−ε

Ḣ
d
2 (Rd )

· || f ||ε
Ḣ

d
2 +1

(Rd )
, (9.128)

and thus we obtain from (9.125) in the case d is even:

|| f ||L∞ ≤ Cε|| f ||
ε

d−2

Ḣ1(Rd+)
· || f ||1− ε ·d

2(d−2)

Ḣ
d
2 (Rd+)

· || f ||
ε
2

Ḣ
d
2 +1

(Rd+)
. (9.129)

Let χR0 : {t̄ = τ} → [0, 1] be a smooth cut-off function such that χR0 is a function
of r satisfying χR0 ≡ 0 on {r ≤ R0} and χR0 ≡ 1 on {r ≥ 2R0}. Since χR0�

is supported on {r ≥ R0}, by pulling back through the diffeomorphism (r, σ) the
operator ∇Rd on {t̄ = τ} and using the bound

∣∣∇l
Rdϕ

∣∣2
hτ,N

≤ Cl

l∑

j=1

r−2(l− j)
∣∣∇hτ,N

ϕ
∣∣2
hτ,N

, (9.130)

we obtain from (9.123), (9.124) and (9.129):

1. In case d is odd:

sup
Sτ,r0

|χR0�|2 ≤ C ·
⎛

⎜
⎝

d−3
2∑

j=0

∫

Sτ,r0

|∇
d−1

2 − j
hτ,N

(χR0�)|2hτ,N
dhN

⎞

⎟
⎠

1
2

×
⎛

⎜
⎝

d−1
2∑

j=0

∫

Sτ,r0

r−2 j |∇
d+1

2 − j
hτ,N

(χR0�)|2hτ,N
dhN

⎞

⎟
⎠

1
2

. (9.131)

and

sup
Sτ,r0

|χR0�|2 ≤ C ·
(∫

Sτ,r0

|∇hτ,N (χR0�)|2hτ,N
dhN

) 1
d−1

×
⎛

⎜
⎝

d−1
2∑

j=0

∫

Sτ,r0

r−2 j |∇
d+1

2 − j
hτ,N

(χR0�)|2hτ,N
dhN

⎞

⎟
⎠

d−2
d−1

(9.132)
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2. In case d is even:

sup
Sτ,r0

|χR0�|2 ≤ Cε ·
(∫

Sτ,r0

|∇hτ,N (χR0�)|2hτ,N
dhN

) ε
d−2

×
⎛

⎜
⎝

d−2
2∑

j=0

∫

Sτ,r0

r−2 j |∇
d
2 − j
hτ,N

(χR0�)|2hτ,N
dhN

⎞

⎟
⎠

1− ε ·d
2(d−2)

×
⎛

⎜
⎝

d
2∑

j=0

∫

Sτ,r0

r−2 j |∇
d
2 +1− j
hτ,N

(χR0�)|2hτ,N
dhN

⎞

⎟
⎠

ε
2

. (9.133)

By applying the Leibnitz rule and using Hardy type inequalities of the form established
in Lemma C.3, we obtain from (9.131), (9.132) and (9.133):

1. In case d is odd:

sup
Sτ,r0

|χR0�|2 ≤ C ·
⎧
⎨

⎩

(∫

Sτ,r0

|∇
d−1

2
hτ,N

�|2hτ,N
dhN

) 1
2
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) 1
2

+
∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN

}

. (9.134)

and

sup
Sτ,r0

|χR0�|2 ≤ C ·
⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) 1
d−1
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) d−2
d−1

+
∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN

}

(9.135)

2. In case d is even:

sup
Sτ,r0

|χR0�|2 ≤ Cε ·
⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) ε
d−2

(∫

Sτ,r0

(
|∇

d
2 +1
hτ,N

�|2hτ,N
+ |∇

d
2
hτ,N

�|2hτ,N

)
dhN

)1− ε ·(2d−2)
2(d−2)

+
∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN

}

. (9.136)
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Since (1 − χR0) is supported in the compact region {t̄ = τ} ∩ {r ≤ 2R0} and R0 is
fixed in terms of the geometry of {t̄ = τ}, using the Sobolev inequality (see e.g. [19])

sup
Sτ,r0

|(1 − χR0)�|2 ≤ C(τ)

� d+1
2 �∑

j=0

∫

Sτ,r0 ∩{r≤2R0}
∣
∣∇ j

hτ,N
�
∣
∣2
hτ,N

dhN (9.137)

and the Poincare inequality

∫

Sτ,r0 ∩{r≤2R0}
|�|2 dhN ≤ C(τ)

∫

Sτ,r0 ∩{r≤2R0}
∣
∣∇hτ,N�

∣
∣2
hτ,N

dhN

+
∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN , (9.138)

we obtain from (9.134), (9.135) and (9.136):

1. In case d is odd:

sup
Sτ,r0

|�|2 ≤ C(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇
d−1

2
hτ,N

�|2hτ,N
dhN

) 1
2
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) 1
2

+
∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN +

∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN

}

.

(9.139)

and

sup
Sτ,r0

|�|2 ≤ C(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) 1
d−1
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) d−2
d−1

+
∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN +

∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN

}

(9.140)

2. In case d is even:

sup
Sτ,r0

|�|2 ≤ Cε(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) ε
d−2

×
(∫

Sτ,r0

(
|∇

d
2 +1
hτ,N

�|2hτ,N
+ |∇

d
2
hτ,N

�|2hτ,N

)
dhN

)1− ε ·(2d−2)
2(d−2)

+
∫

Sτ,r0

(
|∇

d
2 +1
hτ,N

�|2hτ,N
+ |∇

d
2
hτ,N

�|2hτ,N

)
dhN +

∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN

}

.

(9.141)
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Finally, in case d is odd, using Lemma C.4 (as well as Lemma C.3) we can bound

∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN ≤ C ·

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) 1
2

×
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) 1
2

, (9.142)

and

∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN ≤ C ·

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) 1
d−1

×
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) d−2
d−1

(9.143)

and thus (9.140) and (9.139) become

sup
Sτ,r0

|�|2 ≤ C(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇
d−1

2
hτ,N

�|2hτ,N
dhN

) 1
2
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) 1
2

+
∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

}

. (9.144)

and

sup
Sτ,r0

|�|2 ≤ C(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) 1
d−1
(∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

) d−2
d−1

+
∫

Sτ,r0

|∇
d+1

2
hτ,N

�|2hτ,N
dhN

}

(9.145)

In case d is even, on the other hand, from Lemma C.3 we can readily bound

∫

Sτ,r0 ∩{R0≤r≤2R0}
|�|2 dhN ≤ Cε

∫

Sτ,r0

r ε+|L d
2 �|2 dhN , (9.146)
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and hence (9.141) becomes:

sup
Sτ,r0

|�|2 ≤ Cε(τ)

⎧
⎨

⎩

(∫

Sτ,r0

|∇hτ,N�|2hτ,N
dhN

) ε
d−2

×
(∫

Sτ,r0

(
|∇

d
2 +1
hτ,N

�|2hτ,N
+ |∇

d
2
hτ,N

�|2hτ,N

)
dhN

)1− ε ·(2d−2)
2(d−2)

+
∫

Sτ,r0

(
|∇

d
2+1
hτ,N

�|2hτ,N
+|∇

d
2
hτ,N

�|2hτ,N

)
dhN +

∫

Sτ,r0

r ε+|L d
2 �|2 dhN

}

.

(9.147)

��
Lemma 9.11 For any τ > 0 and any smooth function � : {t̄ = τ} ∩ {r ≤ 1} → C

we can bound

sup
{t̄=τ}∩{r≤ 1

2 }

(
(− log(r)+ 1)−2� d−1

2 � · |�|2
)

≤ C(τ)

{∫

{t̄=τ}∩{r≤1}
∣∣∇� d+1

2 �
hτ,N

�
∣∣2
(1−log(rtim))·hRc dhN

+
� d−1

2 �∑

j=0

∫

{t̄=τ}∩{ 1
2 ≤r≤1}

∣∣∇ j
hτ,N

�
∣∣2
hτ,N

dhN

⎫
⎪⎬

⎪⎭
. (9.148)

Remark Notice that the energy norm in the right hand side of (9.148) degenerates
polynomially at H+ and logarithmically at ∂timM.

Proof Using the fundamental theorem of calculus and a Cauchy–Schwarz inequality,
we can bound for any smooth ϕ : [0, 1] → C and any x0 ∈ (0, 1]:

|ϕ(x0)| ≤
∫ 1

x0

∣
∣dϕ

dx

∣
∣ dx + |ϕ(1)| ≤

≤
(∫ 1

x0

x−1 dx

) 1
2
(∫ 1

x0

x
∣∣dϕ

dx

∣∣2 dx
) 1

2

+ |ϕ(1)|

≤ (− log(x0)) ·
(∫ 1

0
x
∣∣dϕ

dx

∣∣2 dx
) 1

2

+ |ϕ(1)|. (9.149)

Let us fix a small r0 = r0(τ), so that {t̄ = τ} ∩ {r ≤ 2r0} is diffeomorphic to
[0, 2r0] × Hτ and hRc has the form (9.15) there. It then readily follows in view of
(9.149) and a Sobolev inequality on the surfaces {r = const} that
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sup
{t̄=τ}∩{r≤r0}

(
(− log(r))−2� d−1

2 � · |�|2
)

≤ C(τ)

⎧
⎪⎨

⎪⎩

� d−1
2 �∑

j=0

∫

{t̄=τ}∩{r≤2r0}
rhor (− log(rtim))

−2� d−1
2 � ∣∣∇ j

Hτ
(∂r�)

∣∣2 dhN

+
� d−1

2 �∑

j=0

∫

{t̄=τ}∩{r0≤r≤2r0}
∣
∣∇ j

hτ,N
�
∣
∣2
hτ,N

dhN

⎫
⎪⎬

⎪⎭
, (9.150)

where ∇Hτ
is the covariant derivative on the surfaces {r = const} associated to the

metric hHτ
in (9.15). Inequality (9.148) now readily follows from (9.150) in view of

the Sobolev-inequality in the region {r0 ≤ r ≤ 1
2 }:

sup
{t̄=τ}∩{r0≤r≤ 1

2 }
|�|2 ≤ C(τ)

� d+1
2 �∑

j=0

∫

{t̄=τ}∩{r0≤r≤ 1
2 }
∣∣∇ j

hτ,N
�
∣∣2
hτ,N

dhN , (9.151)

the Hardy-type inequality:

� d−1
2 �∑

j=0

∫

{t̄=τ}∩{r≤2r0}
rhor (− log(rtim))

−2� d−1
2 � ∣∣∇ j

Hτ
(∂r�)

∣∣2 dhN

≤ C(τ)

{∫

{t̄=τ}∩{r≤1}
∣∣∇� d+1

2 �
hτ,N

�
∣∣2
(1−log(rtim))·hRc dhN

+
� d−1

2 �∑

j=0

∫

{t̄=τ}∩{ 1
2 ≤r≤1}

∣∣∇ j
hτ,N

�
∣∣2
hτ,N

dhN

⎫
⎪⎬

⎪⎭
, (9.152)

and the Poincare-type inequality

� d+1
2 �∑

j=0

∫

{t̄=τ}∩{r0≤r≤ 1
2 }
∣∣∇ j

hτ,N
�
∣∣2
hτ,N

dhN

≤ C(τ)

{∫

{t̄=τ}∩{r≤1}
∣∣∇� d+1

2 �
hτ,N

�
∣∣2
hRc

dhN

+
� d−1

2 �∑

j=0

∫

{t̄=τ}∩{ 1
2 ≤r≤1}

∣
∣∇ j

hτ,N
�
∣
∣2
hτ,N

dhN

⎫
⎪⎬

⎪⎭
. (9.153)

��
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9.9 Proof of Corollary 9.2

Inequality (9.48) for any dimension d follows readily from the Gagliardo–Nirenberg
type inequalities (9.121) and (9.122) for r0 = 0, Assumption (EG7) and the decay
estimate (9.40) of Theorem 9.1 for q = 1, � d+1

2 � and m + 1 in place of m.
In case the dimension d is odd, after adding the Gagliardo–Nirenberg type inequal-

ities (9.121) (for some small r0 > 0) and (9.148), and using a Poincare type inequality
and the “critical” Hardy-type estimate (C.8) (together with Lemma C.3) to bound

� d−1
2 �∑

j=0

∫

{t̄=τ}∩{ 1
2 ≤r≤1}

∣∣∇ j
hτ,N

ϕ
∣∣2
hτ,N

dhN

≤ C ·
(

E (0,
d+1

2 ,0)
en,deg [ϕ](τ)+

(
E (0,1,0)en,deg [ϕ](τ)

) 1
d−1
(
E (0,

d+1
2 ,0)

en,deg [ϕ](τ)
) d−2

d−1
)

,

(9.154)

we obtain in view of Assumption (EG7):

sup
{t̄=τ}∩{r≤ 1

2 }

(
(− log(r)+ 1)−2� d−1

2 � · |ϕ|2
)

≤ C ·
{(

E (0,1,0)en,deg [ϕ](τ)
) 1

d−1
(
E (0,

d+1
2 ,0)

en,deg [ϕ](τ)
) d−2

d−1 + E (0,
d+1

2 ,0)
en,deg [ϕ](τ)

}

.

(9.155)

Therefore, from (9.155) and (9.41) we deduce that

sup
{t̄=τ}

(
(− log(r)+ 1)−2� d−1

2 � · |ϕ|2
)

�ε τ−d · E (d+1, d+1
2 ,�δ−1

0 ·2(d−1)�(3 d+1
2 +1)·k)

bound [ϕ](0)
+F (d+1, d+1

2 ,m+�δ−1
0 ·(d−1)�(3 d+1

2 +1)·k,k)
deg,ε [F](τ). (9.156)

Moreover, using a standard Sobolev estimate we can also bound:

sup
{t̄=τ}∩{r≤1}

|ϕ|2 ≤C
{
E (0,

d+1
2 ,0)

en [ϕ](τ)+
∫

{t̄=τ}∩{r≤1}
|ϕ|2 dhN

}
, (9.157)

which, in view of a Poincare inequality and the Hardy inequality (C.8) (together with
Lemma C.3), yields:

sup
{t̄=τ}∩{r≤1}

|ϕ|2 ≤C ·
{

E (0,
d+1

2 ,0)
en [ϕ](τ)+

(
E (0,

d−1
2 ,0)

en,deg [ϕ](τ)
) 1

2
(
E (0,

d+1
2 ,0)

en,deg [ϕ](τ)
) 1

2
}

.

(9.158)
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Therefore, from Theorem 9.1 and (9.158) we obtain

sup
{t̄=τ}∩{r≤1}

|ϕ|2 �ε τ− d
2 E (d+1, d+1

2 ,�δ−1
0 ·2(d−1)�(3 d+1

2 +1)·k)
bound [ϕ](0)+ Fdeg,ε,0,d [F](τ),

(9.159)

which combined with (9.156) yields the required estimate (9.46) for the pointwise
decay of ϕ.

In casem ≥ 1, we can bound in view of the Gagliardo-Nirenberg inequality (9.120)
for some fixed small r0 > 0:

m∑

i=1

sup
{t̄=τ}∩{r≥r0}

|∇ i
gϕ|2h ≤ Cm,r0

{(
E (0,

d+1
2 ,m)

en,deg [ϕ](τ)
) 1

2

×
(
E (0,

d+1
2 ,m+1)

en,deg [ϕ](τ)
) 1

2 + E (0,
d+1

2 ,m+1)
en,deg [ϕ](τ)

}

. (9.160)

Therefore, from Theorem 9.1 and (9.160) we obtain:

m∑

i=1

sup
{t̄=τ}∩{r≥r0}

|∇ i
gϕ|2h �m,r0,ε τ−d−1E (d+1, d+1

2 ,m+1+�δ−1
0 ·2(d−1)�(3 d+1

2 +1)·k)
bound [ϕ](0)

+Fdeg,ε,m+2,d [F](τ).
(9.161)

Moreover, using Lemma 9.11 for ∂ iϕ in place of �, we can bound (in view also of
Theorem 9.1):

m+1∑

i=1

sup
{t̄=τ}∩{r≤ 1

2 }

(
(1 − log(r))−2� d−1

2 � |∇ i
gϕ|2h

)
�m E (0,

d+1
2 ,m+2)

en,deg [ϕ](τ)

�m,ε τ−d−1E (d+1, d+1
2 ,m+2+�δ−1

0 ·2(d−1)�(3 d+1
2 +1)·k)

bound [ϕ](0)+ Fdeg,ε,m+1,d [F](τ).
(9.162)

Since the function (− log(r))2� d−1
2 � is integrable near r = 0, using the fundamental

theorem of calculus and a Cauchy–Schwarz inequality we can bound for any smooth
function � on {t̄ = τ} ∩ {r ≤ 1

2 }:20

20 Here we have also used Assumption (EG8) on the boundedness of the volume of the region {t̄ = τ}∩{r �
1}.
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sup
{t̄=τ}∩{r≤ 1

2 }
|�|2 ≤ C

⎧
⎨

⎩
sup

{t̄=τ}∩{r≤ 1
2 }

(
(1 − log(r))−2� d−1

2 � |∇hτ,N�|2hτ,N

)

+ sup
{t̄=τ}∩{ 1

4 ≤r≤ 1
2 }

|�|2
⎫
⎬

⎭
. (9.163)

Thus, from (9.161), (9.162) and (9.163) (for ∂ iϕ in place of �) we deduce the desired
bound (9.47):

m∑

i=1

sup
{t̄=τ}

∣∣∇mϕ
∣∣2
h �m,ε τ−d−1 · E (d+1, d+1

2 ,m+2+�δ−1
0 ·2(d−1)�(3 d+1

2 +1)·k)
bound [ϕ](0)

+Fdeg,ε,m+2,d [F](τ). (9.164)
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Appendix A: Construction of the Natural Riemannian Metrics hτ,N and
hτ,K,�

Let (Md+1, g), d ≥ 1, be a Lorentzian manifold and t̄ : M → R a smooth function
with acausal level sets.21 For any timelike vector field N on M such that dt̄(N ) = 1,
there exists a special Riemannian metric hτ,N defined on the Sτ = {t̄ = τ} hyper-
surfaces naturally associated to the vector field N . This metric does not necessarily
coincide with the induced metric on Sτ, but its usefulness lies in the fact that the
Laplace operator associated to hτ,N appears naturally in a “useful” decomposition
of the wave operator �g . A similar construction of a Riemannian metric hτ,K ,� (not
natural in this case) can be constructed in case one has two vector fields K ,� with
merely timelike span, such that K satisfies dt̄(K ) = 1 and becomes non timelike only
on a set with compact intersection with each Sτ, and � is tangent to the level sets of
t̄ . We will now proceed with the details of the construction of these metrics.

A.1 Construction of hτ,N

Let N be a timelike vector field on M with dt̄(N ) = 1. Let VM denote vector bundle
on Sτ defined as the pullback of TM through the inclusion i : Sτ → M, the latter
giving rise to the natural inclusion T Sτ ↪→ VM. The vector bundle VM inherits from
TM the Lorentzian metric i∗g and the timelike section i∗N , which will be denoted
as g and N respectively for notational simplicity. Similarly, the one form dt̄ on M

21 This manifold M will correspond to the manifold M\∂M in the language of Sections 8–9.
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can also be viewed as a section of the dual bundle V∗
M. Let us denote with g−1 the

Lorentzian metric on V∗
M associated to g on VM.

Let KN ↪→ V∗
M be the vector subbundle of V∗

M defined as the set of v ∈ �(V∗
M)

such that v(N ) = 0. Then the Lorentzian metric g−1 on V∗
M induces a metric hinv,τ,N

on KN . It is easy to verify that hint,τ,N is positive definite, owing to the fact that
g(N , N ) < 0.

We can naturally identify T ∗Sτ andKN in the following way: SinceVM can be split
as T Sτ ⊕ (N ) (where (N ) is the line bundle spanned by N ), any ω ∈ �(T ∗Sτ) can be
extended to a section ωN ∈ �(V∗

M) by demanding that ωN |T Sτ = ω and ωN (N ) = 0.
But then, since ωN (N ) = 0, ωN is a section of K. It is easy to verify that the mapping
ω → ωN is a vector bundle isomorphism. Thereofore, T ∗Sτ inherits the Lorentzian
metric hinv,τ,N of KN .

Finally, we define the (positive definite) metric hτ,N on T Sτ as the dual metric of
hinv,τ,N on T ∗Sτ. Thus, (Sτ, hτ,N ) becomes a Riemannian manifold. Notice that the
following relation holds:

dvolg = √−g(N , N ) · dt̄ ∧ dvolhτ,N (A.1)

where dvolg is the natural volume form on M associated with g, while dvolhτ,N is
the natural volume form on (Sτ, hτ,N ) extended to a d-form on M by the requirement
that iN dvolhτ,N = 0.

The connection of the metric hτ,N with the wave operator �g onM is the following:
In any local coordinate system (x1, . . . , xd) on Sτ, extended to a local coordinate
system (t̄, x1, . . . , xd) on M by the requirement that N (xi ) = 0, the wave operator
�g on M around Sτ satisfies:

�g = (
√−g)−1N

(√−ggt̄ t̄ N
)

+ (
√−g)−1∂xi

(√−ggx
i t̄ N
)

+ (
√−g)−1N

(√−ggx
i t̄∂xi

)
+�hτ,N ,N , (A.2)

where the operator �hτ,N ,N on Sτ is defined as:

�hτ,N ,N = 1√−g(N , N )
divhτ,N

(√−g(N , N )d
)

(A.3)

and divhτ,N acting on the one form ω on Sτ is defined as the divergence (with respect
to hτ,N ) of the dual vector field ω�.22 Equivalently, �gϕ takes the following covariant
form for any � ∈ C∞(M) (assuming that M is orientable):

�g� = divg
(
(N�) · dt̄)+ �LN

(
(Ntan�) · dvolg

)+�hτ,N ,N�, (A.4)

where � is the Hodge star operator on (M, g) and Ntan is the projection of ∇ t̄ on Sτ

along N .

22 Equivalently, it is the dual of the gradient operator on functions with respect to the inner product∫
Sτ 〈·, ·〉hτ,N dvolhτ,N .
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A.2 Construction of hτ,K,�

Let K ,� be two vector fields on M with timelike span such that dt̄(K ) = 1 and �
is tangent to the leaves of the foliation {Sτ}τ∈R. Assume also that for any τ ∈ R, the
set Aτ = {p ∈ Sτ : g(K , K ) ≥ 0} is compact. In this case, we will also define a
Riemannian metric hτ,K ,� on Sτ which will prove helpful in decomposing the wave
operator �g , but contrary to the metric hτ,N constructed in the previous Section, the
construction of hτ,K ,� will not be natural.

Proceeding as in the previous Section, we can define the natural metric hτ,K on Sτ,
but hτ,K will now not be Riemannian on Aτ. Moreover, hτ,K will be singular at the
points where g(K , K ) = 0, although its inverse (i.e. the associated metric on the dual
bndle T ∗Sτ) will be smooth everywhere on Sτ.

Since the span of K ,� is everywhere timelike on M and Aτ is compact, for any
τ ∈ R there exists some Cτ > 0 such that everywhere on Sτ:

g(K , K )

g(�,�)g(K , K )− (g(�, K ))2
> −Cτ. (A.5)

Notice that the bound (A.5) holds trivially outside Aτ. Thus, if �⊥ denotes the pro-
jecton of � on the orthogonal complement of K , we have

1

g(�⊥,�⊥)
= g(K , K )

g(�,�)g(K , K )− (g(�, K ))2
> −Cτ, (A.6)

and
g(�⊥,�⊥) ≤ 0 (A.7)

on ∪τAτ. Recall also that for any vector fields X,Y with timelike (or null) span the
following inverted Cauchy inequality holds pointwise:

(g(X,Y ))2 ≥ |g(X, X)| · |g(Y,Y )|. (A.8)

Thus, for any vector field X on M with g(X, K ) = 0 and g(X, X) ≤ 0 (notice that
such a vector field must be identically 0 outside ∪τAτ) we can bound due to (A.6),
(A.7) and (A.8):

g(X, X) ≥ (g(X,�))2

−|g(�⊥,�⊥)| = (g(X,�))2

g(�⊥,�⊥)
> −Cτ (g(X,�))2 . (A.9)

Recall that for anyω ∈ �(T ∗Sτ), extended to an element of�(V∗
M ) by the condition

ω(K ) = 0, we have everywhere on Sτ:

h−1
τ,K (ω, ω) = g−1(ω, ω). (A.10)

The bound (A.9) then readily implies that for any ω ∈ �(T ∗Sτ) we have

h−1
τ,K (ω, ω)+ Cτ (ω(�))

2 > 0. (A.11)
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Therefore, the symmetric (2, 0)-tensor

hinv,τ,K ,�
.= h−1

τ,K + Cτ ·�⊗� (A.12)

is a positive definite metric on the dual bundle T ∗Sτ, and its inverse hτ,K ,� is a
Riemannian metric on Sτ.

Notice that in this case, Sτ carries two volume forms, dvolhτ,K ,� and iK dvolg , and
their Radon-Nikodym derivative, i.e.

mτ,K ,�
.= δ(iK dvolg)

δ(dvolhτ,K ,�)
, (A.13)

is a smooth function on Sτ satisfying

mτ,K ,� ∼
√√√
√−

(

g(K , K )− (g(K ,�))2

g(�,�)

)

(A.14)

(compare with (A.1)).
Using the Riemannian metric hτ,K ,�, we can decompose the wave operator as:

�g� = divg
(
(K�) · dt̄)+ �LK

(
(Ktan�) · dvolg

)

−Cτ

(
�L�

(
(��) · dvolg

))+�hτ,K ,�,mod�, (A.15)

where � is the Hodge star operator on (M, g), Ktan is the projection of ∇ t̄ on Sτ along
K and the elliptic operator �hτ,K ,�,mod on Sτ is defined as

�hτ,K ,�,mod�
.= w−1

τ,K ,� · divhτ,K ,�

(
wτ,K ,� · d�) . (A.16)

Appendix B: Elliptic Estimates on Asymptotically Euclidean Riemannian
Manifolds with Boundary

In this section, we will establish some general elliptic estimates for asymptotically
Euclidean Riemannian manifolds. This class of manifolds will include, in particular,
the slices {t̄ = const} of the hyperboloidal foliation of the spacetimes (M, g) appear-
ing in Sections 8 and 9, equipped with a Riemannian metric of the form that was
introduced in Section A of the Appendix. However, the results of the current section
might also be of independent interest.

Let Sd be a smooth manifold with boundary of dimension d ≥ 3, with smooth
compact boundary ∂Sd−1 (allowed to be empty). We will assume that ∂S splits into
two (not necessarily connected) components:

∂S = ∂timS ∪ ∂horS. (B.1)
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The reason for assuming such a splitting for ∂S is that the hypersurfaces {t̄ = τ} of
the spacetimes (M, g) in Sections 8 and 9 (i.e. the hypersurfaces on which the elliptic
estimates of the current Section will be applied) have boundary {t̄ = τ} ∩ ∂M, which
is split as the disjoint union of {t̄ = τ} ∩ ∂timM and {t̄ = τ} ∩ H.

Let h be a Riemannian metric on S\∂S. We would like h to model the Riemannian
metric hτ,KRc ,�

on the hypersurfaces {t̄ = τ} of Section 9 (constructed as in the previ-
ous Section of the Appendix). To this end, we assume that (S\∂S, h) is asymptotically
flat in the sense that there exists a compact subset K ⊂ S containing ∂S such that
S\K has a finite number of connected components, each mapped diffeomorphically
onto (R0,+∞) × S

d−1 through a coordinate chart (r, σ), and in this chart h has the
expression

h = dr2 + r2gSd−1 + has, (B.2)

with

|∇mhas |h = O(r−m−1) (B.3)

for all integers m ≥ 0. In what follows, ∇ will denote the covariant connection with
respect to h.

We extend r smoothly on the whole of S, so that it is strictly positive on S\∂S
and satisfies r = 0 and dr �= 0 on ∂S, if ∂S �= ∅. If ∂S = ∅, we simply require that
r ≥ 1 everywhere on S. Notice that the assumtion dr �= 0 on ∂S together with the
compactness of ∂S imply that for {r � 1} the level sets of the function r are smooth
hypersurfaces of S, and r can be used as a coordinate function.

As for the behaviour of h near the boundary ∂S, we impose the following assump-
tions (in accordance with the behaviour of metric hτ,KRc ,�

on the hypersurfaces {t̄ = τ}
of Section 9): Let us denote by htan the induced metric on the {r = const} hyper-
surfaces for {0 < r � 1}, and extend it to a symmetric (0, 2)-form on S\∂S by the
requirement that htan(∇r, ·) ≡ 0. Then we assume that the metric h in the region
{r � 1} takes the following form:

1. Near the ∂horS component of the boundary:

h =
(
r−1 + O(1)

)
dr2 + htan, (B.4)

and htan extends smoothly on ∂horS, with htan|∂horS being positive definite.
2. Near the ∂timS component of the boundary:

h = (1 + O(r)) dr2 + htan, (B.5)

and htan extends smoothly on ∂timS, with htan|∂timS being positive definite.

We will also assume that we are given a continuous function ω : S → [0,+∞)which
is smooth on S\∂horS, such that
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• ω = 0 only on ∂horS
• ω = cr

1
2 (1 + O(r)) for some c > 0 near ∂horS

• ω > 0 near ∂timS and
• ω = 1 + O(r−1) in the region {r � 1}.

For this class of Riemannian manifolds we will establish a series of elliptic estimates
in the following sections. But before that, we have to carry out the construction of
some geometric objects that will appear in our estimates.

B.1 Geometric Constructions on (S, h)

We will define the perturbed Laplacian
�h,ω associated to h, ω by the relation:

�h,ω = ω−1divh (ω · d) . (B.6)

This operator models the operator (A.16) associated to the metric hτ,KRc ,�
on the

hypersurfaces {t̄ = τ} of the spacetimes (M, g) of Section 9.
On each connected component of the region {r � 1} in the (r, σ) coordinate chart,

(B.6) takes the form:

�h,ω = �h + O(r−2)∂r + O(r−3)∂σ. (B.7)

On the other hand, near the boundary ∂S we have the following relations:

1. According to (B.4), if Y = |∇r |−2
h · ∇r ,23 near ∂horS we have:

�h,ω = a−1Y (ra(1 + O(r)) · Y )+�htan + O(r) · X, (B.8)

where a is a positive function smooth up to ∂horS, �htan is the Laplacian of the
induced metric on the {r = const} hypersuerfaces and X is a vector field in a
neighborhood of ∂S smooth up to ∂S. Hence, �h,ω is degenerate elliptic near
∂horS.

2. According to (B.5), near ∂timS we have

�h,ω = Y ((1 + O(r)) · Y )+�htan + X. (B.9)

Hence, �h,ω is uniformly elliptic near ∂timS.

It will be convenient to have a canonical coordinate “chart” near the boundary of ∂S.
If r1 is small enough, we can define the diffeomorphism

J : {r ≤ r1} ⊂ S → [0, r1] × ∂S, (B.10)

so that for any point p ∈ {r ≤ r1}:

23 Notice that Y can be extended smoothly on ∂S.
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• π1(J (p)) = r(p)
• π2(J (p)) is the unique point on ∂S connected with p through an integral line of

the vector field Y = |∇r |−2
h · ∇r .

In the above, π1 : [0, r1] × ∂S → [0, r1] and π2 : [0, r1] × ∂S → ∂S are the
projections onto the first and second factor of [0, r1] × ∂S respectively.

Notice that through this map, the vector field Y is mapped to the vector field ∂r ,
i.e. the coordinate vector field on [0, r1]×∂S which is tangent to the lines {π2 = const}
and is mapped to d

dr by π1. Moreover, htan is a smooth non-degenerate Riemannian
metric on the hypersurfaces {π1 = ρ}, varying smoothly with ρ. From now on, we
will assume that {r ≤ r1} and [0, r1] × ∂S have been identified through J .

Construction of the auxilliary metrics h̃, h̃tim Since h is singular on ∂horS, it will
be useful to have a second Riemannian metric h̃ on S that is smooth up to ∂horS,24 so
that we can measure the norms of tensors with the use of h̃. The metric h̃ will also be
used to define covariant derivative operators and geometric volume forms which are
regular up to ∂horS (where the associated constructions with h will either be singular
or degenerate). This metric will model the metric hτ,N on the hypersurfaces {t̄ = τ}
of the spacetimes (M, g) of Sections 8 and 9. To this end, we define a Riemannian
metric h̃ on S such that h̃ ≡ h on {r ≥ 1}, and

h̃ = dr2 + htan (B.11)

in the region r � 1.
It will be convenient to define the smooth functions

r+ = (1 + r2)1/2. (B.12)

and

r− =
(

1 + 1

r

)−1

. (B.13)

Notice that r+ ∼ r for r � 1 and r+ ∼ 1 for r � 1, while r− ∼ r near ∂S and r− ∼ 1
away from ∂S.

We also define the smooth funcions rhor , rtim : S → [0, 1] by the following
requirements

• rhor = r in the region {disth̃(·, ∂horS) � 1} (where disth̃(·, ∂horS) is smooth),
rhor > 0 on S\∂horS and rhor ≡ 1 on {disth̃(·, ∂horS) ≥ 1}.

• rtim = r in the region {disth̃(·, ∂timS) � 1}, rtim > 0 on S\∂timS and rtim ≡ 1
on {disth̃(·, ∂timS) ≥ 1}.

Finally, define the Riemannian metric h̃tim on S\∂timS so that h̃tim ≡ h̃ on {rtim ≥ 1
2 }

and
h̃tim = r−2dr2 + (− log(rtim)) · htan (B.14)

24 h is already smooth up to ∂timS.

123



6 Page 162 of 194 G. Moschidis

in the region {rtim � 1}. This metric will only be used to handle difficulties appearing
near ∂timS in the derivation of the elliptic estimates in this Section, and is not associated
with any geometric construction performed in Sections 8 and 9.

Remark We will raise and lower indices only with the use of the singular metric h. The
non-singular metric h̃ will only be used to measure norms of tensors on S. Covariant
derivatives with respect to h will be simply denoted by ∇, while the ones associated
to h̃ and h̃tim will be denoted by ∇(h̃) and ∇(h̃tim) respectively.

B.2 Elliptic Estimates on (S, h)

In this Section, we will establish elliptic estimates on the Riemannian manifolds (S, h)
associated to the elliptic operators (B.6) and (B.72). To this end, we will need some
shorthand notation for weighted norms of derivatives of functions u onS, with weights
which are either regular or degenerate on parts of the boundary ∂S. These weights are
tied naturally to the use of differential operators associated to the different Riemannian
metrics h, h̃ and h̃tim that we have already defined on S\∂S. With this motivation,
after fixing some smooth cut-off functions χ≥r1 , χ≤r1 : S → [0, 1] so that χ≥r1 ≡ 1
on {r ≥ r1} and χ≥r1 ≡ 0 on {r ≤ r1/2} and χ≤r1 = 1 − χ≥r1 , we introduce the
following definition:

Definition We will introduce the following pointwise norm on S\∂S for any pair of
Riemannian metrics h1, h2 on S\∂S and any integer m ≥ 2:

|u|2h1,h2;m
.= χ≥r1

∣∣
(
∇(h1)

)m
u
∣∣2
h2

+χ≤r1 · r2
hor

∣∣
(
∇(h1)

)m−2
(Y 2u)

∣∣2
h2

+ χ≤r1 · rhor
∣∣
(
∇(h1)

)m−2 (
i∗∇(htan)(Yu)

) ∣∣2
h2

+χ≤r1 · ∣∣
(
∇(h1)

)m−2 (
(i∗∇(htan))2u

) ∣∣2
h2
. (B.15)

In the above the i∗ notation is used as follows: For any (0, k)-tensor m on the surfaces
{r = const} on {r ≤ r1} varying smoothly with r we denote with i∗m the unique
tensor on {r ≤ r1} such that for any local frame {E0, E1, . . . Ed−1} on {r ≤ r1} with
E0 = Y and E1r = . . . = Ed−1r = 0 and any i1, . . . ik ∈ {0, . . . d−1}, the following
relation holds:

i∗m(Ei1 , . . . Eik ) =
{

0, if some of the ik’s is 0

m(Ei1 , . . . Eik ) if none of the ik’s is 0.
(B.16)

Remark In most instances where the notation (B.15) will appear, h1 will be the every-
where regular metric h̃, while h2 will be a metric which is singular on ∂timS.

We will establish the following lemma:
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Proposition B.1 (Degenerate elliptic estimates). For any l ∈ N with 2 ≤ l ≤
� d+1

2 �, any k0 ∈ N and any β ∈ (−δ̄k0 , 1) for some δ̄k0 > 0 depending on k0,
there exists a (small) r0 > 0 so that we can bound for any u ∈ C∞(S) with

lim supr→+∞
∣∣r

d−1
2 + j∇ j u

∣∣
h < +∞ for any j ≤ l + k0:

k0∑

k=0

⎧
⎨

⎩

∫

S
r−β
+ |u|2

h̃,h̃tim ;k+l
dvolh̃ +

l−1∑

j=1

∫

{r≥r0}
r−2 j−β
+ · |

(
∇(h̃)

)k+l− j
u|2

h̃
dvolh̃

+
l−1∑

j=1

∫

{r≤r0}

(
|
(
∇(h̃)

)k+l− j−1
(Yu)|2

h̃tim
+ r−1− log−2

(r−
2

)

·|
(
∇(h̃)

)k+l− j−1 (
i∗(∇(htan)u)

)
|2
h̃tim

)
dvolh̃

}

≤ Cβ,k0

k0∑

k=0

∫

S
r−β
+
∣∣
(
∇(h̃)

)k+l−2
(�h,ωu)

∣∣2
h̃tim

dvolh̃

+Cβ,k0

1∑

j=0

max

{
−Re

{ ∫

∂timS
htan

((
∇(htan)

) j
(Yu),

(
∇(htan)

) j
ū

)
dhtan

}
, 0

}

(B.17)

and

k0∑

k=0

⎧
⎨

⎩

∫

S
r−β
+ |u|2

h̃,(1−log(rtim ))·h̃;k+l
dvolh̃ +

l−1∑

j=1

∫

{r≥r0}
r−2 j−β
+ · |

(
∇(h̃)

)k+l− j
u|2

h̃
dvolh̃

+
l−1∑

j=1

∫

{r≤r0}

(
|
(
∇(h̃)

)k+l− j−1
(Yu)|2

(1−log(rtim ))h̃
+ r−1− log−2

(r−
2

)

·|
(
∇(h̃)

)k+l− j−1 (
i∗(∇(htan)u)

)
|2
(1−log(rtim ))h̃

)
dvolh̃

}

≤ Cβ,k0

k0∑

k=0

∫

S
r−β
+
∣∣
(
∇(h̃)

)k+l−2
(�h,ωu)

∣∣2
(1−log(rtim ))·h̃ dvolh̃

+Cβ,k0

1∑

j=0

max

{
−Re

{∫

∂t imS
htan

((
∇(htan)

) j
(Yu),

(
∇(htan)

) j
ū

)
dhtan

}
, 0

}
,

(B.18)

where the constant Cβ,k0 of the right hand side depends only on β, k0 and on the
geometry of (S, h), h̃ and ω.

Remark Notice that the boundary terms on the right hand side of (B.17) and (B.18)
contain only terms on the ∂timS part of the boundary. These terms vanish when u
satisfies the Dirichlet or Neumann conditions on ∂timS.
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Proof Withot loss of generality, we can assume that u is real valued. We will treat r0
and δ̄k0 as small parameters (which will be fixed later in the proof).

The region {r ≤ 2r0} will be identified with [0, 2r0] × ∂S through the diffeo-
morphism J . We will assume that r0 is small enough so that [0, 2r0] × ∂horS and
[0, 2r0] × ∂timS are disjoint. Let us define two smooth cut-off functions χhor≤r0

, χ tim≤r0
:

S → [0, 1] such that

1. supp(χhor≤r0
) ⊆ [0, 2r0] × ∂horS and χhor≤r0

≡ 1 on [0, r0] × ∂horS and
2. supp(χ tim≤r0

) ⊆ [0, 2r0] × ∂timS and χ tim≤r0
≡ 1 on [0, r0] × ∂timS.

We will also set χ≥r0 = 1 − χhor≤r0
− χ tim≤r0

. Let us also define χ≥R0 = 1 − χ( r
R0
) for

some R0 large and fixed in terms of β and the geometry of (S, h).
Without loss of generality, we can assume that k0 = 0 (since the proof in the case

k0 ≥ 1 follows in exactly the same way). In order to present the necessary ideas in a
simpler form, we will first establish the case when l = 2.

Remark Notice that for l = 2, it is most difficult to treat the case d = 3, since in
that case one is not able to obtain control over weighted L2 norms of u using only the
finiteness of

∫
S r−β

+ |∇2u|2 dvolh̃ together with Hardy and Poincare inequalities. The
same difficulties occur generally in dimension d for l = � d+1

2 �.

We will start by establishing the following elliptic estimate on each connected
component of the far away region {r � 1}:

∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

)2
dvolh

≥ cβ

∫

S
χ≥R0r

−β (|∇2u|2h + r−2|∇u|2h
)
dvolh

+
∫

S
O(|∇χ≥R0 | + |∇2χ≥R0 |)|∇u|2h dvolh . (B.19)

Without loss of generality, it suffices to establish (B.19) in the case 0 < 1 − β � 1,
since the case β ∈ (−δ̄k0 , 0] (provided δ̄k0 is small enough) follows by a straightfor-
ward integration by parts scheme (and thus (B.19) for intermediate values of β will
follow by an easy interpolation argument).

On each connected component of the region {r ≥ R0} in the coordinate chart (r, σ)
we calculate

�h,ωu = r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

+Oμν(r
−1)∇μ∇νu + Oμ(r

−2)∇μu. (B.20)

Assuming (B.19) has been established, from (B.19) and (B.20) the following estimate
is readily deduced (provided that R0 has been fixed large in terms ofβ and the geometry
of (S, h)):
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∫

S
χ≥R0r

−β (�h,ωu
)2

dvolh ≥ cβ

∫

S
χ≥R0r

−β (|∇2u|2h + r−2|∇u|2h
)
dvolh

+
∫

S
O(|∇χ≥R0 | + |∇2χ≥R0 |)|∇u|2h dvolh .

(B.21)

We will now establish (B.19). By expanding the square we can trivially infer for
any as ∈ [0, 1] (which will be fixed later):

∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

)2
rd−1drdσ

= as

∫

S
χ≥R0r

−β
{(

r−(d−1)∂r

(
rd−1∂r u

))2 + 2r−(d−1)∂r

(
rd−1∂r u

)

· r−2�Sd−1u + r−4 (�Sd−1u
)2}

rd−1drdσ

+ (1 − as)
∫

S
χ≥R0r

−β
{(

r−(d−1)∂r

(
rd−1∂r u

))2 + 2r−(d−1)∂r

(
rd−1∂r u

)

· r−2�Sd−1u + r−4 (�Sd−1u
)2}

rd−1drdσ. (B.22)

Using a Cauchy–Schwarz inequality

2asr
−(d−1)∂r

(
rd−1∂r u

)
· r−2�Sd−1u ≥ −a2

s

bs

(
r−(d−1)∂r

(
rd−1∂r u

))2

− bsr
−4 (�Sd−1u

)2 (B.23)

(for a parameter bs > 0 to be fixed later) in the first summand of the right hand side
of (B.22), and then applying the product rule and an integration by parts in the ∂r and
the angular directions for both summands, we obtain from (B.22):

∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

)2
rd−1drdσ

≥
∫

S
χ≥R0r

−β
{(

1 − a2
s

bs

)((
∂2
r u
)2 + (d − 1)(1 + β)r−2 (∂r u)

2
)

+ 2(1 − as)r
−2
∣∣∇Sd−1∂r u

∣∣2
g
Sd−1

+ (1 − bs) r
−4 (�Sd−1u

)2}
rd−1drdσ

−
∫

S
χ≥R0 2(1 − as)(2 + β)r−3−β · ∂r u ·�Sd−1u rd−1drdσ

+
∫

S
O(|∇χ≥R0 |)

(
(∂r u)

2 + ∂r u ·�Sd−1u
)
rd−1drdσ. (B.24)
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Using the Hardy type inequality

∫

S
χ≥R0r

d−3−β (∂r u)2 drdσ ≤ 4

(d − 2 − β)2

∫

S
χ≥R0r

d−1−β (∂2
r u
)2

drdσ

+Cβ

∫

S
O(|∇χ≥R0 |)(∂r u)2 rd−1drdσ, (B.25)

we obtain from (B.24) for any 0 < δH < 1 (also to be fixed later):
∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

)2
rd−1drdσ

≥
∫

S
χ≥R0r

−β
{(

1 − a2
s

bs

)(

δH
(
∂2
r u
)2 + {

(
d − 1 − d − 2 − β

2

)2

+ O(δH )
}
r−2 (∂r u)

2

)

+ 2(1 − as)r
−2
∣
∣∇Sd−1∂r u

∣
∣2
g
Sd−1

+ (1 − bs) r
−4 (�Sd−1u

)2}
rd−1drdσ

−
∫

S
χ≥R0 2(1 − as)(2 + β)r−3−β · ∂r u ·�Sd−1u rd−1drdσ

+
∫

S
O(|∇χ≥R0 |)

(
(∂r u)

2 + ∂r u ·�Sd−1u
)
rd−1drdσ. (B.26)

Setting

u0
.= 1

Vol(Sd−1)

∫

Sd−1
u dσ (B.27)

and
u≥1 = u − u0, (B.28)

and noting that u0 and u≥1 are orthogonal with respect to the L2(dgSd−1) inner product,
we obtain from (B.26):

∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�

Sd−1u
)2

rd−1drdσ ≥
(

1 − a2
s
bs

)

δH

·
∫

S
χ≥R0r

−β (∂2
r u
)2

rd−1drdσ

+
∫

S
χ≥R0r

−β
{(

1 − a2
s
bs

)(
{
(
d − 1 − d − 2 − β

2

)2
+ O(δH )

}
r−2 (∂r u≥1

)2
)

+ 2(1 − as)r
−2∣∣∇

Sd−1∂r u≥1
∣∣2
g
Sd−1

+ (1 − bs) r
−4 (�

Sd−1u≥1
)2} rd−1drdσ

−
∫

S
χ≥R0 2(1 − as)(2 + β)r−3−β · ∂r u≥1 ·�

Sd−1u≥1 r
d−1drdσ

+
∫

S
O(|∇χ≥R0 |)

(
(∂r u)

2 + ∂r u ·�
Sd−1u

)
rd−1drdσ. (B.29)

Since the first non zero eigenvalue of �Sd−1 equals d − 1, we can bound (in view of
(B.27) and (B.28)):

∫

Sd−1

∣∣∇Sd−1∂r u≥1
∣∣2
g
Sd−1

ds ≥ (d − 1)
∫

Sd−1
(∂r u≥1)

2 ds (B.30)
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and thus, since d ≥ 3, from (B.29) we obtain after setting εβ
.= 1 − β > 0:

∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

)2
rd−1drdσ

≥ c(as, bs, δH )
∫

S
χ≥R0r

−β (∂2
r u
)2

rd−1drdσ

+
∫

S
χ≥R0r

−β
{(

1 − a2
s

bs

)(
2 − εβ

2

)2 + 4(1 − as)+ O(δH )

}
r−2 (∂r u≥1

)2

+ (1 − bs) r
−4 (�Sd−1u≥1

)2
rd−1drdσ

−
∫

S
χ≥R0 2(1 − as)(3 − εβ)r

−3−β · ∂r u≥1 ·�Sd−1u≥1 r
d−1drdσ

+ c(as, bs)
∫

S
χ≥R0r

−2−β (∂r u0)
2 rd−1drdσ

+
∫

S
O(|∇χ≥R0 |)

(
(∂r u)

2 + ∂r u ·�Sd−1u
)
rd−1drdσ. (B.31)

Using a Cauchy–Schwarz inequality for the third line of the right hand side of
(B.31):

∣∣
∣∣

∫

S
χ≥R0 2(1 − as)(3 − εβ)r

−3−β · ∂r u≥1 ·�Sd−1u≥1 r
d−1drdσ

∣∣
∣∣

≤
∫

S
χ≥R0(1 − as)

2 (3 − εβ)
2

(1 − bs − δH )
r−2−β (∂r u≥1

)2
rd−1drdσ

+
∫

S
χ≥R0(1 − bs − δH ) · r−4−β (�Sd−1u≥1

)2
rd−1drdσ, (B.32)

we infer from (B.31):
∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

)2
rd−1drdσ

≥ c(as, bs, δH )
∫

S
χ≥R0r

−β (∂2
r u
)2

rd−1drdσ

+
∫

S
χ≥R0r

−β {Aco · r−2 (∂r u≥1
)2 + δHr

−4 (�Sd−1u≥1
)2}

rd−1drdσ

+ c(as, bs)
∫

S
χ≥R0r

−2−β (∂r u0)
2
)
rd−1drdσ

+
∫

S
O(|∇χ≥R0 |)

(
(∂r u)

2 + ∂r u ·�Sd−1u
)
rd−1drdσ, (B.33)

where

Aco
.=
(

1 − a2
s

bs

)(
2 − εβ

2

)2 + 4(1 − as)+ O(δH )− (1 − as)
2 (3 − εβ)

2

(1 − bs − δH )
.

(B.34)
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It thus remains to show that the parameters as, bs, δH can be suitably chosen in
terms of εβ (provided that εβ � 1, which we have assumed without loss of generality
for the proof of (B.19)) so that Acoe f f > 0, and then (B.19) will follow. Setting
as = 1 − δ1 and bs = 1 − 3

2δ1, we can directly calculate from (B.34):

Acoe f f =
(

1

2
δ1 + O(δ2

1)

)(
4 − 2εβ + O(εβ

2)
)

+ 4δ1 + O(δH )

−2

3
δ1

(
9 − 6εβ + O(εβ

2)
) (

1 + O(δ−1
1 δH )

)

= +3εβδ1

(
1 + O(εβ)+ O(εβ

−1
δ1)+ O(εβ

−1
δ
−1
1 δH )

)
, (B.35)

and thus it follows that Acoe f f > 0 provided that δH � δ1 � εβ � 1 (δH , δ1 can be
fixed in terms of εβ ). Therefore, from (B.33) (using also an integration by parts for the
last term of the right hand side of (B.33), as well as the fact that rd−1drdσ ∼ dvolh in
that region) we finally obtain the desired estimate (B.19) on each connected component
of the region {r � 1}:

∫

S
χ≥R0r

−β (r−(d−1)∂r

(
rd−1∂r u

)
+ r−2�Sd−1u

)2
rd−1drdσ

≥ cβ

∫

S
χ≥R0r

−β (|∇2u|2h + r−2|∇u|2h
)
dvolh

+
∫

S
O(|∇χ≥R0 | + |∇2χ≥R0 |)|∇u|2h dvolh . (B.36)

We will now proceed to establish estimates in the region {r � R0}. Proceeding
through integrations by parts using the formula

∇μ∇νXα1...αk − ∇ν∇μXα1...αk

= hβ1γ1Rμνβ1α1 Xγ1α2...αk + . . .+ hβkγkRμνβkαk Xα1α2...γk , (B.37)

we readily obtain that:

∫

S
χ≥r0(1 − χ≥R0) · (�h,σu)

2 dvolh

=
∫

S
χ≥r0(1 − χ≥R0) · (∇μ∇μu + Oμ(r

−2)∇μu
) · (∇ν∇νu + Oν(r

−2)∇νu
)
dvolh

≥ 1

2

∫

S
χ≥r0(1 − χ≥R0) · |∇2u|2h dvolh − C

∫

{r0≤r≤2R0}
|∇u|2

h̃
dvolh . (B.38)

Notice that here we have used the volume form associated with h (in place of h̃).
Therefore, from (B.38) and (B.21), and recalling that in the region {r ≥ r0} we

have | · |h ∼r0 | · |h̃ and dvolh ∼r0 dvolh̃ , we deduce that there exists some large
R1 > 0 depending only on on β and on the geometry of (S, h) in the region {r ≥ 1}
such that:
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∫

S
χ≥r0r

−β
+ (�h,ωu)

2 dvolh

≥ cβ

∫

S
χ≥r0r

−β
+ |∇2u|2

h̃
dvolh̃ + cβ ·

∫

{r≥R1}
r−2−β |∇u|2h dvolh̃

−Cr0,β

∫

{r0≤r≤R1}
|∇u|2h dvolh . (B.39)

In the region {r ≤ 2r0} we will perform the same integration by parts procedure,
but here we will use the explicit forms (B.8) and (B.9) for the Laplacian of h near
∂horS and ∂timS respectively, as well as the form (B.11) for the non-singular metric h̃.

On [0, 2r0] × ∂horS, the perturbed Laplacian �h,ω takes the form (B.8):

�h,ω = a−1∂r (r ã · ∂r )+�htan + O(r) · X, (B.40)

where ã = a · (1 + O(r)).
Let us define the weight function w : [0, 2r0]× ∂horS → (0,+∞) by the relation:

w(r, ϑ) = a(r, ϑ) ·
(

1 +
∫ r

0
ã−1(ρ, ϑ) dρ

)
. (B.41)

Since χhor≤r0
is supported in [0, 2r0] × ∂horS, we calculate:

∫

S
χhor≤r0

w
(
�h,ωu

)2
dvolh̃

=
∫ 2r0

0

∫

∂horS
χhor≤r0

w
(
a−1∂r (r ã∂r u)+�htan u + O(r) · Xu)2 dhtandr

=
∫ 2r0

0

∫

∂horS
χhor≤r0

w
(
a−2 (∂r (r ã∂r u))

2

+ 2a−1 (∂r (r ã∂r u))
(
�htan u

)+ (�htan u
)2)

dhtandr

+
∫ 2r0

0

∫

∂horS
χhor≤r0

O(r)
∣∣a−1∂r (r ã∂r u)+�htan u

∣∣ · ∣∣Xu∣∣+ O(r2)
∣∣Xu

∣∣2
)

dhtandr.

(B.42)

Integrating by parts three times in the mixed ∂r (r∂r u) ·�htan u term, and using the fact
that

∂r (wa
−1) = ã−1,

we estimate (notice that the resulting boundary terms at r = 0 vanish because r∂r u
and r∇(htan)u vanish there):

∫ 2r0

0

∫

∂horS
χhor≤r0

wa−1 (∂r (r ã∂r u))
(
�htan u

)
dhtandr

≥
∫ 2r0

0

∫

∂horS
χhor≤r0

ã · r(1 + O(r)) · ∣∣∇(htan)∂r u
∣∣2
hs
dhtandr
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−C
∫ r0

0

∫

∂horS

(
r2|∂r u|2 + |∇(htan)u|2htan

)
dhtandr

−Cr0

∫ 2r0

r0

∫

∂horS
|∇u|2

h̃
dhtandr. (B.43)

Thus, from (B.42) and (B.43) we obtain:
∫

S
χhor≤r0

(
�h,ωu

)2
dvolh̃

≥ c
∫ 2r0

0

∫

∂horS
χhor≤r0

(
(∂r (r ã∂r u))

2 + r
∣∣∇(htan)∂r u

∣∣2
htan

+ (�htan u
)2)

dhtandr

−C
∫ r0

0

∫

∂horS

(
r2|∂r u|2 + |∇(htan)u|2htan

)
dhtandr − Cr0

∫ 2r0

r0

∫

∂horS
|∇u|2

h̃
dhtandr

+
∫ 2r0

0

∫

∂horS
χhor≤r0

(
O(r)

∣∣∣a−1∂r (r ã∂r u)+�htan u
∣∣∣ · ∣∣Xu∣∣+ O(r2)

∣∣Xu
∣∣2
)
dhtandr.

(B.44)

By expanding

(∂r (r ã∂r u))
2 = r2ã2(∂2

r u)
2 + 2r ã2(1 + O(r))∂2

r u · ∂r u + ã2 (1 + O(r)) (∂r u)
2

(B.45)

and integrating by parts in the resulting ∂2
r u∂r u term, we obtain from (B.44):

∫

S
χhor≤r0

(
�h,ωu

)2
dvolh̃

≥ c
∫ 2r0

0

∫

∂horS
χhor≤r0

(
r2 (∂2

r u
)2 − Cr · (∂r u)2 + r

∣
∣∇(htan)∂r u

∣
∣2
htan

+ (�htan u
)2)

dhtandr

−C
∫ r0

0

∫

∂horS

(
r2|∂r u|2 + |∇(htan )u|2htan

)
dhtandr − Cr0

∫ 2r0

r0

∫

∂horS
|∇u|2

h̃
dhtandr

+
∫ 2r0

0

∫

∂horS
χhor≤r0

(
O(r)

∣
∣∣a−1∂r (r ã∂r u)+�htan u

∣
∣∣ · ∣∣Xu∣∣+ O(r2)

∣∣Xu
∣∣2
)
dhtandr.

(B.46)

Using, now a Hardy type inequality (of the form established in Lemma C.1) for the∂2
r u

and ∇(htan)∂r u terms in the right hand side of (B.44), as well as elliptic estimates for
the �htan u term (using here the compactness of the level sets of r ) we obtain from
(B.46):
∫

S
χhor≤r0

(
�h,ωu

)2
dvolh̃

≥c
∫ 2r0

0

∫

∂horS
χhor≤r0

(
r2
(
∂2
r u
)2 + r

∣
∣∇(htan )∂r u

∣
∣2
htan

+ ∣∣
(
∇(htan)

)2
u
∣
∣2
htan

)
dhtandr

+ c
∫ 2r0

0

∫

∂horS
χhor≤r0

(
(∂r u)

2 + r−1 log−2(r) · ∣∣
(
∇(htan )

)
u
∣
∣2
htan

)
dhtandr
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−C
∫ r0

0

∫

∂horS

(
r2|∂r u|2 + |∇(htan )u|2htan

)
dhtandr − Cr0

∫ 2r0

r0

∫

∂horS
|∇u|2

h̃
dhtandr

+
∫ 2r0

0

∫

∂horS
χhor≤r0

(
O(r)

∣
∣
∣a−1∂r (r ã∂r u)+�htan u

∣
∣
∣ · ∣∣Xu∣∣+ O(r2)

∣∣Xu
∣∣2
)
dhtandr.

(B.47)

Applying a Cauchy–Schwarz inequality on the last term of the right hand side of
(B.47), and absorbing all lower order (with respect to decaying powers in r ) terms
into their top order counterparts, we obtain provided thar r0 is small enough:

∫

S
χhor≤r0

(
�h,ωu

)2
dvolh̃

≥ c
∫ 2r0

0

∫

∂horS
χhor≤r0

(
r2 (∂2

r u
)2 + r

∣∣∇(htan)∂r u
∣∣2
htan

+ ∣∣
(
∇(htan)

)2
u
∣∣2
htan

)
dhtandr

(B.48)

+ c
∫ 2r0

0

∫

∂horS
χhor≤r0

(
(∂r u)

2 + r−1 log−2(r) · ∣∣
(
∇(htan)

)
u
∣∣2
htan

)
dhtandr

− Cr0

∫ 2r0

r0

∫

∂horS
|∇u|2

h̃
dhtandr.

In the region [0, 2r0] × ∂timS, on the other hand, we have

�h,ω = ∂r ((1 + O(r))∂r )+�htan + X. (B.49)

Hence, we calculate after expanding the square (and applying the product rule for
derivatives):
∫

S
χ tim≤r0

(
�h,ωu

)2
dvolh̃

=
∫ 2r0

0

∫

∂timS
χ tim≤r0

(
∂r ((1 + O(r))∂r u)+�htan u + Xu

)2
dhtandr (B.50)

≥
∫ 2r0

0

∫

∂timS
χ tim≤r0

(
(1 + O(r))

(
∂2
r u
)2 + 2(1 + O(r))∂2

r u ·�htan u + (�htan u
)2)

dhtandr

−C
∫ 2r0

0

∫

∂timS
χ tim≤r0

((|∂2
r u| + |�htan u|) ·

(
|∂r u| + ∣∣∇(htan )u

∣
∣
htan

)

+
(
|∂r u|2 + ∣∣∇(htan )u

∣∣2
htan

))
dhtandr.

After integrating by parts in the ∂2
r u ·�hS u term and using elliptic estimates for �hS

on the surfaces {r = const}, we obtain from (B.50):
∫

S
χ tim≤r0

(
�h,ωu

)2
dvolh̃

≥ c
∫ 2r0

0

∫

∂timS
χ tim≤r0

((
∂2
r u
)2 + ∣∣∇(htan)∂r u

∣∣2
htan

+ ∣∣
(
∇(htan)

)2
u
∣∣2
htan

)
dhtandr
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+ 2
∫

∂timS
htan

(
∇(htan)∂r u,∇(htan)u

)
dhtan

−C
∫ 2r0

0

∫

∂timS
χ tim≤r0

((
|∂2
r u| + |�htan u|

)

×
(
|∂r u| + ∣∣∇(htan)u

∣
∣
htan

)
+
(
|∂r u|2 + ∣∣∇(htan)u

∣
∣2
htan

))
dhtandr

−C
∫ 2r0

0

∫

∂timS
χ tim≤r0

|∇2u|h̃ · |∇u|h̃ dhtandr

−C
∫ 2r0

0

∫

∂timS

(
|∇2χ tim≤r0

| + |∇χ tim≤r0
| + 1

)
|∇u|2

h̃
dhtandr. (B.51)

Applying a Cauchy–Schwarz inequality for the second and fourth terms of the right
hand side and using the Hardy type inequality

∫ 2r0

0

∫

∂timS
χ tim≤r0

((
∂2
r u
)2 + ∣∣∇(htan)∂r u

∣∣2
htan

)
dhtandr

≥ c
∫ r0

0

∫

∂timS
r−1− log−2(r−)

(
(∂r u)

2 + ∣∣∇(htan)u
∣∣2
htan

)
dhtandr

−Cr0

∫ 2r0

r0

∫

∂timS

(
(∂r u)

2 + ∣∣∇(htan)u
∣∣2
htan

)
dhtandr, (B.52)

we deduce from (B.51) provided r0 is small enough:

∫

S
χ tim≤r0

(
�h,ωu

)2
dvolh̃

≥ c
∫ 2r0

0

∫

∂timS
χ tim≤r0

((
∂2
r u
)2 + ∣∣∇(htan)∂r u

∣∣2
htan

+ ∣∣
(
∇(htan)

)2
u
∣∣2
htan

)
dhtandr

+ c
∫ r0

0

∫

∂timS
r−1− log−2(r−)

(
(∂r u)

2 + ∣∣∇(htan)u
∣∣2
htan

)
dhtandr

−Cr0

∫ 2r0

r0

∫

∂timS

(
(∂r u)

2 + ∣∣∇(htan)u
∣∣2
htan

)
dhtandr

− 2
∫

∂timS
htan

(
∇(htan)∂r u,∇(htan)u

)
dhtan . (B.53)

By adding (B.39), (B.48) and (B.53) we infer that:

∫

S
r−β
+
(
�h,ωu

)2
dvolh̃

≥ c
∫

S
r−β
+
∣∣
(
∇(h̃)

)2
u
∣∣2
h dvolh̃

+ c
∫

S
r−2−β
+

(
|(χhor≤r0

+ χ tim≤r0
)Yu|2 + r−1− log−2

(r−
2

) ∣∣∇(h̃)u
∣∣2
h

)
dvolh̃
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−Cr0

∫

{r0≤r≤R1}
|∇u|2

h̃
dvolh̃ + 2

∫

∂timS
htan

(
∇(htan)Yu,∇(htan)u

)
dhtan .

From now on, we will assume that r0 has been fixed, and we will drop the dependence
of constants on it.

Let us denote with H2(S, h, h̃) the semi-norm space consisting of the functions �
of H2

loc(S) with ||�||H2(S,h,h̃) < +∞, where

||�||2H2(S,h,h̃)
.=
∫

S
r−β
+
∣∣
(
∇(h̃)

)2
�
∣∣2
h dvolh̃

+
∫

S
r−2−β
+

(
|(χhor≤r0

+ χ tim≤r0
)Y�|2 + r−1− log−2

(r−
2

) ∣
∣∇�∣∣2h

)
dvolh̃ (B.54)

(this is the semi-norm appearing in the right hand side of (B.54)). Notice that || ·
||H2(S,h,h̃) becomes an actual norm if we mod out the constant functions (the resulting
normed space being a Hilbert space). It will be also convenient to introduce the semi-
norm space H1(S, h, h̃) defined by the norm:

||�||2H1(S,h,h̃)
.=
∫

S
r−β
+
∣∣∇�∣∣2h dvolh̃ . (B.55)

Using the Rellich–Kondrachov theorem for smooth manifolds with boundary (see
e.g. [19]), we infer that for any ε0 > 0 (which will be fixed small with respect to
all the constants, and their inverses, appearing in (B.54), as well as the restriction of
the weights in the integrals of (B.54) over {r0 ≤ r ≤ R1}), the set Dε0 of functions
� ∈ H2(S, h, h̃) satisfying

||�||2H1(S,h,h̃) = 1 (B.56)

and ∫

{r0≤r≤R1}
|∇�|2

h̃
dvolh̃ ≥ ε0||�||2H2(S,h,h̃) (B.57)

is a precompact subset of the semi-norm space H1(S, h, h̃).
From Lemma B.4 we deduce that any non-constant function � ∈ H2(S, h, h̃)

satisfies for any ξ ≥ β:

||�h,ω�||L2
ξ (S,h̃)

+ max
{−

∫

∂timS
Y� ·� dhtan, 0} > 0, (B.58)

where

|| f ||2
L2
ξ (S,h̃)

.=
∫

S
r−ξ
+ f 2 dvolh̃ . (B.59)

Therefore, since Dε0 is precompact and no constant function lies in its closure in the
seminorm space H1(S, h, h̃) (due to (B.56)), we infer that we can bound for any
� ∈ D:
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∫

{r0≤r≤R1}
|∇�|2

h̃
dvolh̃ ≤ Cε0

(
||�h,ω�||2

L2
β(S,h̃)

+ max
{−

∫

∂timS
Y� ·� dhtan, 0}

)
.

(B.60)
Thus, fixing ε0 small enough in terms of r0, β and the geometry of (S, h), returning

to our original function u we distinguish between two cases:

1 In case u is constant or ||u||−1
H1(S,h,h̃) · u ∈ Dε0 , from (B.54) and (B.60) we can

bound:

∫

S
r−β
+
∣∣
(
∇(h̃)

)2
u
∣∣2
h dvolh̃ +

∫

S
r−2−β
+

(
|(χhor≤r0

+ χ tim≤r0
)Yu|2 + r−1− log−2

( r−
2

) ∣∣∇u
∣∣2
h

)
dvolh̃

≤ Cβ

∫

S
r−β
+
(
�h,ωu

)2
dvolh̃ + Cβ max

{−
∫

∂timS
htan

(
∇(htan )Yu,∇(htan )u

)
dhtan, 0

}

+Cβ max{−
∫

∂timS
Y� ·� dhtan, 0}. (B.61)

2. In case u is not constant and ||u||−1
H1(S,h,h̃) · u /∈ Dε0 , from the definition of Dε0

(i.e. (B.57)) we can bound:

∫

{r0≤r≤R1}
|∇u|2

h̃
dvolh̃ ≤ ε0||u||2H2(S,h,h̃). (B.62)

Thus, if ε0 has been fixed small enough in terms of r0, β and the geometry of (S, h),
from (B.54) and (B.62) we deduce that:

∫

S
r−β
+
∣
∣
(
∇(h̃)

)2
u
∣
∣2
h dvolh̃ +

∫

S
r−2−β
+

(
|χ≤r0Yu|2 + r−1− log−2

( r−
2

) ∣
∣∇u

∣
∣2
h

)
dvolh̃

≤ Cβ

∫

S
r−β
+
(
�h,ωu

)2
dvolh̃ + Cβ max

{−
∫

∂timS
htan

(
∇(htan )Yu,∇(htan )u

)
dhtan, 0

}

+Cβ max
{−

∫

∂timS
Y� ·� dhtan, 0}. (B.63)

Therefore, the elliptic estimates (B.17) and (B.18) in the case l = 2 (and k0 = 0) have
been established.

The case when 2 < l ≤ � d+1
2 � follows in an analogous way: In order to derive

the analogue of (B.54), one needs to commute l − 2 times with ∇(h̃tim) (the curvature
terms appearing in this way are treated exactly as we did for the simple curvature
terms in the l = 2 case using the flat asymptotics of (S, h)). By applying a Hardy
type inequality near ∂S (using the form of the metric h̃tim there) in order to obtain an
estimate of the form

l−3∑

j=0

∫

{r≤r0}
∣∣
(
∇(h̃)

) j
(�h,ωu)

∣∣2
h̃tim

dvolh̃ �
∫

{r≤2r0}
∣∣
(
∇(h̃)

)l−2
(�h,ωu)

∣∣2
h̃tim

dvolh̃

+
l−3∑

j=0

∫

{r0≤r≤2r0}
∣
∣
(
∇(h̃)

) j
(�h,ωu)

∣
∣2
h̃tim

dvolh̃, (B.64)
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and then integrating by parts as before, one readily obtains the following estimate:

∫

S
r−β
+
∣
∣
(
∇(h̃)

)l−2
(�h,ωu)

∣
∣2
h̃tim

dvolh̃≥c
∫

S
r−β
+ |u|2

h̃,h̃tim ;l dvolh̃ (B.65)

+ c
l−1∑

j=1

∫

{r≥r0}
r−2 j−β
+ · |

(
∇(h̃)

)l− j
u|2

h̃
dvolh̃

+ c
l−1∑

j=1

∫

{r≤r0}

(
|
(
∇(h̃)

)l− j−1
(Yu)|2

h̃tim
+ r−1− log−2

(r−
2

)

·|
(
∇(h̃)

)l− j−1 (
i∗(∇(htan)u)

)
|2
h̃tim

)
dvolh̃

−Cr0

l−1∑

j=1

∫

{r0≤r≤R1}
|∇l− j−1u|2

h̃
dvolh̃

+ c · min

{∫

∂timS
htan

((
∇(htan)

)
(Yu),

(
∇(htan)

)
u
)
dhtan

}
, 0. (B.66)

Using the relation

�h,ωu = Y ((1 + O(r)) · Y ) u +�htan u + Xu (B.67)

near ∂timS, together with a Hardy-type inequality, we can immediately estimate:

∫

{r≤r0}
|u|2

h̃,(1−log(rtim))h̃;l dvolh̃ �
∫

{r≤2r0}
|u|2

h̃,h̃tim ;l dvolh̃

+
∫

{r≤2r0}
∣
∣
(
∇(h̃)

)l−2
(�h,ωu)

∣
∣2
(1−log(rtim))h̃

dvolh̃

+
l−1∑

j=1

∫

{r0≤r≤2r0}
|∇l− j−1u|2

h̃
dvolh̃ (B.68)

and thus from (B.65) we also obtain:

∫

S
r−β
+
∣∣
(
∇(h̃)

)l−2
(�h,ωu)

∣∣2
(1−log(rtim))h̃

dvolh̃≥c
∫

S
r−β
+ |u|2

h̃,(1−log(rtim))h̃;l dvolh̃

+c
l−1∑

j=1

∫

{r≥r0}
r−2 j−β
+ · |

(
∇(h̃)

)l− j
u|2

h̃
dvolh̃

+ c
l−1∑

j=1

∫

{r≤r0}

(
|
(
∇(h̃)

)l− j−1
(Yu)|2

(1−log(rtim))h̃
+ r−1− log−2(

r−
2
)

× |
(
∇(h̃)

)l− j−1 (
i∗(∇(htan)u)

)
|2
(1−log(rtim))h̃

)
dvolh̃

}
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−Cr0

l−1∑

j=1

∫

{r0≤r≤R1}
|∇l− j−1u|2

h̃
dvolh̃

+ c · min

{∫

∂timS
htan

((
∇(htan)

)
(Yu),

(
∇(htan)

)
u
)
dhtan

}
, 0

}
. (B.69)

Using the same Fredholm-type technique as before, we can absorb the
∫
{r0≤r≤R1}

|∇l− j−1u|2
h̃

terms in the right hand side of (B.65) and (B.69) after adding to the left
hand side of each of these estimates a large multiple of

∫

S
r−β
+
∣∣
(
∇(h̃)

)l−2
(�h,ωu)

∣∣2
h̃tim

dvolh̃ + max

{
−
∫

∂t imS
Yu · u dhtan

}
, 0

}
(B.70)

and
∫

S
r−β
+
∣∣
(
∇(h̃)

)l−2
(�h,ωu)

∣∣2
(1−log(rtim))h̃

dvolh̃+max

{
−
∫

∂timS
Yu · u dhtan

}
, 0

}

(B.71)

respectively, thus obtaining inequalities (B.17) and (B.18). We will omit the details.
The case k0 ≥ 1 follows in exactly the same way. ��
Let us assume that we are given a smooth function ωnd : S → (0,+∞) with

ωnd = 1 + O(r−1) in {r � 1} (notice that we necessarily have ωnd �= 0 on ∂S), and
let us define the non-degenerate elliptic operator

�h̃,ωnd

.= ω−1
nd divh̃ (ωnd · d) . (B.72)

This operator will model the operator (A.3) associated to the metric hτ,N on the
hypersurfaces {t̄ = τ} of the spacetimes (M, g) of Section 8. The following non-
degenerate variant of Proposition B.1 holds for (B.72):

Proposition B.2 (Non-degenerate elliptic estimates). For any l ∈ N with 2 ≤ l ≤
� d+1

2 �, any k0 ∈ N and any β ∈ (−δ̄k0 , 1) for some δ̄k0 > 0 depending on k0, we can

bound for any u ∈ C∞(S) satisfying lim supr→+∞
∣∣r

d−1
2 + j∇ j u

∣∣
h < +∞ for any

j ≤ l + k0:

k0∑

k=0

{ ∫

S
r−β
+ |

(
∇(h̃)

)k+l
u|2

h̃
dvolh̃ +

l−1∑

j=1

∫

S
r−2 j−β
+ r−1− log−2

(r−
2

)

·|
(
∇(h̃)

)k+l− j
u|2

h̃
dvolh̃

}
≤ Cβ,k0

k0∑

k=0

∫

S
r−β
+
∣
∣
(
∇(h̃)

)k+l−2
(�h̃,ωnd

u)
∣
∣2
h̃ dvolh̃

+Cβ,k0

k0+l−1∑

j=0

max

{
−Re

{∫

∂S
htan

((
∇(htan)

) j
(Yu),

(
∇(htan)

) j
ū

)
dhtan

}
, 0

}
,

(B.73)
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where ∇(h̃) denotes the covariant derivative with respect to the metric h̃ and the
constant Cβ of the right hand side depends only on β and on the geometry of (S, h),
h̃ and ωnd .

Remark Notice that in contrast to (B.18), the right hand side of (B.73) contains terms
on the whole of ∂S.

The proof of Proposition B.2 follows in the same lines as that for Lemma B.1 (using
everywhere the metric h̃ in place of h and h̃tim), and hence it will be omitted.

It will also be useful to establish the following estimate in the region {r � 1} (this
estimate will be used in Section 9 to control the error terms arising when commuting
�g with the vector field KRc which is not settling to a Killing field in the region
{r ∼ Rc}):
Proposition B.3 (Improved control of derivatives in the far away region). There exists
some R0 ≥ 1 large in terms of the geometry of (S, h), such that for any R > R0 the
following bound holds for any l ∈ N with l ≤ � d+1

2 �, any k0 ∈ N, any β ∈ (−δ̄k0 , 1)
for some δ̄k0 > 0 depending on k0, any 0 < ε < 1 and any u ∈ C∞(N ) with
∑k0

k=0

∑l
j=1

∫
{r≥R0} r

−2(l− j)|∇ j+ku|2h dvolh < ∞:

k0∑

k=0

⎧
⎨

⎩

l∑

j=1

∫

{R≤r≤2R}
r2( j−1)−β+ε|∇ j+ku|2h dvolh

+
l∑

j=1

∫

{r≥R0}
r−2(l− j)−β |∇ j+ku|2h dvolh

⎫
⎬

⎭

≤ CR,β,ε,k0

k0∑

k=0

∫

{r≥R0}
r−β ∣∣∇k+l−2(�h,ωu)

∣∣2
h dvolh

+Cβ,ε,k0

l+k0∑

j=1

∫

{R0≤r≤2R0}
|∇ j u|2h dvolh . (B.74)

Remark Notice that the constant in front of the last term of the right hand side of
(B.74) does not depend on R.

Proof Without loss of generality, we can assume that k0 = 0, since the proof in the
case k0 ≥ 1 follows in exactly the same way.

It suffices to establish the following estimate on R
d for R0, R, l, β, ε as above and

u ∈ C∞(Rd) with lim supr→+∞
∣∣r

d−1
2 + j∇ j u

∣∣
h < +∞ for j ≤ l:

l∑

j=1

∫

{R≤r≤2R}
r2( j−1)−β+ε

∣∣∇ j u
∣∣2
e dvole

+
l∑

j=1

∫

{r≥R0}
r−2(l− j)−β |∇ j u|2e dvole
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≤ CR,R0,β,ε

∫

{r≥R0}
r−β ∣∣∇l−2(�Rd u)

∣∣2
e dvole

+CR0,β,ε

l∑

j=1

∫

{R0≤r≤2R0}
|∇ j u|2e dvole. (B.75)

Assuming that (B.75) holds, by substituting

�h,ωu = �Rd u + O(r−1)∇2u + O(r−2)∇u (B.76)

one obtains (B.74) by absorbing the resulting error terms into the left hand side,
provided that R0 has been fixed sufficiently large in terms of the geometry of (S, h)
(in view also of the flat asymptotics of (S, h)).

As we did in the proof of Proposition B.1, we will prove (B.75) in detail in the
case l = 2, and omit the details for the case l > 2 (which follows in a similar, albeit
notationally more complicated, way).

Fix a function w : [0,+∞) → [0,+∞) such that

• w(x) = x2+ε for x ≤ 1,25

• w(x) = 1 for x ≥ 2 and
• dw

dx ≥ 0 on [0,+∞).

We then define the function wR : Rd → (0,+∞) by the relation

wR = R2+εw(
r

R
). (B.77)

Fixing also a smooth cut-off χR0 : Rd → [0, 1] such that χR0 ≡ 0 on {r ≤ R0}
and χR0 ≡ 1 on {r ≥ R0}, we obtain after integrating by parts:

∫

Rd
χR0wR · r−β(�Rd u)2 dvole =

∫

Rd
χR0wR · r−β |∇2u|2e dvole

+
∫

Rd
χR0wR ·

(
∇μ∇νr

−β
+ − 1

2
(�hr

−β
+ )hμν

)
· ∇μu · ∇νu dvole

+
∫

Rd
OR0(|∇χR0 |e + |∇2χR0 |e)|∇u|2e dvole

+
∫

Rd
χR0 O(|∇wR |e · |∇r−β |e + |∇2wR |er−β)|∇u|2e dvole. (B.78)

Notice that the boudary terms at infinity obtained through this integration by parts
procedure vanish. This follows from the fact that, because

∑l
j=1

∫
{r≥R0} r

−2(l− j)−β |
∇ j u|2e dvole < ∞, exactly as in the proof of Lemma B.4, we can find a sequence of
positive numbers {Rn}n∈N tending to +∞ so that

25 Let us note that for more general l, one should choose w = x2(l−1)+ε for x ≤ 1.
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lim
n→∞

⎛

⎝Rn

l∑

j=1

∫

{r=Rn}
r−2(l− j)−β |∇ j u|2e dvol{r=Rn}

⎞

⎠ = 0. (B.79)

Thus, in view of the relation

∇μ∇νr
−β
+ − 1

2
(�hr

−β
+ )hμν

= 1

2
β
(
(d − β − 4) hμν + 2(β + 2)drμ · drν

)
r−2−β + o(r−2−β), (B.80)

using a Hardy type inequality we readily obtain from (B.78) after adding to both sides
of (B.78) the quantity

∫
{R0≤r≤2R0}

(|∇2u|2e + |∇u|2e
)

(notice that we have assumed

δ̄k0 > 0 to be small enough):

∫

{R≤r≤2R}
r2+ε

(
r−β |∇2u|2e + r−2−β |∇u|2e

)
dvole

+
∫

{r≥R0}

(
r−β |∇2u|2e + r−2−β |∇u|2e

)
dvole

≤ CR,R0,β,ε

∫

{r≥R0}
r−β(�Rd u)2 dvole

+CR0,β,ε

∫

{R0≤r≤2R}
r ε−β |∇u|2e dvole

+CR0,β,ε

∫

{R0≤r≤2R0}

(
|∇2u|2e + |∇u|2e

)
dvole. (B.81)

Let us consider the seminorm space H2
R0,β

defined as the completion of the space
C∞({r ≥ R0}) with the seminorm

||�||2H2
R0,β

.=
∫

{r≥R0}

(
r−β |∇2�|2e + r−2−β |∇�|2e

)
dvole. (B.82)

Notice that H2
R0,β

modulo the constant functions becomes a Hilbert space.
The subspace of harmonic functions

Vhrm
.=
{
� ∈ H2

R0,β

∣
∣�Rd� = 0

}
(B.83)

is a closed subspace ofH2
R0,β

. If we introduce the following semi-definite inner product

on H2
R0,β

:

〈�1, �2〉R0

.=
∫

{R0≤r≤2R0}
(∇μ∇ν�1 · ∇μ∇ν�2 + ∇μ Psi1 · ∇μ�2

)
dvole,

(B.84)

123



6 Page 180 of 194 G. Moschidis

then 〈·, ·〉R0 is continuous with respect to || · ||H2
R0,β

, and for any � ∈ Vhrm which is

not a constant we can bound
〈�,�〉R0 > 0. (B.85)

This follows from the fact that if 〈�,�〉R0 = 0, i.e. if � is constant on {R0 < r <
2R0}, and � is harmonic (i.e. belongs to Vhrm), then � must be identically constant.
Therefore, the orthogonal complement of Vhrm with respect to 〈·, ·〉R0 , that is the
subspace

Vorth
.=
{
� ∈ H2

R0,β

∣∣∀ϕ ∈ Vhrm : 〈�,ϕ〉R0 = 0
}
, (B.86)

is a closed subspace of H2
R0,β

, satisfying Vhrm ∩ Vorth =< 1 >. Moreover, we can

decompose any � ∈ H2
R0,β

as

� = �hrm +�orth, (B.87)

uniquely modulo addition of some constant function, where�hrm ∈ Vhrm and�orth ∈
Vorth .

Remark We should emphasize that we will not need to establish that the resulting
projection of H2

R0,β
/ < 1 > onto Vorth/ < 1 > along Vhrm/ < 1 > is continuous

with respect to the topology of H2
R0,β

/ < 1 >.

Let us introduce the semi-norm

||�||2H1
R0,β

.=
∫

{r≥R0}
r−β |∇�|2e dvole. (B.88)

Moreover, fixing a sufficiently small ε0 > 0, using the Rellich–Kondrachov theorem
(see e.g. [19]), we can establish that the subset D of functions � in Vorth satisfying

||�||H1
R0,β

= 1 (B.89)

and ∫

{R0≤r≤2R}
|∇�|2e dvole ≥ ε0R

−2−ε||�||2H2
R0,β

(B.90)

is a pre-compact subset of the semi-norm space H1
R0,β

. Therefore, since no constant
function lies in the closure of D with the semi norm || · ||H1

R0,β
(due to (B.89)) and for

any non constant � ∈ Vorth we have ||�Rd�||L2
R0,β

> 0, where

||ϕ||L2
R0,β

.=
∫

{r≥R0}
r−βϕ2 dvole, (B.91)

there exists some large CR > 0 so that we can bound for any � ∈ D:

∫

{R0≤r≤2R}
r ε−β |∇�|2e dvole ≤ CR,R0,β,ε||�Rd�||2

L2
R0,β

. (B.92)
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Therefore, for any � ∈ H2
R0,β

, using (B.81) in case �orth /∈ {λ}D | λ ≥ 0} and
(B.92) in case �orth ∈ {λD | λ ≥ 0} (and recalling the definition of D), we obtain
(provided ε0 was chosen sufficiently small):

∫

{R≤r≤2R}
r2+ε

(
r−β |∇2�orth |2e + r−2−β |∇�orth |2e

)
dvole

+
∫

{r≥R0}

(
r−β |∇2�orth |2e + r−2−β |∇�orth |2e

)
dvole

≤ CR,R0,β,ε

∫

{r≥R0}
r−β(�Rd�orth)

2 dvole+CR0,β,ε<�orth, �orth>. (B.93)

We will now establish the necessary estimates for functions belonging to Vhrm . For
any function � solving �Rd� = 0 on {r ≥ R0} and having finite || · ||H2

R0,β
norm, we

readily deduce after decomposing it into spherical harmonics and using (B.145) and
(B.146) (as well as the fact that 2 + ε−β < d) that

∫

{R≤r≤2R}
r2−β+ε

(
|∇2�|2e + r−2|∇�|2e

)
dvole

≤ CR0,β,ε

∫

{R0≤r≤2R0}

(
|∇2�|2e + |∇�|2e

)
dvole, (B.94)

while the estimate
∫

{r≥R0}

(
r−β |∇2�|2e + r−2−β |∇�|2e

)
dvole

≤ CR0,β

∫

{R0≤r≤2R0}

(
|∇2�|2e + |∇�|2e

)
dvole (B.95)

follows readily after integrating by parts in the expression

∫
χR0r

−β(�Rd�)
2 dvole = 0. (B.96)

Thus, for any � ∈ H2
R0,β

we can bound

∫

{R≤r≤2R}
r2−β+ε

(
|∇2�hrm |2e + r−2|∇�hrm |2e

)
dvole

+
∫

{r≥R0}

(
r−β |∇2�hrm |2e + r−2−β |∇�hrm |2e

)
dvole ≤ CR0,β,ε〈�hrm, �hrm〉R0 .

(B.97)

Therefore, adding (B.93) and (B.97) for u in place of� and using a triangle inequal-
ity and the fact that

〈u, u〉R0 = 〈uorth, uorth〉R0 + 〈uhrm, uhrm〉R0 , (B.98)
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we readily deduce the desired bound (B.75) for l = 2:

∫

{R≤r≤2R}
r2+ε

(
r−β |∇2u|2e + r−2−β |∇u|2e

)
dvole

+
∫

{r≥R0}

(
r−β |∇2u|2e + r−2−β |∇u|2e

)
dvole

≤ CR,R0,β,ε

∫

{r≥R0}
r−β(�Rd u)2 dvole

+CR0,β,ε

∫

{R0≤r≤2R0}

(
|∇2u|2e + |∇u|2e

)
dvole.

Inequality (B.75) for 2 < l ≤ � d+1
2 � follows in a similar way, and hence the details

will be omitted. ��

B.3 Lemma on Harmonic Functions on (S, h)

Lemma B.4 Let δ̄ > 0 be small in terms of the geometry of (S, h). If a function
u : S → R with

∫

S
r−β
+
∣
∣∇2u

∣
∣2
h dvolh̃ +

∫

S
(− log(r−)+ 1)−2 r−1− r−2−β

+
∣
∣∇u

∣
∣2
h dvolh̃

×
∫

{r≤r0}
|Yu|2 dvolh̃ < +∞ (B.99)

for some β ∈ (−δ̄, 1) and r0 > 0 solves

�h,ωu = 0 (B.100)

satisfying the following boundary condition on ∂timS :

∫

∂timS
u · Yu dhtan ≥ 0, (B.101)

then u is necessarily a constant function.

Proof By standard elliptic regularity results (see i.e. [18]), u ∈ C∞(S\∂S). Let us fix
some δ̄ < ε � 1 small enough in terms of 1 − β and the geometry of (S, h) (this is
possible since δ̄ was considered small in terms of (S, h)). In this way, 0 < β + ε < 1.

Suppose first that

∫

S

(
r−β−ε
+ |∇u|2h + r−2−β−ε

+ u2
)
dvolh < +∞. (B.102)

In this case, we will show that u ≡ 0.
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We can define for ρ ≥ R0 (large in terms of the geometry of (S, h)) the function:

f (ρ)
.=
∫

{r=ρ}
r−β−ε

(
|∇u|2h + r−2u2

)
dvolh,{r=ρ}. (B.103)

Due to the flat asymptotics of (S, h), from (B.102) we deduce that:

∫ +∞

R0

f (ρ) dρ < +∞. (B.104)

Therefore, since the function 1
ρ

is not integrable in {ρ � 1}, using the pigeonhole
principle we deduce that there exists a sequence {Rn}n∈N tending to +∞ such that

Rn · f (Rn) → 0. (B.105)

Without loss of generality, we can assume that r0 small in terms of the geometry
of (S, h). In the [0, r0] × ∂horS coordinate chart near ∂horS, h takes the form

h =
(
r−1 + O(1)

)
dr2 + htan, (B.106)

and thus our main assumption

∫

S
(− log(r−)+ 1)−2 r−1− r−2−β

+
∣∣∇u

∣∣2
h dvolh̃ +

∫

{r≤r0}
∣∣Yu
∣∣2 dvolh̃ < +∞

(B.107)
implies (through a Hardy inequality for the zeroth order term) that

∫ r0

0

∫

∂horS
r−1 (− log(r))−2

(
r(∂r u)

2 + |∇(htan)u|2htan + |u|2
)
dhtandr < +∞.

(B.108)
Similarly, in the [0, r0] × ∂timS region, h takes the form

h = (1 + O(r)) dr2 + htan, (B.109)

and thus (B.107) implies that

∫ r0

0

∫

∂timS
r−1 (− log(r))−2

(
(∂r u)

2 + |∇(htan)u|2htan + |u|2
)
dhtandr < +∞.

(B.110)
Setting for ρ � 1:

g(ρ)
.=
∫

{r=ρ}
(− log(r))−1

(
rhor (∂r u)

2 + |∇(htan)u|2htan + |u|2
)
dhtan, (B.111)

since f (r) = r−1 log−1(r) is not integrable around 0, from (B.108), (B.110) and a
trivial pigeonhole principle argument we infer the existence of a sequence {rn}n∈N
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tending to 0 so that:
g(rn) → 0. (B.112)

Let us fix a C1 and piecewise C2 function wR1 : S → (0, 1] which satisfies the
following properties for some c > 0 depending only on the geometry of h̃:

• wR1 is a function of r ,
• wR1 = 1 for r < R1,
• ∂rwR1 ≤ 0, ∂2

r wR1 < −c · R−2
1 for R1 < r < 2R1 and

• wR1 =
(

r
R1

)−β−ε

for r > 2R1.

Since (S, h) has a finite number of asymptotically flat regions, we compute that in the
(r, σ) coordinate system on each connected component of the region {r � 1}:

�h,ωwR1 =
(

1 + O(r−1)
)

· ∂2
r wR1 +

(
d − 1 + O(r−1)

)
r−1∂rwR1 . (B.113)

On the other hand, in the region {r < R1} we have �h,ωwR1 ≡ 0 since wR1 is a
constant there.

Therefore, if R1 is fixed large and r1 is fixed small in terms the geometry of (S, h)
and ω, from (B.113) and the properties of wR1 (and the fact that 0 < β + ε < 1) we
infer that

�h,ωwR1 ≤ 0 (B.114)

almost everywhere on S (recall that wR1 is C1 but only piecewise C2).
Let us fix the vector fields ν1 = −|∇r |−1

h ∇r in the region {r � 1} and ν2 =
|∇r |−1

h ∇r in the region {r � 1}. Since �h,ωu = 0 by assumption, after integrating
by parts (and using the fact thatwR1 is C1 and piecewise C2) we obtain for any integer
n sufficiently large:

0 = −
∫

{rn≤r≤Rn}
wR1ω ·�h,ωu · u dvolh

=
∫

{rn≤r≤Rn}

(
ω · wR1 |∇u|2h − 1

2
ω ·�h,ωwR1 · u2

)
dvolh (B.115)

−
∫

{r=rn}

(
ω · wR1ν1u · u − 1

2
ω(ν1wR1) · u2

)
dvolh,{r=rn}

−
∫

{r=Rn}

(
ω · wR1ν2u · u − 1

2
ω(ν2wR1) · u2

)
dvolh,{r=Rn}.

In view if the form of h in the [0, r0] × ∂S coordinate chart (see (B.4) and (B.5)),
we compute that

dvolh,{r=rn} = dhtan|r=rn , (B.116)

ν1 = −r
1
2
hor (1 + O(r))∂r , (B.117)
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and
|∇u|2h = rhor (∂r u)

2 + |∇(htan)u|2htan . (B.118)

Since
∫ r0

0

∫
∂timS |

(
∇(h̃)

)2
u|2h dhtandr < +∞ and h is regular up to ∂timS, by apply-

ing a trace theorem we infer that Yu has a well defined limit on L2(∂timS, hS). Thus,

since wR1 = 1 and ω ∼ r
1
2
hor near ∂S, we obtain in view of (B.111) and (B.112):

lim sup
n→+∞

∫

{r=rn}
ω

(
wR1ν1u · u − 1

2
(ν1wR1) · u2

)
dvolh,{r=rn}

≤ −
∫

∂timS
Yu · u dhtan + 0 ≤ 0, (B.119)

because of (B.101).
Similarly, by a Cauchy–Schwarz inequality we have because of (B.105) as n →

+∞:

∣∣∣∣

∫

{r=Rn}
ω

(
wr1,R1ν2u · u − 1

2
(ν2wr1,R1) · u2

)
dvolh,{r=Rn}

∣∣∣∣

≤ CR1,ε,β ·
∫

{r=ρ}
r− ε−β (|∇u|h · u + r−1u2

)
dvolh,{r=ρ}

≤ CR1,ε,β Rn · f (Rn) → 0 (B.120)

Thus, by letti ng n → +∞ in (B.115), from (B.119), (B.120) and (B.114) we deduce
that: ∫

S
ω
(
wR1 |∇u|2h + w2 · u2

)
dvolh ≤ 0 (B.121)

for some suitably decaying w2 ≥ 0 which is not identically 0. Therefore, u ≡ 0.
In order to establish Lemma B.4, therefore, it suffices to establish that for any

u ∈ C∞(S) satisfying �h,ωu = 0 and (B.99), there exists some constant cu so that
u − cu satisfies (B.102). In view of (B.99), it suffices to show that

∫

{r≥2Ru}
r− ε−β (|∇u|2h + r−2(u − cu)

2
)
dvolh < +∞ (B.122)

for some Ru large depending on u itself.
We will work in the (r, σ) coordinate system on a single connected component N1

of the region {r � 1} (since the proof for each component is identical, this is not
actually a restriction). In this coordinate system on N1, we will define the coordinate
flat metric

e = dr2 + r2gSd−1, (B.123)

and the associated flat Laplacian:

�Rd
.= r−(d−1)∂r

(
rd−1∂r

)
+ r−2�Sd−1 . (B.124)
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Since �h,ωu = 0 and �h,ω has the asymptotics (B.7), while h is asymptotically of
the form (B.2), u satisfies the equation

�Rd u = Fu, (B.125)

where
Fu = O(r−1)∇2u + O(r−2)∇u. (B.126)

We will first show that there exists a smooth solution u1 to the boundary value
problem

{
�Rd u1 = Fu, {r ≥ Ru} ∩ N1

u1 = 0 on {r = Ru} ∩ N1
(B.127)

with: ∫

{r≥Ru}∩N1

r−β (|∇u1|2e + r−2u2
1

)
dvole < +∞. (B.128)

To this end, considering the sequence of cut-off functions χRn = χ( r
Rn
) for some

dyadic sequence {Rn}n∈N and some fixed smooth cut-off function χ : R → [0, 1]
satisfying χ(x) = 1 for x ≤ 1 and χ(x) = 0 for x ≥ 2, we first solve the boundary
value problems:

{
�Rd u1,n = χRn · Fu, {r > Ru} ∩ N1

u1,n = 0 on {r = Ru} ∩ N1.
(B.129)

The existence of solutions u1,n to (B.129) readily follows using the variational
approach: Let us define the Hilbert space H1

Ru
as the completion of the vector space

C∞
0,Ru

,

C∞
0,Ru

= {� ∈ C∞
0 ({r ≥ Ru} ∩ N1)

∣∣�|r=Ru = 0
}

(B.130)

with the norm

||�||H1
Ru

.=
(∫

{r>Ru}∩N1

(
|∇�|2e + r−2�2

)
dvole

)1/2

. (B.131)

Then the function Fn : C∞
0,Ru

→ R given by the relation

Fn(�)
.=
∫

{r>Ru}∩N1

(
1

2
|∇�|2e − χRn Fu ·�

)
dvole (B.132)

extends to a continuous function on H1
Ru

, since χRn Fu is compactly supported. Thus,

we can bound through a Cauchy–Schwarz inequality for any v ∈ H1
Ru

∫

{r>Ru}∩N1

∣∣χRn Fu · v∣∣ dvole �Rn ||v||H1
Ru
. (B.133)
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Moreover, Fn is convex and satisfies Fn(�) → +∞ as ||�||H1
Ru

→ +∞. By mini-

mizing Fn over H1
Ru

using the usual techniques (and using elliptic regularity results),

we arrive at a strong solution u1,n of (B.129) belonging to H1
Ru

.
Since ||u1,n||H1

Ru
< +∞, using the approach leading to (B.105) we deduce that

there exists a dyadic sequence {ρ(n)m }m∈N such that

ρ(n)m ·
∫

{r=ρ(n)m }∩N1

(
|∇u|2e + r−2u2

)
dvole,{r=ρ} ≤ 1. (B.134)

Hence, by multiplying (B.129) with r−βu1,n and integrating by parts over {Ru < r <

ρ
(n)
m } ∩ N1, we obtain after taking the limit m → +∞:

∫

{r>Ru}∩N1

(
r−β |∇u1,n|2e − 1

2
(�Rd r−β)u2

1,n

)
dvole

≤
∫

{r>Ru}∩N1

χRnr
−βFu · u1,n dvole. (B.135)

Notice that

�Rd r−β = −β(d − 2 − β) · r−β−2 ≤
{

0, β ∈ [0, 1)

(d − 1) · δ̄r−β−2 β ∈ (−δ̄, 0] (B.136)

since d ≥ 3. Using also a Hardy-type inequality of the form established in Lemma
(C.2), we deduce from (B.135) and (B.136) (and the assumption that δ̄ is small in
terms of the geometry of (S, h)):

∫

{r>Ru}∩N1

(
r−β |∇u1,n|2e + r−2−βu2

1,n

)
dvole

≤ Cβ

∫

{r>Ru}∩N1

χRnr
−βFu · u1,n dvole. (B.137)

Using a Cauchy–Schwarz inequality, from (B.137) we infer that

∫

{r>Ru}∩N1

(
r−β |∇u1,n|2e + r−2−βu2

1,n

)
dvole

≤ Cβ

∫

{r>Ru}∩N1

χRnr
2−β |Fu |2 dvole ≤ Cβ,u < +∞ (B.138)

with the constants not depending on n. Similarly, we can also bound:

∫

{r>Ru}∩N1

(
r−β |∇(u1,n+1 − u1,n)|2e + r−2−β(u1,n+1 − u1,n)

2
)
dvole

≤ Cβ

∫

{r>Ru}∩N1

(χRn+1 − χRn )r
2−β |Fu |2 dvole. (B.139)
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From (B.126) and (B.99) we can bound

∫

{r>Ru}∩N1

r2−β |Fu |2 dvole ≤ Cu < ∞. (B.140)

Thus, from (B.138) and (B.139) we infer that the sequence of functions u1,n converges
to a function u1 which is a weak (and hence strong, due to elliptic regularity) solution
of (B.127) satisfying (B.128).

Moreoever, after integrating by parts in the expression

∫

{r≥Ru}∩N1

r−β(1 − χ2Ru )(�Rd u1)
2 dvole

=
∫

{r≥Ru}∩N1

r−β(1 − χ2Ru )F
2
u dvole

and using (B.128), (B.99) and the fact that ({r ≥ Ru} ∩ N1, e) is flat, we obtain that:

∫

{r≥2Ru}∩N1

r−β |∇2u1|2e dvole < +∞. (B.141)

We will now return to our function u ∈ C∞(S) solving �h,ωu = 0 and satisfying
(B.99). Setting on {r ≥ 2Ru} ∩ N1

u2 = u − u1, (B.142)

the new function u2 will satisfy on {r > 2Ru} ∩ N1:

�Rd u2 = 0. (B.143)

(being smooth by elliptic regularity) and

∫

{r≥2Ru}∩N1

r−β (|∇2u2|2e + r−2|∇u2|2e
)
dvole < +∞ (B.144)

because of (B.99), (B.141) and (B.128).
For any ρ ≥ 2Ru , u2|{r=ρ}∩N1 is a smooth function on S

d−1 (by elliptic regularity)
and hence we can decompose u2|{r=ρ}∩N1 in spherical harmonics. This turns (B.143)
into the following system of ODE’s:

r−(d−1) d

dr

(
rd−1 d

dr
(u2)m

)
−!mr

−2(u2)m = 0, (B.145)

where the integer m corresponds to an enumeration of the spherical haromics, �m

denotes the projection of a function � ∈ L2(Sd−1) on m-th spherical harmonic, and
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−!m is the eigenvalue of �Sd−1 corresponding to the m-th spherical harmonic (by
convention !m is increasing in m and !0 = 0). Therefore, we can explicitly solve:

(u2)m = cmr
am + dmr

−(d−2)−am (B.146)

where:

• cm, dm ∈ R

• am ∈ N is an increasing sequence with a0 = 0 and a1 = 1.

By (B.144) we deduce that

∑

m∈N

∫ +∞

r=2Ru

r−β
{(

d2(u2)m

dr2

)2

+(!m + 1)r−2
(
d(u2)m

dr

)2

+(!2
m + 1

)
r−4(u2)

2
m

}

rd−1dr < +∞, (B.147)

which, in view of the fact that β ∈ (−δ̄, 1), forces cm = 0 for m �= 0 in (B.146).
Therefore, from (B.146), (B.147) and the fact that cm = 0 for m �= 0, we infer that
for all m ∈ N:

∑

m∈N

∫ +∞

r=2Ru

r−β−ε

{(
d(u2)m

dr

)2

+!mr
−2(u2)

2
m

}

rd−1dr < +∞ (B.148)

(recall that !0 = 0). Therefore

∫

{r≥2Ru}∩N1

r−β−ε|∇u2|2e dvole < +∞. (B.149)

Furthermore, using standard ode theory (and elliptic regularity), we can establish
in this case that the series

∑
m(u2)mem converges to u2 pointwise (together with all

its derivatives). Moreover, because of (B.146) and the fact that cm = 0 for m �= 0, we
deduce that:

lim
r→+∞ u2 = c0. (B.150)

Thus, (B.149) implies that (through a Hardy-type inequality) that:

∫

{r≥2Ru}∩N1

r−β−ε
(
|∇u2|2e + r−2(u2 − c0)

2
)
dvole < +∞. (B.151)

All in all, from (B.128) and (B.151) and the fact that u = u1 + u2, we finally infer
(B.122) for cu = c0:

∫

{r≥2Ru}∩N1

r−β−ε
(
|∇u|2e + r−2(u − c0)

2
)
dvole < +∞. (B.152)

Hence, the proof of the Lemma is complete. ��
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Appendix C: Hardy Type Inequalities

In this Section, we will state the main Hardy type inequalities that are used throughout
this paper. We will start with the following lemma:

Lemma C.1 For any strictly increasing function g : (0,+∞) → R, the following
inequality holds for any u ∈ C1 ((0,+∞)) and 0 < a < b:

∫ b

a

dg

dx
· |u|2 dx + g(a)|u(a)|2

≤ Cg ·
(∫ b

a
g2
(
dg

dx

)−1

·
∣∣∣
du

dx

∣∣∣
2
dx + g(b)|u(b)|2

)

(C.1)

while for g strictly decreasing we have:

∫ b

a

(
−dg

dx

)
|u|2 dx + g(b)|u(b)|2

≤ Cg ·
(∫ b

a

(

−g2
(
dg

dx

)−1
)

·
∣∣∣
du

dx

∣∣∣
2
dx + g(a)|u(a)|2

)

. (C.2)

Proof The proof follows readily after performing an integration by parts in the terms
∫ b
a

dg
dx |u|2 and

∫ b
a

(
− dg

dx

)
|u|2 respectively, and then using a Cauchy–Schwarz inequal-

ity. ��
Lemma C.2 For any k ∈ N and a ∈ R, there exists a constant Ck,a > 0 such that for
any function � ∈ C∞(Rd) and any 0 < R1 < R2 we can bound

min{� d−1+a
2 �,k}∑

j=1

{∫

{R1≤r≤R2}
ra−2 j |∂k− j

r �|2 dvole +
∫

{r=R1}
ra+1−2 j |∂k− j

r �|2 dvol{r=R1}
}

≤ Ck,a ·

⎧
⎪⎨

⎪⎩

∫

{R1≤r≤R2}
ra |∂kr �|2 dvole +

� d−1+a
2 �∑

j=1

∫

{r=R2}
ra+1−2 j |∂k− j

r �|2 dvol{r=R2}

⎫
⎪⎬

⎪⎭
,

(C.3)

where ∂r denotes the gradient of the polar distance r on R
d , dvole is the natural

volume form of the flat metric e on R
d and dvol{r=Ri } is the natural volume form of

the induced metric on the sphere {r = Ri }.
Proof From (C.1) for g(x) = xb+1 for any b > −1, it follows that for any function
h ∈ C∞(R):

∫ R2

R1

xb|h|2 dx + xb+1|h(R1)|2 ≤ Cb ·
(∫ R2

R1

xb+2|dh
dx

|2 dx + xb+1|h(R2)|2
)

(C.4)
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(with the constant Cb depending only on b). Therefore, recalling that in polar coordi-
nates (r, σ) on R

d we can write for any b > 0 and h ∈ C∞(Rd):
∫

{R1≤r≤R2}
rb|h|2 =

∫ R2

R1

rb+d−1
(∫

Sd−1
h(r, σ) dσ

)
dr,

inequality (C.3) follows readily after repeated applications of (C.4). ��
Let (M, g) be as in Section 8. Recall that we denote with ∇hτ,N the covariant derivative
associated to the Riemannian metric hτ,N on the hyperboloid {t̄ = τ} (see Section 8).
Let us also denote with L the ∂v coordinate vector field in the (v, σ) coordinate chart
on each connected component of {t̄ = τ} ∩ {r � 1} (notice that this vector field does
not coincide with the ∂v vector field on M in the (u, v, σ) coordinate chart). Using
Lemma C.2, we can establish the following Hardy type inequality for functions � on
the hyperboloids {t̄ = const} with tame behaviour near I+:

Lemma C.3 There exists an R0 > 0 (large) such that for any τ > 0, any k ∈ N,
any integer 0 ≤ m ≤ k, any a ∈ R, any smooth tensor field � on {t̄ = τ} satisfying
limr→+∞ r

d+a−2
2 |Ll

L�|hτ,N = 0 for 0 ≤ l ≤ k, and any R1 > R0 we can bound

min{� d−1+a
2 �,k}∑

j=1

{∫

{r≥R1}∩{t̄=τ}
ra−2 j |Lk− j

L �|2 �2dvdσ

+
∫

{r=R1}∩{t̄=τ}
ra+1−2 j |Lk− j

L �|2 �2dσ

}

≤ Ck,a ·
∫

{r≥R1}∩{t̄=τ}
ra |Lk

L�|2 �2dvdσ, (C.5)

where LL denotes the Lie derivative in the direction of L.

Proof Fix an R2 > R1. An application of Lemma C.2 on each connected component of
{R1 ≤ r ≤ R2}∩{t̄ = τ}(using the coordinate chart (v, σ) in the region {r ≥ R1}∩{t̄ =
τ}, so that LL becomes differentiation with respect to ∂v) readily yields that:

min{� d−1+a
2 �,k}∑

j=1

{∫

{R1≤r≤R2}∩{t̄=τ}
ra−2 j |Lk− j

L �|2 �2dvdσ

+
∫

{r=R1}∩{t̄=τ}
ra+1−2 j |Lk− j

L �|2 �2dσ

}

≤ Ck,a ·
⎛

⎜
⎝
∫

{R1≤r≤R2}∩{t̄=τ}
ra |Lk

L�|2 �2dvdσ

+
� d−1+a

2 �∑

j=1

∫

{r=R2}∩{t̄=τ}
ra+1−2 j |Lk− j

L �|2 �2dσ

⎞

⎟
⎠ . (C.6)
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Since limr→+∞ r
d+a−2

2 |Ll
L�|hτ,N = 0 for 0 ≤ l ≤ k, we infer:

lim
R2→+∞

� d−1+a
2 �∑

j=1

∫

{r=R2}∩{t̄=τ}
ra+1−2 j |Lk− j

L �|2 �2dσ = 0. (C.7)

Thus, (C.5) follows from (C.6) after taking the limit R2 → +∞. ��
We will also need the following “critical” Hardy type inequality:

Lemma C.4 For any R > 0 large in terms of the geometry of {t̄ = τ} and any smooth
function � on {t̄ = τ} satisfying limr→+∞ |�| → 0 we can bound:

∫

{R≤r≤2R}∩{t̄=τ}
r−d |�|2 dhN ≤ C ·

(∫

{r≥R}∩{t̄=τ}
r−d |�|2 dhN

) 1
2

×
(∫

{r≥R}∩{t̄=τ}
r−d+2|L�|2 dhN

) 1
2

. (C.8)

Remark The exponent of the second term of the right hand side of (C.8) can not be
increased, since then the inequality would not be satisfied by the function �R0(r) =

log(R0)
log(r)+log(R0)

for some large enough R0 > 0.

Proof It suffices to establish the following inequality on R
d for any R > 0 and any

real � ∈ C∞(Rd) sarisfying limr→+∞ |�| → 0:

∫

{R≤r≤2R}
r−d�2 dvole ≤ C ·

(∫

{r≥R}
r−d�2 dvole

) 1
2

×
(∫

{r≥R}
r−d+2(∂r�)

2 dvole

) 1
2

. (C.9)

In turn, (C.9) will follow (using polar coordinates) by the following “critical” Hardy-
type inequality on R for any function � ∈ C∞(R) with limr→+∞ |�| → 0:

∫ 2R

R
r−1�2 dr ≤ C ·

(∫ +∞

R
r−1�2 dr

) 1
2
(∫ +∞

R
r · (∂r�)2 dr

) 1
2

. (C.10)

In order to establish (C.10), let us fix a continuous and piecewise C1 function
χ1 : [0,+∞) → [0, 1] by the relation:

χ1(x) =

⎧
⎪⎨

⎪⎩

0, x ≤ 1

x − 1, 1 ≤ x ≤ 2

1, x ≥ 2,

(C.11)
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and define the function χ1,R : [0,+∞) → [0, 1] by the relation:

χ1,R(r)
.= χ1(

r

R
). (C.12)

Using the fact that χ1 is contnuous and piecewise C1, we obtain after integrating
by parts (in view of the fact that limr→+∞ � = 0):

∫ +∞

0
∂rχ1,R ·�2 dr = −2

∫ +∞

0
χ1,R ·�∂r� dr (C.13)

≤
(∫ +∞

0
χ1,Rr

−1�2 dr

) 1
2
(∫ +∞

0
χ1,Rr · (∂r�)2 dr

) 1
2

.

Thus, (C.10) follows from (1) in view of the fact that χ1,R is supported on [R,+∞)

and ∂rχ1,R is identically 1 on [R, 2R] and 0 elsewhere. ��
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