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Abstract In [11], Dafermos and Rodnianski presented a novel approach to estab-
lish uniform decay rates for solutions ¢ to the scalar wave equation [1,¢ = 0 on
Minkowski, Schwarzschild and other asymptotically flat backgrounds. This paper
generalises the methods and results of [11] to a broad class of asymptotically flat
spacetimes (M, g), including Kerr spacetimes in the full subextremal range |a| < M,
but also radiating spacetimes with no exact symmetries in general dimension d + 1,
d > 3. As a soft corollary, it is shown that the Friedlander radiation field for ¢ is
well defined on future null infinity. Moreover, polynomial decay rates are established
for ¢, provided that an integrated local energy decay statement (possibly with a finite
loss of derivatives) holds and the near region of (M, g) satisfies some mild geometric
conditions. The latter conditions allow for (M, g) to be the exterior of a black hole
spacetime with a non-degenerate event horizon (having possibly complicated topol-
ogy) or the exterior of a compact moving obstacle in an ambient globally hyperbolic
spacetime satisfying suitable geometric conditions.
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1 Introduction
The covariant wave equation

1
N

where g is the Lorentzian metric of a background manifold M, arises in various areas
of mathematical physics, including fluid mechanics, where g is the so called acoustical
metric of a fluid in motion, as well as general relativity, in which case g corresponds
to the spacetime metric of a 3 4+ 1 dimensional model of our universe.

Of fundamental importance in most settings where equation (1.1) appears is the
case where the background (M, g) is flat or almost flat, that is, when M = R¢*! and
g is the Minkowski metric M

O, ¢ = 3 (8" /=gd®) =0, (1.1)

N =—di’ + (dx")> + ...+ dx%)? (1.2)

(in the usual (7, x!, ..., xd) coordinates of Rd+1) or small perturbations of it, respec-
tively. These are the simplest settings for which the stability properties (i.e. uniform
boundedness and decay properties) of solutions to (1.1) have been studied extensively.
Of particular interest for applications is also the study of the stability properties of
equation (1.1) on backgrounds (M, g) which are far from Minkowski, but which are
asymptotically flat, i.e. asymptotically approach (as one moves to “infinity” along any
null direction) the geometry of (Rd‘H, M). Such backgrounds include, for instance,
various black hole spacetimes appearing in general relativity (see [13]).

In this paper, we will develop a general approach for establishing decay estimates for
equation (1.1) on a general class of asymptotically flat backgrounds (M, g), general-
ising the methods of [11]. In order to better clarify the motivation behind our approach
and our assumptions on the backgrounds (M, g), we will first briefly highlight the
main techniques that have been developed so far for obtaining stability estimates for
equation (1.1), and state a non-technical summary of our results. We will then revisit
and compare the main techniques that already exist in the literature, before, finally,
presenting our results in detail.

1.1 The Klainerman Vector Field Method

One of the most successful approaches for obtaining decay estimates for solutions ¢
to (1.1) on flat or almost flat backgounds has been the so called vector field method
(see e.g. [35]), which utilises the vector fields generating the conformal isometries of
Minkowski spacetime in two ways:

1. As multipliers: For any conformally Killing vector field X of (R¢*!, n), one can
multiply equation (1.1) with X (¢) + w® (where w is a smooth function on R¢+!
depending on the choice of X) and then integrate the resulting expression over a
domain  of R*! bounded by two achronal hypersurfaces Si, S, with S, being
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6 Page 4 of 194 G. Moschidis

in the future of Sy (e.g. 2 can be of the form {0 < ¢ < T}). For the right choices
of X, w, performing an integration by parts yields an identity of the form

/ 5X,w[(p] =/ gX,w[(p]y (13)
32 Sl

where Ex ,,[¢] is a positive definite weighted quadratic expression in ¢ and its first
derivatives. Notice that the identity (1.3) only contains terms on the boundary of
2 and can be interpreted as an estimate of the “final” energy norm f S Ex.wl®P] in
terms of the “initial” energy norm |, S Ex.wl¥]. This approach can be traced back
to Morawetz (see [28]).

2. As commutation vector fields: For certain elements X of the algebra of conformally
Killing vector fields of R9+! the commutator [Og, XTisis either O or a multiple of
Ug. Thus, equation (1.1) is also satisfied by X ¢ (or even higher derivatives of ¢),
and this fact allows the establishment of L2 estimates for higher order derivatives of
¢, which in turn yield pointwise decay estimates for ¢ itself through suitable global
Sobolev inequalities. This approach was initiated and developed by Klainerman
(see e.g. [21,22]).

The vector field method has turned out to be especially fruitful in the study of non
linear variants of (1.1), culminating in the proof of the non linear stability of Minkowski
spacetime in [7].

Preceding the use of conformally Killing vector fields X as multipliers for equation
(1.1), Morawetz [27] utilised more general first order operators generating “positive
bulk terms” in @, i.e. estimates for the L? norm of ¢ integrated over spacetime. In
particular, studying the decay properties of solutions ¢ to equation (1.1) on the exterior
of a compact star-shaped obstacle O in R¢ with reflecting boundary conditions on § O,
Morawetz derived an integrated local energy decay statement for ¢, that is an estimate
of the form

o0 o0
// (|8<P|2+|<P|2)dxdt+// 192 dod
0 Ju=un{r<g) 0 Ju=tyneo

<

N/ |0¢|? dx. (1.4)
{r=0}

This estimate was obtained in [27] by using the (not conformally Killing) radial vector
field 9, as a multiplier for (1.1).

The exterior of a compact obstacle O in R? (where suitable boundary conditions
for solutions ¢ to (1.1) are imposed on the boundary 0O of O) is already an exam-
ple of a background for equation (1.1) which is not a globally small perturbation
of Minkowski spacetime. More complicated examples far from Minkowski include
spacetimes (Md+1, g), d > 3, which contain black hole regions, like Schwarzschild
or Kerr (see [13]). Such backgrounds are of particular interest to general relativity.
One common feature that the exterior of a compact obstacle O in flat space and the
exterior of a black hole spacetime share is the fact that they are naturally separated
into two regions where different geometric mechanisms contribute to the long time
behaviour of solutions to (1.1) on them:
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o In the “near” region of these backgrounds, the long time behaviour of solutions to
(1.1) is strongly affected by the characteristics of the null geodesic flow, such as
the existence of trapped null geodesics which are reflected on the obstacle or orbit
around the black hole. In the black hole case, the existence of such geodesics is
unavoidable. A further geometric aspect of a black hole spacetime (M, g) which
is absent in the obstacle case is the so called event horizon H. In most interesting
examples, the geometric structure of H leads to the celebrated red-shift effect,
which forces “wave packets” travelling along the null generators of H to decay
fast. For this reason, the null geodesics spanning H are not considered trapped in
this case.!

e In the “far away” region of these backgrounds, there exists a coordinate chart
(t, x 1., xd) in which the metric g is pointwise close to the Minkowski metric M
(1.2) and tends to it along all outgoing null directions (of course, in the exterior of a
compact obstacle in flat space, g is identically equal to the Minkowski metric M in
this region). Thus, settingr = /(x1)2 + ... + (x9)2, the areaof the {r, t = const}
surfaces increases to infinity along the outgoing null directions, and this fact serves

as a decay mechanism for solutions to (1.1). In particular, the quantity rdz;l(P is
expected to have a finite limit on future null infinity T+, provided that ¢ arises from
suitably decaying initial data (see [17] and Section 7). Notice that on a general
asymptotically flat spacetime (M, g), with its asymptotically flat region foliated
by a set of outgoing null hypersurfaces {S:}:ecr, Z can be abstractly defined
and is parametrised by the “points at infinity” of the null geodesics generating

{Sr}teR-

The issue of matching the estimates obtained for solutions to (1.1) in different regions
of ablack hole spacetime implicitly appearedin[1,4,5,8,9,12,13,37,38], where defin-
itive boundedness and decay estimates were established for solutions to (1.1) on
Schwarzschild and very slowly rotating Kerr exterior spacetimes (i.e. for Kerr space-
times with angular momentum a and mass M satisfying the relation |a| <« M). This
was achieved by the use of a Morawetz-type integrated local energy decay statement,
in conjunction with an adaptation of techniques previously applied on flat spacetime.

1.2 The Dafermos—Rodnianski Method

In [11], Dafermos and Rodnianski suggested a more flexible strategy for proving
polynomial decay estimates for solutions to (1.1), which is explicitly tied to the afore-
mentioned partition of a general asymptotically flat spacetime. This approach makes
use of first order multipliers producing both positive boundary terms (like in (1.3))
and positive bulk terms (like in (1.4)), and each term contains weights which grow
towards Z™ but are time-translation invariant. For the sake of simplicity of our expo-
sition, we will discuss here the approach of [11] restricted to the case of Schwarzschild
spacetime.

1 They are considered trapped, however, in the case when H is degenerate and the red-shift effect is absent,
which happens in extremal black hole spacetimes. See [3].
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6 Page 6 of 194 G. Moschidis

On the exterior of Schwarzschild spacetime (M., gar) of mass M, fix the (u, v, o)
double null coordinate system (where u = %(r —r®and v = %(t + r*), see [13])
and let {S:}.cr be a foliation of Mg., by spacelike hypersurfaces terminating at
Z7 (see Section 3 for the relevant definition), such that Sy, is in the future domain
of dependence of Sy, when 15 > Ty. Let also T denote the stationary Killing field
of (Msen, gm), and let N be a globally timelike vector field on Mg, such that
[T, N] = 0and T = N in the far away region {r > 1}. Then the following esti-
mates hold for solutions ¢ to (1.1) (See Section 2 for the notations on vector field
currents):

Non degenerate energy boundedness: For any 1 < 13:

N oy I N o It
/ AT /. aeoms, (15)

2 1

where ng, is the future directed unit normal on the leaves of the foliation {S}, and the
constant C in (1.5) depends only on the precise choice of the foliation {S:}.cr and
the vectro field N. See [9] for a proof of (1.5).

Integrated local energy decay in the near region: There exists an m > 0, such that
forany R > Oand t € R:

m
/ (1002 +19P) dgae < - Y [ a¥riont. a0
DH(SN(r<R) P '
where dg, is the spacetime volume form, ns, is the future directed unit normal on
Sy and the constant C(R) depends only on R and the precise choice of the foliation
{St}1er. This was established in [4,8,9].

Remark Notice that (1.6) is actually valid for m = 1. However, due to the existence
of trapped null geodesics on (M sy, gar), the requirement that m > 0 is necessary in
this case. Notice also that it is the red shift effect that allows the integrand in the left
hand side of (1.6) to be non-degenerate up to the event horizon H of (Mg, gm) (see
[13D).

Using as ingredients the estimates (1.5) and (1.6), the novel approach of [11] for
establishing polynomial decay rates for solutions ¢ to (1.1) lies in the proof of a
hierarchy of r”-weighted energy estimates for ¢ in a neighborhood of Z* and the
repeated use of the pigeonhole principle on the resulting set of estimates in order to
obtain polynomial decay rates for various weighted energies of ¢. In particular, the
following result was established in [11]:

Theorem (Dafermos-Rodnianski [11], specialised here to Schwarzschild) On
Schwarzschild exterior spacetime (Mscn, gm), the following statements hold for any
solution ¢ to the wave equation (1.1):
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1. An rP-weighted energy hierarchy of the form

/ oo+ [ o (pla,ce?
{r=R}N{u=12} {r=R)"D7

+Q2 = p)lr "o, (r¢)|2) dudvdo

<[ 10, (r)Pdvda + (1992 +1¢P). @7
{r=R}N{u=1} {r~R)ND;?

71

for p € [0, 2] holds, where D;f = {11 < u < o} for 11 < 1o, and the derivatives
are consideredwith respect to the double null coordinate system (u, v, o) on Mgcp,.
The hierarchy (1.7) is stable under suitable perturbations of the background metric.

2. Let t be a time function on Mg, with spacelike level sets intersecting the future
event horizon H™ and terminating at null infinity I, such that T (t) = 1. Inview of
(1.6), (1.5)and(1.7), ! polynomial decay estimates hold for ¢, provided its initial
data on Sy (or on the hypersurface {t = 0}, where t is the usual Schwarzschild
exterior time coordinate) are sufficiently smooth and decaying.

3. (Schlue [34]) In the near region of (Msch, gm), t_*%w polynomial decay rates
for ¢ hold, provided its initial data on Sy (or on the hypersurface {t = 0}) are
sufficiently smooth and decaying.

See [11] for a more detailed description of the above result and an explanation of
how the proof immediately carries over to a certain wider class of spacetimes.

1.3 Non-technical Statements of the Main Results and Applications

The goal of the present paper is to introduce a broad class of asymptotically flat
Lorentzian manifolds (M¢*!, g), d > 3, on which the methods of [11,34] (suitably
adapted) can be generalised. In particular, this class (described in Section 3) is broad
enough to include spacetimes which radiate Bondi mass through future null infinity
T+ and are allowed to have a timelike boundary 9;;,, M with compact spacelike cross-
sections (modeling the boundary of a compact, possibly moving, obstacle in an ambient
globally hyperbolic spacetime). An increasing hierarchy of geometric conditions will
be imposed on this class of spacetimes, with each additional set of conditions leading
to additional decay estimates for solutions ¢ to the wave equation (1.1) on (M, g).
These conditions are partly motivated by the geometric structure of Kerr spacetime
(and perturbations of it).

In particular, we will establish the following three results, each following from the
previous under additional assumptions on the structure of (M, g):

Theorem Let (M?t!, g), d > 3, be a Lorentzian manifold with the asymptotics

(1.14), possibly with non-empty timelike boundary 9y, M with compact spacelike

cross-sections. Then the following statements hold for any solution ¢ to the wave

equation (1.1) on (M, g):

1. Weighted energy hierarchy. An r”-weighted energy hierarchy holds, similar to
(1.7). See Theorems 5.1 and 6.1.
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6 Page 8 of 194 G. Moschidis

2. Slow polynomial decay. Assume that an integrated local energy decay statement of
the form (1.6) holds for solutions g to (1.1) on (M, g) (satisfying suitable boundary
conditions on d;;;, M, if non empty). Then t~' polynomial decay estimates hold
for @, provided its initial data are sufficiently smooth and decaying, where t is a
suitably defined time function on M. See Theorem 8.1.

3. Improved polynomial decay. Assume, in addition to the previous integrated local
energy decay assumption, that (M, g) possesses two vector fields {T, K } (not nec-
essarily distinct) with timelike span and with slowly decaying in time deformation
tensor. Then provided the initial data for ¢ are sufficiently smooth and decaying
(and that suitable boundary conditions have been imposed on 0y, M):

— In case d is odd, a i decay rate for ¢ and a % decay rate for the
derivatives of ¢ hold.

- d
— Incase d is even, a i~ 21 decay rate for ¢ and its derivatives holds.
See Theorem 9.1.

See also Sections 1.5.1, 1.5.2 and 1.5.3 for a more detailed statement of Parts 1, 2
and 3 of the above theorem.

Remark We should note that in fact, the integrated local energy estimate assumed
in Parts 2 and 3 of the above theorem is weaker than (1.6), as we allow for an
additional fD+ (S rl Jlf’ (T’ (P)ng summand on the right hand side. On general space-
times (M, g) with g having radiating asymptotics (without satisfying any special
monotonicity condition), this additional “error” term appears necessary for (1.6) to
hold (see Sections 4 and 8). Furthermore, in Part 3 above we can relax the condition
that the deformation tensors of 7', K decay in time, replacing this with the statement
that they are merely uniformly e-small, provided there is no loss of derivatives in the
assumed integrated local energy decay estimate. In this case, however, there is an extra
O (¢) loss in the exponents of 7 in the related decay estimates. See also the remark in
Section 1.5.3.

As an application of Part 1 of the above theorem, we will establish that solutions
to (1.1) on general asymptotically flat spacetimes (without any assumptions posed on
the structure of their near region) have a well defined radiation field on future null
infinity Z7:

Theorem (Existence of radiation field at 7)) Let (M9t g), d > 3, be a
Lorentzian manifold with the asymptotics (1.14). Then for any smooth solution ¢
to (1.1) with suitably decaying intial data on a spacelike hypersurface ¥ of M which
is asymptotically of the form {t = const}, the Friedlander radiation field ®1+ of ¢
on future null infinity:

b7+ (u,0) = lir_ilrloo £2-9,r,o0)), (1.8)

where Q = rd%l (1 + O(r_l)), exists and is a smooth function of (u, o). See Theorem
7.1.

The assumption of an integrated local energy decay estimate for solutions ¢ to (1.1),
stated in Part 2 of the above theorem, does not hold on general spacetimes (M, g)
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without restricting the structure of their trapped set. In particular, in the case when
(M, g) contains a stably trapped null geodesic, the local energy of ¢ will not decay
faster than logarithmically, see e.g. [32]. Hence, in that case, no ILED statement with
finite loss of derivatives (i.e. of the form (1.6)) can hold on (M, g).

Even in the case where no ILED statement holds, however, the r”-weighted energy
hierarchy (1.7) can still yield decay estimates for ¢ provided some decay estimate for
the local energy of ¢ can be established. In [29], it is shown that on a general class
of stationary and asymptotically flat spacetimes (M, g), the local energy of solutions
¢ to (1.1) decays logarithmically in time. Combining Part 1 of the above theorem
with the logarithmic local energy decay estimate established in [29], we will thus
be able to infer that the energy of ¢ through a hyperboloidal foliation of M decays
logarithmically in time:

Theorem (Logarithmic decay of the energy flux through a hyperboloidal folia-
tion, [29] ) Let (M®t1, g), d > 3, be a globally hyperbolic spacetime with a Cauchy
hypersurface X.

Assume that (M, g) is stationary, with stationary Killing field T, and asymptotically
Sfat. If M contains a black hole region bounded by an event horizon 'H, assume that H
has positive surface gravity and that the ergoregion (i.e. the set where g(T,T) > 0)
is “small” (see [29] for the precise statement of these assumptions). Finally, assume
that an energy boundedness statement of the form (1.5) holds for solutions to Lo = 0
on the domain of outer communications D of M.

It then follows that the energy flux through a T -translated hyperboloidal foliation
of M terminating at I+ of any smooth solution ¢ to (1.1) on (M, g) with suitably
decaying initial data on a Cauchy hypersurface ¥ of M decays at least logarithmically
in time. See [29].

We will now give some examples of spacetimes (M, g) satisfying the assumptions
of the above theorem. On these spacetimes, polynomial decay rates for solutions to
(1.1) will be inferred as a result of Parts 2 and 3 of the above theorem.

Our first example will be the exterior region of a subextremal Kerr spacetime
(with parameters a, M in the fulll subextremal range |a| < M). This satisfies all
the geometric assumptions of Parts 1, 2 and 3 of the above theorem. We should remark
that, in fact, our assumption on the properties of the vector fields 7, K of Part 3
of the above theorem was motivated by the geometric properties of the subextremal
Kerr family. In view of the integrated local energy decay statement and the energy
boundedness estimate established in [16], we will be able to infer Corollary 3.1 of
[16]:

Theorem (Polynomial decay on subextremal Kerr exterior for |a| < M, [16])
Corollary 3.1 of [16] holds, that is to say, a i pointwise decay rate for ¢ and t >
decay rate for the derivatives of ¢ hold for solutions ¢ to the wave equation (1.1) on
subextremal Kerr spacetimes in the full parameter range |a| < M.

See Section 1.6.3 for a precise statement of this result.

Notice also that, in view of the integrated local energy decay estimate established
in [23], the results of the present paper also imply a =2+ decay estimate for solutions
¢ to (1.1) on very slowly rotating 4 + 1 dimensional Myers—Perry spacetimes.
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6 Page 10 of 194 G. Moschidis

For our second example, we will first need to introduce a definition: A metric g on
R4+ will be called a radiating uniformly small perturbation of Minkowski spacetime
(Rd +1 1) if it has the asymptotics (1.14), and moreover there exists a small g > 0
such thatr- (g —m) and all its derivatives are €y-globally small, with each differentiation
of this tensor with respect to d; except for the first one yielding additional decay in
terms of |u| (see (1.42) and (1.43) for a more precise definition). For such spacetimes,
the geometric assumptions of Parts 1, 2 and 3 are satisfied and an integrated loacal
energy decay estimate of the form (1.6) without loss of derivatives holds (in view
of the stability to small perturbations of the estimates provided by the d,-Morawetz
current, combined with the estimates of Section 4 of the present paper). Examples of
such spacetimes include the vacuum dynamical perturbations of Minkowski spacetime
considered in [7].

We will infer the following result:

Theorem (Improved polynomial decay on radiating uniformly small perturba-
tions of Minkowski) If (R4, g) is a radiating uniformly small perturbation of
Minkowski spacetime and &g is small enough, then any solution ¢ to Oy = 0 on
(R4, @) with suitably decaying initial data on {t = 0} will satisfy a F~5+0G0)
decay estimate. If. in addition, the deformation tensor of the vector field d; is O (t—%)
decaying for some 8o, then ¢ will satisfy a i~ decay rate.

See Section 1.6.4 for a precise statement of this result. Let us remark that this
theorem extends a recent result of Oliver [31].

Our final example will concern the class of radiating black hole exterior spacetimes
(M, g) dynamically settling down to the exterior region of a subextremal Kerr space-
time. In order to present our example in the most simple form that can be deduced
without computation from previous results, we will retrict ourselves to spacetimes
(M, g) settling down to Schwarzschild exterior at a sufficiently fast polynomial rate.
This class includes the dynamical vacuum spacetimes constructed in [14] (which actu-
ally approach Schwarzschild at an exponential rate).

The energy current yielding the integrated local energy decay statement for
Schwarzschild exterior constructed in [8], combined with the estimates of Section
4 of the present paper and the fast rate at which g approaches the Schwarzschild met-
ric gy, immediately imply that an integrated local energy decay statement of the form
(1.6) also holds on (M, g). Furthermore, it is straightforward to check that (M, g)
satisfies the assumptions of Parts 1, 2 and 3 of the above Theorem (in view of the fast
approach to the Schwarzschild exterior metric, which satisfies these assumptions).
Thus, on these spacetimes we will be able to infer the following result:

Theorem (Improved polynomial decay on dynamical, radiating black hole
spacetimes) If (M>*!, g) is a radiating black hole spacetime settling down to a
Schwarzschild exterior at a sufficiently fast polynomial decay rate (such us the ones
constructed in [14]), then any solution ¢ to Uy = 0 on (M, g) with suitably decaying

__3 }
initial data on a Cauchy hypersurface will satisfy a t~ 2 decay estimate.

We will discuss in more detail the results of this paper and their applications in the
next sections of the introduction. But first, we will review in more detail the “old”
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approach of using the conformal isometries of Minkowski spacetime for establishing
decay rates for solutions to (1.1) on asymptotically flat spacetimes, and compare it to
the method of [11].

1.4 Comparison of the Two Approaches
1.4.1 The “0Old” Approach

The use of first order operators as multipliers and commutators for (1.1) has been
implemented extensively during the last 50 years to deal with linear and non linear
wave equations on small perturbations of Minkowski spacetime (R4+!, n).

Following Morawetz (see e.g. [28]), one way to obtain decay for the local energy
of solutions ¢ to (1.1) is to apply the conformal Killing field Z of (R4*+!, 1)

Z = (2 + 120, + 2trd, (1.9)

as multiplier for (1.1). On Minkowski spacetime itself for d > 3, the vector field Z
gives rise to a conserved positive definite energy norm E z[¢](¢) with weights growing
in ¢. In particular, one can bound:

Ez[¢](D) Z/

(210,91 + 4?18, 9% + 890 + |912) dx, (1.10)
{r=1}
where (¢, r, 0) is the usual polar coordinate system on Minkowski space R3*!, v =
t +r,u =1t —r and dx denotes the usual integration measure on {t = const} slices
of R4+! (see also Section 2 for the o notation). Thus, the preservation of Ez[¢](¢)
and the growth in time of the weights in the expression (1.10) can be used to establish
polynomial decay in time estimates for the L norm of certain derivatives of ¢.

The above approach has been also implemented in the treatment of the wave equa-
tion (1.1) on the complement of a compact obstacle O in flat space, with suitable
boundary conditions imposed on the boundary of O. In [27,28], for instance, pointwise
polynomial decay rates were established for solutions ¢ to (1.1) on the complement
of a star shaped obstacle with Dirichlet boundary conditions, and this was achieved
with the use of the conformally Killing vector field Z and the radial vector field 9, as
multipliers for equation (1.1). Moreover, the use of d, as a multiplier for (1.1) yielded
the integrated local energy decay statement (1.4).

Another method for obtaining refined pointwise decay rates for solutions ¢ to (1.1)
on flat spacetime is the commutation vector field method, introduced by Klainerman:
By commuting equation (1.1) with the generators of the isometries of (RA*1 1) plus
the dilation vector fieldand the dilation vector field S:

S =10 +10, (1.11)

((¢, r) being the usual time and radius coordinates on Minkowski space), and using
the conservation of the £z energy norm (1.10) on (RA+1L ) together with a modified
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6 Page 12 of 194 G. Moschidis

version of the Sobolev embedding theorem due to Klainerman (see [21,22]), one can
attain a pointwise decay estimate for ¢(d > 3):

1 d—1
ol tobel S A+t —r) 27N A 41407 2B YE L, (112)

where [1, [, I3 > 0 are integers and &, 1, 1, is a weighted higher order energy norm of
the initial data for ¢ on {r = 0}. See [35] for more details on the commutation vector
field approach.

Notice that the t_% decay rate for |¢| in the region {r < 1} provided by (1.12)
guarantees that [¢(¢, x)| is integrable in ¢ in dimensions d > 3, and this fact is of
fundamental importance in the treatment of non linear variants of the wave equation
(1.1).

The aforementioned techniques have been also extended to the exterior of black hole
spacetimes, such as the Schwarzschild and very slowly rotating (i.e with |a| < M)
Kerr exterior spacetimes, see [1,5,8,9]. In these works, a variant of the conformally
Killing vector field Z of Minkowski spacetime was constructed and used, but this
construction came at a cost: Since Z is not a conformally Killing vector field on these
black hole spacetimes, decay estimates obtained in this way for solutions to (1.1) were
coupled with error terms in the near region of the spacetimes under consideration, and
these error terms carried weights growing in time.

In view also of the unavoidable presence of trapping in the near region of a black
hole spacetime, the error terms associated to the use of the modified Z vector field as
a multiplier for (1.1) required additional effort in order to be controlled. An essential
step towards controlling these error terms was the establishment of an integrated
local energy decay statement of the form (1.6), with the use of carefully chosen first
order multipliers for (1.1) capturing the red-shift effect near the horizon H and the
structure of the trapped set in the near region {r < 1} (these multipliers being equal
to 9, plus a lower order correction in the far away region {r > 1}). See [1,4,8-
10,13,38].

The above approach of using an adaptation of the Morawetz Z vector field and an
integrated local energy decay statement yielded 7~! decay estimates for solutions @
to (1.1) on Schwarzschild exterior spacetimes and # ~1+3(®) decay estimates on slowly
rotating Kerr exterior spacetimes, with §(a) — O asa — 0 (see [13]). In [24,25], Luk
was able to obtain improved AL decay estimates for ¢ in the near region of these
backgrounds by commuting the wave equation (1.1) with an analogue of the dilation
vector field S (1.11) of Minkowski spacetime.

Let us note at this point that the vector field approach has been effectively
applied in the case of non linear wave equations on a radiating spacetime which
is globally close to (R3*!, M): This can be viewed as a corollary of the monumen-
tal proof of the non linear stability of Minkowski spacetime in the context of the
Einstein equations, by Christodoulou and Klainerman (see [7]). These techniques
have also been applied in the study of non linear wave equations on black hole
spacetimes (see the work of Luk [26]). See also [31] for the treatment of the lin-
ear wave equation (1.1) on radiating spacetimes which are globally close to (R3+1, 1)
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(where, among other decay results, a 13 decay rate in the near region is estab-
lished).

The difficulties in extending the “old” approach of establishing decay estimates
for solutions to (1.1) on more general black hole spacetimes led the authors of
[11] to suggest a more flexible approach that does not involve multipliers and com-
mutators with weights growing in time. This is the approach that we will now
discuss.

1.4.2 The rP-Weighted Energy Method

The crux of the new method of obtaining decay estimates for solutions to (1.1) intro-
duced in [11] lies in the establishment of a hierarchy of estimates for r”-weighted
energies, 0 < p < 2, using as a multiplier an ”-weighted outgoing null vector field.
On Minkowski spacetime, this hierarchy of estimates takes the following form for any
solution ¢ to the wave equation (1.1) and any t; < 1, R > O:

/ r? 19, (r9)|* dvdo
{u=1)N{r=R)

+/ rPl (p|8v(r(P)|2 +2- p)|flag(rq>)|2) dudvdo
{ti<u<t}n{r=R}

< / rP 19, (r9)|* dvdo
{u=2)N{r=R)

+ / 7 (11800 = 1,9 dudo. (1.13)
{tisu<u}n{r=R}

In the above, u =t — r, v = t 4 r. For the o notation on the angular variables, see
Section 2. Moreover, the right hand side of (1.13) also controls the angular derivatives
of the radiation field of ¢ on future null infinity ZF, but we have dropped these terms
for simplicity. A similar expression is also valid on Schwarzschild spacetimes and
suitable perturbations, see [11].

The importance of the hierarchy (1.13) lies in the fact that the left hand side of
(1.13) contains a positive definite bulk term, while the “error” term in the near region
(namely the last term of the right hand side) does not carry weights growing in ¢.
Thus, combining (1.13) with the integrated local energy decay statement (1.6) and the
energy boundedness estimate (1.5), the authors of [11] were able to obtain uniform
polynomial decay rates for ra ¢ and 7 ¢ in terms of u.

A noteable aspect of this novel approach of [11] is that decay rates for ¢ are
obtained by repeatedly applying the pigeonhole principle on the positive definite bulk
term (i.e. the second term of the left hand side) controlled in (1.13). This is in contrast
to the older approach (described in the previous section), which yielded decay rates
for ¢ by establishing uniform bounds for 7-weighted energy norms of ¢ on suitable
hypersurfaces.

Moreover, the new method of [11] allows one to obtain the result of Luk ([25]),

namely to establish improved (i.e. t_%ﬂ) polynomial decay estimates for ¢ in the
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near region of Schwarzschild exterior: This was achieved by Schlue in [34], where it
was established that commuting (1.1) with the outgoing null vector field 9, (as well
as the generators of the isometries of Schwarzschild) leads to an improvement of the
p-hierarchy (1.13).2 In particular, it was established that higher order 8, and r !9,
derivatives of ¢ satisfy (1.13) for larger values of p. This better decay rate in » was then
translated into a better decay rate in u by using the expression of the wave equation
(1.1) as well as the pigeonhole principle argument of [11].

This novel approach has also been implemented in the case of non-linear wave equa-
tions: In [39,40], Yang established a small data global existence result for non-linear
(in fact, quasi-linear) wave equations on a certain class of asymptotically flat back-
grounds, using the techniques of [11] (see also [41]). In [2], Angelopoulos obtained
a small data global existence result for spherically symmetric solutions to a class of
semi-linear wave equations on extremal Reissner—Nordstrom backgrounds. A variant
of the r”-weighted energy method has also been effectively used in the case of the Ein-
stein equations themselves: In [14,20], the authors established an 7 -weighted energy
hierarchy, a proper tensorial analogue of (1.13), for radiating solutions to the Einstein
equations Ric(g) = 0 that approach the Schwarzschild exterior in the future. Notice
also that [14] utilised the r”-weighted energy method for the Einstein equations in the
scattering setting.

1.5 Statement of the Main Results

The present paper introduces a broad class of asymptotically flat spacetimes
(/\/ld“,g), d > 3, on which the techniques of [11] and [34] can be generalised.
See Section 3 for a more detailed discussion of the class of spacetimes under consid-
eration. Notice that this class of metrics includes spacetimes with non-constant Bondi
mass at null infinity, see e.g. [6,33], such as the dynamical vacuum perturbations of
Minkowski spacetime (see [7]). Moreover, spacetimes in this class are allowed to have
a timelike boundary 9;;,, M with compact spacelike cross-sections.

We will now proceed to briefly review the results established in the following
sections of the paper.

1.5.1 The rP-Weighted Energy Hierarchy in Dimensions d > 3

In this Section, all results will be stated on an asymptotic region N,y C M of a
general radiating asymptotically flat® spacetime (M, g). In particular, let (\* f fH, g),
d > 3, be a Lorentzian manifold diffeomorphic to R x [Rp, +00) X S?=1 for some
Ry > 0, on which a single (u, r, o) coordinate chart has been fixed. Assume that in
this chart g takes the form

2 Note also that [34] also deals with the case of higher dimensional Schwarzschild spacetimes.

3 Let us also remark that the results of this paper also hold on spacetimes which are asymptotically conic
instead of asymptotically flat. However, we will not pursue this issue further in this paper.
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g =—4 (1 _ M) | O(r_l_“)) du® — (4 + o(r“‘”)) dudr
r

2. (gsd_l + O(r_l)) + 0()dudo
+ 00 Ydrdo + O~ 2% dr?, (1.14)

where M (u, o) is a bounded and sufficiently regular function of u, o. Notice that
(Nay, g) is not in general globally hyperbolic.

We will extend the hierarchy (1.13) to (N, r» &) as follows (see the remark below
for explanation of the notation):

Theorem 1.1 Let Sy, Sz be two spacelike hyperboloidal hypersurfaces of (./\/‘ijf'H , 8),

d > 3, terminating at T, such that Sy C J(S1). Then for any 0 < p < 2, any

given) <M <a,0 <y < land R > 0 large, the following inequality is true for any
1

smooth function ¢ : Nyy — C (setting also ® = §2 - ¢, where 2 = (—det(g))# ):

/ P19, ®|* dv do
Szﬂ{rZR}

+/ (rplr_li?cfblz +max {(d —3),r %} rp_2|d>|2) dudo
S:N{r >R}

+f xe - (prv=18, 08 + @~ pyr? P
JH(SHNI=(S)N{rZR}

+max{(2 — p)(d — 3), r %} - rP*3|q>|2) dudvdo <., 5

sp,n,a/ rp|a,c1>|2dvdo+/ (71" ol
Sin{rZR} S:N{rZ2R}

+max{(d — 3), r 3} - rp_2|<D|2) dudo

_|_/ (rp|3q>|2 + rp_2|d>|2) dudvdo +/ Jﬁ“ (P)ns
JHENNI~(SHNir~R) SINUZR)

+/ xr - (P4 12 0,0 dududo. (1.15)
JH(ENNI~(S)N{r 2R}

In the above, the constants implicit in the < p, 5 notation depend only on p, M, § and
on the geometry of (N, &). The partial derivatives d,, 35 are considered with respect
to the cooordinate chart (u, r, o) and the notation 05 is explained in Section 2.

Remark Notice that the dudo volume form on the hyperboloidal hypersurfaces S;
degenerates as r — 400 when compared to dvdo. The notion of a spacelike hyper-
boloidal hypersurface terminating at Z™ is given in Section 3.1. For the notations on
vector field currents see Section 2.

For amore detailed statement of the above result, see Theorems 5.1 and 5.3 in Section 5.
We will also establish the following improved r”-weighted hierarchy for higher
derivatives of ¢:
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Theorem 1.2 With the notations as in Theorem 1.1, foranyk € N, any2k -2 < p <
2k, any given 0 < M < a and R > 0 large, the following inequality is true for any
smooth function ¢ : Ngy — C (setting also ® = 2 - ¢):

/ r”|8rV§fl<D|2dvdo+/ rPlr 8, vET @ dudo
SN{r>R) SN{r2R)

+/ xR - (r!’*]|a, vE o2
JHSHNT - (S)NirZR)

+ 2k — p)rp_l|r_180V§_1CI>|2) dudvds <y

k
< / P21, v @2 dvdo
~pN
b JZ;‘ SiN{r=>R) TS
k ‘ )
+Z/ (rp—z(k—f>|r—lacv§‘1<1>|2 +rp—2k|q>|2) dudo
i SiN{r=>R)
k . .
+Z/ rP=26=013) | dudvdo
= soni-Sanie~r)
k k
S
+ / Jo (VL onls + / XR
]z‘ Sin{rz R} wons S ]Z::' JH(ENNI~(S)N{r 2R}
(P IR2ED Y v (20,01 dudvdo. (1.16)

In the above,

ViplP = D> Rl el ol y ) (1.17)
Jit+i2t+j3=Jj

and the constants implicit in the S, n notation depend only on p, M\ and on the geometry

Of(Nafv g)

See Section 6 for a more detailed statement of the above result.

1.5.2 A t~! Polynomial Decay Estimate for Solutions to the Wave Equation ¢ = 0

In this section, we will be concerned with obtaining results for (1.1) on the whole space-
time (M, g) (and not merely the asymptotic region N ). Provided that an integrated
local energy decay statement (possibly with loss of derivatives) holds for solutions
to ;¢ = F on a spacetime (MI*1 g), d > 3, with g asymptotically of the form
(1.14), we will establish polynomial decay rates for ¢ with respect to a hyperboloidal
foliation of M.
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In particular, let (./\/ld'H, g), d > 3, be a Lorentzian manifold with possibly non-
empty boundary d M, which can be split as

oM = 3imM D Opor M, (1.18)

where 9y, M is smooth and timelike and dp,, M is piecewise smooth and null. Assume

also that (M, g) is globally hyperbolic as a manifold with timelike boundary, which

means that the double (./\;ln-m, g) of (M, g) across 9, M is globally hyperbolic.
Suppose that (M, g) satisfies the following geometric assumptions:

(GM1) Asymptotic flatness: (M, g) is asymptotically flat in the sense that there exists
an open subset N,y C M such that each connected component of N s is
mapped diffeomorphically on R x (Rp, +00) x S¢~! through a coordinate
chart (u, r, 0), and in this coordinate chart g has the form (1.14).

(GM2) Existence of a well behaved time function: There exists a function? : M — R
with level sets which are spacelike hyperboloids terminating at future null
infinity, such that on each component of AV, the difference |7 —u| is bounded,
and the foliation {r = const} in the region M\N, is sufficiently “regular”
(see Section 8 for the precise relevant assumptions on 7).

In fact, the precise description of Assumptions (GM1)—(GM2)is more complicated,
and requires the splitting of these assumptions into a larger number of statements: see
Assumptions (G1)—(G13) of Sections 7.1 and 8.1.1.
For convenience, we define the globally timelike vector field N sothat N = grad (7)
on M\N;r and N = 9, on each connected component of the region N,¢ N {r >> 1}.
Suppose also that on (M, g) the following integrated local energy decay estimate
holds:

(ILED1) Integrated local energy decay with polynomial loss of derivatives: There
exists an integer k > 0, such that for any solution ¢ to J¢ = F with
suitable boundary conditions on 9;;,, M,anym € N,0 < 1] < 15,1 > 0
and R > 0:

m m
Z/ Vi + Z/ IV 2
j=0 {tist<t)n{r<R} j=I {11 <1<t2)N3jm M

m—+k—1

<Cun(R) D / I (N7 )it
S {t
j=0

=11}

m—1

+Cpn Z/ r N (v gyt
=0 {u<t=uin{r=R}

m+k—1

+Cun(R) / r VIR, (1.19)
=
j=0

T <I<T}
where C,; n(R) depends only on m,N,R and the geometry of (M, g).
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See Section 8.1.2 for a more detailed description of Assumption (ILED1). For
an alternative to the Assumption (ILED1), see the remarks in Section 8.1.2 (and in
particular (8.21) and (8.22)).

On any spacetime (M, g) satisfying the above assumptions we will establish the
following decay statement for solutions to (1.1):

Theorem 1.3 Ler (M9HL, g) satisfy the geometric assumptions (GM1) and (GM?2),
and the integrated local energy decay assumption (ILEDI), and let t and N be as
above. Then the following decay estimates hold for any 0 < § < 1, any t > 0 and
any solution @ to the inhomogeneous wave equation U, ¢ = F with suitably decaying
inital data on {t = 0} (and satisfying suitable boundary conditions on d;;;, M ):

_ C
/{- }JMN (@F" < 2 E2H910) + PPN FI(v), (1.20)
=1
C
sup r72 o = SR e2Rd[9)(0) + PRI F)() (1.21)
(=1}
and C
sup =1 o7 < —E204191(0) + FHEAFI(D. (1.22)

{i=1)

Furthermore, in case the vector field T = 9, in the coordinate chart (u, r, o) in the
asymptotically flat region {r > 1} of M satisfies for some (small) 8y > 0 and any
k e N:

Lk g = 0(u™) {O(r_l_“)dvdu + 0(r)dodo + O(1)dudo
+O(Ydvdo + O~V )du?® + O(r_z_“)dvz} (1.23)

and the second term of the right hand side of the integrated local energy decay estimate
(1.19) is replaced by

m—1
Cin.n Z/ ul=0r N (NT @)t (1.24)

=0 /lusi=nnir=R}

then the §-loss in the decay estimates (1.20) and (1.21) can be removed:

/{ ) }Jlf’ (@) < %ezﬂk[m](()) + FERA[F)(T) (1.25)
=t
and c

sup 472 - o] < S £25419)(0) + FHI[F)(0). (1.26)

{i=1}

See Theorem 8.1 (and the remark below it) in Section 8 for a more detailed statement
of the above result and the definition of the weighted energy norms of ¢ and F in the
right hand side of (1.20), (1.21) and (1.22).
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Remark Let us remark that the initial weighted energy norm on the hyperboloid
{t = 0} in the right hand sides of (1.20)—(1.26) can be readily replaced by a similar
weighted norm on a hypersurface ¥ terminating at spacelike infinity (e.g. a hyper-
surface which in the asymptotically flat region is of the form {f = const}). In that
case, the source spacetime energy norms F[F]in (1.20)—(1.26) are replaced by similar
weighted spacetime norms of F over the region J*(X) N {f < 1J.

1.5.3 An Improved % Polynomial Decay Estimate for Solutions to the Wave
Equation (09 = 0 in Dimensions d > 3

Finally, we will also be able to establish improved polynomial decay rates for ¢,
under some additional restrictions on the spacetimes (M, g). Let (M, g), satisfy the
geometric assumptions (GM1) and (GM2) of the previous section, as well as the
integrated local energy decay assumption (ILED1). Let also 7 and N be as in the
statement of Theorem 1.3.

Assume furthermore that (M, g) satisfies the following two geometric conditions:

(GM3) There exist two smooth vector fields 7', K (not necessarily distinct) on (M, g)
such that:

1. di(T) =dit(K) =1

2. The span of {T, K} is everywhere timelike on M\H™ (where H ™ is the future
event horizon of (M, g), which is required to be a subset of 9 M,,).

3. Inthe coordinate chart (i, r, o) on each connected component of the region r > 1,
T =9, and K = T + & (where ® is the generator of a rotation of S?~!, allowed
to be identically 0).

4. The vector fields T and K are almost Killing in the sense that there exists a small
80 > 0 such that their deformation tensor satisfies the O (%) decay estimates
(9.5) and (9.6).

(GM4) The span of {T, K} is tangential to the future event horizon H™ of (M, g) (if
non-empty). Moreover, H™ is non-degenerate with respect to K, in the sense
that K satisfies g(K, K) = 0and d (g(K, K)) # 0 on H*+.*

(GM5) The constants in the elliptic, Sobolev and Gagliardo—Nirenberg type estimates
on the leaves of the foliation {f = t} stated in Section 9.1 can be chosen to
be independent of T > 0.

Remark Assumption (GM5) holds automatically on spacetimes (M, g) which are
near stationary or time periodic.

Again, the precise description of Assumptions (GM3)—(GMS5) is actually more com-
plicated, and will require the splitting of these assumptions into a larger number of
statements: see Assumptions (EG1)—(EGS8) in Section 9.1.

We will also assume that the following stronger form of Assumption (ILED1) holds:

(ILED2) Integrated local energy decay with polynomial loss of derivatives: There
exists an integer k > 0, such that for any solution ¢ to LJ¢ = F with

4 Hence, K should be viewed as the analogue of the Hawking vector field of the Kerr spacetime.
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suitable boundary conditions on 9;;,, M, anym € N,0 < 11 < 15, M > 0,
R > 0 and any integers i1, i > 0 we can bound:

m m
>/ viaktor+ Y [ VI (T K2
j=0 {u<t<uin{r<r} j=1 {

T <T<T}N3im M

m+k—1
< Conini®) Y /{ AT
j=0 =11

m—1
+ Cnniiri 2 / _
j=0 {ustzuin{r=R

7|70~ N (NI T K2 0y
)

m+k—1
+ Coninin(R) D / PNV K2 )P, (1.27)
—o J{u=r=u}

See Section 9.1 for a more detailed description of Assumption (ILED2)
For spacetimes (M, g) as above, we will infer the following improved decay result:

Theorem 1.4 Let (M4t g) satisfy the geometric assumptions (GM1), (GM2),
(GM3), (GM4) and (GM5) and the integrated local energy decay assumption (ILED?2),
and let t and N be as above. Then for any integer 1 < g < L%J, any 0 < € K 3§,
any T > 0 and any solution ¢ to the inhomogeneous wave equation 1,9 = F with
suitably decaying intial data on {t = 0} (and satisfying suitable boundary conditions
on 9;im M) the following estimates hold:

“+00
£99[g)(x) + / 51D [0](s) ds

T

Sm,a .E—ZQ'FC Sgl’(quk,f)o)[(p](o) + fs(q,k,m,ﬁo)[F](.[) (128)

and
Eqr i [91(0) S THESTEW[01(0) + FL N IFI(0. (129)

Inthe above, 56(2’(1) [¢](x) is the non degenerate L2 normon {t = 1) of all derivatives of
¢ of order q, with r* weights near infinity, and 5;:’328[@](1) is similar to EE(Z’q) [¢](T)
but with a degeneracy on H™. See Section 9 for a more precise definition of these
norms.

Moreover, the following pointwise decay rates for ¢ are established:

1. In case the dimension d is odd, we can bound.:

sup [@] Se T2 V/E0al91(0) + Fl kO [F](v), (1.30)

{t=1}
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and for any integer m > 1:

_d+l
sup [V"6|, e T /Enp2.al@10) + FiLHOFI(0. (131

{i=1}

2. In case the dimension d is even, for any integer m > 0 we can bound:

d
sup [V, Sme T2/, 4[910) + FLS IR0, (132)

{t=1}

For the definition of the weighted energy norms of ¢ and F appearing in the right
hand sides of the inequalities above, see Section 9.

See Theorem 9.1 and Corollary 9.2 in Section 9 for more details.

Remark Let us remark at this point that in the case the integrated local energy decay
statement in Assumption (ILED1) does not lose derivatives (i.e. k = 0), we can relax
the assumption that the deformation tensors of 7 and K decay like 7% (i.e. (9.5) and
(9.6)) by replacing it with a uniform gp-smallness assumption (i.e . (9.42)— (9.44))
for some ¢y > 0. In this case, we can still obtain (1.28), (1.32), (1.29) and (1.30),
at a cost of an O (gp) loss in the exponent of T in all these inequalities. Thus, in the
absence of trapping, the r”-weighted energy method of [11] is robust enough to yield
the full “improved” polynomial hierarchy on spacetimes that do not settle down to a
stationary background. See also the remark below Theorem 9.1.

We should also notice that in the case when the vector fields 7 and K are exactly
Killing, the proof of Theorem 9.1 yields that for any solution ¢ to J¢ = 0 with
compactly supported initial data and any integer k > 0:

\T*p| < 7717%. (1.33)

Therefore, using the frequency cut-off techniques of [12] or [29], from (1.33) (and the
corresponding statement for decay of the energy of T on the foliation {f = t}) we
can deduce that for any wg > 0, @5, decays superpolynomially in 7 (where ¢>, is
the part of ¢ supported in the frequency range |w| > wq with respect to the 7 variable
in a coordinate chart where 7' = 7).

Finally, as before, we should note that the initial weighted energy norm on the
hyperboloid {f = 0} in the right hand sides of (1.28)—(1.32) can be readily replaced
by a similar weighted norm on a hypersurface ¥ terminating at spacelike infinity. In
that case, the source spacetime energy norms F[F] in (1.28)—(1.32) are replaced by
similar weighted spacetime norms of F over the region J7(Z) N {f < t}.

1.6 Applications of the r?-Weighted Energy Method

We will now discuss some applications of Theorems 1.1-1.4.
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1.6.1 The Friedlander Radiation Field for Solutions to the Wave Equation 1J¢ = (

On any product Lorentzian manifold of the form (Mt ¢) = (R x S, —dt* +
g),5 where (Sd, g) is an asymptotically Euclidean Riemannian manifold for d > 2,
Friedlander [17] has established that for any smooth solution ¢ to the wave equation
Ug¢ = 0 on (M, g) with compactly supported initial data on {t = 0}, r ¢ has
a well defined and smooth limit on future null infinity. This limit is called the future
radiation field of ¢. In order to deduce this result, Friedlander utilised the Penrose
compactification method.

As a soft corollary of the hierarchy of r”-weighted estimates (1.15), we will extend
the result of Friedlander to more general asymptotically flat spacetimes (M4t!, g),
not necessarily of product type, with d > 3:

Theorem 1.5 Let (M1, g), d > 3, be a Lorentzian manifold with with the asymp-
totics (1.14), in the sense that each connected component of an open subset Ny¢ apq of
M is mapped diffeomorphically on R x (Rg, +00) x S~ through a (u, r, o) coor-
dinate chart, in which g has the form (1.14). Then for any smooth solution ¢ to the
inhomogeneous wave equation U, ® = F on (M, g) with (9, 39)|(;=0) and F suitably
decaying in r, the limit

( lim :z-cp) (u,r,0) = d7+(u, o), (1.34)

r—+00

d—1

where Q = r 2 (l + 0(}"—1)), exists on all connected components of N, .M and
defines a smooth function on R x S?=1. Moreover, the following limit exists and is

finite for all integers ji, ja, j3 > 0

lim (rj‘ 3! afaf(m)) < 400, (1.35)
r—40o0

where the coordinate derivatives 9, o and 0, are considered with respect to the

(u, r, 0) coordinate system in the region {r > 1}.

This result will be established in Section 7. For the required decay rates for the
initial data of ¢ and the source term F, see the statement of Theorem 7.1.

Remark Notice that Theorem 1.5 applies also on spacetimes (M, g) where the decay
rate of g near the future null infinity does not allow for a smooth conformal compact-
ification of the spacetime. Let us also notice that we actually expect the limit (1.35) to
be identically O when j; > 1 and ¢ solves [J¢ = 0 with compactly supported initial
data, but we do not establish this fact here.®

The above result will be established in Section 7. For the required decay rates for
the initial data of ¢ and the source terms F', see the statement of Theorem 7.1.

5 As usual for product Lorentzian manifolds, r will denote the projection onto the first factor of R x S.
6In case (M, g) admits a conformal compactification near Zt, the stronger statement
limy— 400 (r2j1 3',/1 8('!2 BL{3 (QKP)) < 400 is known to hold for solutions ¢ to [J¢ = 0 with compactly
supported initial data.
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1.6.2 Logarithmic Hyperboloidal Energy Decay for Solutions to the Wave Equation
0¢ = 0 on a General Class of Stationary Asymptotically Flat Spacetimes

As described before, the results of the present paper have been used in our [29] to
establish the following result:

Theorem (Corollary 2.2 of [29]). Let (M9*!, g), d > 3, be a globally hyperbolic
spacetime with a Cauchy hypersurface X.

Assume that (M, g) is stationary, with stationary Killing field T, and asymptotically
Sfat. If M contains a black hole region bounded by an event horizon 'H, assume that H
has positive surface gravity and that the ergoregion (i.e. the set where g(T,T) > 0)
is “small” (see [29] for the precise statement of these assumptions). Finally, assume
that an energy boundedness statement is true for solutions to (19 = 0 on the domain
of outer communications D of M.

It then follows that any smooth solution ¢ to [, ¢ = 0 on M with suitably decaying
initial data on a Cauchy hypersurface ¥ of M satisfies on D for any integer m > 0:

= Cm m
Ehyp(t) E m (E;ly;(O) + Ew,hyp(o)) . (136)
0g

In the above, t > 0 is a suitable time function on J*(X) N D with hyperboloidal
level sets, satisfying T (t) = 1, and Epy, (1) is the energy flux of ¢ with respect to the
level sets of the time functiont. E }(f;; (0) is the energy of the first m derivatives of ¢ at
{t = 0}, while E,(0) is a suitable weighted energy of ¢ at {t = 0}. The constant C on
the right hand side depends on the geometry of (D, g) and the precise choice of the
function t, while in addition to that, C,, also depends on the number m of derivatives
of ¢ in EM™(0).

For a more detailed statement of the above result, see [29].

1.6.3 Polynomial Decay for Solutions to the Wave Equation L1¢ = 0 on the Exterior
of Subextremal Kerr Spacetimes for |a| < M

In the next three sections, we will introduce some examples of spacetimes (M, g)
which satisfy the assumptions of Theorems 1.1-1.4.

Our first such example will be the exterior of a subextremal Kerr spacetime
(Mg, m, 8a.m) With parameters lying in the full subextremal range |a| < M. Notice
that this spacetime satisfies all the geometric assumptions of Theorems 1.1-1.4. In fact,
the form of the assumptions of Theorem 1.4 was motivated by the geometry of the
subextremal Kerr family. In [10], the authors have established an energy boundedness
and integrated local energy decay statement for solutions to (1.1) on (Mg m, 8a.m)-
As already noted in [10], by applying Theorems 8.1 and 9.1 one can thus readily
upgrade these results to polynomial decay estimates for solutions to (1.1), and there-
fore establish Corollary 3.1 of [10], which we state here with the notation of [10]:

Corollary (Corollary 3.1 of [16]) Let (M. m, ga.m) be the exterior of a Kerr black
hole spacetime of mass M and angular momentum a, such that |a| < M. Let X be a
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smooth spacelike hypersurface of (Mu m, 8a,m) intersecting transversally the future
event horizon H* and terminating at fututre null infinity T+. Let also S denote the
image of Yo under the flow of the stationary Killing field T of (Mu. M, 8a.m) (see
[16]), and let N be a globally timelike, future directed and T -invariant vector field on
M. m coinciding with T in the region {r > 1}.

Then, for any § > 0, there exists a constant C = C(a, M, io, d) > 0 such that for
any smooth solution ¢ to the wave equation (1.1) on J+(2~30) C (Mg ms 8a.m) With
suitably decaying initial data on X the following energy decay estimates hold:

/ JY(@nl < C-ET?, (1.37)

Xr

/ JY (Nl < € EvH, (1.38)
P

Moreover, the following pointwise decay estimates hold:

1

supr - |¢] < CVE 172, (1.39)
£,
sup|¢| < CVE -t2 (1.40)
£,
and
sup (|N¢| +|V59l) < CVE -2 (1.41)

PR

In the above, E denotes a suitable higher order weighted energy norm of the intial
data of ¢ on Xy, and is not necessarily the same quantity in all of the above estimates.

See [16] for more details.

Remark Notice that the slowly rotating 4 4+ 1 dimensional Myers—Perry spacetimes
satisfy all the geometric assumptions of Theorem 1.4. Therefore, in view of the inte-
grated local energy decay estimate established in [23], Theorem 1.4 implies that any
solution ¢ to (1.1) on a slowly rotating 4 4+ 1 dimensional Myers—Perry spacetime
with suitably decaying initial data satisfies a 7~>+® pointwise decay estimate.

1.6.4 Improved Polynomial Decay on Radiating Uniformly Small Perturbations of
Minkowski Spacetime

For our second example of a spacetime satisfying the assumptions of Theorems 1.1-
1.4, we will need to introduce a definition: We will define a metric g on RItL g >3,
to be a radiating uniformly small perturbation of Minkowski spacetime if there exists
a (small) &g > 0 and an R > 0 such that, in the (u, r, o) coordinate system on R9+!
in the region {r > R}, g is of the form (3.3) for some 0 < a < 1, and moreover:

e For any integers m, m> > 0 we have the global bound:

sup [L7'V2(g = Mle Simymy o(1+ )~  min{1, Ju]' =1} (1.42)
RA+1
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e In the region {r > R} we can estimate for any m > 1 in the (u, r, 0) coordinate
system:

Mg = Op(eo min{1, [u|' ™" N{O G " drdu + O(r)dods + O(1)dudo

+ 00 Ydrdo + O~ HYdu? + 0(r—Ydr?). (1.43)
In the above, T is the vector field 9; in the Cartesian coordinate system (, x 1., xd)
on R4*! ¢ is the usual Euclidean metric on R4*+! and V, is the flat connection on
R9*! Notice that if go is smaller than an absolute constant, 7 is everywhere timelike
and furthermore (R4*!, ) can not contain any trapped geodesics. In fact, if &g is
small enough, the 9,.-Morawetz current of Minkowski spacetime (combined with the
estimates of Section 4 of the present paper) yields an integrated local energy decay
estimate of the form (1.19) without loss of derivatives. Furthermore, the rest of the
geometric Assumptions of Theorems 1.1-1.4 are satisfied, except for the assumption
on the 7% decay of deformation tensors of 7 and K which is replaced by a uniform
go-smallness assumption (see the remark below Theorem 1.4).

For such a spacetime (R?*!, g), we will fix S ¢ R*! to be a smooth spacelike
hypersurface of (R?*!, ¢) which terminates at Z*, and let 7 : R*! — R be defined
by the condition T'(f) = 1 and 7|g = 0.

One can deduce from [7] that dynamical solutions of the vacuum Einstein equations
arising from initial data which are close to the ones for Minkowski spacetime are
included in this class.

The following pointwise decay estimate for solutions to the wave equation on
radiating uniformly small perturbations of Minkowski spacetime is a straightforward
application of Theorems 1.3 and 1.4:

Corollary Let (Rt g), d > 3, be a uniformly small perturbation of Minkowski
spacetime, in the sense that for some ¢y > 0 and R > 0, g is of the form (3.3) in the
region {r > R} and (1.42) and (1.43) hold. Letalso t : (R*!, g) — R be constructed
as above. Then, provided € is smaller than an absolute constant, for any solution ¢
to the wave equation (@ = 0 on (R ¢) and any T > 0 we can bound

sup 9] < 13O /8 4[9]1(0) (1.44)

=

and, for any integer m > 1:

sup [V, S v T O /8 10 (0). (1.45)
{i=1)

In case the following stronger assumptions on the deformation tensor of T hold for
some 8o > 0 and any my1 > 1, my > 0 in place of (1.42) and (1.43):

sup [rL7 V2 (g — Mo Spnyomy uf! 770 (1.46)
Rd+1
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and in the region {r > R} for anym > 1:

Mg = Op(u' )0~ " drdu + O(r)dods 4+ O(1)duds
+0r™Ydrdo + O(r~Ydu® + 0(r~2"%)dr?}, (1.47)

then (1.44) and (1.45) can be upgraded to

sup 19| < v 1/E0.4[91(0) (1.48)

{i=1}

and, for any integer m > 1:

Sup V"0l ST \/Epi2.al91(0). (1.49)

{i=}

For the definition of the initial energy norms &y 4[91(0) and E,42.4[?1(0) on the
hypersurfaces {t = 0} (which can also be replaced by norms on {t = 0}), see Section
9.2.

Remark Notice that the above corollary extends a recent result of Oliver [31].

1.6.5 Improved Polynomial Decay on Dynamical, Radiating Black Hole Spacetimes

A final example of a class of spacetimes satisfying the assumptions of Theorems
1.1-1.4 will concern the exterior region of black hole spacetimes dynamically set-
tling down to a subextremal Kerr spacetime. Here, we will restrict ourselves only to
spacetimes (Mg, &) (Where Mg, has the differentiable structure of the Schwarz-
schild exterior) settling down to the Schwarzschild exterior spacetime (M, gar) for
some M > 0 at a sufficiently fast polynomial rate. In particular, we will assume that
we can fix a double null foliation on (Mg, g) such that the components of g with
respect to this foliation approach the components of the Schwarzschild metric gy at a
sufficiently fast polynomial rate towards “timelike infinity”. This class of spacetimes
includes, in particular, the radiating spacetimes constructed in [14], which approach
the Schwarschild metric at an exponential rate. We will not provide more details of
this setup here, but instead we will refer the reader to [14]. The reason for this restric-
tion is that it is straightforward to check (essentially without calculation) that these
spacetimes (Mg, ) satisfy the assumptions of Theorems 1.1-1.4 (we will omit the
details).

On spacetimes (M., g) as above, the energy current yielding the integrated local
energy decay statement for the Schwarzschild exterior (Mg, gy) constructed in
[8], combined with the estimates of Section 4 of the present paper and the fast rate at
which g approaches the Schwarzschild metric g7, imply that an integrated local energy
decay statement of the form (1.27) also holds on (M .y, g). Furthermore, (Mg¢p, g)
also satisfies the rest of the geometric assumptions of Theorem 1.4. Therefore, as an
application of Theorem 1.4, we obtain the following result:
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Corollary Let (Mgcp, g) be a radiating spacetime approaching (Mscn, gm) in the
future at a sufficiently fast polynomial rate (in the sense described above). Let also
f: Msen — R be a function with spacelike level sets intersecting H™ transversally
and terminating at I, such that T(f) = 1 (where T is the Schwarzschild stationary
Killing field). Then for any solution ¢ to [, ¢ = 0 on (Mscy, g) with suitably decaying
initial data on a Cauchy hypersurface, the following pointwise decay estimates hold:

sup |¢] e T2 V/E[91(0) (1.50)

{i=1}

and for any integer m > 1:

sup [V"0| < T2/ Enpal€1(0). (1.51)

{=1}

For the definition of the initial energy norms Ey[9](0) and &,,12[9]1(0) on the hyper-
surfaces {t = 0} (which can also be replaced by norms on a Cauchy hypersurface),
see Section 9.2

Remark We should notice that the spacetimes constructed in [14] are only C’ on the
future event horizon H* for some sufficiently large /, but not C*°. However, Theorem
1.4 still applies in this case, and the above Corollary holds provided the integer m
in (1.51) is restricted to lie below some constant C (/) depending on the order of
differentiability of g on H+.

1.6.6 Expected Applications in the Case of Non-linear Wave Equations and the
Einstein Equations

As we mentioned in Section 1.4.2, the rP-weighted energy method of [11] has already
been applied to the study of solutions to non-linear wave equations on backgrounds
close to Minkowski spacetime (]R3+1, M). In particular, in [40], Yang established the
global existence of small data solutions to quasilinear wave equations satisfying the
null condition on non-stationary backgrounds (M, g) which are C L_close to (R3+1, 1)
and approach (R3+!, 1) towards Z.

We expect that the estimates established in Sections 5-9 are robust enough to be
generalised to the case of small data solutions to systems of quasilinear wave equa-
tions satisfying the null condition on general radiating asymptotically flat spacetimes
(M, g) satisfying Assumptions (GM1), (GM2), (GM3), (GM4), (GM5) and the inte-
grated local energy decay assumption (ILED2). This would serve as an extension of
the results of [40] on this much broader class of spacetimes which are not necessarily
globally close to (R3*!, M) (and equipped with a metric g decaying to M at a weaker
rate in a neighborhood of ZT), and moreover only satisfy an integrated local energy
decay statement with loss of derivatives.

In [20] and [14], the techniques of [11] have been extended to the case of the vacuum
Einstein equations

Ric(g) =0, (1.52)
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establishing an r”-weighted hierarchy of estimates for the curvature components of
dynamical solutions to (1.52) approaching the Schwarzschild exterior in the future.
In view of the properties of the Kerr exterior spacetime, the asymptotic dynamical
behaviour of solutions to (1.52) arising as small perturbations of Minkowski space-
time, established in [7], and the decay estimates established for the linearised vacuum
perturbations of Schwarzschild exterior in [15], it would be reasonable to expect that
a proof of the well-known subextremal Kerr exterior stability conjecture (see [15])7
would also establish that all vacuum small perturbations of the subextremal Kerr exte-
rior spacetime satisfy Assumptions (GM1)—(GM5) and (ILED2). For this reason, we
expect the results of Sections 5-9, suitably adapted according to [14,20], to be relevant
to the ongoing research aimed at establishing the Kerr exterior stability conjecture.

1.7 Outline of the Paper and Technical Comments

In this section, we will describe briefly how the current paper is organised and we will
sketch the difficulties arising in the proof of the main statements. In particular, we will
point out the new difficulties that appear in comparison to [11,34]. The reader might
find it helpful to return to this section after viewing the detailed setup of the Theorems
in Sections 4-9.

The geometry of the asymptotically fat region ¢ of the spacetimes (M, g) under
consideration is introduced in Section 3. In this region, a function # with hyperboloidal
level sets is constructed. It is also shown that in Naf, the wave operator takes the form:

Q00 =—(14+007"") - 8,0/Q0) + 1A, 4 04-1(29)

_ wr—z - (QO) + Err(Q), (1.53)

where Q = r T (1+ 0@ ")) and the “error” terms Err(2¢) have the form (3.15).
Notice that the particular choice of the factor €2 serves to eliminate some terms in the
expression for Err(2¢) which would be “problematic” in the derivation of the r”-
weighted energy estimates (1.15) and (1.16) (such terms would appear, for instance,

if one substituted 2 by r% in the case when 9, M # 0 in (1.14))
In Section 4, we establish 9,-Morawetz and J -energy boundedness estimates of
the form

/ poin (|a<p|2 + r—2|<p|2) <n / Il (@)t
{u<r<uln{r=R} {r=u}N{r=R}

{u=r=uin{r~R} {u=r<uin{r=R}

+/ rl (|avcp|2+ |r_136¢|2+r_2|¢|2) (1.54)
{u<t<u}n{r=R}

7 Provided, of course, that the conjecture is true!
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and

/ I (@) <y / O
{f=11}N{r>R} {f=uln{r=R}

+/ (|a<p|2 +r_2|<P|2)
{u<r<u}n{r~R}

+/ rl+n||:|(p|2
{tist<tu}n{r=R}

+/ — (|av<p|2 +1r "oy 02 +r—2|<p|2) (155
{u<i<u}n{r>R}

respectively. We notice that the last terms of the right hand sides of (1.54) and (1.55)
appear due to the radiating asymptotics of (1.14), and can be completely dropped in
the case the spacetime is non radiating or when the radiating components of (1.14)
satisfy some special monotonicity conditions (which are satisfied in the case when
dyM < 01in (1.14) and the spacetime is spherically symmetric).

In Section 5, the r”-weighted energy hierarchy (1.15) is established. This is
achieved by multiplying the expression (1.53) by 79, (2¢) and then integrating by
parts (in the top order terms) over a region of the form {t; < 7 < 1} (athough
regions of different “shape” are also treated). In this integration by parts proce-
dure, the error terms occuring from the Err(2¢) summands are controlled with
the help of the already positive definite terms in the resulting expression, after
adding to it the estimates (1.54) and (1.55), using also a Hardy-type inequality for
the zeroth order terms. It is in this procedure that the elimination of the “worst”
terms in Err(2¢), resulting from the precise choice of the factor @ in (1.53), is
important.

In Section 6, the higher order r”-weighted energy hierarchy (1.16) is established.
This is achieved by commuting equation (1.53) with d,, 7 ~' 9, and »~'4,,, and repeat-
ing the proof leading to (1.15), after noticing that the first two commutation vector
fields lead to the appearence of some new bulk terms with favorable sign. Notice
that in this procedure, multiple integrations by parts are performed also on lower
order terms, in order to guarantee that (1.16) is valid even at the (upper) endpoint
p =2k.

In Section 7, Theorem 1.5 concerning the existence of the Friedlander radiation
field is formulated and established with the use of the boundary terms controlled by
the r?-weighted energy hierarchy (1.16) (for 2k — 1 < p < 2), combined simply with
the fundamental theorem of calculus. As a corollary of Theorem 1.5, it is shown the
L? norm of certain derivatives of the radiation field of ¢ on Z* are also controlled by
the right hand side of (1.15) and (1.16).

In Section 8, the geometric conditions and the integrated local energy decay assump-
tion (consistent with the right hand side error term in (1.54)) on the spacetimes
(M, g), on which Theorem 1.3 (concerning the 7~ decay estimates for ¢) applies,
are introduced. The proof of Theorem 1.3 then follows by applying the pigeonhole
principle on the positive bulk terms of the hierarchy (1.15), as was first done in [11].
Notice that, since no energy boundedness statement is a priori assumed, in order to
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obtain the final decay estimate in this procedure, an energy boundedness estimate
with loss of derivatives (and right hand side error terms consistent with (1.55)) is
established.®

Finally, in Section 9, the extra geometric conditions on (M, g), required for Theo-
rem 1.4 (concerning the ¢ -4 decay estimates for ¢) to hold, are formulated. The proof
of Theorem 1.4 then follows by repeated applying the pigeonhole principle argument
on the higher order hierarchy (1.16) for higher 7 and x - K derivatives of ¢ (where
X 1s a suitable compactly supported cut-off function). In each step in this procedure,
the wave equation is used to substitute derivatives of ¢ tangential to the hyperboloids
{t = const} with T and y - K derivatives of ¢, in a fashion similar to [34]. In the
end, however, the wave equation is used again to transform decay estimates of 7" and
X -K derivatives of ¢ into decay estimates of certain elliptic operators on {f = const}
applied on ¢, and then the elliptic estimates of Section B of the Appendix yield decay
estimates for the energy of all higher order derivatives of ¢. Pointwise decay estimates
for ¢ then follow by applying the Gagliardo—Nirenberg type estimates of Section
9.8. Thus, our method for extracting ~ 2 decay estimates differs substantially from

the method implemented in [34] (which yielded t_’%ﬁ decay estimates). For a more
detailed sketch of the proof of Theorem 1.4, see Section 9.4. Let us remark that the
elliptic estimates of Section B are also used to control error terms arising from the
commutations with the truncated vector field X -K.

2 Notational Conventions
2.1 Conventions on Constants and Inequality Symbols

We will use capital letters (e.g. C) to denote “large” constants, namely constants that
appear on the right hand side of inequalities, and hence can be replaced by larger
ones without affecting the validity of the inequality. Lower case letters (e.g. ¢) will
be used to denote small constants (which can similarly freely be replaced by smaller
ones). Moreover, the same character might be used to denote different constants even
in adjacent lines or formulas.

We will not keep track of the dependence of constants on the specific geometric
aspects of our spacetime, except for some very specific cases. However, we will always
keep track of the dependence of all constants on each parameter that has not been fixed.
Once a parameter is fixed (which will be clearly stated in the text), we will feel free
to drop the dependence of constants on it.

The notation f; < f> for two real functions fi, f> will as usual mean that there
exists some C > 0, such that f1 < C - f>. Of course, it should be stated clearly in
each case whether this constant C depends on any free parameters. If nothing is stated
regarding the dependence of this constant on parameters, it should be assumed that it
only depends on the geometry of the background under consideration.

8 Notice, however, that this energy estimate can yield a “true” energy boundedness estimate only in the
case where the spacetime (M, g) is non-radiating or when the radiating components of (1.14) satisfy some
special monotonicity conditions.
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We will also write f1 ~ f>if f1 < f2and f, < fi. Moreover, f] < f> will mean
that the quotient % can be bounded from above by some sufficiently small positive
constant, the magnitude and the dependence of which on variable parameters will be
clear in each case from the context. Furthermore, for any function f : M — [0, +00)
defined on some set M, we will denote with {f > 1} the subset { f > R} of M for
some constant R > 1.

For functions fi, f> of some variable x taking values in a semi-infinite interval
[a, +00), writing f1 = o( f>) will imply that J1 can be bounded by some continuous
function 4 : [a, +00) — R, suchthath(x) — Oasx — +o00. Again, the dependence
of this bound % on any free parameter will be clear from the context.

2.2 Convention on Connections and Volume form Notations

We will frequently denote the natural connection of a pseudo-Riemannian manifold
W, hy) as VAN or v, > and the associated volume form as dhps. If hps is Rie-
mannian, we will denote the associated norm on @, ,eN ()TN @™ T*N) with
| ’ |h N ]

For any integer j > 0, (V") or Vj o Will as usual denote the higher order
operator

Vi Vi - 2.1
— —_———

j times
Notice that the above product is not symmetrised. We will always use Latin characters
to denote such powers of covariant derivative operators, while Greek characters will
be used for the indices of a tensor in an abstract index notation.

Example Under these conventions, for a (n, m)-tensor k and a function u on a pseudo-
Riemannian manifold (N, 4 r), the quantity

Bl--'ﬁm
o...0p n—+m
kﬁlmﬁm ' (VhN ) u

Q... Oy

denotes a contraction of k with the higher order derivative V}'l’:‘/m u of u, where the
metric h s was used to raise the first m indices of V}'[’"’m u. Notice that the abstract

index notation used above is independent of the choice of an underlying coordinate
chart for the indices.

2.3 Conventions on Notations for Derivatives on S¢~1

In this paper we will frequently work in polar coordinates, and hence it will prove
convenient to introduce some shorthand notation regarding iterated derivatives on the
unit sphere Sl d > 2.

We will denote with gga—1 the usual round metric on the sphere S?~!, which is the
induced metric on the unit sphere of R?. The metric gsd-1 extends naturally to an inner
product on the tensor bundle @;, ;,eN (®” TS @m T*Sd_l) over SY~1; we will still
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denote this inner product as ggs—1. For any tensor field m on S m| g1 will as

. . . d—1
usual denote the norm of m with respect to gge-1. We will also denote with VS or
Vgd-1 the covariant derivative associated with gga-1. We will denote with A, , the

Laplace—Beltrami operator on (s4-1, gsa-1). For any smooth (kq, k2)-tensor field m
1Nk
on §4-1, (VSd 1) m (or ng_lm) will denote the (k1, ko + k)-tensor field on S9!

obtained after applying the operator VS onm k times.

We will frequently work on regions U of a spacetime M?*! where there exists a
coordinate “chart” mapping I/ diffeomorphically onto Ry x Ry x S~!. In any such
a coordinate “chart”, o will denote the projection o : & — S?~!. Notice that with this
notation, for any x € M, o(x) is a point on S¢~! and not just the coordinates of this
point in a coordinate chart on SY~!. We will not need to fix a coordinate atlas on S¢~ 1.
We will use the same o notation also for the spherical variable of a polar coordinate
“chart” on codimension 1 submanifolds of M (the range of such a “chart” will be
Ry x S?=1). For instance, (r, o) : {t = 0} = R4 x S?~! will denote the usual polar
coordinate chart on the hyperplane {r = 0} of R4+,

For any function / on a subset U of a spacetime M covered by a polar coordinate
chart (1, ur,0) : U - Ry x Ry x SV and any a;, ar € Ry, h(ay, as, -) defines a
function on S?~!. In this way, the VS differential operator on S?~! is extended to
a tangential differential operator on the hypersurfaces {u1, u2 = const} of U. Notice,
of course, that this operator is tied to the specific choice of the polar coordinate chart
(uy, us, o).

We will now introduce some schematic notation for derivatives on S9! (and the
associated tangential operators on the hypersurfaces {u1, uy = const}ina (uy, uz, o)
coordinate chart on a spacetime M). For any function 2 on S¢~! and any k € N, we
will frequently denote the k-th order derivative V’S‘d,l h as 8%h, and we will also use
the following notation for the norm of this tensor:

06h] = |Vh 2.2)

sd-1"

Moreover, for any symmetric (k, 0)-tensor a on S9! we will use the following

k
. . . d—1 .
schematic notation for the contraction of (VS ) h with a:

a-9kh = a" (Ve Dy uh 2.3)

(see the previous section for the notations on powers of covariant derivatives and
the abstract index notation). We will use the same notation for the contraction of the
product of derivatives of two or more functions: For any set of n functions Ay, ..., h,
on S?~! and any set (ji, ... j,) of non negative integers, for any (k-1 Jks 0)-tensor
a on S?~! which is symmetric in any pair of indices lying in the same one of the
intervals I,,, = (ZZ’z_ll Je+ L0 jk) foreachm € {1, ...n} (but not necessarily
symmetric in pairs of indices lying in different 7,,,’s), we will denote

@ Springer



The r”-Weighted Energy Method of Dafermos and Rodnianski... Page 33 of 194 6

a.aglhl.'.8gnhniall-.-lzz=]./k . (Vél]il) hl (VS/:l]fl) hn.
L]...L_/'l Lzz;]] jk_H...LZ;Z:l jk

2.4)

The same notation (2.3) and (2.4) will also apply when h, hy, ..., h, are tensor

fields on S?~ 1.
Depending on the context, do will be used to denote either the usual volume
form on (S9!, gga—1) or a 1-form on S?~! satisfying for any k € N the bound

i\
‘(ng 1) do < 10%, Similarly, dodo will denote a symmetric (2, 0)-tensor on

8sd—1

< 10%.
8gd—1
As an example, the above notation will allow us to perform the following integration

by parts procedure on S¢~! for any function f and any tensor a with the aforementioned
symmetries:

d—1 caticfy se-1\*
S~ satisfying for any k € N the bound |V (dodo)

1
/ a-8cf-8(,86fd0=——/ (e100a + era) - 05 f - 05 f do, (2.5)
§d-1 2 Jgd-1

for some smooth contracting tensors e, e, which are bounded (in any C k norm) with
bounds depending only on the tensor type of a.

We will frequently use the notation (2.3) and (2.4) in cases where we do not have
an explicit form for the contracting tensor a, but we merely have bounds for the norm
of a and its derivatives. It is for this reason that we choose to use a notation which
apparently loses information regarding the structure of the underlying expression.

Notice that in a polar coordinate chart (u1, u2,0) : Y — Ry x Ry X S91 | the
following commutation relation holds for any function 4:

L5, V" h = V8" g, h, 2.6)

where 0y, is the coordinate vector field associated to the coordinate function u;, i =
1, 2. Therefore, we will frequently denote

L5, V5" h = 3,000, 2.7

and this will allow us to commute 9, with 95, as if d; was a regular coordinate vector
field.

2.4 Convention on the O (-) Notation

For the conventions regarding the use the O (-) notation on asymptotically flat space-
times in this paper, see the beginning Section 3.
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2.5 Conventions on Integration

When we integrate over open subsets of a Lorentzian manifold (M, g) using the
natural volume form w associated to g, we will often drop the volume form in the
expression for the integral. Recall that w is expressed as

w =/ —det(g)d)c0 coodx?
in any local coordinate chart (xo, xb X2, xd). The same rule will apply when
integrating over any spacelike hypersurface S of (M, g) using the natural volume
form of its induced Riemannian metric.

2.6 Notations for Vector Field Multipliers and Currents

Since we will use the language of currents and vector field multipliers in order
to establish the desired estimates, let us briefly recall first the required nota-
tion: On any Lorentzian manifold (M, g), associated to the wave operator [1, =

ﬁan («/—det(g) . g““&v) is the energy momentum tensor 7, which for any

smooth function ¥ : M — C takes the form

_ _ 1 _
Tus () = 5 (0 U0+ 8- D) = 5 (0 0-010) g 2.38)

| =

Given any continuous and piecewise C! vector field X on M, we can define almost
everywhere the associated currents

TX) = T (W)X, 2.9)

KX () = T, () VX V. (2.10)

The following divergence identity then holds almost everywhere:

VR IX ) = KX () + Re {(@g 1) - X} . 2.11)

3 Geometry of the Asymptotically Flat Regions (N, g)

In Sections 4, 5 and 6, we will work in d 4+ 1 dimensional, smooth and time oriented
Lorentzian manifolds (foH, g) diffeomorphic to R x (Rd \Bpg) ford > 3 (where Bp
is the closed Euclidian ball of radius R). The manifolds (N, s, g) will serve as models
of the asymptotically flat region of more general asymptotically flat spacetimes, and
will appear as open subsets of the Lorentzian manifolds studied in Sections 7, 8 and
9. Let us notice that (N, g) will not in general be globally hyperbolic.

We will fix a global coordinate chart (¢, r, 0) : Naf — R x (Rd\BR), wheret € R
is the projection to the first factor of R x (R\Bg), and (r, 0) € (RT,S?"!) are the
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usual polar coordinates on R¢\ Bg. Moreover, it will be useful for us to define the
coordinate function u = t — r, and introduce the coordinate system (u, r, o).

In the (u, r, o) coordinate system, we will adopt the following notation for the
derivatives of functions / on Naf: We will write

h=0(" 3.1
for some b € R if for any integer k > 0 we can bound:

Z [rktakiakakn) < ¢ - r? (3.2)
k1+ko+ks=k

for some constant C; depending only on k and the function 4 itself. By replacing
the coordinate derivatives in (3.2) with the connection derivatives in the associated
directions, the same O(-) notation will apply when £ takes values in some vector
bundle & over ./\faf with a fixed Hermitian metric to measure the size of the norms in
the left hand side of (3.2) and a fixed compatible connection. For instance, the case
when £ = @ TS~ @2 T*S~! (equipped with the natural metric and connection
arising from the standard round gge-1) will appear in the text.

In the coordinate chart (u, r, o) on J\/'af, the Lorentzian metric g will be assumed
to take the following radiative form for some 0 < a < 1:

g=—4 (1 _ M + O(rl“)) du? — (4 + O(rflfa)) dudr
r

12+ (8ga1 + hgar) (45" (, 0) + 0G™) dudo
+ 0 drdo + 0(r~*%)dr?, (3.3)

where M (u, o) and h5* (u, o) are real functions on R x S?=1 with all their derivatives
uniformly bounded and hge-1 is a symmetric (2, 0)-tensor on S=1 satisfying the
bound hgi-1 = o .

Notice that this class of metrics includes the Bondi radiating spacetimes (see i.e.
[6,33]). Due to the form (3.3) of the metric, the vector field 9, in the (u, r, o) coordinate
system is almost null, but not necessarily null, and u is not necessarily an optical
function.

It will also be convenient to express the metric in an almost double null coordinate
system (u, v, o), where v = u + r. We easily calculate from (3.3) that in the (u, v, o)
coordinate system, the metric has the following form:

g=- (4 + O(r_l_a)) dvdu+r? - (ng—l +hSd—l)+(}laS(1/l, 0)+O(r_“)) dudo

2M (u, o)
r

+ 0@~ “)dvdo + 4 (— + O(r_l_”)) du? + 0 )dv?, (3.4)

where hgi-1 = oM.
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Notice that differentiation with respect to 9, in the (u, v, o) coordinate system is
the same as differentiation with respect to 9, in the (u, r, o) chart. Notice also that
differentiation with respect to 9, is not the same in the two coordinate systems.

Let us also define the function r = 2u + r = u + v, which has spacelike level sets,
at least for » > 1. In the (z, r, 0) coordinate system, we easily calculate from (3.3)
that the metric g has the following expression:

g=— (1 _Mw.0) | O(r]“)) di? — (M + O(r‘“)) didr
r r

n (1 " M n O(r_l_“)) ar? 4 2. (ggd_l + O(r—l))
n (—%h‘” (u, o) + O(r_“)) (dr — dt)ydo + O (%) dtdo. 3.5)

Notice that the vector field T = 0, in the (¢, r, o) coordinate chart will not necessar-
ily be a Killing vector field for NV, but it will certainly be timelike for r >> 1. Notice
also that in this coordinate system, differentiation with respect to either 9; or 9, does
not improve the decay rate in r of O (r ~¢) functions (9, in this system is different than
d, in the (u, r, o) chart).

It is important to remark that if R > 1, in the region {r > R} of N,s we can
estimate dudvdo ~ r=@=1 . 4 vol,. In this region, we will also use the notation

10912 = [3,91% + 10, ¢1> + |r 959 (3.6)

for the “coordinate Euclidean norm” of the gradient of any differentiable function

¢: Ny — C.

3.1 Spacelike Hyperboloidal Hypersurfaces Terminating at Z+

It will be convenient to introduce a family of spacelike hypersurfaces “terminating at
future null infinity” (in a sense that will be made precise shortly). These hypersurfaces
will make easier the extraction of information regarding the radiating properties of
solutions ¢ to the wave equation [1,¢ = 0 on Ny fr8)-

We first introduce the following definition:

Definition 3.1 We define the future null infinity Z* of (N f» &) as the abstract limit
of the hypersurfaces {v = v,} as v, — 400 in the (u, v, 0) coordinate system.
In particular, a function W on Z1 will always be defined as the limit lim,_, 4o W
in the (u, v, o) coordinate system for some function ¥ on Naf. We will also set
I (11, 1) =ZT N{t <u <}, which is to be understood as the abstract limit of
the hypersurfaces {v = v,} N {1t < u < v} as v, — +oo in the (u, v, ) coordinate
system.

We will now define the notion of a hypersurface terminating at Z+:
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Definition 3.2 Let S be an achronal inextendible hypersurface of (N, g). We will
say that S terminates at future null infinity Z if the coordinate function u restricted
on S N {r > 1} is bounded.

Notice that due to the form (3.3) of the metric in the (u, r, 6), and in particular due to the
fact that in this coordinate system g(d,, 9,) = O(r~2% and g(3,, 95) = O(r™%),
we can easily calculate that for any R > 1 and t € R the boundary hypersurface
aJT ({r < R} N {t = 1)) is an achronal hypersurface terminating at future null infin-
1ty.

We can now construct a function 7 : Ny — R with level sets that are spacelike
hypersurfaces’ terminating at future null infinity. More precisely, we define for any
fixed0 <1 <1+a |

1+rn

(3.7)

fn’iu_

The level sets of 7, are spacelike hypersurfaces for r large enough depending on 7’.
This follows from the computation:

_ _ —1
gM oty - Oty = gV o u - dyu + 2"V dpu - 9, (—,)
L+r"

—1 —1
o (——) -0
+g M(1+rn/) v(l—l—r”/)

= L 0n T+ ) <0,

for r large enough in terms of 1.

Moreover, |ty — u| < 1, and hence the level sets of f,y are spacelike hypersurfaces
terminating at future null infinity, according to the definition 3.2.

We will frequently simply write 7 in place of fy, since 1" will be considered fixed
throughout the next Sections.

For any T € R and 11 < 12 € R, we will denote

Sc={f=1N{r>R3} (3.8)

and
R(t, ) ={ty <7 <u}N{r> R3}, (3.9)

where R3 = R3(1) is fixed large enough so that in the region {r > R3} the level sets
of fy are spacelike.

Due to the definition of #y, the image of Sy, under the flow of the vector field
T = 9; in the (¢, r, o) coordinate system for time T is precisely Sy, 1+.

Note that the Sy can be regularly parametrized both by (#, o) and by (v, 0), and the
corresponding coordinate volume forms dudo and dvdo satisfy the relation

dudo ~y r~ " dvdo. (3.10)

9 At least for r > 1.
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3.2 Expression of the Wave Equation in the Coordinate Chart (u, v, o)

In the coordinate chart (u, v, o) on N, f» the metric g takes the form (3.4), and we can
easily compute that in these coordinates:

det(g) = =470 (14 0¢7) (3.11)
and the inverse of the metric has the following form:
gl = (1 + 0(r*1*“)) By + 12 (gS—dl,1 - iS’z,K.)

1
+1’_2 (Ehas(u, o) + 0(’”_“)) 0y0s

2M(u, o - o
+ 000,00 + (——(r )+ op! “)) 0+ 0(r>"Nay,
(3.12)
where hg;”,l =0@h.
Setting
1
. 1 1 d—1 1
Q= (- jdet®)) =r" (1 o )) , (3.13)
the wave operator then takes the following form:
Q00 =—(14+007"") - 8,00(Q0) + 1 Ag s 41, (Q9)
d—1)d -3
DU e, o

where the Err(®) term is of the form (in our schematic notation of Section 2):

Err(®) = 00 23204+ 00" 020+ 00 >"8,0,® 4+ O~ )d,d,P
+ 00 Y0,D + 09, P+ 0~ "8, D
+0077Y 9,0+ 00 ). (3.15)

Notice the similarity of the expression (3.14) with the expression of the wave
operator in the double null coordinates of Minkowski spacetime.

4 Some 9,- Morawetz Type and Energy Boundedness Estimates

In this section, we will establish some estimates of Morawetz type, controlling the
behaviour of solutions to CJ¢ = F on our asymptotically flat model (Nyy, g).

Recall that in the (u, v, o) coordinate system, the wave equation takes the form
(3.14):
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Q- 0¢ = — (1 + O(r”*a)) 0By (Q0) +r 2 Ay th, (Q9)

_ Wﬂ - (Q9) + Err(Qe), @D
where d=
Q=% (1 + O(r_l)) (4.2)

and the Err(®) term is of the form:

Err(®) = 0023204+ 00" - 02® + 0(r278,0,
+ 00 0P + 0300, + OG99,
+00 9,0+ 00 Y 3P+ O ). 4.3)

We will also adopt the following convention: We will say that a function ¢ : N,y —
C has compact support in space if there exists a continuous function 7 : R — R
such that supp(¢) C {r < h(r)}.

4.1 A First d9,- Morawetz Type Estimate

We will establish the following Morawetz-type lemma in the region {r > 1}:

Lemma 4.1 For any given 0 < M < a, there exists an R = R(M) > 0 and constants
C(M), c(M) > 0 such that for any smooth function ¢ : Nyy — C, any 11 < 1, any
T* > 0 and any smooth cut-off function x : Nay — [0, 1] supported in {r > R} we
can bound:

/ (T (|ab,<¢>|2 +10,02) + =1~ o0 + r—3—”|cp|2)
R(u,t)N{r<T*}

=com- ox1 - (109 +rI0?)
{supp (9 ))INR(t1,12) {1 <T*}

2

+Ccm- Z/ X (|av<p|2 + r a0
. S N{t<T*}

+r 70,0 4+ 172192 1~ dvdo

+Ccm)- X (|a<p|2 +r—2|<p|2) r= dvdo
{t=T*}NR(11,12)

+/ x - Re{ (0@, — 0%+ 0¢™)%) - 0,0
R(ty,0)N{t<T*}

+Cm xort (10092 + e oo o). G
Rt w)Nfr<T*}

Remark In case the radiative components of the metric satisfy the bounds 9,M < 0
and [0,h4s| + |royhge—1| K —(0,M) + O(r~“) (which includes the non-radiating
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case 9y M =0, h,s = 0and hgu—1 = O (r—1%)), the last term of the right hand side of
(4.4) can be omitted. Furthermore, in case the T vector field satisfies (9.6) form =1,
then the last term of the right hand side of (4.13) is replaced by

/ x0T (10,0 + 100+ 20R) . @)
R(t, 0)N{r<T*}

Proof Without loss of generality, we can assume that ¢ is real valued.
Let us consider the function f : [0, +00) — (0, +00) defined as:

Pl

T =1

(4.6)

Setting ® = Q¢ and multiplying equation (4.1) with
x - f(r) - (8y — ) P,

we obtain after integrating overR(ty, t2) N {tr < T*} (with dudvdo used as a volume
form):

/ xf(@r) - (y —9y) P - QUp dudvdo
R(t1,02)N{t<T*}

=/ xf(r) - 3y —0,) @
R(11.2)N{1<T*)

. {— (1 + 01("717(1)) 0,0, P + r72Ang—l+hgd71 @

R R @)

Using the expression

Agyrthgs = Dy s + 00 Hdods + O,

we obtain after integrating by parts in 9,, d, and d; and absorbing the error terms in
the Err summand (and recalling that 9,7 = —d,r = 1):

—/ xf (@) - (@, —d,) ®- QO edudvdo
R, w)N{r<T*}

1
-/ XL+ 0670 ) 10,08 + (7 + 06 £) g, of?
R(t, )Nt =T*}

227 A+ 0 f =0+ 00" f)
@-hd-3

x (|r_13gfl>|2 n 4 |r_]<D|2) }dududc

+ / XS - By = 3) @ (Err(®) 4+ 0(r>)ds05P) dudvdo
R(t1,02)N{r<T*}
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+/ 0(axD) - (191> +r~2|®|?) dudvdo + Z/
Rt w)N{r<T*} S

L N{r<T*)

~0(1)(|av®|2+|r*130®| +r 9, @2 + 2 )2 ) dvdo

+/ o) (|a®|* + r2|®|%) dvdo. (4.8)
R(t1,0)N{t=T*}N{r>R}

Since ® = Q¢, we calculate by applying the product rule and expanding the square:

1 —1l—a
5 (f +O(r )f) |0, ®|% dudvdo
R(ty, -r,z)ﬁ{z<T*} 2
d—1)*

- 5 (Froe (a,ﬁp2 -2
/R(Tl,'tz)ﬂ{th*}X 2(f+ (r )f) (3P)” +r7( 1

d—1
+0G e + r_l(T + 0(r—1))av(<p2)) Q?dudvdo. (4.9)
By integrating by parts in the 9, (¢?) term, since for all x > 0:

d d d—1 d
_ xd72_f +__xd73_f > cn xd 4+ﬂ(1+xn) Cn(d_3)xd74f’
dx dx

dx
(4.10)
we obtain for any §9 < 1 due to the form of f if R is large enough in terms of N:

! / —1—a 2
X5 (f + 0077 1) 18,0 dudvdo
R wni<r* 2

E) (Cn / x - r (0,92 + 52 0%) QPdudvdo
R, )N {t<T*}

—Cn(d —3) x - r 3@ dudvdo
Rt )N {I<T*)

—C/ 10x| - r~2|®|*> dudvdo
R(ty,12)N{t<T*}

2

—CZ/ x - r 2@ dvdo — C/ x -r 2|0 dvdo ).
i=1 /Sy Nt=T"} R(ty,t)N{r=T*}

4.11)

Notice that the (d — 3) f x - r=3|®|? error term in the right hand side (4.11) can be
controlled by the corresponding term in the right hand side of (4.8), provided that §¢
is small enough in terms of M.

Using, now the expression (4.3) for Err(®), we can readily bound after integrating
by parts in the highest order terms (and in the ®9,® = %Bu (d?) term) and using a
Cauchy—Schwarz inequality:
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/ xf(r)-(9y —0y) @ - (Err(cb) + 0(r‘3)a§c1>) dudvdo
R(t1, )N <T*)

<o [ x{oe™ 0P
R(u, t)N{r<T*}

Y (|8U<I>|2 +r 19, ®)? + r_2|d>|2)} dudvdo

2
—i—Cn/ 19| (|a<p|2 +r—2|q>|2) dudvdo + CnZ/ X
Rt t)N{r<T*} i1 /Sy NE<T*}
0(1) (|a,,<1>|2 I e 4 Y 8,02 + r*2|<1>|2) dvdo
+Cn/ x - (|ao1>|2 +r*2|c1>|2) dvdo. (4.12)
R(t1,0)N{=T*)

Therefore, from (4.8), (4.11) and (4.12) for §o small enough in terms of N we obtain
the desired result (4.29) if R is large enough in terms of M. O

We can also establish the following variant of Lemma 4.1 in the region bounded by a
pair of {r = const} hypersurfaces:

Lemma 4.2 For any given 0 < M < a, there exists an R = R(M) > 0 and constants
C(M), c(M) > 0such that for any smooth function ¢ : Noy — C with compact support
in space, any t| < ty and any smooth cut-off function x : Ny — [0, 1] supported in
{r > R} we can bound:

/ X - (r—l—“ (|au<p|2 + |8U<P|2) +r 9,02 + r‘3‘”|<0|2)
{h=<t=<n}

2
< Cn/ 19| - (|8q>|2 - r_ZI‘PIZ) + Cn Z/ JT(@n*
{1=<r=n} i—1 71

1=:}N{r=R}

+ /{hitim X - Re {(07](1)(81) — 3,9+ On(r—l)(@) 'ngs}

+Cn/ x-r! (|8v<0|2+ Ir*180@|2+r*2|<p|2). (4.13)
{t1<t<tr}

Remark In case the radiative components of the metric satisfy the bounds 9, M < 0
and [0, 45| 4 |royhge—1] K —(9,M) + O(r~%) (which includes the non-radiative
case 9,M =0, hys = 0 and hga-1 = O (r~179)), the last term of the right hand side
of (4.13) can be omitted.

The proof of this lemma is identical to the one for Lemma 4.1 (the only difference
being the domain of A,y over which integrations by parts take place, and an application
of a Hardy type inequality for the boundary terms at ¢ = #1, »). Hence, the proof will
be omitted.
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4.2 An Improved d,- Morawetz Type Estimate

By a more careful choice of the function f used in the proof of Lemma 4.1, we
can obtain improved control of the spacetime integral of |[V¢|?, |@|? over any given
compact subset of R(ty, T2) N {r > R}, at the expense of having to introduce a
larger constant in the dependence on the initial energy of ¢, but without such a loss
in the r ~ R boundary terms. A related microlocal construction in the case of the
subextremal Kerr family can be seen in [16].

Lemma 4.3 Forany given 0 <M < a, and any R > 0 sufficiently large in terms of M,
any R. > R, any 1| < 1o, any T* > 0, any function x : /\/'af — [0, 1] supported in
{r = R} with 9 x supported in {R < r < R} and any smooth function ¢ : Ny — C
we can bound:

/ x - (10207 + 12,9P) +1r~" 3,01 + r210P)
Rt )Nt <T*}N{r<R.}

R [ 1 (77 (1ol +10,912)
R w)n{t<T*IN{r=R.}

+r! |r_180(0|2 + 730 |<P|2)

<cm)- ox]-r- (|a<o|2+r—2|<p|2)+c<n, R.)
R(t1,0)N{t<T*}

2
‘Z/ x (1800 + 171059 + 717 13,9 + 7210 r~dvdo
i=1 - 1 <T*}

+C(M. R - X (|a<p|2 +r*2|<p|2) r4= dvdo
{t=T*}NR(t1,12)

+ / x - Re] (oRc,n(l)(av — 3.0+ oRc,n(r—l)q)) O}
R(t1, )Nt <T*}

+ C(n)Rc ! /

xor! (|av<p|2 + a0 +r_2|(P|2) C (414)
Rt w)N{t<T*}

Remark In case the radiative components of the metric satisfy the bounds 9, M < 0
and [0, 45| + |royhge—1| K —(9,M) + O(r~%) (which includes the non-radiative
case 9, M = 0, hys = 0 and hge-1 = O (r~179)), the last term of the right hand
side of (4.3) can be omitted. Furthermore, in case the T vector field satisfies (9.6) for
m = 1, then the last term of the right hand side of (4.14) is replaced by

/ 5 - Fd0p (|3vcp|2 +1r'9.9> + r*2|<p|2) . (4.15)
R(t1,0)N{t<T*}

Note that the constant in front of the boundary term in the » ~ R region does not
depend on R.. This is where the importance of this lemma lies, and this is where
Lemma (4.1) would fail to give a similar statement.

Proof Without loss of generality, we will assume that ¢ is real valued.
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Let us consider the smooth function fg, : J\/'af — (0, 400) defined as fr, =
R.g o (%), where g : (0, +00) — (0, +00) is a smooth, increasing and concave
function satisfying:

g(x) = [;‘ x=1, (4.16)

, x> 2.

We will follow the proof of Lemma 4.1, but we will use as a multiplier for equation
(4.1) the function

Simp =+ Ir. (4.17)
where
rn
f=1 (4.18)

is the seed function used in the proof of Lemma 4.1.
Notice that for f;,,, we can calculate (since Q2 =ri-11+ 00 YY)

0 fimp=—0ufimp=(1+0G"")) - ¢’ (i)+nr—1—“Rc (1+0¢™) ¢ (i)

R, Rc
(4.19)
and:
3, (r*lgzzaufim,,) = —pd2R! (1 + 0(r71)> g (RL)
— (@=2r" 2 w20 (14 007h) - (Ri)

’
+1(0= @ =R (14 007h) g (R—) :
C
Therefore, since g was assumed to be increasing and concave and satisfies (4.16), we
can bound:

3, (r—lszzauﬁm,,) — 2920, fimp
- [(—(d =3 242+ 0(r 7)) Q% r <R

Ro(—d—=3)r3 43"+ 00™) Q% r=R..

(4.20)

Repeating the proof of Lemma 4.1, setting ® = Q¢ and multiplying equation (4.1)
with x - fimp - (0, — 9,) @, we obtain after integrating over R(t1, T2) N {t < T*}
(with dudvdo used as a volume form) and integrating by parts in 9, d,, and 9;:

_/ XJimp - Oy — 0y) @ - QU dudvdo
R(u,w)Nir<T+}

1 L ,
= X =3\ =0 fimp + O(r a)f' 10,
/R(Tl,fz)ﬂ{th*} 2{ ( u fimp lmp) v
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+ (00 fimp + OC™'7) fimp ) 10,1

d—1)(d —3)

+Aimp (|r*‘a<,<1>|2 44 1 |r*‘<1>|2) }dudvdo

+ / XSimp - (Qp — ) @ - (Err(d>) + 0(r*3)a§<1>) dudvdo
R(t1,t)N{1<T*)

+ / O(fimploxl) - (|3<I>|2 +r*2|c1>|2) dudvdo
R(t1, )Nt <T*}

2
+ Z/ X0 fimp) (|avc1>|2+|r—la(,q>|2+r—1—”’|a,,c1>|2+r—2|<1>|2) dvdo
-1 Sy N{t=T*}

+ / O(fimp) (|a<1>|2 n r*2|c1>|2) dvdo, 4.21)
R(t1, )N {t=T*}

where
1
Aimp =2 (2"_1(1 + 0(7’_1))fimp - 5(1 + O(r_a)) (dy — ) fimp) . (4.22)

Since ® = Q¢, we calculate by applying the product rule and expanding the
square:

1 — | —
/ X5 <_8ufimp +O0(r ! a)fimp) |3v®|2dudvd0
Rt wN<T*} 2

= / 1 (=0ufimp + OCT7) fimp)
R(t1, )Nt <T*}
x {(a,,<p)2 204+ 0N 470+ 0(r*‘))a,,(q>2)} Qdudvdo.

(4.23)

By integrating by parts in the 9, (9?) term, we thus obtain (due to (4.20)) for any
30 < L:

1
/ X = (=8 fimp + O™ fimp) 18, @1 dudvdo
Ry mne<T+} 2

> 80 [cn / x - (00 +r27"¢%) Q*dudvdo
R wNESTIN=R,)

+enRe / x r N (@00)? + 2 e%) QPdudvdos
R(t1, )Nt <T*}N{r=R.}
—Cn(d —3) x - r2|®|? dudvdo
Rt )N <T*)N{r<Rc}
—Cn(d—3)RC/ x - r 3@ dudvdo
R, w)N{t<T*}N{r=R.}
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- / O(fimp|3X|)'r_2|<I>|2dudvdG
R(v1, )Nt <T*}

2
—C(Ry) Z/ xr 2| ®|* dvdo — C(R,) xr 2| @ dvdo } .
i=1 Nt <T*} R(t1,0)N{t=T*}

(4.24)

Moreover, using a trivial Cauchy—Schwarz inequality for the ¢d,¢ term we can
bound from (4.23):

X (—auﬁm,, + O(r_l_“)ﬁm,,) 18, ®|% dudvdo

1
/73(11»12)0{I<T*}Q{V<Rc} 2

>

/ X - (cnr_2(92 - Cn(avw)z) Qdudvds,  (4.25)
R, )Nt <T*IN{r<R.}

and thus by adding to (4.24) a small multiple of (4.25) we obtain:

2

> 80 [Cn / X - ((8U<P)2 +r*2¢>2) Q2dudvdo
R(t, )Nt <T*}N{r<R.}

+cch/ x - ((8vﬁp)2 + r_2(.02) Q%dudvdo
Rt )Nt <T*}N{r=Rc}

1
/ X5 (_aufimp + O(r_l_a)fimp) |au¢|2dudvd(5
R(t1,02)N{t<T*}

—Cy(d —3) x - r 2| ®|* dudvdo
R, )Nt <T*}IN{r<R.}
—Cy(d — 3)Rc/ x - r 3| ®|? dudvdo
R, )Nt <T*}N{r=R.}

- / O(fimpldx|) - r2|®|* dudvdo
Rz, )Nt <T*}

2
~C(R r2|®|? dvdo
(R) D /S ver” ||

i=1

—C(RY) Xr_2|<1>|2dvd0]. (4.26)
R(t1.0)N(1=T*)

Using, now the expression (4.3) for Err(®), we can readily bound after integrating
by parts in the highest order terms (and in the ®9,® = %Bu (®?) term) and using a
Cauchy—Schwarz inequality:

/ Xfimp < (0y — 0y) @ - (EVV(CD) + O(V_3)3§¢’) dudvdo
R(t1,1)N{t<T*}

<o [ r{oela,0P
Rt )Nt <T*}N{r=R.}
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4 (|8U<I>|2 4 r 9, ®)? + r*2|q>|2)] dudvdo

rair [ x-{oe .0
Ru.w)n{t<T*}N{r=R.}

+o00 (|auc1>|2 +r 19,02 + r_2|<1>|2)} dudvdo

+cn/ O frmpldx) (|a<1>|2 +r—2|q>|2) dudvdo
R(t1, Tz)ﬂ{l<T*}

+Ca(Re) Z /

1 |8ud>|2 4 r_2|<I>|2) dvdo

X0 Simp) (10,01 + I~ o0
L N{r<T*)

4 Cn(R) O (fimp) (|a<1>|2 + r_2|<I>|2) dvdo. 4.27)
R(ty,t)N{t=T*}

Therefore, from (4.21), (4.24) and (4.27) for §¢ small enough in terms of N, we

obtain the desired inequality if R is large enough in terms of M:

/ X - ((|au<p|2 n |av<p|2) T+ a0 + r*2|<r>|2)
R(t1, )Nt <T*)N{r<Rc}

R [ 1 (77 (1au0l +10,912)
Rt )N{r<T*}N{r=R.}

+r e |<p|2)

<cm- 0x]-r - (|a<p|2 +r_2|(.0|2)
R(1,0)N{1<T*)

+CM, R - Z/ |a O + 1r " 30

N{t<T*}

0,02 + 52 0 ) r= dvdo

+C(M, R,) - X (|a<p|2 +r*2|<p|2) r4 dvdo
{t=T*}NR(t1,72)

+/ 1 (Or (D@, = 000 + Or nG™)0) - D0

R(t1,1)N{t<T*}

+C(MR, / xr! (|av<p|2 + 1rYos 9| + r—2|q>|2) . (4.28)
Rt w)N{t<T*}

O

In the same way, we can establish a similar lemma in the region spanned by two
hypersurfaces of the form {t = const}.

Lemma 4.4 Forany given 0 <M < a, and any R > 0 sufficiently large in terms of M,
any R. = R, any t| < 1y, any function x : Ngy — [0, 1] supported in {r > R} with
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dx supported in {R < r < R.} and any smooth function ¢ : Ny — C with compact
support in space we can bound:s

/ x - (10,98 + 1,02) + 17" 350 + r210P)
{n=t=n}N{r=Rc}

R [ x- (777 (10202 + 10,9P) 4 1 g2 0P
(n=r=njnir=R}
<cm)- jox1 -7 - (109 +r7219?)

{t1<t=<n}

+CM, R, - 109> +C(, Re) - R
{t=t1}N{r=R} {t=n}N{r=R}

+ / X - Re{ (OR(,,H(l)(av —0,)%+ OR(.,n(r_l)q)) -0, ¢}
{r1<t<t}

+CMR, /

{t1<t<tr}

x-r 7 (10002 1 a0l r2102). (4.29)

Remark In case the radiative components of the metric satisfy the bounds 9,M < 0
and [0, h4s| 4 [royhge—1] K —(9,M) + O(r~%) (which includes the non-radiative
case 9y M =0, hyy = 0 and hga-1 = Ol(r_l_”)), the last term of the right hand side
of (4.4) can be omitted.

4.3 Estimates for the J7-Energy
In this Section, we will establish some useful estimates for the energy associated to
the timelike vector field T = 9, + 9, in the coordinate chart (u«, v, ). Since we have

not assumed (Ny, g) to be stationary, the J T _energy current will not be in general
conserved.

Lemma 4.5 For any smooth function ¢ : Nyy — C, any x : Nyy — [0, 1] supported
on {r = R} for some R > 0 large in terms of the geometry of (Nus, &), any 11 < Tp
and any T* > 0 the following estimate is true:

/ X J) (@)t +/ (|a<p|2 + r‘2|<p|2)
Se,N{t=<T*} (1=T*}NR(11,72)
<C- / X Jy (@)t
Sy N{t<T*)
+/ x ! (|avq>|2+|r*‘ao<p|2+|r*1<p|2)
R(t1,)N{r<T*}

+ 0Gaxh - (jaof +r19P) + [ X0
R(t,w)N{r=T*} Rt w)N{r<T*}

x Re{srl (B + 3 (Q20) - D@}} : (4.30)
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for some constant C > 0 depending only on the geometry of (Nyr, g). In the above,
and n denote the future directed unit normals to the hypersurfaces St and {t = const}
respectively.

Remark In case the radiative components of the metric satisfy the bounds 9,M < 0
and [0,h4s| + |royhge—1| K —(0,M) + O(r~“) (which includes the non-radiating
case 0,M =0, hgs = 0 and hga—1 = O (r~179)), the second term of the right hand
side of (4.30) can be omitted. Furthermore, in case the T vector field satisfies (9.6) for
m = 1, then the second term of the right hand side of (4.30) is replaced by

/ P (|avcp|2 +1r 19, 9> + r_2|(P|2) . 4.31)
R(t1,0)N{t<T*}

Proof Without loss of generality, we will assume that ¢ is real valued.
Setting ® = Q¢ and multiplying equation (4.1) with x - (d, + 9,) P, we obtain
after integrating over R(ty, T2) N {t < T*} (with dudvdo used as a volume form):

/ x (0y + 9,) ® - QU dudvdo
R(t1,1)N{r<T*)}

-/ x @t @ = (14 01677) - 0,0,0
Rt w)n{e<T*}

+r_2Xg§df1+hSd71 D — / X (av + au) ®
Ry, )Nt <T*}

« I_WrZ LD+ Err(d>)” dudvdo. (4.32)

Using the expression

Agg i thggy = Doy + 0107 dods + O~ 1)do,

we obtain after integrating by parts in 9,, d, and d; and absorbing the error terms in
the Err summand (and recalling that 9,7 = —d,r = 1):

_/ x 0y + 0,) © - QUe dudvdo
R(t1,0)N{t<T*}

1 2 d-1)d-3
=/ =X ((1 +00™h) - (3,9)* + ‘r_IBUCD‘ + Mv—%ﬁ) dvdo
Sy,nfi=T7) 2 4
1 2 d-1)d-3
+/ ~x ((H‘O("_l))'(auq))z-i-‘r_lagfb‘ +¢|rl¢|2) dudo
Seynfr<T+} 2 4

1 2
+/ X ((1+0(r_1))-(8u¢)2+‘r_180<1>’
{

I=T*)NR(x1,72) 2
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" (d-1d-3)

1 |r_1d>|2) dvdo

1 2
+ / =X ((1 + 007 - (3,9) + ‘r’]3c<l>‘
{=T*)NR(x1,12) 2

" (d—-1d=3)

1 |r_1d>|2) dudo

1 2
- / X ((1 + 0671 - 0,0 + |80
Sy, Nir=T*) 2

d—1)d -3
Mwlmz) dvdo
4
1 d—1)(d-3

—/ 5X ((1+0(r*1)) - (auq>)2+yrflaoq>|2+Mw‘@ﬁ) dud o

Sy N<T*} 2 4
+/ 1 {0 0,0 + 0671, 0P

R(t1,0)N{t<T*}

d—1)d -3

+/ x-+0¢™h (lr‘laod>|2+ er”dﬁ)} dudvdo

R(1,0)N{t<T*} 2

+ / X By +0,) @ - Err(®) dudvd o
R(t1,12)N{t<T*}

+/ 0(|ax]) - (|a<1>|2 + r_2|<I)|2) dudvdo. (4.33)
R(t1, )Nt <T*}

Since on Sy; we have dvdo ~ 1" dudo, we obtain from (4.33):

, d—1)(d-3
/ be ((Bu©)2+r‘1‘” (aud>)2+yr—laad>|2+¢|r—lc1>\2) dvdo
Sy, N(1<T*} 4
d—1)d -3
+/ ((«’ivcb)2 + (0,9 + || + Mv—‘qwz) dvdo
J=T*INR(11,12) 4

, d—1)(d-3
<C- / be ((8v¢)2+r—1"’ (Buf1>)2+|r_18(rfl>|2+ er‘ldﬂz dvdo
Sy N{t<T*} 4

+/ x - {oe™"" 8,0 + 008,
R(t1, )Nt <T*}

Ww'@z)} dudvdo

+0@¢™h (|r*‘agel>|2 +

+ / X By + 8,) ® - Err(®)dudvdo
R(t1, )N {t<T*}

+ / 0(axD - (102> +r2|®|*) dudvdo
R(r1,0)N{t<T*}

+ / xO(1) - (9y +8u)d>-Q|:|(pdudvda} . (4.34)
R, )Nt <T*}

Using a Hardy type inequality of the form established in Lemma C.1 (notice that
it is a 1-dimesnional Hardy inequality, since the volume form is dvdo), we can
bound:
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/ Xr*2|c1>|2dvdc+/ r 1@ do
Sy Nt <T*} Stlﬂ{t=T*}

<cC. / X ((avq>)2+r‘1‘”' (auab)z) dvdc—i—/ 19x] - r—!|®|? dvdo
Srlﬂ{tsT*} SI.

T

(4.35)

and

/ r=2102 dvds < C - (/ ((avcp)2 i (auq>)2) dvdo
{t=T*}NR(11,12) {t=T*}NR(t1,72)

2
+ / r @) dot . (4.36)

i=1

Therefore, in view of (4.35) and (4.36), (4.34) can be improved into
/ x (@@ + 77 0,07 + |~ a0 4 [~ B) dudo
Stzm{th*}
+/ ((8U<D)2 + (0,9 + |r a0 + |r_1<1>|2) dvdo
(=T*NR(x1,%)

<cC. / X ((aueb)2 7 @,0)7 + | aeo | + |r-'q>|2) dvdo
S N{t<T*}

+ / x-{o™""M9,0?
R(t1,1)N{t<T*}

+00™ (8,0 + 0 (|r—‘acq>|2+(d_1)4&

Ir_]d>|2)] dudvdo
+ / % 3y + 3,) @ - Err(®) dudvdo
R(t1,12)N{t<T*}

+/ 0(dxD) - (100> +r2|®|?) dudvdo
R(t,w)N{t<T*}

2

+Z/ 1ax| - |®|? dvdo
i1 Sy, N{t<T*}

+ / XO(1) - (3 + 3,) D - QD<0dudvd0] ) (4.37)
Rt )N <T*)

Using the expression (4.3) for Err(®), we can readily bound after integrating by
parts in the highest order terms (and in the $9,® = %3,, (¥?) term) and using a
Cauchy—Schwarz inequality:

/ X (0y + 90y) © - Err(®) dudvdo
R(t1, )Nt <T*}

< Cn/ x {or™")8, @2+ 00
R(t1,0)N{t<T*}

@ Springer



6 Page 52 of 194 G. Moschidis

x (10,@1 + 811~ ' 9 ®I> +r 2@ )} dudvdo
+ Cn (/ x| (191 +r2|®[%) dudvdc)
R, )Nt <T*}
+ / 10~ (@@ + 77" 0,02 + [ 0,0|” + -~ @) dudo
S, Nr=<T*}
+ / o™ ((avcb)2 + (0,9)% + | a0 + |r_]<I>|2) dvdo
{t=T*)NR(t1,12)

+ / 106 (@@ +r 7" 0,02+ 1 0,0 +1r ' @) dudo.
S N{r<T*}

(4.38)

Therefore, from (4.37), (4.38), (4.35) and the trace inequality

2
Z/ 10x|-r '@ dvdo
i=1 tiﬂ{IST*}
5/ o)) - (r—1|aq>|2+r—1|c1>|2) dudvdo,  (4.39)
Rt m)N<T*)

we obtain if R is large enough in terms of the geometry of (NV,r, g):

/ x - Il (@i +/ (JMT((P)n“ + r‘2|¢|2)
S, N{r=<T*) (t=T*})"R(11,72)

<C- / X~JMT(<P)71“+/ X
STIH{IST*} R(ty,t)N{t<T*}

el @t 4 (10,98 + 1 oo + 1 o) |

+ 0qaxh- (1o +r'16P) + [ X0
Rt )N{r<T*} Rt )N{r<T*}

‘Re {9—1 0y + 3) (20) - D(P}} . (4.40)
Using (4.4) for some fixed M < a, we thus obtain (4.30) from (4.40) provided R is

large in terms of the geometry of (Nyy, g). O

We can also establish the following generalisation of Lemma 4.5:

Lemma 4.6 For any smooth function ¢ : Ny — C, any x : Ny — [0, 1] supported
on {r > R} for some R > 0 large in terms of the geometry of (N, g), and any two
smooth, spacelike hypersurfaces Sy, Sy of Nuy intersecting the region {r < R} such
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that S, lies in the future domain of dependence of S| U{r < R}, the following estimate
is true:

/ X (@nls)
S
<C- [/ X - Jj(w)ngl+/ x (18,0 4+ 1 ae e + Ir )
Sy JHSHNI(S2)
+/ O(lax)) - (109> +r~ "¢
JH(SHNI=(S)
+/ xO1) - Re{Q7" (8, +au)(9¢)-m<p}]. (4.41)
JHSEHNI=(S2)

for some constant C > 0 depending only on the geometry of (Nys, &) and the pre-
cise form of Sy, Sy but independent of translation of these hypersurfaces by the flow
of T = 0, + 0y. In the above, ngs, is the future directed unit normal of S;. Inte-
gration over S; is performed using the volume form of the induced metric, while
integration over JVY(S)) N J7(Sy) is performed using the natural volume form

of g.

Remark Again, in case the radiative components of the metric satisfy the bounds
0yM < 0and [0,hqs| + |royhgi—1] K —(0,M) + O(r~*) (which includes the non-
radiating case 9, M = 0, h,s = Oand hga—1 = O(r’l’“)), the second term of the right
hand side of (4.41) can be omitted. Furthermore, in case the T vector field satisfies
(9.6) for m = 1, then the second term of the right hand side of (4.41) is replaced
by

/ x -i%0! (|av<p|2 +1r 8. + r*2|<p|2) : (4.42)

JH(SHNI~(S2)

Proof The proof of Lemma 4.6 follows in exactly the same way as that of Lemma
4.5, by integrating x (3, + 9,) ® - QUI¢ over JT(S1) N J~(S,) in place of R(ty, T2).
Hence, the details will be omitted. O

Finally, we will also establish the following improvement of Lemma 4.5 for higher
order derivatives of ¢, which will be used in Section 8:

Lemma 4.7 For any smooth function ¢ : Ny — C, any x : Ny — [0, 1] supported
on {r > R} for some R > 0 large in terms of the geometry of (Nus, g), any 11 < Tp
and any T* > 0 the following estimate is true:

k
>3 / x-ral (7 o) ool (@0)) it
S, N1 <T*}

J=0 ji+j2+j3=j

+/ P2 (a5 (270 o 0 29) n“)]
(=T*)R . 0)

k
<G> > / X2l (9*13,{1 agzaf(sw)) i
Srlﬁ{tsT*}

J=0 ji+j2+j3=j
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+/ y P2l
R(t1, )Nt <T*}

x (10 ol o ()2 +r=210] o o @) + 7210 352333(Q<p)|2)

+

/ 0(laxD -1 (190 008 @) + "o 020 (20) )
R(t1, )Nt <T*}

+/ xO)rq?
R(t1, )Nt <T*}

-Re[ @y + ) (31 0207 (QD)) - 97 agzaf(szm)}] . (4.43)

for some constant Cy > 0 depending only on the geometry of (N, g) and k.

Remark Again, in case the radiative components of the metric satisfy the bounds
oM < 0and [9,hqs| + |royhgi-1] K —(0,M) + O(r~%) (which includes the non-
radiating case 9, M = 0, hys = O and hge-1 = O (r—1%)), the second term of the right
hand side of (4.43) can be omitted. Furthermore, in case the T vector field satisfies
(9.6) for m = 1, then the integrand of the second term of the right hand side of (4.43)
has an extra 7% factor.

Proof The proof of (4.43) follows in exactly the same way as the proof of (4.30), by
integrating (for real ¢) for any 0 < j < k and any partition ji, j», j3 of j:

x - By + 3,) (P71 371020]3 (Q¢)) - QO (sz—lrfl 37 842333(sz<p)) (4.44)

over R(t1, 1) N {t < T*} with dudvdc as volume form, and then summing the
resulting estimates over all possible ji, jo, j3,using Lemma 6.3 to obtain an expression
the commutator of (I with 9, 04, 0. O

5 The Extension of the r”-Weighted Energy Hierarchy

In this section, we will generalise the r”-weighted energy hierarchy introduced in
[11], so as to apply to the asymptotically flat region of a broad class of stationary
and asymptotically flat spacetimes, modeled on the spacetime (Ngs, g). This will
be achieved by repeating the main steps of the method of [11] in the the case of
Minkowski spacetime and controlling the error terms with the use of Lemmas 4.1 and
4.5.

5.1 Statement of the r?-Weighted Energy Hierarchy

We will establish the following decay estimate for solutions to ¢ = F on (N, g):

Theorem 5.1 Forany0 < p <2, any given 0 <M <aand0 <§ < 1,any R >0
large enough in terms of p,M,§ and any 1| < T, the following inequality is true
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for any smooth function ¢ : Nyy — C and any smooth cut-off xg : Ngyy — [0, 1]
supported in {r > R}:

%)
-1 .
glstfind,R;a[(P](tZ) +/ 51551k,1)e,n;5[“)](f) d T+ lim sup %ﬁ),T*;B[(P](TI, Q) Spars
T T*——+o00
Spons Elgfind,,e;aﬁp](n) +/

R(t1,t2)

+ / xg - (rPT 4P 0,912 2% dudvdo. (5.1)
Rt1,t2)

0l - (7109l + 1772 o)

In the above, the constants implicit in the S, 5 notation depend only on p, M, § and
on the geometry of (Nyy, g), and the p-weighted energies are defined as follows:

N () [0

iy Y-
St

+ (@ =377+ min(r72,r7%) |29[) ) dvdo +/S arIT (@)%,

(5.2)
& s (91D
=/ xx (pro~! o (20)?

St

+ {((2 —prPl 4 r!’—‘—ﬁ) 1.2

+(@= p@ =37+ mintrr=, 74 |20 ]) dvdo

+ / xer” ' 0,(29)|* dvdo (5.3)

St

and

EL) 1 jl0l(T, 1) = /

(rp ! 8(,(.(2(P)|2
R(ty,t)N{t=T*}

+ ((d —3)rP~2 4 min{rP2, r—s}) }Qcp|2) dvdo

+ / VANCOZLS (5.4)
R(ty,)N{t=T*}

Remark 1In fact, it follows from the proof of Theorem 5.1 that (5.1) can be improved
into:
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(£8a i + [ el oI d et s €2 011, )

T*—+o00

()
- 5.bound,R,»s;a[(P](.':] )‘

(p)
= CP,n,B "€ 'gbgund,R‘Sia[(p](Tl)+Cp’n‘&£ /R(t )
1,02

+Cp,n,a,s/ xg - (PP 0,012 Q2dudvdo (5.5)
R(t1.12)

0l - (171091 + 1772 o)

forany 0 < § <a and 0 < ¢ < 1, where

E) i el P1(D) = /S XR (rl’|av(s2<¢>)|2 4+ (rP|r*'a(,(sz<p)|2

+ ((d —3)rP2 4 e min{rP2, r*S}) |Q<.0|2)) dvdo

+ /S xrJL (@), (5.6)
E R e [01(D) = /S xR (er |0, (29)|”

+ ((2 —prPl 4 rP—l—B) lr ' os(Q0)|

+(@= @ =377 e mingrr =, 717 [29]) dudo

+ / rr~ " ""10,(29) dvdo 5.7)
S

and

&) ol ) = (o0
EARURLL R(t1,0)N{t=T*) | ’ |

+ ((d — 3P 2 g min{rP2, r_a}) |sz<p}2) dvdo

+ / VANCOZLS (5.8)
R(ty,0)N{t=T*}

Using Lemma 6.3 on the commutator of [J with d,,, d; and 9,,, we can also obtain
the following corollary of Theorem 5.1:

Corollary 5.2 Using the notations of Theorem 5.1, for any 0 < p < 2, any integer
m > 0,any given 0 <M <aand 0 < § < 1, any R > 0 large enough in terms
of p, M, § and any 11 < Ty, the following inequality is true for any smooth function
¢ : Nuy — Cand any smooth cut-off xg : Nay — [0, 1] supported in {r > R}:

m—1
DD DR RN (i M I

J=0 jit+jat+j3=j
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T2 . . . .
+/ 5[551;,11)?,71;5“7]2351 AP0 el d
T

I+,T*;
T*—4o00

+ lim sup £ ES[szi?z{" Lol el(x, Tz)]

m—1
) —Jjaajt 8243
Spmans D D E L alr TR0 0 @1ty
J=0 ji+j2+j3=j

m—1
+ Z/ |0 xr| - (rf’|af+‘<p|2 4Pt |af<p|2)
=0 Y R1.0)
m—1
+2 X - (P P 00 0,002 Q2dudvdo. (5.9)
j=0 Y R(1.12)

The proof of Corollary 5.2 will be omitted. Notice that in comparison to the improved
hierarchy statement (6.1), the estimate (5.9) holds for smaller values of p and the
terms of all orders in ¢ appear with the same weight.

We can also establish the following variant of Theorem 5.1 in the region bounded
by two hypersurfaces of the form {t = const}:
Theorem 5.3 Forany 0 < p <2, any given0 <n <aand0 <38 <1,any R >0
large enough in terms of p, n, 8 and any t| < ta, the following inequality is true for

any smooth function ¢ : Nyy — C with compact support in space and any smooth
cut-off xg : Nug — [0, 1] supported in {r > R}:

1
/ xR - (rp|av(9¢)|2 + 77|05 (29) 1 + ((d —3)rP?
{t=02} r
n min{rp_z,r_‘s}) |sz¢|2) dvdo +/ KL (@n
{t=t2}
_ 2 _ 1= _ 2
+/ xk - (pr 7o) P+{ (@ = pro=t 412 [, (20|
{r<t=n}
+ ((2 — p)(d = 3)r"3 + minfrP3, r—l—“}) |Q¢|2}
+r_1_'7|8u(9<p)|2) dudvdo
1
Spons / XR - (r”lau(ﬂfp)l2 +rP|=3,(2¢)|?
{r=n1} r
+ ((d —3)rP72 4 min{rP~2, r_5}) |.s’2g0|2) dvdo

[l [ ol (00 + 7 o)
{t=01} {n=t=n}

+/ Xk - P ) D0 22dududo. (5.10)
{n=t=<n}
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In the above, the constants implicit in the S, , s notation depend only on p,M, 8
and on the geometry of (Nyy, 8).

The proof of Theorem 5.3 is identical to the proof of Theorem 5.1 (the only difference
being the domain over which integrations are performed), and hence it will be omitted.

5.2 Proof of Theorem 5.1

For the proof of Theorem 5.1, we will need to introduce the following energy norms
on the hyperboloids {f = 1}:

2 —_1—v _ 2
ED e l91(D) = /S g 1 (P @O 7 (2020

420D, 2104) ) avas, (5.11)

— _ 2 _ _ 2
Exbe k7 01(0) = /S o 1R (prr=tou@o)P+@=p) (7' 00(20)]
d—1)(d -3
+%r”_3|9@|2)) dvdo, (5.12)

— _ 2 _ _ 2
Exbi ko o [0)(D) = /S o 1B (prr" @0+ = p) (7'~ 30 (20|

+/ xrr " M0, (Q9))? dvdo (5.13)
SN{t<T*}
and

EL) o 191t ) = / rP|rtog (o))

XR (

Ry, 0)N{t=T*}
d—1)({d -3
+( )4( )

rP—2|m>|2) dvdo.  (5.14)

The main step in establishing Theorem 5.1 is contained in the following Lemma:
Lemma 5.4 Forany0 < p <2, any given) <M <a,any0 <e < 1, anyR >0
large enough in terms of p, N and €, any 1| < 1 and any T* > 0, the following
inequality holds for any smooth function ¢ : Nyy — C and any smooth cut-off
Xr : Nag — [0, 1] supported in {r > R}:
0 Z o1 0

bound,R,T* [¢](t2) + bulk,R,Y],T*[(p](T) dt+ T+ R.T* [¢]1(T1, T2)

T

< (14 0pn(®) Egpg r. 7 [91(01)
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+C,,,n,5/ 19xR| - (r”|8(§2(0)|2 + rp_2|Q<P|2) dudvdo
R(ty,0)N{E<T*}

+Cp,ﬂ,€/ xR ((P)n“+CpngZ/ X - rP7274Q9 dudo
Sy, N{r<T*) S

N <T*}
+ Cp"r]’g/ XR * r"_z_“ISN)I2 dvdo
R(t1,0)N{t=T*}
+c,,,n,g/ xr - max{r? 737 r3)Qo1> dudvdo
R(ty, )Nt <T*}

+Cp,n,g/ xg - PP Y QO dudvdo, (5.15)
R(t1,0)N{t<T*}

where 1 is the future directed unit normal to the hyperboloids S-.

Proof Without loss of generality we will assume that ¢ is real valued. We will set
d=Q-9. (5.16)

Following the approach of [11], we start by multiplying both sides of (3.14) with
XR - P9, ®. We therefore compute, after applying the product rule for derivatives:

1
xr-r70,@ - Q00 = =23, [xr - r7(14+ 0107 ") 10,01

1 —1—a 2
+§(3M{XR~VP(1+01(F NHP|

1 d—1)(d -3
o (U 9,)

1 d—1)d-3
+§av {XR'(()A‘-#V'D_Z)]QZ

F AR TP 0P Ay hngy P
+ xR - P8, ® - Err(®) (5.17)

Integration of (5.17) over {t; < < 1} N {t < T*} using the coordinate volume
form dudvdo (in place of the geometric volume form Q?dudvdo) readily yields:

1
/ o } S XR" (rp(l + 07 |8v<I>|2) dvdo
T t<T*

1
—XR - (r”(l + 030 7). |avq>|2) dvdo
Rt n(=T*} 2

+,

+ / Los (—(d — =Dy 0<rf"3)) @* dudo
STzﬂ{th*} 2 4

1 d—1)d - 3)

S (52

2XR rP=2 4 O(rp_3)) &% dudo

R(t1,v)N{t=T*
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1
+/ xR - i—prﬂ—l{l + 00 "o,
R11,1)N{1<T*) 2
1 d—1)(d—-3
+§XR . ((2 — P)%r”_‘2 + O(r”_4)) <I>2] dudvdo
+/ xR 1P 9,0 Agoyoi+hga P dudvdo
R(t1,0)N{t<T*}
+/ XR -rP0,® - Err(®)dudvdo
R(t1,0)N{t<T*}

1
=/ S XR - (rp(l + O(rflfa)) . |8U<I>|2) dvdo
Sy N{r<T*}

1 d—1)(d -3
+/ ~XR - (¢r”2 + 0(rp3)> &2 dudo
S Nt <T*) 2 4

+/ O(|19xr]) - (O(r") 0y ®@> + 0Py qﬂ) dudvdo
R(t1,0)N{t<T*}

—/ xr - rP0,® - QO¢dudvdo. (5.18)
R(t1,0)N{t<T*}

Moreover, we obtain after integrating by parts in the spherical directions (recalling
that hga—1 = O(r~1)):

/ XR TP 0, Agegoy+hgg—y P dudvdo
R(t1,0)N{t<T*}
1
=/ XR'rp_z'—3U{|80®|2}dudvd0
R(t1,0)N{r<T*} 2
+/ Xr - OrP™3) - 9,® - 3,D dudvdo
R(t1,0)N{t<T*}

+/ O(|9sxr]) ~rp_2-8UCI> - 0P dudvdo. (5.19)
Rt1,0)N{t<T*}

Hence, integrating by parts in the first term of the right hand side of (5.19), substituting
in (5.18) and absorbing the f xR - O@rP73) - 9,® - 3,P summand of the right hand
side of (5.19) into the Err term, we infer (provided R is large enough in terms of ¢):

1]
-1
&P @k rl91(T2) + / Epe kOO dTHEL | 19111 )
1

=+ 8)5;751,)H1d,R,T* [€](ty) + /7%(-5 =) 10 XR]
1,12 =

x (O(rp)|8(Q(P)|2 + O(rp—2)|sz<p|2) dudvdo

cz/

xwsf @it +C- [ xrJT (@)

- N{t<T*} R, w)N{t=T*}
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)

+ / xg - O(r’~2"Q9* dvdo
. Sy N{t<T*)

i=1

+ xr - O(rP~2"Q9|* dvdo

R, w)n{r=T*}

+/ xr - 0?3729 dudvdo

R(t1,0)N{t<T*}

+/ xR - O@P)3,® - Err(®)dudvdo
R(t1,2)N{t <T*}

+/ xR - O@r?)0,® - QU dudvdo, (5.20)
Rt w)N{t<T*}

where we denote for simplicity |0®|> = [3,D|*> + |9, D|*> + |%80<I>|2. Notice that we
have used the asymptotic relation dudo ~ r~1="dvdo on the hyperboloids S;.

The positive me,mm{tsT*}Q — p)XRrp_1|%80d>|2 term of the left hand side of
(5.20) vanishes for p = 2. Since it will prove useful to retain some control over
angular derivatives in the left hand side of (5.20) even in the p = 2 case, we will
add to (5.20) the same inequality but for p’ = p — a in place of p in case p > 1,
obtaining:

) Z (-1
a0 + [ (&80 710100

Tl

+ELRDIO®) dT+EL 101, )

< (0800 p 0100 + [ jaxel - (0GD1a 0P

Rt 1)N{t<T*}

2
+ 0(r1’—2)|§z<p|2) dudvdo + C Z/ xrd| (@)i"
i=1

o =T
+C / XrJ, (@)a*
R(ty,0)N{t=T*}
2
+> xr X O(r’~2"%) Q¢ dvdo
i=1 Stim{th*}

*1/ xg - O(rP~2Q9|? dvdo
R(11,)N{t=T*)

+ / xr - 0?3729 dudvdo
Rt w)N{t<T*}

_I_

/ xR - O@P)3,® - Err(®)dudvdo
R(t1,02)N{r<T*}

+ / xR - O@r?)0,® - QU dudvdo. (5.21)
Rt w)N{t<T*}
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In order to reach (5.15) it only remains to add to (5.21) the estimate of Lemma (4.2)
and suitably absorb the Err(®) term in (5.21) into the left hand side. Moreover, the
energy boundary terms on Sy, and {tr = T} will be dealt with by using Lemma 4.5.
In particular, assuming without loss of generality that € <, y 1, if R is large enough
in terms of €, p, M the following estimate holds:

/ XR - O(rP)3y® - Err(®)dudvdo <p B(Elj’)rﬂ 1911, 1),
R(t1,0)N{t<T*} -,

(5.22)

where
1%}
B 91t 1) =¢ i / (&5l rel9100 + &S 01D)) d v
T
2
+ 2 Eppuna,r. 1911 + EL T, Tz)]
i=1

+/ 10 x| - (r”la(Q@)|2+r"—2|sz<p|2) dudvd o
R(t1, 1)t <T*}

2

+> / xrJ ] (@i* + / xrJ) (O)i*
i=1 St,-m{fST*} R(t1,0)N{t=T*}

2
+Z/ xr - rP727Q9% dvdo
i=1 7Oy Mr=T"}
+/ xr - rP727Q91% dvdo
R(ty,trp)N{t=T*}
+/ XR -rnax{r”_3_“, r_3}|Q(P|2dudvdcs
R(t1,0)N{t<T*}

+/ xg - PP+ P QO dudvdo. (5.23)
Rt w)N{t<T*}

Notice that in view of Lemma 4.5 and the fact that 0 < p < 2, the following bound
also holds:

/ xR, (@) + / xrJ (@)n*
St N{r<T*} R(t1,0)N{=T*)

Sn / xrJ, (@)i"
Stlﬂ{th*}
P (-1 (p—1-a)
- —1-a
+5/ (Ebglk,R,T*[(p](T) +5b51k,R,T*[‘p](T)) dt
T

+/ xr - r1929)? dudvdo
R, 1)N{r<T*}
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+/ [0 xR] - (r”|8(9<¢>)|2 +r"—2|sz<p|2) dudvdo
R(t1,12)N{r<T*}

+/ xg - (P 4+ P QO0? dudvdo. (5.24)
R(t1,1)N{t<T*}

Using (5.21), (5.26), (5.23), (5.22) and (5.24), inequality (5.15) follows readily, pro-
vided € has been chosen small enough in terms of p and 1 so that the first line of the
right hand side of (5.23) can be absorbed into the left hand side of (5.21).

Notice that

/ XR - O(rP)0,® - Err(®)dudvdo
Rt1,0)N{t<T*}

=/ XRavcb-{O(rl’—])af@
R(t1,0)N{t<T*}

+O(rP )30 + OGP 2P + 0P > )3,06P + 0P 3" ) 55D
+OrP 73,0 + 0P "9, d + 0P 279, + 0(rp_3)‘b} dudvdo.
(5.25)

In view of Lemma 4.1 and the fact that 0 < p < 2, we can bound for any € > 0
provided R is large enough in terms of €, M, p:

/ xr - rP737%0,®|% dudvdo
R(t1, )Nt <T*}
< / xg -7 78, @1 dudvdo Spn
R(ty, )Nt <T*}

Spn B L1911, ). (5.26)

We can also trivialy bound (if R is large enough in terms of €, M, p):

/ xg - rP1a (|av¢|2+ |r_18,5<I>|2+r_2|CI>|2) dudvdo
R(t1,0)N{r<T*}

Spn B L 19111, ). (5.27)

Therefore, applying a Cauchy—Schwarz ineqality, all the terms of (5.25) which do not
contain second order derivatives of ® can be bounded by Bg’r)r’nys[@](tl, ).

It thus remains to estimate the terms of me’tz) XR 1P - 0,® - Err(®)dudvdo
which contain second order derivatives of ®, i.e. we have to bound (provided again
that R is large enough in terms of p, M, €):
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/ xR - {O(r[’_l)av@ C2D 4+ 0P, @ - 92D
Rt w)N{t<T*}
+ 0P 39, - 950,D + O P49, - 9,0,D

+0G72)0,0 - 0,0,0) dudvdo Sy B (91 ). (5.28)

In order to estimate these terms, we will perform some integrations by parts over
R(t1, ) N {r < T*} which will reduce the maximum number of derivatives of ®
appearing in these expressions to just one.

In particular, we proceed as follows:

1. For the part of fR(” 1) XR * r? . 9,® - Err(®) consisiting of terms of the form
0y, P - 9;0, P, namely:

Err") [0](t1,2) = / XR
R(t, )Nt <T*}

x {0P™H9,® - 370 + O(rP™2) - 3,® - 3,0,P} dudvdo,
(5.29)

after putting each summand in the form %8,'{(8,) ®)?} and integrating by parts in
0; we obtain

Er 5’1)1,[‘0](11 ) </ xg - P72 10,®)? dudvdo
R(t1,12)N{t<T*}

+ / 10xg]-rP~1 - 10,®* dudvdo
R(ty,0)N{t<T*}

+ Z/ xr - P23, ®? dvdo

Sy N{t<T*)

+ / XR 'rp—2|3vq>|2dvd0. (5.30)
R(ty,)N{t=T*}

Thus, since p < 2, we immediately infer (provided again that R is large enough
in terms of p, M, €) that

Err(? [9)(t1. 1) Spon BE [01(T1. 12). (5.31)

2. For the part of me ) XR - r? . 9,® - Err(®) consisiting of terms of the form
8,,d>8l.2<1>, namely

Err) (@ ](n,rz)ﬁ/ XR'{O(rp_z_a)~8U®-8M2®
R(t1, )Nt <T*}

L O3 0,0 - Boang} dudvdo, (5.32)
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we will perform two integrations by parts: By first integrating by parts schemat-
ically as 8U®8i2d> — 00, P09, = %81,{8,-@}2 and then we integrating in 9, as
before, we can readily bound recalling that dudo ~ r~1""dvdo on S):

Err{?) [01(t1, 1)
s/ xr - {70, O + P, @1 10,0
R(t1,1)N{t<T*}
PP D 4 P3G, D) - |ac,<1>|} dudvdo

+/ [0xr| - rP~" - |0®|* dudvdo
R(t1,0)N{t<T*}

+Z/

+ / R {rl’—z—“|av<1>| 0]+ 770,02 dudo.
(T1,)N{t=T*}

(5.33)

PP2743,®] - |9, D] + rP4=" |9, | }dvda
ﬂ{t<T*

Using a Cauchy—Schwarz inequality as well as inequality (5. 26) the first two
lines of the right hand side of (5.33) can be bounded by C), n - BErr n.e[@1(T1, T2).
Moreover, the last two lines of the right hand side of (5. 33) can also be bounded
by the boundry terms appearing in B(Elj')r,‘ﬂ, [@I(t1, ©2). Thus, provided again that

R is large enough in terms of p, M, €, we have
e 19111, 1) Spon BE 4 [01(T1, T2). (5.34)

3. Finally, it remains to bound the f O@rP=279) . 3,® - 3,0,P summand in the
expression (5.25). We will perform three integrations by parts schematically as

0y ® - 050, D — —0,0,P - 0D — 9, P - 0,0,P - —359,P - 3, D, (5.35)
and then move the resulting f O@rP=2=%) . 3,® - 3,0,P bulk term (which is
equal to —1 times the initial O (r?~2=%) - 3,® - 3,9, D term that we started with)
from the right hand side to the left hand side. This will provide an estimate of

Jo@? 27y . 9,® - 9,0, P by bulk and boundary terms which contain only first
order derivatives in ®. In particular, proceeding as described we infer!” that

/ XROP 7279 9,® - 3,05 dudvdo
R(t1,0)N{t<T*}

,S/ XRV‘U_Z_a|3U<D| - |05®| dudvdo
R(ty,0)N{t<T*}

10 Using again the fact that dudo ~ =1 dvdo on St
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+ /R { x&krP 73743, ®| - |05 P| dudvdo
(T, )N <T*}

/R { xrrP 72749, ®| - 10, P| dudvdo
(T, )N <T*}

/ |0 xr|rP|0®|* dudvdo

R(ty, )Nt <T*}

+Z/ xrrPTE e (|8vd>| + r‘l—“’|3u<l>|) - 105®| dvdo
. Se.N{t<T*}

+/ KrFP 7210, @] + 19, D)) - 105D | dvdo. (5.36)
R(ty, )N{t=T*}

Thus, after using a Cauchy—Schwarz inequality (as well as the estimate (5.26)),
we obtain provided that R is large enough in terms of p, 1M, €:

/ XROrP™279) . 9, ® - 8,05P dudvdo
R(t1,12)N{t<T*}

Spn B L 19111, ). (5.37)
Inequalities (5.31), (5.34) and (5.37) yield (5.22). Therefore, the proof of the
Lemma is complete. O

In order to control the zeroth order terms appearing in the right hand side of (5.15),
we will make use of the following Hardy type inequality:

Lemma 5.5 Forany 0 < p < 2, any given 0 <M < a, any R > 0 large enough in

terms of p, M, any 1| < 1y and any T* > 0, the following inequality is true for any

smooth function ¢ : Ny — C with compact support in space and any smooth cut-off
R : Nap — [0, 11 supported in {r > R}:

/ x& P20 = dvdo
Sy N{t<T*}

+/ xr P72 190 dvdo
Rt t)N{1=T*}

+/ XR * rP= 3|Q(P| dudvdo <p n 5},0,4,10[ R, T*[‘P](Tl)
R(t1,0)N{t<T*}

_|_

/ xr - P20 r " dudo

T

%)

+

/ [0xr] - ("p|3(§2(13)|2 + rp_ZIQ(PIZ) dudvdo
R(t1, )Nt <T*}

/ xrJl (9"
Sy Nt <T*}

+/ x& - P PN Q00 dudvdo, (5.38)
R(t1, )Nt <T*}

_|_
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where n is the future directed unit normal on the hyperboloids S+. In the above, the
constants implicit in the S, n notation depend only on p, M and on the geometry of

Nag, 8)-

Proof As in the proof of Lemma (5.4), we can assume that ¢ is real valued. We will
also set & = Q.

In dimensions d > 4 (5.38) follows immediately from Lemma (5.4), since for
d > 4 and for R large enough, the left hand side of (5.15) controls the left hand side
of (5.38) and the zeroth order terms in the right hand side of (5.38) can be absorbed
into the left hand side. Therefore it only remains to treat the case d = 3.

The proof of this lemma follows the standard steps of proving a Hardy-type inequal-
ity. Since 9,7 = 1 + o(1), we can write:

/ xr - rP 3| ®|? dudvdo
R(v1,12)N{r<T*}

1
=/ XR * [—3v(rp_2) +0(rp_3)] |<I>|2dudvdo (5.39)
Rt w)N{r<T*) p—2
and hence, if R > 1:

/ x& - P73 (1 + 0(1)|®)? dudvdo
Rt w)N{r<T*}

1 -2 2
=— XR - 0y (rP79)|®|” dudvdo
P =2 JR( wnfe<T*)

1
= — / xg - P72 @) dudo
p—2 Sy, N{t<T*}

+/ xg - P72 @) dudo

Rt )N {t=T*}

—/ xr - rP7%|®|? dudo
Stlﬂ{th*}

—/ By xR) - r’ 2| ®|? dudvdo
Rt w)N{r<T*}

+/ xR P72 0, - <bdudvdo] , (5.40)
R(t1,1)N{t<T*}

the last equality following after performing an integration by parts in 9,.

Notice that ﬁ < 0 in the right hand side of (5.40). Therefore, after applying a
Cauchy—Schwarz inequality we obtain:

/ XR ~r1’_2|d>|2dud0+/ xg - P72 @) dudo
Se,N{t<T*} R(t1,0)N{t=T*}

+/ xr - rP 73| ®|? dudvdo
Ry, )Nt <T*}
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< C(p) / xr - rP 72| @) dudo
Sy N{t<T*}
+/ 10xg| - r?72|®|?> dudvdo
R(t1,0)N{t<T*}
1/2
+ (/ XR - r”_l|avd>|2dudva’0)
Rt )N <T*}

1/2
x (/ xR - rP—3|q>|2dudvdo) . (5.41)
R(t1, )Nt <T*)}

The second factor of the last term of the right hand side of (5.41) can be absorbed
into the left hand side, while the first factor of the same term can be bounded by the
left hand side of (5.15), and thus:

/ xg - P72 @ dudo
Se, Nr<T*}
+/ xgr - rP72|®)? dudo
R(t1,0)N{t=T*}
+/ xg - rP731®)? dudvdo
R(t1,t)N{r<T*}

p/S \N{r<T*} Xr - 2|CD| dudo + 515£;rzdRT*[(P](T1)

+/ XRJ (¢)n*
Sy N{t<T*}

/ |0 xR - (r”|8(52<p)|2 + rP*2|Q<p|2) dudvdo
Rt 0)N{t<T*}

+

+

/R xg - (PP 4+ PN Q091 dudvdo
(t1,0)N{t<T*}

+/ XR -r”_z_“|<1>|2dvdo+/ xr - rP77 @ dvdo
Sr,N{r=T*} R(t1,0)N{1=T*}

+/ xr - max{r’=37 r 3@ dudvdo. (5.42)
(t1,T)N{t<T*}

If R is large enough in terms of p, the last two lines of the right hand side of (5.42)
can be absorbed into the left hand side, yielding the desired inequality (5.38). O

Proof of Theorem 5.1. The proof of Theorem 5.1 follows readily by adding inequali-
ties (5.15) for the given value of p and (5.38) for min{p, 2 — §} in place of p, using
also (4.30) and (4.4), and letting T* — +o0. O
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6 The Improved r?-Weighted Energy Hierarchy for Higher Order
Derivatives

In [34], Schlue established that on Schwarzschild exterior spacetimes, commutation
of the wave equation (1.1) with the outgoing null vector field 9, and the generators
of the spherical isometries leads to an improved r?-weighted hierarchy for 9, (Q2¢)
and r 19, (2¢). This improvement of the r-weights in the hierarchy (1.7) for 9, (29),
r~195(Q2¢) was fundamental in obtaining improved decay rates in u for T, and
subsequently for ¢ itself (7 being the stationary Killing vector field of Schwarzschild
spacetime). See [34] for more details.

In this Section, we will extend and improve the results of [34] to spacetime regions
(sz, g) with g of the form (3.3). In particular, we will establish that higher order
derivatives of Q¢ in directions tangential to the hyperboloids {t = const} satisfy an
r?-weighted hierarchy similar to the one established in the previous section for Q¢,
but for p taking values larger than 2. These improved estimates will be crucial in the
establishment of improved polynomial decay rates for ¢ in Section 9.

Theorem 6.1 For any k € N, any 2k —2 < p < 2k, any given 0 < M < a and
0 <8 < 1, any R > 0 large enough in terms of p, M, 8, k and any 11 < 1o, the
following inequality is true for any smooth function ¢ : M — C solving [, ¢ = F
and any smooth cut-off xg : M — [0, 1] supported in {r > R}:

k
e sl @1(T2)

2
-1,k . k
+ / e s @10 d T+ limsup L5 191t 1) Sponsk

Tl T*—+o00
k
k —2(k—j i n12
Sponsk gzggun)d,R;a[“p](TZ) +Z/ [xr| - r?26 D197 ¢|
j=0 R(t1,7t2)

k
n / Kk - (rPHImHa=2k=)) 1
22 |

J=lki+ky+kz=j—1

x (|r—kzaﬁla§2353(m)|2) dudvdo. 6.1)

In the above, the constants implicit in the S p, w ;. notation depend only on p, M, k
and on the geometry of (M, g), and the higher order p-energy norms are defined as

(p.k)
gbound, R:§ [(P] (T)

k
_ Z z [/ xR (rP—z(k‘j)|r‘k2_k3851+18§2853 (Q(P)|2

J=lkiHotha=j—1 /St

T (rp—z(k—j)|r—kz—k3—1a§1 3§z+1353(9(p)|2
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n / n ((d 3P 2260 4 i (P 2-20)), r—s—z(k—p})

T

2
‘r_kz_k3af‘8§28,f3(9$)‘ )) dvd6+/8 XRJ{(r—’Qa’,jla(’,‘za[jup)ﬁ“] (6.2)

(p—1,k)
Eputke, R, n;5P1(V)

k
O [P e ——

j=1ki+ko+kz=j—1

+ ((2k _ pyrP1m260 rp—l—s—z(k—n) ,r—k—13§1+k2+1353(9(p),2
+ (k= p)d = 3)rr 737200

+ min{rP~372k=1), r—1—5—2<k—f>}) |k gl 8§2853(Q(p)|2}) dvdo

+ / XRr1”|3L{+1(Q<P)|2dvd0] 6.3)
S

and

k
ELN 01, )

k
= E E i/ (rP—Z(k—j) rFka—ks=1 gk 3§2+18k3(§2(p)|2
v u
Rt w)N{r=T*}

Jj=1ki+ky+ks=j—1

+ <(d _ 3y P22 ) | i 2200 r,g,z(k,,->})

x|rbaligl ol e)|*) dudo

+ / Il ok ko) (P)n”] (6.4)
Rt w)N{r=T*}

Applying Theorem 6.1 for 3/ @, j = 0,...m — 1 in place of ¢ using Lemma 6.3,
we will deduce the following estimate (the proof of which is straightforward and will
be omitted)

Corollary 6.2 Keeping the same notations as in Theorem 6.1, for any any integer
m>0,anyk € N, any2k —2 < p <2k, any given 0 <M <aand0 < § < 1, any
R > 0large enough in terms of p, M, §, k, m and any 1|1 < 1y, the following inequality
is true for any smooth function ¢ : M — C solving O, ¢ = F and any smooth cut-off
XR : M — [0, 1] supported in {r > R}:
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m—1

’k o . . .
DD DR (o PN I M A G

J=0 ji+j2+j3=Jj

.[2 . . . .
+ e e d
T

: (p.k) —j2aj1 94243
+ limsup £, Slr 29! 379 @1(t1, 1)
T*—+o00 Y
m—1
(p.k) —j2aj19429J3
Spskm D D 8] 0207 0 (o)

J=0 j1t+j2+j3=]j

k

m—1
j=0 i=0 R(t1,%2)

k
2 2 2 / Xg - (PO TEED 4
R(t1,12)

i1+ia+iz<m—1 j=1kj+ko+kz=j—1

X (|r—’<2—iza{jl+ila§2+f2353+f3(st)|2) dudvdo. (6.5)

The proof of Theorem 6.1 will be presented in Section 6.2. Before that, we will
obtain an expression for the equation satisfied by the derivatives of Q¢ when ¢ solves
U¢ = F. This will be accomplished in the following section.

6.1 Commutator Expressions

In this section, we will commute the wave operator [1, with the coordinate vector
fields 9, and 9, in the (u, v, o) coordinate system, as well as the first order operator
rolySt! (v denoting here the gradient of a function on (S¢~!, gga-1)) in the
asymptotically flat region {r > 1}.

We will establish the following lemma:

Lemma 6.3 For any smooth function ¢ : M — C the following expressions are true
in the region {r > 1} for anyl € N:

!
20 (Q—Iai(sch)) =0, (209) + > (=17 [(j)(l )2
j=1
: d—1)(d—-3) ,_.
X (Aggd—l +hgd-1 811;_1 (£2¢9) — ()4#811)_] (Q‘P))}
1
+ > D Err(9](29)), (6.6)

j=0

@0 (Q*I(r*vgd")l(szw)) - (r*lvgd’l)l (QO9) +1-r 71713, ((VS"")I(Qw))
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— 177N, (VT @9) + 10+ Dr 2T (20)

1
+ Zr_(l_j)Err ((r_lvsdil )j(Q(P)) (©.7)
i=0

and
20(27'920) = 1+ 00779 -3 (1 + 0617 - 20¢)

-1 1
+> 00 iots (31 20) + D Err (6(29)) . 63)
i—0 =0

]=
-1 }
where V3" denotes the gradient on (S9!, gsd-1) and the Err terms are of the form:

Err(®) =007 320+ 00" 0204+ 00 2"0,00® + O(r~2) 8,0,
+ 00 0,0, + 0r~ 299,
+ 007 "9,0+ 027 95D + 0. (6.9)

Proof Let us set
D = Q. (6.10)

In (u, v, o) coordinates in the region {r > 1}, the wave operator takes the following
form according to (3.14):

Q-0¢=— (1 + 0(”_1_“)) S0y 0y P + ”_ZAng71+hSdfl @

_Wﬂ . ® + Err(®). .11

Differentiating (6.11) I times with respect to d,, we readily obtain:
ol (Q0l9) = — (1 + O(r—‘—“)) - 8,0,(0) @)
! (/1 .
+> (-1 [(j)(l + T2
j=0

_i (d—1)d—=3),,_;
(st 470 D0))

1
+ > 1 CDEr ] @), (6.12)
j=0
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which (due to the expression (6.11) for the wave operator) can be rewritten in the
desired form (6.6) as:

1
Q0 (Q_lavcb) = 8, (Q09) + > (—1)/*! [(j)(l § )2

j=1

_j d—-1Dd—-3),,_;
(S ST ELUEE PR

1
+ > 1 D Err ] @). (6.13)
j=0

Similarly, applying to (6.11) [ times the rescaled angular gradient =1V to
(6.11) (notice that V58! commutes with A gga_1> Ous By and 1), we calculate:

(r—lVSd_l)l (QO¢) = — (1 + O(r—l—a)) . auav(’.—l(vgd—l)lq))

— _ d—1
7 A gy g (VST D)
_@-D@d-3
2
— LN (Y @) 1T, (V5 o)

v Y o)

— 10+ Dr 2 v e

1
+ > Er (7Y 0), (6.14)
j=0

(where the O(-) terms in the r~! Err(®) summand should be considered to denote
vector fields on S~! rather than functions). Thus, rearranging the terms we deduce
that:

o (971(771V8d71)1¢) _ (r’IVS{H)l Q) +1 -7, ((VS‘H)ICD)
1.1y, ((VSd_l)ICD) (6.15)

LIl + 2o e

l
+ > D (67 0)
j=0

After multiplying (6.11) with 1 + O (r~17%) 50 as to make the coefficient of 9,9, P
equal to 1, differentiating / times with respect to d,, we eventually obtain (since 9,7 =
—1) that
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Q0 (srlaf,cb) —(1+00¢1"9). 9 ((1 Lo 1y). QD<p) (6.16)

+2 0(r=3)80o (ag q>) n é‘a Err (a,{ q>) ,

j=

6.2 Proof of Theorem 6.1

Without loss of generality, we will assume that ¢ is real valued. We will set
P = Q. (6.17)

In the case k = 1 the statement of Theorem 6.1 reduces to the statement of Theorem
5.1. Thus, it suffices to assume that k > 2. In order to avoid unnecessarily complicated
notations, we will only establish the case k = 2, since the case k > 2 can be treated
in exactly the same way (through induction on k).

Fix an € > 0 small enough in terms of p, N, §. We will assume without loss of
generality that R in terms of €. Repeating the proof of Lemma 5.4 for Q7'9,® in
place of ¢, but without absorbing terms of the form f O~ 19 r19,0,9% by
the left hand side of the resulting inequality, and without using a Cauchy—Schwarz
inequality to bound terms of the form 92 ® -1 (29, ), we readily obtain the following
inequality for any 7* > 0 (using the energy norm notation of the proof of Theorem
5.1):

©
_ —1 _
ED) 270,01 + / AR SRSV E:

Tl

+EF) IR, @) (1 )
< (14 0pn(®) - Egrg .+ [27 0@ (1)

+Cp,n,s/ [OxRI - (Vp|33vq)|2 +I’p_2|3vCD|2) dudvdo
R(t1,12)N{1<T*}

+Cpne / xw - (r77 T 00, B 4+ 1P 0,0, 01
Rt 1N <T*)

+ max{rP3¢, r_3}|8v<I>|2) dudvds

1 _

+Cp,n,s/ XR * (—f(r)(av —3)(Q7 19, @)

R(t1, )Nt <T*} 2
d—1 r
Jr( r)f( )

(Q_lavdJ)) C0Q19,®) Q*dudvdo

+ Cp,n,S/ xR - (3y + 8,) (0, ®) - QL(2719, P) dudvdo
Rt w)N{t<T*}
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+/ XR - Opne(rP™27%) - 350,® - QO (Q_lf)v@) dudvdo
R (1, )N{1<T*)

- / Xk - P02 - QO (Q’lavdD) dudvdo
Ry, w)N{r<T*}

+CpneBound) 1 [0](t1, T2), (6.18)

where f(r) = H’_% is the function used in the proof of Lemma 4.1 and

2
Bound,)';.[€](t1, T2) = Z/ xg-rPe (|auavc1>|2 +1r 1860, ®
i=1 7/ SyNe=T*

+ 19,8 + r*2c1>2) dvdo

}

+/ xr 7 (10,0, 0 + 1 00, 0P
R(v, t)nfr=T*}
10,02 + r*zcbz) dvdo

+/ xrJ ] (@710, )it (6.19)
Se N{t<T*)

Notice that since 2 < p < 4, the left hand side of (6.18) is not positive definite, since
the 5155 17<11)e 7+ term contains a summand of the form

d—1)(d-3
()él#rp_ﬂavdﬂz) dudvdo

/ 2-p) (r"—1|r—1acavd>|2+
R(t1, 1)N{t<T*}

(6.20)

which has a negative sign.

We will show that the last term of the right hand side of (6.18) can provide us with
extra control over bulk terms of the form f rP~1r=19,9,®|%. These terms will then
be moved to the left hand side, rendering it positive definite for 2 < p < 4.

According to Lemma 6.3, Q7!3, ® satisfies the following equation:

@-Dd=3) 5.
2
+Err(3,®) + r ' Err(®) 6.21)

QO (sz—]avcp) = 0(QF) +2r Ay hy D —

Therefore (omitting the dudvdo volume form for the next few lines):

/ xg 1782 - QO (Q—lavcp)
R(t1,1)N{t<T*}

=/ g - rPO2D - 3,(QF)
Rt w)N{t<T*}
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+2/ XR - r[’-3agq> . A8§d—1+hgd71 ®
R(t1,0)N{t<T*}
(d—1)d —3)

2 R(t1. )N <T*)

+/ xR-rl’a,%cb.(Err(avd>)+r—1Err(c1>)), (6.22)
R(t1, )Nt <T*}

Xg P00 @

Integrating by parts in d5, 9,, we have: (note, again, that the volume form used here
is dudvdo)

/ XR.rp*335cb~Ag a1 4hea P
R(t,12)N{r<T*} S S

=/ xr - rP 7 r 19,0, ®
R(t1,0)N{t<T*}
_p=3p=9H
2 R(t1, )Nt <T*}

+ 0l - (OGD)I2BP + 07 )a0P2)
R(t1,0)N{r<T*}

xr - rP 3 r 9. 0)?

+/ XR * O(VP)BU(D : El‘r(CD)—{—Op,n(]) . BOund(n;N* E[(P]('cl, )
R(t1, )Nt <T*} P47,

(6.23)

and

/ Xr P00 @
R(t1,0)N{r<T*)

- _/ xe -0, @f
R(t,w)N{t<T*}
(=3 -4
2 R(t1. 1N <T*)

+/ 19xr| - (0(r”‘2)|ac1>|2 + O(rf’—4)|q>|2)
R(u1,w)Nr<T*}

xr P70 @)

+/ xR - O(P)3,® - Err(®)+0,4(1) - Bound'™).. .[9](t1, 1),
R(t1.w)N{r<T*} p.T*,

(6.24)
where

Bound,(;f)r*)s[@](ﬁ, 2)

=& Z (51553;1d,R,T*[Q_lavcp]('[i) + 5;55,1,“171{1*[Q_lr_lac,@](-ci)
i=1
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2
- _ -1 -
+ glﬁﬁun%a?,R,T* [€2 ]au CD](‘C,)) + ¢ ngggun%d),R,T* [¢1(T). (6.25)

i=1

Therefore, using (6.21), (6.22), (6.23) and (6.24), as well as an integration by parts
scheme similar to the one implemented in the proof of Lemma 5.4, we can estimate:

1 d—1
Cpone / XR (Ef(n(av 0@ @)+ 4 DI@
R, )N{t<T*} r

x 0 19,®) Q*dudvdo

+ Cp,n,a/ xX& - By + 8,)(3,®) - QO(27'9,®) dudvdo
R, )N <T*)

(sz—lavq>))

+/ XR - O(rP~279) . 3,8,® - QO (sz*lavcb) dudvdo
R(t1,12)N{t<T*}
_/ xR - P32 - QO (Q_lavd)) dudvdo

R(u, m)N{<T)

< —2/ xg - rPr 1950, @) dudvdo
R(t1,12)N{t<T*}

d—1)d—-73
_@d-DHd-3) kP30, 0P
2 Rt t)N{t<T*}
+(p=3)(p—4) P Gl e
R(t1,02)N{t<T*}
d—1)d—-73
+()4#r1’5|q>|2) dudvdo

+Cp,n,a/ [OxR] - (rp|32<1>|2 +r”_2|8<1>|2) dudvdo
R(ty,w)N{t<T*}

+ Cp,n,a/ XR - (r‘+” + rl’“) 13y(QF) > dudvdo
Rt 0)N{t<T*}

+ C,,,n’gBoundg'jT*[(P](tl, )+ Cpy Boundgf)T*,s[w](tl, )
+ B L)t 1), (6.26)

where we have set:

dy
B;’]g*’n’e[(P](‘tl ’ 1:2)

= Cp,n,a/ XR - (r‘*” + rP*H‘) 2 r 2050, P|? dudvdo
R, 0)N{t<T*}
+ Cp,ﬂ,ﬁ/ XR P 1,8, @) dudvdo
Ry, )N {t<T*}

+ Cp,n,s/ xr - rP737%0,0,9|* dudvdo
R(t1, )Nt <T*}
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+ CPJLS/ XR * (i’1+n—|—r1’_1_“) . r_2|Err(d>)|2dudvd0
R(t1,0)N{t<T*}

+ / XR - Opme(r?)d2® - Err(d,®) dudvds
R(t1,1)N{r<T*}

+ / XR - op,n,s(r"”—a)avac@ - Err(®)dudvdo
R, w)N{t<T*}

+ / XR - Opne(f(1r))0,0,D - Err(9,®) dudvdo
R(v1,12)N{t<T*}

+0,0(6) xg P (|83<1>|2 +r_2|8vd>|2) dudvdo.
R(t1,0)N{r<T*}

(6.27)

Returning to (6.18), (6.26) implies that

©
i v - [Q7 0PI (2) + / & e Q78,10 d T
T
+EF) ¢ 270, @111 1)

E (1 + Op,‘r](e)) glgglind’R,T*[Q_laUQ](T]) + Cp,"],& /’]Q(T . )Q{I<T*} |8XR|
1,12 =

X (rp|aa,,q>|2 +r1’—2|av¢|2) dudvdo

+Cp,n,s/ xr - max{r’=37% r=3}19,®|*> dudvdo
R(ty,w)N{t<T*}

+Cp,n,s/ XR - (r”” +r1’+‘) 18, (QF)|? dudvdo
Rt w)N{t<T*}

+(p—3)(p—4)/ XR
R

(T, )N{r<T*}
d—-1d-3)
4

+Cpn.eBound,'1.[91(v1, ©2)

x (rp_3|r_186q)|2 + rP—5|q>|2) dudvdo

oy
+CpnBound('}., [01(t1, 1) + By, [91(T1, ©2)

—2/ xr - P r 1950, @) dudvdo
Ry, )N {t<T*}

_@=D@=3)

xr - rP7 N9, ®). (6.28)
2 R(t1, )N <T*}

Notice that the last two terms of the right hand side of (6.28) can be moved to the
left hand side, thus providing us with extra control over bulk terms of the form | xg -
rP~1r~1959,®|? and (in dimensions d > 3) [ xg - r’ 33, ®|*:

@ Springer



The r”-Weighted Energy Method of Dafermos and Rodnianski... Page 79 of 194 6

L%

- 1,8, _

glggtind,R,T*[Q la”(b](TZ)Jr/ 51(;511(,&7:1*[9 19, 01(nd T
T

+ER) ¢ Q79,011 1)
S (1 + Op,n(ﬁ)) glgglind,R,T*[Q_lavq:’](T])

+Cp,n,e/ |0 xR| - (rp|88v©|2 +r”—2|a,,q>|2) dudvdo
R(ty,w)N{t<T*}
+ Cp,ﬂ,s/ XR - max{i’pd*a, r73}|8v<1>|2 dudvdo
Rt w)N{r<T*}
+ Cp,Tl,e/ XR - (r“” + r!’“) 18y (QF) > dudvdo
{u<t<u}N{r<T*}

+(p=3)(p—4 e (7 el

R(ty, )Nt <T*
d—1)d -3
+ ()4##—5@?) dudvdo

+CponeBound 1. [€1(t1. ) + CpyBound 'y [€1(t1, 12)

Oy
+BY, | [0l 1), (6.29)
where we have set
—1,0y
Epmarinr+ Y10

. — 2
=/ xx (pro~'ou@w)|
SN{t<T*}

+(6—p) (r!’—l\r—lag(sz\y)}z + Wﬂ’ﬂgw\z)) dvdo

+ / xer T 0,(QW)|? dvdo. (6.30)
SN{r<T*}

Notice the (6 — p) factor in the £ gﬁﬁcl }?”,: 7+ bulk energy norm which makes it positive
definite for2 < p < 4.
We can extract a similar inequality for »~!' 9, ® in place of 3, ®. Repeating as before

the proof of Lemma 5.4 for Q! (r’1 Vs CD) in place of ¢, we obtain:

1%}
-1 .- —1 1 —
N e[ 0] (1) + / gl e 0l d T

1

+ &) Q7 @11, )
< (14 0pn(®) Egra g 19271 0 @1()

+Cp,n,e/ [dxR] - (r”‘2|880<1>|2 +r”_4|86d>|2) dudvdo
R(t1,12)N{t<T*}
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+Cpne xw - (rP 71206050 + P9, 0,012
R(t,m)nfr<T*}

+ max{rP=37, r_3}|r_130<13|2) dudvdo
! —1,—1gS¢!
+Cpme XR-=f -0y —09,)(Qr V> D)
R(t1, )N <T*} 2
X D(Q_lr_lVSCH @) Q*dudvdo

d-1f i _|_qd-1
+c,,,n,g/ xR —(Q IV @)
R(t1, )Nt <T*} r

x 0@ 'V &) Q2dudvdo

d—1
+Cpne xg - 0y + 0,) 'V @)
R(t1,2)N{t<T*}

x QU 'V @) dudvdo
+/ Xr- 0P339 . 920 - QO (Q_lr_laodb) dudvdo
R(t1,0)N{<T*}

- / X P, VST @) QO (Q‘lr—lvg"’lcb) dudvdo
R, 12)N{t<T*}

-1
+Cpn.eBound), 12 [€1(x1, 1), 6.31)

where the multiplication between derivatives of the S?~! gradient VS @ of @ in the
last lines of (6.31) is performed with respect to the usual metric gga—1 of S-1, and

X 72 (170,800 + 12050, 0 12

Bound; T*"[(P](Tl, ©) _2/

g0 + r*zcbz) dvdo

+ / xg 72 (1r 0,051
R(t1,0)N{1=T*}

P 2068D ) + |r Lo d)? + r_2<1>2) dvdo

< N{r<T*)

+ / xrdl (@ o )it (6.32)
S N{t<T*}

Using Lemma 6.3, we have:

Q0 (Q_l(r_laccb)) = 1195 (QUI0) + 20,05 D — r 20,0, D
+Err(r~'95®) + r L Err(®). (6.33)
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Remark The term r 29,9, D! in (6.33) will provide us with improved control over
|808(,d>|2 bulk terms, in the same way that the term r_3Ag§d—l+h§d—l ® in (6.21)

eventually provided us with improved control over |33, ®|? bulk terms through (6.22)
and (6.23). We should also notice that the term —r*Zav 9, P has a bad sign, and will
result in the appearence of bulk terms of the form [ xgr”~!|359,®|?> with a non-
convenient sign. All the terms with a bad sign, however, will be controlled by the
corresponding terms in the left hand side of (6.29) plus a multiple of (5.1) for p — 2
in place of p, provided p < 4.

Integrating by parts in 9, and the spherical directions (omitting the dudvdo volume
form in the next few lines), and then once again in 9, for the error term, we compute:

/ xR - (14 C-rrP=2y, (r_IVSdib) 9,V
R(t1,0)N{t<T*}
:/ Xk (+ 00D (1728, @) - 8,0,0
R, )N <T*}

—2)(4 —
+ / XR * (wrl’_3 + O(rp—3—a)) |r—180q)|2
R(t1, w0 <T*} 2

+ 0l - (OGDI? 0P + 047D a0 )
Rt m)nfr<T*}
+0pn(1) - Bound'y. [9]1(t1, T2). (6.34)

However, since [1,¢ = F, the following equality holds:

(1 + 0(r*1*“)) 0ud® = — QF +r Ay iy, @ (6.35)
~D(d —
— (—(d )4(d 28 r2) O+ Err(d).

Using (6.35) to substitute 9,0, P in (6.34), as well as the following elliptic-type
estimate on S~

/ |Ag ch|2doz/ |308C,<I>|2d0+(d—2)/ 10, D%, (6.36)
S
sd-1 Sd—1 sd-1

we infer after integrating by parts in 9, in the term [ x g - W P gsa1 O+ P
/ xr - P20,V T 0) 9, V8 0
R, t)N{r<T*}

> / xg - P2 0,050
R(t1, )Nt <T*}

. . _ d—1 .
1T Recall that this term is actually r zﬁau (VS ), see Section 2.
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+ / xr 1P 0 (12000, + I o0
Rt w)nir<T*)

/ ((d—l)(d—3)+2(p—2)(4—p)
+ XR
R(t1,12)N{t<T*) 4

+W@d -2+ 00™) rP3r ;0

+/ 0(axxl) - (0G0 + 007 D) so )
R(ty, )Nt <T*}

+ / Xk - 0@l (r_28080d>) - Err(®)
Rt w)N{t<T*}

+ / Xk - 0P~ 4, (r—laocb) -QF
Rt w)N{t<T*}

—1-
+Cpon.cBound), 12 [€1(t1, ) + CpnBoundy. [€1(t1, T2).  (6.37)

This should be considered as the analogue of (6.23). Proceeding therefore as before,
from (6.31), (6.33) and (6.37) we can extract the following analogue of (6.29):

1%}
Egtrnd.r, 719271 0 ®1(x2) + / E A 17 @l (1 d v
+EF) Q7' —la(,cb](rl, )
(1 + 0[’ n(S)) bound R, T*[Q 180CI>]('[])

+Cpne / 0l - (17210051 + r~40,I?) dudvdo
R(t1,0)N{t<T*}

+Cp,n,€/ xr - max{r’ 37 r=3}r 19, ®|? dudvdo
R(t1,1)N{t<T*}

+C,,,n,s/ xR - (r1+n +r”+1)
R(t1,12)N{t<T*}

. (Iflao(stn2 + r*2|QF|2) dudvdo

+Cpmee / xr - P r 950, % dudvdo

R(ty,0)N{t<T*}

+ / Xk - (L + 06—~ (1o, v o)
Riw m)N(i=<T?)

(0, (VST <I>)) dudvdo
+CponeBound) 12 191(%1, %) + CpnBound . [91(1, 7o)

+ B el ), (6.38)
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where we have set
1,3
Epmioi .+ (VI
i/ XR (prp_1|8v(52\11)|2+max{(4—p),r_%}
SNt <T*}
d—1)d-3
X (rp_1|r_180(§2‘~11)|2 + %}’p—ﬂﬂlﬂz)) dvdo

+ / xrr 8, (QW)|? dvdo (6.39)
SN{t<T*}

1
and B;r’T*‘?‘;]),s[@](tl, 1,) is of the form:

~1,
B ) [l 1)
= Cp,n,a/ xe o (100, @17 + 151060, ®1%) dudvdo
R, w)N{t<T*}
+Cp,ﬂ,8/ xg -rP71Ta (|r_23cao¢>|2 + Ir_130<1>|2) dudvdo
R(t1,12)N{t<T*}
+Cp,n,s/ xrrP 374 (|r718u80d>|2) dudvdo
R(t, w)N{r<T*}
+Cp,ﬂ,£/ xg - (r" P71 r 2 Err (@) dudvdo
R, w)N{t<T*}
+/ xR Opne(r?1)0y00® (Err(r~'0,®)+r " Err(®)) dudvdo
R(t1, 1)t <T*}
+/ XR - Op,n,e(rp73)acagq> - Err(®) dudvdo
R, )Nt <T*}

+ C,,,n,g/ Xk - F()0,(r 0 @) Err(r~'8,®) dudvdo. (6.40)
R(ty, 1)t <T*}
We can now add (6.29) and (6.38) so as to obtain

glgsb)md,R,T*[Qilavq)](TZ) + g}ggind,R,T*[97177130‘13](12)
+ [T (gt [ 19,®1(1) + P19 @19, 0](1) dt
- bulk,Rn,T* v bulk,R M, T* o

+ &8 Q718,11 @) + EF p Q7 T 8 @)1, 1)

< (14 0pn(®) (E7 7127 0 01T) + E7) 7197 06 01(x0)

+Cp,n,s/ 10 xR| - (r”|82<1>|2 +rp—2|a<1>|2) dudvdo
R(t1,12)N{t<T*}

+ C,,,n,a/ xg - max{rP=374 73} (|8U<D|2+|r_185<1>|2) dudvdo
R, 12)N{t<T*}

@ Springer



6 Page 84 of 194 G. Moschidis

+ Cp,n,a/ XR
R(t1,1)N{t<T*}

() (10,@F)P + 1 @) + rIQF ) dudvdo

+(p—3)(p—4)/ XR

R, )N{1=T*}

d—1)(d -3
: (rp_3|r_180<1>|2 L U-be-3 )4( )rp_5|d>|2) dudvdo

+/ xrx - (+ 00! (1710, v o)
R(t,0)N{t<T*)}
—1gSi!
: (av v @)) dudvdo
+ Cp n, gBOLH’ld > [(P](Il, ) + Cp T]Boundp T*.e [¢](T1, T2)
+ B2, | 191t ) + BY ) [91(t. ),
where

Bound,)';2[¢](t1, ©2)

LT ) B

o N{E<T*}

x (|auavq>|2 T r 8,0, ®)% + 3,0 + r—2|q>|2) dvdo

+CpnsZ/ Xg Pl

Sy N{t<T*}

x (|r— 3,00 D 2 + |r 20500 D2 + |r_180d>|2) dvdo

+Cp,T],S/ XR - rP—Z—a
R(t1,w)N{t=T*}

x (|auavq>|2 T r 8,0, ®)% + 3,0 + r—2|c1>|2) dvdo

+C17,n,s/ XR P2
R(t1,0)N{t=T*}

x (|r*‘auagc1>|2 Fr 20,8, 0 + |r*‘agcb|2) dvdo

+Cpme / xrJ] (@9, D)t
Se N{t=<T*)

+Cp,n,s/ xrd (@ o @)t
Se, N{r=<T*}

(6.41)

(6.42)

Since 2 < p < 4, the second to the end line of the right hand side of (6.48) can be

absorbed by the left hand side after using a Cauchy—Schwarz inequality, since
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/ Y& - (14 0@ %))rP! (r—lauvs‘“cb)
Rt m)nir<T*)

: (av(r_lVSd_l q>)) dudvdo

1
=5 xi - (6= pre - oo
2 JRe o<1+
+pr1’*1|av(flacc1>)|2) dvdo. (6.43)

Moreover, the third to the end line of the right hand side of (6.48) can be bounded
by the left hand side of (6.45) for p — 2 in place of p (notice the importance of the
(p —4) factor appearing in front of this term). Therefore, after adding to (6.48) a large
multiple of (5.15) for p — 2 in place of p and a large multiple of (5.38) for p —2 —§
in place of p, we obtain:

Extuna k712 00PN + E) g o [Q71r T 80 @1(12) + E00 o [91(12)
+ [ (et oo mon + 1 1 el
T
L [0 d T+ ER) 19718, 01(0, )
+ & 2 0@t ) + £ 91 (T )
< (14 0pn®) (&0 0 7197 0, @VE) + ED (27 D601 (T)
+c.gh? R’T*[q)](n))

+Cpﬂl,8/ [OxR] (”p|32<1>|2 +rP7200)? + rp74|<b|2) dudvdoc
R(t1, )N {t<T*}

+Cp,ﬂ,8/ k- (r1+n n rp-H)
R(t1,w)N{t<T*}

x (|8U(QF)|2 T 8 (QF)? + r—2|st|2) dudvdo
+CponeBound 2 [0)(t1, 1) + C,,,nBoundg")T*ys[w](tl, )
-1
+ B [0l 1) + BY L) (01, ). (6.44)
Finally, in order to absorb the error terms of the last line the right hand side of
(6.44) into the left hand side, we will need to add to (6.44) a constant multiple of the

estimate (5.1) for 2719, ® in place of ®. By following again the proof of Lemma 5.4
for 2719, ® in place of ¢ for p — 2 in place of p, we obtain:

©
—2 - -3 -
glggund),R,T*[Q 18“®](12)+/r Elgglk,l)?,n,T*[Q 19, ®)(v)d
i

-2 _
+E R 127 0, ®1(11. 1)
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2 —
= (14 0pn®) &t e 197 D@D + Come [ 1o
1,12 =

X (rp—2|aauq>|2 + rp_4|8u<I>|2) dudvdo
+Cpone / xw - (rP =7 00,012
R(t1,w)N(<T*)
+ max{r?>7¢, r73}|8u<b|2) dudvdo
1
+Cp,n,e/ XR - (—f(r)(au —3)(Q7'9,®)
R, w)N{1<T*} 2
d—1
+ M(Q‘awb)) S0Q719,®) Q2 dudvdo
r
+Cp,ﬂ»€/ X - By + 0,)(0,P) - QU(Q 9, ®) dudvdo
R(t1, )Nt <T*}
+/ xR - O(rP~49) . 3,8,® - QO (9*‘3@) dudvdo
(t1,)N{r<T*
- / XR rP729,0,® - QO (SZ_IB,AD) dudvdo
R(t,w)N{r<T*}
+CpcBound) , +.[01(t1. 1), (6.45)

where

Bound™, 1.[¢1(x1, 1) = Z / X - P18, dudo
P L N<T*)

+/ xr - P40, @ dvdo
R(ty,0)N{t=T*}

+ / xrJ (@ 1o, @)t (6.46)
Se N{r<T*}

Adding to (6.44) a large multiple of the estimate (6.45) (implementing also a Hardy
type inequality for the 9,0, ® term), and using the fact that according to Lemma 6.3

0 (2710,0) = (1 + 06717 - (3,(2F) + 00~ =)2F)

1
00 )6, ® + D Err (a; q>) , (6.47)
j=0

we thus obtain:

& i Q@1 + EL b Q7 T 8] (12)
_2 B 9
D QT 8,01 + ELY 911
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2 (e(p=1.0)) I (p—1.3) -
+/ (5bi1k,}e,vn,r*[97 0PI + E g i 7+ [Q 7 oI
T

e [T 01D + ELL L 91) dt
+EL) p Q7 0, @1 (1 ) + EX 127 T 8@ (11 1)
+ &L Q7,0 (11. ) + EL D L 91(T )
= (14 0pn(®) (&g 127 001D + EL o127 80010
+Cpin (Eibt p e O1TD + EDLD 4 112710, @1(x)

+C,,,n,8/ 19 xr| - (r1’|32<1>|2 F P29 4+ rf’*4|<1>|2) dudvdo
R(t1, )N {t<T*}

+Cpne / xw -7 (10,@F)P + 1r o(RF) 2
R(t1,1)N{t<T*}
-2 2 -2 2
+r 7219, (RF)P +r2IQF ) dudvdo
+Cp,n,s/ xr - (10,@F)P + 1 o (@)
Rt t)Nfr<T*}

10, (QF) > + |s2F|2) dudvdo
+CpeBound)' ) 1, [€1(t1. T2) + Cpn.e Bound) 37 [9](t1, 12)
+Cpn Boundl(,'?T*,SUP](tl, )

—1- .
+ B 01 ) + BY LX) (01t 1) + B 91(t ). (648)

where

B o o[€1(t1, T2)
= Cp,n,e/ xw- 1) {00 =00 (2710,0) + 007 (27,0
R(t1,12)N{t<T*}
x {O(r*3)aoacq> T Err(8,®) + Err(@)] Qdudvdo
+ / xR - 0P3350, - {0(r*3)aoac,cb
R(t1,1)N{t<T*}
+ Err(9,®) + Err(®)} dudvdo
- / xR - OGP"2)3,0,D - [O(r*)ac,acob + Err(3,®)
Rt w)N{t<T*}
+ Err(®)} dudvdo. (6.49)

After adding to (6.48) a large (in terms of p, M, €) multiple of (5.15) for p — 2 in
place of p and of (5.38) for min{p — 2,2 — §} in place of p, the
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A —1-
CpBound'y, [01(t1. 1) + By [€1(t1. ) + BY .75 [€1(t1. )

au
+ B rn 19111 )

summand of the right hand side of (6.48) can be absorbed by the positive terms of the
left hand side using an integration by parts scheme similar to the one used in the proof
of Theorem 5.1 for the top order terms and a simple Cauchy—Schwarz inequality for
the lower order terms. Moreover (in view also of Lemma 4.6, as well as the fact that
N < 1+ a), the summand

CpneBound)" , 1.[€1(t1, 2) + Cpn e Bound, < [0](x1, T2)

can be bounded by

/ xrJT 2ok 00 o)t

T

plus O v (¢) times the existing terms in the left and right hand side of (6.48) and (5.38)
(for min{p — 2,2 — 8§} in place of p). Therefore, provided € has been fixed small in
terms of p, M, § and R is large enough in terms of p, M, §, the desired inequality (6.1)
for k = 1 readily follows from (6.48), (5.15) (for p — 2 in place of p) and (5.38) (for
min{p — 2, 2 — §} in place of p) after letting 7* — +o0. O

7 Friedlander Radiation Field on Z+

In this section, we will establish the existence of the Friedlander radiation field on
future null infinity ZT for solutions ¢ to (¢ = F on general asymptotically flat
spacetimes (/\/l”“rl , 8), d > 3, with the asymptotics (3.3), provided the source term
F decays suitably fast in terms of r. This result is essentially a “soft” corollary of the
results of the previous sections.

7.1 Assumptions on the Spacetimes Under Consideration

Let (Md+1, g),d > 3, be a time oriented smooth Lorentzian manifold, possibly with
non empty piecewise smooth boundary 9 M. We will assume the following condition
on the asymptotics of (M, g):

(G1) Asymptotic flatness There exists an open subset N, .M C M such that each
connected component of N r, A is diffeomorphic to R x (1, 400) x se-1,
Fixing such a diffeomorphism (i.e. a coordinate chart) on each component, we
will denote with (u, r, o) the associated coordinate functions. Furthermore, we
assume that on each component of NV, £, o(, the metric g takes the form (3.3):
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g=—4 (1 _ M) | O(r—l‘“)) du® — (4 + o(r‘l‘“)) dudr
r

+r (ggd—l + O(r_l))
+ (h%* (u, 0) + O(r™")) dudo + O (r~“)drdos + O (r—*"“)dr?. (1.1)

Thus, (NVyf, A, &) should be thought of as a disjoint union of copies of the
manifold (Nf, g) of Section 3.

Remark We do not assume that (M, g) is globally hyperbolic.

We will also set # = u +r and v = t — r on Ny pq. Let also T denote the vector
field 9, in the (¢, r, o) coordinate system on each component of N, r.M- We extend
r as a smooth function on the whole of M by the requirement that 0 < r < 2 on
MA\N s, m.- Finally, we also construct the function fiy : {r > 1} C Nyrm — R for
some fixed 0 < M < 1 + a as in Section 3.

7.2 Existence of the Friedlander Radiation Field on Future Null Infinity

We will prove the following result:

Theorem 7.1 Ler (M4F1 g), d > 3 satisfy the assumption (G1), and let Ry > 0 be
large in terms of the geometry of (M, g) (this implies that {r > Ro} C Ny m)- Let
¢ : M — C be a smooth function solving Uy @ = F, such that for some 0 < § < 1
and for any integerQ) < j < (%1 and t € R the following quantity is finite on each
connected component of Nyg pm:

j+1
gi(;+8+2,/,./+1)[q>](0) + Z Z

i=1 ky+ko+kz=i—1

x (I kgl a!?a{f%QF)lz) dudvdo < +oo  (72)

/ r8+2i
JH(=0DNJ = (F=thN(r=Ro)

where

PP 19100

= Z Z [/ (rp_z(k_j)’r_kZ_k38k1+18§28k3 (Q(p)‘z
v u
J=1 ki+ky+ky=j—1 L7 {=010{r=Ro}

+ r—l—n/ (rp—2(k—j) |r—k2—k3—l 351 8§2+1853 (Q@) |2
+ ((d — 3y 2260 4 P22k, r—zs—z(k—j)})

x [rkeks gk 3§2853(Q(p)|2)) dvdo

- / JT(rRakak gl m)ﬁ“] (7.3)
{1=0}n{r>Ro}
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and the derivatives are considered with respect to the (u, v, o) coordinate system
on each connected component of {r > Ro}. Then for each connected component of
N, .M, the Friedlander radiation field

d7+(u,0) = UETOO Q- 9(u,v,o0) (7.4)

exists on R x S4~1,

Moreover, if (7.2) holds for all integers 0 < j <1+ (%] for some integer | > 0,
then &7+ is C'=V in (u, o) and for all integers ji, j», j3 = O with j1 + jo+ j3 <1
and any (u,0) € R x S the limit

lim 1971080 (Qe)(u, v, 0) (7.5)

v—>—+00

is finite.

In particular, if (7.2) holds for all integers j > 0 (for instance when ¢ solves
O¢ = 0 with smooth and compactly supported initial data on {t = 0}), then 7+ is
smooth and (7.5) exists for all integers ji, j2, j3 > 0.

Remark In the case j; > 1 we actually expect that the limit (7.5) is identically O
when ¢ solves ¢ = 0 with compactly supported initial data. This expectation is
justified by the fact follows from the fact that on spacetimes admitting a smooth
conformal compactification of future null infinity, the following stronger statement
(in comparison to (7.5)) holds for all integers ji, jo», j3 > 0:

lim 7271971888} () (u, v, 0) < +o0. (7.6)
vV—>—+00
Notice, however, that in our case we are also including spacetimes which do not
necessarily admit a smooth conformal compactification at Z+.

Proof We will assume without loss of generality that ¢ is real valued. We will also
work on a fixed connected component of NV £ A4

Let {v,},cn be an increasing sequence of positive real numbers tending to +oc0.
Let us also fix a smooth function xg : M — [0, 1] such that xg = O on {r < R} and
xR = 1 on {r > R + 1} for some large fixed constant R > Ry > 1.

By repeating the proof of Theorem 6.1 for p = 1 + § in the spacetime region

Do =J ({r=0nNJ ({f =) N{r= Ro} (1.7)

(instead of the region bounded by two hyperboloidal hypersurfaces) for any t € R,
we can readily bound for any k € Nand t € R:

(I4+8+2(k—1),k)
gbound,R;S [(P] (t)

k
1 2(k—1),k i— i
Sk &, T 01000 +Z/D 0xgl-r*t2 107 @
j=0 0,t
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k
+ Z Z / XR * r3+2j—2k3 (|V_k281])(l 8(]:2851 853 (QF)|2) dudvdo,
Jj=1ki+ky+k3=j—1 Do«

(7.8)
where
Epmt.rip P10
= Zk: Z [/{1‘:1} XR (rP—Z(k—j)’r—kz—k3851+18§2853(Q(p)|2

J=1ki+ka+ks=j—1

+ (rp72(k7j) |fk27k371351 8(’;‘2“853(9@”2
+ ((d _ 3),.p—2—2(k—j) + min{rp_z_z(k_j), r—8—2(k—j)})

% |r_k2_k33llfl a§2353(9(p)|2)) dvdo + /{_ } XRJuT(V_kzallfl 8!;2353 (p)ﬁ“}
=1

(7.9)
(the 9y, 95, 9, coordinate vector fields are a priori only defined in the region {r > R},
but since the integrand is multiplied with the cut-off xr the expression in (7.9) is well
defined).

Using the fundamental theorem of calculus and the expression (3.7) for 7, we can
bound for any C! function ¥ : M — Rand any T € R, ng € N:

no
Z/sd—l ‘XRQ\y'{f_:T}(v"H’ 0) — XRQW (7= (vn, 0)‘ do
n=l1
5/ (|8U(XRQ\I/)| +r*‘|au(XR§znp)|) dvdo <y
{t_:‘[}m{vano}
Ss / |0xr] - |1QW|do
=

12
+ / LIV (|av(sz\y)|2 —|—r_2|8u(§2\11)|2) dvde ) .
{t=t}N{v=<vy,}

(7.10)

In the above, xgQ2W|(;=y) is considered as a function of (v, o), since (v, 0) is a valid
parametrisation of {f = t} N {r > R} where xxQW is supported. Moreover, the
coordinate derivatives d,,, d, in the right hand side are defined in the (u, v, o) coordinate
system in the region {r > R}.
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Therefore, from (7.8), (7.9) and (7.10) for ~'r71871 822 8,3 (2¢) in place of ¥ we
readily deduce that for any k € N and any ng € N:

no k—1

>y ¥ [

n=1j=0 ji+j2+j3=j

XRr10J 08 0 () 7=y (U1, 0)

2
— ke 01 000 (R0 ey (00, )| do) Sks

k
Sk €, PEIO010) + 3 / ozl - r* 0 0P
i=0 DO,I
2

k—1

+ Z/ |0 xrIr 107 ¢|
._ {_
j=0

=1}

k
+> > / Xg - o2k (|r"‘23,’§1a§2351353(QF)|2) dudvdo.
=1 ki+ka+ks=j—17 Dox

(7.11)

Using the Sobolev inequality on S?~!

141
[N [P Z/Sd_l 0w do, (7.12)
Jj=0

from (7.11) (and the fact that |[W||,1(gd-1) <4 [|W]|L2(se-1y) we infer that for any
k(), nop € N:

n ko
sip A3 D xwr !0 868 Q)] (041, 0)

d—1 . . . . .
oeS n=1j=0 ji+j2+j3=j

. ) 7 J 2
— X! 37195 8 (29) | =) (Vn, ")} ] Sk

(14+8+2(ko+[41).ko+T 421 o 19
+3+2(ko+51).ko+[ 5= i 1iaj
S £ PO g0 4 3 [ el
j=0 Do,r
2
ko+141 ko+T4$217

+ Z/ oxrlr/ 1070l | + > > g - P22
=0 {r=1}

J=1  ki+kothy=j—17 Pos

x (|r*"23,’jl gl gk 853(§2F)|2) dudvdo. (7.13)

@ Springer



The r”-Weighted Energy Method of Dafermos and Rodnianski... Page 93 of 194 6

In view of (7.2) and the fact that Doy« N supp(dxg) and {f = t} N supp(dxr) are
compact subsets of M, from (7.13) we deduce that for all tp € R and all ky € N such
that (7.2) holds for all k < ko + (%] , the following quantity is finite independently of
no.

" ko . .
sip AT D w0008 00 (@9 ey (01, 0)

0SS0 | n=1 j=0 ji+irtis=i

L 2
X! 0108 O Q9 ey (0, )| ] < Cial@)(t0) < +00.  (1.14)

Therefore, by letting ng — o0 (7.14) yields that for any T € R, 0 € S¢~!, any
ko € N such that (7.2) holds for all £k < ko + (%1 and any ji + j» + jz = ko, the
sequence

{riojiof ol @o)lg a0} (7.15)

ne

is a Cauchy sequence (and hence (7.5) follows).
Moreover, since f — u = O(r~"), from (7.14) we infer the limit

O+ (u,0) = lim Q¢(v,u,o) (7.16)
vV—> 400
exists and is a C*~! function of (u, o) (if kg # 0). O

7.3 Estimates for ® 7+ Provided by Lemma 5.1

The following corollary is a straightforward consequence of Theorems 6.1 and 7.1:

Corollary 7.2 Let N be any connected component of Nyf, p. Then for any k € N,
any 2k —2 < p <2k, any given0 <M <aand0 < § < 1, any R > 0 large enough
intermsof p, M, 8, k, any 11 < T and any smooth cut-off xg : M — [0, 1] supported
in{r > R} NN, the following inequality holds for any smooth function ¢ : M — C
solving U, ¢ = F with suitably decaying initial data on {t = 0}:

—2k| qk1 qk 2
> / rP2 98188 O 7+ |" dudo <po sk
k1 +ho=k Itn{tu<u<tw}

k
. o
Spnsk Eppuna, ksl €1 + D /R 0 xg| - rP72E D10 )
j=0

(t1,72)

k
>y / r - (PPHIZ2=2k=]) 4 1y
J=1 kithyth=j—17 RE1T2)

(1r*20l 0200102 @F)I?) dudvdo, (7.17)
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where we have adopted the convention

1, =2k
rp_2k|1+ = P
0, p<2k.

8 Polynomial Decay 7~! for Solutions to (¢ = 0

In this Section, we will generalise the results of [11] by showing that on asymptotically
flat spacetimes M with possibly non-empty timelike boundary d;;,, M, a7~ ! polyno-
mial decay rate hols for solutions ¢ to [J¢ = 0 with suitable boundary conditions on
dtim M, provided some specific geometric conditions on the interior region of (M, g)
hold and assuming that an integrated local energy decay statement (possibly with loss
of derivatives) holds for ¢.

8.1 Assumptions on the Class of Spacetimes (M, g) Under Consideration
8.1.1 Geometric Assumptions on (M, g) and Related Geometric Constructions

Let (M9t1 g), d > 3, be a smooth Lorentzian manifold with possibly non empty
piecewise smooth boundary d M. We assume that (M, g) satisfies the Assumption
(G1) on asymptotic flatness. We will now proceed to state a few more assumptions
on the geometric structure of (M, g), and present some geometric constructions that
will be used later.

Assumptions on the causal structure of (M, g) and (0 M, glyaq) Since we will
need to establish some global estimates for solutions to the wave equation (1.1) on
(M, g), we will need to impose some conditions on the causal structure of (M, g)
and its boundary.

(G2) Partition of the boundary. We assume that the boundary d. M (if non-empty)
can be split into two components (not necessarily connected)

OM = 9jm MU 9por M, (8.1)

where (9;imM, gls,;,, M) is a smooth Lorentzian manifold (i.e. 9;;,, M is a
smooth timelike hypersurface with respect to g) and (90, M, gl3,,, M) is piece-
wise smooth and degenerate pseudo-Riemannian manifold (i.e. 9, M is a null
hypersurface with respect to g).

(G3) Global Hyperbolicity. Let ./\;l,im denote the double of M along 9;;,, M. We
will denote as i, : M — /\;l”'m the natural inclusion of M into /\;l”'m, while
iref M — /\;l,,-m will denote the reflection map along 9;;,, M. We assume
that M,y is globally hyperbolic. Let ¥ be a Cauchy hypersurface of Miyim. We
will denote with ¥ the restriction of £ on M. We will also fix a time function
t associated with ¥ on /\;l,im, ie. g(Vt,Vt) < Oon /\;l,im and ¥ = {r =0}.
Notice that with the help of r we can identify M,im with R x ¥ and M with
R x X.
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(G4) Domain of outer communications. Let N ¢ rq be the open subset of M defined
in Assumption (G1), where g has the asymptotically flat form (7.1), and let
Naf,M lor(Nan) U lref(Nan) Having identified M;;,, with R x X,
we assume that ./\/af, M = R x (£\K) for some compact K C ¥, and that
N, .M has a finite number of connected components.'? Moreover, we assume
that the domain of dependence of R x (f)\K ) is the whole of /\;l,im.

In view of Assumption (G4), iy (Opor M) Uiref (dpor M) (if non-empty) constitutes
the event horizon of M;,,. From now on we will use the notation H for 9;,, M and
we will call H the event horizon of M. Using the fact that i, (H) Ui,.r (H) constitutes
the event horizon of a globally hyperbolic spacetime, we can define the future event
horizon H™ and the past event horizon H~ of M by the requirement that

e HT H™ are piecewise smooth achronal hypersurfaces (possibly with boundary
and not necessarily connected) such that HT UH™ = H
e H- CJ (H")
We will also assume that H* is smooth (if non-empty).

Assumptions on the existence of a well behaved foliation by hyperboloidal hyper-
surfaces Fixing " = 1, we will assume that the function #y originally defined on the
subset {r > 1} of A/, ..M can be extended as a smooth function on M satisfying the
following conditions:

(G5) 1 is given by the relation (3.7) in the region {r > R} of each connected com-
ponent of N7, A for some R >> 1.

(G6) Forany 0 < 11 < 12, {t = T2} is contained in the future domain of dependence
of {f =1;}.13

(G7) g(Vi, Vi) < 0 everywhere on M N {t > 0}, where V¢ denotes the gradient
of 7 with respect to g. Moreover, —C < g(Vt, Vi) < —c < 0 in the region
{t = O}\N,f . for some C, ¢ > 0.

It will be convenient to have a globally defined future directed timelike vector field
N adjusted to the choice of our foliation {f = const}. Therefore, we will fix N to
be a timelike future directed vector field on M such that N = (— g(Vt, Vt_))_1
on {f > O\Nyg M, N = T in the region {f > 0} N {r > 2R} of N,f ¢, and the
relations —C < g(N, N) < —C7 ! < 0anddi(N) = 1 hold everywhere on M for
some C > 0. The existence of such a vector field follows from time orientability of
M and the convexity of the set

3, ={X € T,M|g(X,X) < 0and di(X) = 1}

for each p € M.

12 1f 9 M # @, then it is necessary that K N 9 M # .

13 The future domain of dependence D (B) of aset B € M is defined as the set of all points p € M such
that all past inextendible causal curves y emanating from p intersect 3, where now y is not considered past
inextendible if it has a past endpoint ¢ on 9;;,, M, since from g one can further extend y by a causal path
inside J 7 (q)\dy;m M.
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We also extend the function r (defined originally in the region Nz r¢) as a Morse
function (but not necessarily as a coordinate function) on the whole of M, under the
assumption that » > 0 everywhere on M, r = 0 on dM and N (r) = 0. In this way,
the asymptotically flat region N, o4 of M will correspond to the region {r > 1}.

Assumption (G7) implies that, if dg; denotes the volume form of the induced
Riemannian metric g7 on the {f = const} hypersurfaces, then there exists a C > 0
such that for any measurable function f : M — [0, +00) and any 0 < 1] < 1) We
have the equivalence

©
/ fdvolg ~g / (/ fdg,—) do. 8.2)
{tu<t<u}N{r<R} Tl {t=0}N{r<R}

Notice that Assumptions (G6) and (G7) also imply that for 7 > 0 the level sets of
the extended 7 intersect transversely H* (if H* # #).!* It will be useful to denote

H.=HYn{i =1 (83)
We will also denote
BrimM® = dimpM N {f = 1} (8.4)
and
IMy = He U dyimM". (8.5)

Without loss of generality, we also assume that the function » has been extended in
such a way in the region {r < 1} so that dr # 0 on H N {z > 0}. We will also use the
shorthand notation

ro= (1 n rz)l/z. (8.6)

Finally, we will also need to assume that the deformation tensor of N and its
derivatives are bounded on {f > 0} when measured with the reference Riemannian
metric (8.11) (that will be constructed in a moment):

(G8) For any ! € N, there exists a C; > 0 such that

1
e
sup > |V, Lygl, < Ci. (8.7)
20} 5

Remark Assumption (G8) holds in the case when the spacetime M is near stationary
or time periodic. Moreover, this is an assumption regarding the structure of the foliation
in the region {r < 1}.

14 As an example, on Schwarzschild exterior the function 7 could not have been chosen to coincide with
the coordinate function ¢ in a neighborhood horizon, but it can coincide with 7* (see i.e. [13]).
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It will be convenient to fix a vector field Y in a neighborhood of H™ U 9y, M so
that for any T > 0, Y is tangent to {f = t}, orthogonal to M+ and 9;;,, M" and satisfies
g(¥,Y)|y, =1land g(¥, V)|, m: =L

Boundary conditions on 9;;,, M for J¢ = F Assumptions (G6) and (G7) guarantee
that for any © > 0, we can solve the inhomogeneous wave equation

0,9 =F (8.8)

on JT({f = t}) with Cauchy initial data on {f = T}, provided suitable boundary
conditions (e.g. Dirichlet conditions) have been imposed on 9;;,, M. In particular, we
will introduce the following definition:

Definition We define the class of admissible boundary conditions on 9, M to be
the set Cyq;y, of all families of linear functions

Fr 2 C@imM") x CZ(@imMT) — C*(3im M) (8.9)

depending smoothly on T > 0 such that for any 1y > 0, any F € C®°({f > 10}) and
any 99, ¢1 € C*({f = 10}), the inititial-boundary value problem

He=F on {f > T}
(Pli=rgs» N Pli=,) = (P0, P1) (8.10)
Fo(@ly,; M YPloom) =0 for T> 10

is well posed.

Notice that the usual Dirichlet and Neumann boundary condition belong to the class
Cadm» corresponding to Fr = Id & 0 and Fr = 0 @ Id respectively.

Construction of the reference Riemannian metric 72 on M In Section A of the
Appendix we establish the existence of a natural Riemannian metric /.,y defined on
the hypersurfaces {f = t} (wich we will sometimes denote with 4y for simplicity),
associated to g and N (and distinct from the induced metric g7, which degenerates as
on approaches Z7).

Remark Notice that &y is non singular up to Hx, since N is timelike everywhere up
to H™. Thus, in the language of Section B of the Appendix, 4 corresponds to the &
metric of that section.

We will extend &y to a Riemannian metric 7 on M by setting
h = (di)?> + hy. (8.11)
This Riemannian metric will be used to measure the norms of tensors on M. Moreover,
we will denote with 7y the Riemannian metric induced by 4 on H-.

Due to the expression (3.4) for g in the region {r > 1} and (A.2) for [,, we can
bound for any smooth ¢ : M — C and any/ € N:
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|Vl{lt,N (Ahva’N(p)ﬁr.N

2 1
<CEO D PV (VR D ( VP (NORE + IV, ‘P|hrN)
j=1 i=0
2
+ |th’N(D(P)|hLN} , (8.12)

where the operator Aj_, y on {f = T} is defined as:

divi, , (\/Wd) . (8.13)

Aht,N,N =

1
V—8(N,N)
Notice that in the right hand side of (8.12) there is no term of order [ 4 2 in the spatial
derivatives (i.e. Vi, y).

Assumptions on the uniformity of elliptic, Poincare and Sobolev type estimates
on the leaves of the foliation {r = t} We will also need to ensure that we can establish
elliptic, Poincare and Sobolev type estimates on the leaves of the foliation {f = t} with
constants that do not depend on t. We will assume the following uniformity condition
onY:

(G9) For any / € N the following uniform bound holds:

sup |V, Y|, < C. (8.14)
{720}

According to Proposition B.2 of the Appendix and the estimate (8.12), without
imposing any extra assumptions the following statement holds:

Lemma For any integer | > 2 and any B < [0, 1) we can bound for any © > 0 and
any ¢ € C °°(M) satzsfymg for any ji + jo» < [ the finite radiation field condition

limsup,_, | o |r p +“V“ (N12<P)|h < +o0:

l—j

1
/_ r P IVE e dhy < Cpoug (D) / A A )R
{t=1} {t:‘t} j=1i=0

Ji+l i1 oy (2
X (Wi,
0<j1+j2=<l-2

Vit e |+ (i veoe); )] dny

+ Z’/ o, (V,]laMT(Yu), v,jaMIu) dhyp,

(8.15)

Our final assumtions on the geometry of (M, g) in the region {f > 0} will be the
following:
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(G10) The constants appearing in the right hand side of (8.15) do not depend on
T>0.

(G11) The following elliptic estimate holds for any / € N and any smooth function u
on the submanifolds 3. M- with a constant C; not depending on T > 0:

I
J 2 <. -2 2
E/GMI |VhaMfu|h3Mt dh?)M( - Cl /8/\/[1 |VhBMT (Ah(’)MTu)|h3Mt dhaMt.

(G12) For C! functions u on M, the Poincare inequality

/ ul*dhy < C(R) - (/ Viyul, dhy
{I=1N{r<R} {r=tN{r<R}

+/ |u|2th) (8.17)
{t=1)N{R<r<2R}

and the trace inequality
/ |(VhaMt)l/2”|2 dhym, = C(e) - (/ B} WhaM”'%taM dhym
IM IMN{t—e<i<t}

+/ |u|2dh3M) (8.18)
IMN{t—e<i<t}

(where iy p4 is the Riemannian metric on .M induced by /) hold for constants
C(R) and C (¢) that do not depend on t > 0. In the above

(G13) The following Sobolev inequality holds for smooth and compactly supported
functions u on the hypersurfaces {f = t}1>0

{i=1}

44
sup [ul> <C- >’ /{ }|V,{Nu|§Nth
j:0 1=t

(see [19]) with the constant C in the right hand side independent of T.

Remark Assumptions (G10)—-(G13) are automatically satisfied in the case the space-
time M is near stationary or time periodic. Moreover, these assumptions are only tied
to the structure of the foliation in the region {r < 1}.

8.1.2 Integrated Local Energy Decay Statement on (M, g)

We assume that the following integrated local energy decay statement holds on the
spacetime (M, g) under consideration:

(ILED1) Integrated local energy decay with loss of derivatives: We assume that there
exists a (non-empty) class C;r g p of boundary conditions on 9;,, M, which
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is contained in the class of admissible boundary conditions C,4,,, S0 that the
following statement holds: There exists an integer k > 0 such that for any
R, Ry > 0, any integer m > 0, any 0 < M < a, any smooth ¢ : M — C
solving [, ¢ = F satisfying boundary conditions on dy;,, M belonging to
the class C;pgp and any O < 11 < T, we can bound:

Z/ |v 017 + | +Z/
{u<t<u}n{r<k

{11 <1<12}Ndim M

(1viof} +191)

m-+k—1

< Cun(R.Rp) . (/ Jg(wa)ﬁu+/ ) l+n|v1F|hdh)
(=11} {ti<t<t}

j=0

ST 0 | (v P

=0 jitjp=j 7 O=T=TINI=Ry )

+r;2|V;:LN(N’2‘P)| +r7?|NT g ) dg. (8.19)

Using Lemma 4.1 and 4.5, as well as a trace theorem for fatimM ||2, (8.19) can be
improved into the statement that for any 0 <M < a and R > 1:

/{ ] };1 ! Z|vf<p|h+r*2|<p| +Z/ (1vi9l} +10P)
T =IST

{u <t<T2}m3nm

m+k—1

< Cun(R) D (/ J;V(thp)ﬁ“+/ _ 1+“|va|hdh)
.: {lz‘tl} {‘[1§t§‘[2}
wmzz/

_ i1+1 i 2
(Vi e
<f<t}N{r=R} o
J=0 ji+jo=j /101

+r? |V (N + r;2|Nf+1<p|2) dg. (8.20)

We should also notice that the results of this section can be readily established in case
one replaces Assumption (ILED1) by the following pair of integrated local energy
decay statements:

Alternative integrated local energy decay statement: With the notations as in
Assumption (ILED1), we assume that there exists an integer k > O and an R, > 0
such that for any R, Ry > 0, any integer m > 0, any 0 < W < a, any smooth ¢ :
M — C solving [, ¢ = F satisfying boundary conditions on 9;;,, M belonging
to the class C;ppp and any 0 < 11 < 13 we can bound:

m

Z/ (1viol} + 107 +Z/ (1viol} +197)
{tust<u}nN{r<R} {11 <t <0}Ndim M

j=1
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m+k—1
< Cun(R.Rp) D (/ Jg(wa)ﬁ“+/ ] ri+“|v§F|;§dh)
=0 {r=11} {u<r=<u}

+ Cm,T] Z Z }’_:1

Jj=0 ji+jr=j {fusr=uln{r=Ry}

(Vi o w2 v wEe 2N ) a2

and

m

m
/ (1wiofi +197) + 3 [ (1vEeR + 102
{t1<f<u}N{R.<r<R} =1 {t1<t<w}NdimM

j=1

m—1
< Cun(R.Rp) D (/ Y (NT @)t + /
j=0

{t=11} {tisi<tu}

riVIF; dh)

m—1
— ;. 1 . 2
+C N / r 1<V]l+ (N]2(P)
m Z Z Ju<i<uingr=Ry) + ‘ hen |

=0 ji+p=j
_ i i 2 — i 2
+r| Vi (VRO 4 N0 dg. (8.22)

However, we will not pursue this issue again in the paper.

8.2 A First Polynomial Decay Result

On any spacetime (M, g) satisfying the geometric assumptions (G1)—-(G13) and
Assumption (ILED1) on integrated local energy decay with loss of derivatives, we
will establish the following polynomial decay estimates:

Theorem 8.1 Ler (M9, g), d > 3, satisfy Assumptions (G1)~(G13) and (ILEDI).
For any smooth solution ¢ to Og¢ = F on J*({t = 0}) with suitably decaying initial
data on {t = 0} (and satisfying boundary conditions on d;;,, M belonging to the class
CiLED), the following decay estimates hold for any T > 0, any integer m > 0 and any
e> 0,0 <M <a, provided (7.2) holds for all0 < j <m + 1 +d + 3k:

m—1
Sy / (|V}Jli—;1(Nj2(p)|2+r;2|Nj+1(P|2+rI2|(P|2) dhy
=1} '

J=0 ji+j2=j
— 2, 3k 2,m,k
Smen TEHEL 0 101(0) + FHPIFI(v), (8.23)
a2 2 _ Q@.m+T21+3k) @,m+14$21,k)
sup [, V0l Smen T 2+85boun;d ’ [‘P](O)fn,sm *IFI(D

{i=1}

(8.24)
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and
Thygm?2
sup |r+ A% (P|h Smm
{r=1}

d+2 d+2
g BmETE 010y 4+ AT R, (8.25)

In the above, k is the integer measuring the derivative loss in the integrated local
energy decay statement (8.19) and for some fixed R, C > 1:

m

, i 2 o) |2

emter =3 [ i (N dhy
im0/ i=un{r=R+1) k '

m—1
+ > DS gl e TR e el (8.26)

components j=0 ji+ja+jz=j
of Nag.m

(where the derivatives in the second term are with respect to the (u, v, 6) coordinate
charts over each connected component of Ny am),

m+3k—1 5
2,m,k — j
FEMOIFIm =2 / ~ P|ViF|; dg
i—0 {0=<i=1}

m—+2k—1 ) 5
+‘t_]+€ Z / ) r2|ng,F|hdg
= J{CTt=i=t)

m+2k—1 )
+ > / e Y VIF| dg (8.27)
-0 {C~Tr<i<t)

and

m+2k—1 5
L,m.k - j
AR = D / r|\VyF|, dg
— {0
0

<t<t}

m—+2k—1 )
+ > / P2|ViF|; dg. (8.28)
j=0 1€

—lr<r<t)
Remark In case there exists some small §g > O such that the deformation tensor of

the vector field 7 in the region {r > 1} satisfies the following bound for any integer
m>1:

£g = 0G0 |07 ") dvdu + 0(dodo + O(1)dudo

+ 00— Ydvdo + 0 du® + O(fH)dvz} (8.29)
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and the last term in the right hand side of the integrated local energy decay estimate
(8.19) is replaced by

ot (Vi vk

mE 3 |

J=0 jitjp=j M O=I=TINI=Ry)

+r? |V (N + r;2|Nf+1<p|2) dg (8.30)

(this is consistent with the remark below Lemma 4.1), then the € loss in the exponent
of Tin (8.23) and (8.24) can be removed. This follows readily the fact that, in this case,
the second summand of the right hand side of (4.30) comes with a O (%) factor,
which enables us to deduce (8.23) from (8.55) and (8.56) for some € < 3.

The proof of Theorem 8.1 will be presented in Section 8.4.
We will also establish the following generalisation of Theorem 8.1 with improved
weights in 7 associated to higher derivatives of ¢:

Theorem 8.2 Let (M9+!, 8), d > 3, satisfy Assumptions (G1)~(G13) and (ILEDI).
For any smooth solution ¢ to ;¢ = F on JT{f = 0})) C (M, g) with suitably
decaying initial data on {t = 0} (and satisfying boundary conditions on 38, M
belonging to the class Cipgp), the following decay estimates hold for any T > 0,
any integers g,m > 1 and any ¢ > 0, 0 < M < a provided (7.2) holds for all
0<j=<qg+m+d+3k:

24/'1 it itz gy |2
I o 3l N Gt

O<it+ia=m—1j=0 ji+j2=]j
_’_r;2|Nj+l|+lz+1(p| + r;2|KP|2) th ,Sm,q,s,ﬂ

Smgen T 2TEEREmTIE0 1)) 4 FEEmTIHO E ), (8.31)
> s T )

0<ittiz<m—1 ji+ja=q =1

~2te g (24.4.m~ 1+ E2143k)

(2 1+7 4421,k
Sjm,q,s,ﬂ T bound [(P](O) + F e 2

[F](3.32)

and

+i ]1+l| +
Z Z sup ]r+ VI (N2 ’2<P)|h Smagm
O<it+ir<m—1 ji+jo=q =1

_1 oQq.q.m—14+T42142k) (. 1474427 k)
L™ 01 0) + Ay T [F1(D).  (833)

In the above, k is the integer measuring the derivative loss in the integrated local
energy decay statement (8.19) and for some fixed R, C > 1:

@ Springer



6 Page 104 of 194 G. Moschidis

g+m—1
(p.q.m) J1 j 2
& [€](t) = / Vil (N72¢) dhy
bound jzz: (F=t)N(r<R+1) ‘ he N |hr,N

m—1
S DD S S oH o AN AL A ok A [G)) (8.34)

components Jj=0 ji+j+j3=j
of Nag,.m

(where the derivatives in the second term are with respect to the (u, v, 6) coordinate
charts over each connected component of Nys am),
Fr "I
m+3k—1 o
ey Yy / |y (NjZHZF)ﬁTN dg
=0 ji+ip=jir+iz=q—1 7 0SI=T ' '
m—+2k—1
R I JD TN BN el GGy N
J20 b= ira=g—1 /1€ TSI=T) ‘
m+2k—1

+ z Z / ) (r1+£+2i1 +"l+n)’V;{i-;il(Nj2H2F)‘;2, ng
J=0  jitia=j i+ia=g—171C 7 T=i=T) ' ’
(8.35)
and
1,q,m,k
FLmOF (v
m—+2k—1 5
-1 3420 i i .
DD D I Rl A ST
J=0  jit+ja=ji1+ip<q—1710=1=T
m+2k—1 5
24-2i Ji1+ig j2+i
+ SO [ AR e 636
=0 jitp=jiitizzq-171CT TS

Remark Notice that each derivative of ¢ tangential to {f = t} carries an extra r-weight.
Again, as before, in case there exists some small §g > 0 such that the deformation
tensor of the vector field 7 in the region {r >> 1} satisfies the bound (8.29) for any
m € N and the last term in the right hand side of the integrated local energy decay
estimate (8.19) is replaced by

m—1
Cnn Y, > ot (Vi vk

j=0 j14ja=j {Tlftftl}m{rzRf}

+r2 |V (VR T2 N o) dg, (8.37)
then the € loss in the exponent of T in (8.31) and (8.32) can be removed.
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The proof of this theorem follows exactly as that of Theorem 8.1, the only difference
being that Corollary 6.2 is used in place of 5.2, and Lemma 4.7 in place of 4.5. Thus,
the details of the proof will be omitted.

8.3 Energy Boundedness with Loss of Derivatives

The integrated local energy decay assumption (8.20) on (M, g) allows us to establish
the following energy boundedness statement with loss of derivatives on (M, g):

Lemma 8.3 Forany R > 0, any integer m > 1 and any 0 <M < a we can bound for
any 0 < 11 < 1) and any smooth function ¢ satisfying (19 = F on (M, g) with finite
energy norm on {t = 1} (and satisfying boundary conditions on 9;,, M belonging to
the class Cipgp), we can bound provided (7.2) holds for all 0 < j <m +d + k:

m—1
> > (Vi V2@ +192) dhyg

Ny . - . +
J=0 ji+j=j T2

m .
I V49l} dha,,

imM0D{t1<t<1}

J=0 ji+jo=j" "
m—1 )
+>, D) / (Vi 2o+ 72 [N 0) dhy
J=0 ji+jp=j 7 =72
m-+k—1 )
<Cur > > / (|V,{1N+1(N1'2<p)|fw+r;2|1vf+1<p|2) dhy
J=0 =i =T

m—1
-1
I
=0 ji+jr=j {u=r=tujn{r=R}
< ([T VEQL + NI OR 4172 02) dh
m+k—1 )
+ Co.r Z / ~ r{TVIFI; an. (8.38)
=0 {usr<u}

where HY (11, T2) = HT N {11 < < 1o} and k is the integer measuring the loss of
derivatives in (8.19).

Proof Withoutloss of generality, we can assume that R is large in terms of the geometry
of (M, g). Let us fix a second smooth vector field Ny on (M, g), such that:
Ni=Non{r>1}

IN1ln <20n(M,g)

g(Ny, N1) < —c < 0 everywhere on (M, g)

Forany/ € N: |E1N1g|h <C.»

IS This is possible in view of Assumptions (G8) and (G9).
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e Nj and N are linearly independent on H™ and their span intersects the tangent
space of the surfaces H* N {f = const} transversally

(N1, N))? = g(N1, N)g(N, N)| = ¢ > 0on 7.

Notice that in the case H™ = ¥ we can simply choose N; = N.
Fix a smooth cut-off function x : [0, +00) — [0, 1] such that y (x) = 1 forx < 1
and x (x) = 0 for x > 2, and define:

. r
xr(r) = x(%)- (8.39)
Define also the energy current
m—1 ) )
o= > (i), (8.40)
J=0 jit+j2=j

By integrating Vg (XR JL’L"[(P]) over the region {t; < 7 < 15}, we obtain (due to the
boundedness of the derivatives of the deformation tensors of Ny, N):

J"[@]nk +/ J 1t
/H+(n,rz> TR Ji—antr<r) "
m
5/_ J{[’[@]r‘z”+Cm/ ) > 1viel;
{f=t)N{r<2R) JH({F=u)nir<2R) 25

+‘/ Sl ‘ 41)
BimMN{T <t<12} w BimM

Adding to (8.41) the integrated local energy decay statement (8.20), and using
Lemma 4.5, we obtain:

m
/ J;"[cp]n;;Jr/_ J el +/ ) > IViel;dh
HE(t1.12) {t="2} (u=i=wjnir<2R} ;5
m .
+/ S IVEeR Ry,
himMN{u=r=u} ;-
m—1
< C.R / VN TITES S I(IV;{‘N“<N’“P>\;2,N
{t=11} J=0 jitja=j {t1<r<wu}N{r>2R}
m+k—1
+r NP 4 r20P) dh + Cog Z / ri* Vi Fl dh. (8.42)
T1<I<Tz

In view of the assumptions on Ni, N (it is here that we make use of the fact that
their span is transversal to H™ N {f = const}), as well Assumption (G11) on the
uniformity of the elliptic estimates on sections of H 1 (note that Theorem 7.1 applies
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to yield lim sup,_, , o [r"z T/ Vi (N7 @)‘hw < 4ooforall ji + j» < m+k), we
can bound:

m—2
It + / V4 Fly dhyg
/H+(n,rz> L Z(:) HH ()

m—1
j1+1 i 2
> D> /+ Vin (N, dhyy. (8.43)
J=0 jitjp=j 7 )

Thus, from (8.42) and (8.43), as well as a trace theorem on the horizon, we obtain:

m—1
. . 2 -
3 3 f g (T P0G i) s [ st
+ H F—
J=0 jiip=j T (1) v
m ) m .
m=i=wlnr<2R} ;5 dimMN{T1=r=12} j=0

m—1
SNy AL TR WS o
{r=11}

=0 ji1+jo=j {tusi<u}n{r=R}

< (VL R+ NI + e dh

T(11,)

m—2

+Cm.r Z/ Vi Flp dhyy. (8.44)
; H
j=0

Moreover, using Assumptions (G10), (G11) and (G12) on the uniformity of elliptic
estimates and trace inequalities, we can bound:

m—1
> > / } (IVZLH(N”‘P)ﬁN +r;2|N/'+‘<p|2) dhy < Cp, (/{t Jent
i 2

J=0 ji+jp=j =" =

m—1 )

o

X3 [ (AT v+ 1eR) dig

Jj=0 ji+j=j M)

m ) m—2 )

+/ ) |V§<P|,21dhatimM+Z/_ IViF|2dhy | . (8.45)

Orim MN{1 <t <12} -0 j=0 {t=12}

Thus, using (8.44) and (8.45) and a trace theorem for the terms
m—2 ) )
Z(/ |VJF |2 dhy +/ |ng|hth),
(=12} H* (t1,12)

j=0
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we deduce the required energy boundedness estimate:

m—1

> 3 [ (e,

J=0 jrtjp=j T 1)
m—1
2 A+ i oy |2 =2\ Arjtl g2
HoP) i+ > 3 [ (AT R RN R din
J=0 ji+jp=j =2
m .
+/ Z'V(é@'% dhatimM
himMN{u =i=w} ;5
m+k—1 ) 5
< Cum.R Z Z /_ (’VZ}VJFI(NJZ(p)th+r;2|N'/+1(P|2) dhy
J=0 =y =T

m—1
22 o
r
=0 ji+ja=j {u<r=uin{r=R}

% (Wﬁvﬂ(sz(p)iiN+r;2|Nj+1(p|2+rI2|(p|2) dh
m+k—1 )
+Cu.r Z/ rYVIF |2 dh. (8.46)
— Ji
0

T<f<1}

8.4 Proof of Theorem 8.1

We will assume without loss of generality that ¢ is real valued. We will also set
P = Q.

Fix an R > 0 large enough in terms of the geometry of (M, g). Fix also a smooth
cut-off yg : M — [0, 1] which is only a function of r, such that xg = 0 on {r < R}
and xg = l on {r > R + 1}. Fix also a small number 0 < § < 1.

We will use the following notations for the r”-weighted energy norms for any
T>0:

gL [9](v)

ound

m
j o |2
zz/f |Vhi,N(N”‘P)|hINd’1N
‘oo li=intr=Rr+1) :

m—1
o> DT D> g TR el el e, (8.47)

components j=0 ji+j+j3=j
of Nag.m
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EL [€1(0)
— J }
= / Vil [NPe[, dhy
izo/i=untr=Rr+1} '
- 2
Ji+l i
2 2 [Visi (V29 dhr,

j=1ji+jp=j—17 =00

m
i 12

+ / Vj(p dhatim T

Zo {fzrma,,-mM| sl dhan

j_

m—1
0 s

S0 D M MR

components j=0 ji+j+j3=j
of Nag.m

and

m
i1+1 i 2
SATTOED D J M (AT
j=1 ji+jp=j—1711=1 '

+r2 (IN79* +19)) dhy. (8.49)

We will also use the norm
m—1 ) 5
AP =Y / P 4+ V@) |, dhy. (8.50)
: {t=1}
j=0

Using Corollary 5.2 and Lemma 8.3, we can bound for any integer m > 0, any
O0<ty<twmandany0 < p <2:

1)
ELM[¢](ta) + / Lol d
T

T
<y ETTR Q1)) 4 / FPm g1 d. 851)
T

Starting from (8.51) for Ty = 0 and letting 1, — +o00, we obtain for any m € N
andany T > 0:

T T
/O Epin[@1(D d T Snn Eprm O [9](0) + /0 FEm o) dt.  (8.52)

An application of the pigeonhole principle on (8.52) readily yields that there exists a
sequence of positive numbers {1, },en With 19 > 1 and 21, < 1,41 < 471, such that

Ep [01(T) Sn T ! (5,§§;,";j">[<p](0)+ /0 f,ﬁz’m“‘)[m](r)dr). (8.53)
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Applying (8.51) in the intevals {t, < 7 < 1,4} for p = 1 and using (8.53) for
m + k in place of m to bound the first term of the right hand side,'® we obtain for any
T e [t, Tl

/ Enl @10 dT S " (S0t 101(0)
Tn
T, T
+ / féz'”’“k)[w]<r)dr)+ / Fm e (vyd . (8.54)
0 i

Using the mean value theorem on the intervals {t, <7 < 7,41}, we thus obtain on a
possibly different sequence T, € [t, + W, Togl — W]:

T
SO [91(E) S T2 (5,53;,’1’,32k)[ao](0>+ /O féz’m“"’w](r)dr)

3%

:,
+f;1[7 F e d. (8.55)

Notice that by interpolating between (8.55) for p = 2 on the intervals {T, <7 <
Tn+1}, We can also bound:

i)l
Epm [ OVTn) e T (8,5§;,’Zj”>[<p1<0>+ /0 féz”””")[@]u)dr)

%
410 [ AP dr. (8.56)
Ty

FN

Applying (8.51) for p = ¢ on the intervals {T, < f < T,4+1} and using (8.56), we
obtain for any T € [T,, T,41]:

T T
| S0 % S %;2+8(6;i;,’232")[@]<0>+ / fﬁz""“’”[w(r)dr)
Trl

Tn
+3,70 [ A0 de

3
) k
+ / FEmM o)ty d . (8.57)
Tu
Using the fact that
0,
EMIOIT) S Epurion[91(T), (8.58)
16 Notice the trivial inequality 822’;:;[(0](‘[) Sp,m,n Sé‘;’”’{nll [¢]1(T).
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by applying Lemma 8.3 on the intervals {T, < ¢ < T,,11} and using (8.55) and (8.57)
(for m + k in place of k), we obtain (8.23) for some C > 1 and any t > 1 in view of
the fact that ?—fc,, < Tyl < 87y

EMOI(T) Smen T 2T (E;i;ﬁf“[«p1<0)+ / f,ﬁz”"”k)[@](r)dr)
0

T T
+o / AR d T+ /
clt c-!

}—T(Ie,m—O-Zk) [(P] (‘C) dt.
T

(8.59)

In view of Assumption (G13), we obtain from (8.59) for any integer m > 0 and
any T > 0 using the Sobolev embedding theorem:

sup |97
{r=1}
_ @,m+[4E743k) b QumH L +3k)
Smen T 2T (sbm,’ﬁd 2 [10)+ [ F "7 [¢l(D)d T
0

T d+1 T d+1

st [ FmE ”””[cp](udw/ | FEmEET g1 d e
C 't C It

(8.60)

Using the fundamental theorem of calculus and applying the product rule for deriv-
atives, we can bound for any function ¥ on M and any | < R| < Ry:

/ Ir T w2 do 5/ Ir T do
(f=un(r=R2) (F=un(r=R))

d=3 d-1
+ 7w (10,077 W)
{f=t"N{Ri1=r=<Ry}

) d—1 d—3
210,00 T W) + |2 np|) dvdo.  (8.61)

Hence, using a Sobolev inequality on S?~!, a trace inequality for the first term of the
right hand side of (8.61) and a Cauchy—Schwarz inequality for the second term, we
infer from (8.61) for any integer m > 0:

42 2 (m+T4£27)
sup [r.2 VI o[} S €T VL0l (8.62)

{r="}
Thus, (8.59) yields:

d=2 2 _ Q@.m+[42743k)
sup [r, > VIo[s Spen T2 (&2 TV [9](0)

{i=1}

T a2
+/0 ]__T(]z,mH 3 1+3k)[(p](1)dt)
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T d+2
_i__EflJre 1 ]—'(l Jm+[ 55 ]+2k)[(P](‘C)d‘[
C It
T d+2
+/ FEmTE 000 d . (8.63)
C 't

Using (8.53) and (8.51) for p = 1 on the intervals {t, <7 < 1,1}, we can bound
for any integer m > 0 and any t > 0 (for some fixed C > 1):

T
Epomy[@1(T) Sy T (Séiu”,i} 2[9]1(0) + / féz”"”“w](r)dr)
0

T
+ / 1 FLm2 )ty d . (8.64)
C 't

Again, using the fundamental theorem of calculus we can bound for any any function
W on Mandany 1 < Ry < Ry:

/ |r%qf|2do§/ rT w2 do
{t=t}N{r=Ry} {t=1IN{r=R;}

+/ r \I/|(|8v(r )| + 520,007 \y)|) dvdo, (8.65)
{t=1)N{R| <r<R3}

and thus from (8 64) (8.65) and a Sobolev inequality on SY~!, we obtain the desired
decay rate for r o ¢:

sup }r+ V"“P’h

{t=1}

_ @, +(M1+2k) (2 +1452742k)
S T I(Sbau’id 2 A0+ | " [¢l(Dd T

T 1 d+24 ok
+ /. A )[(p](t)d'c. (8.66)
C 't

9 Improved Polynomial Decay ¢ -3 for Solutions to L, @ = 0 in
Dimensions d > 3

In this section, we will establish i polynmial decay estimates for solutions ¢ to
¢ = 0 on spacetimes (MA+1 g), d > 3, satisfying Assumptions (G1)—(G13) and
(ILED1), which in addition possess two “almost Killing” vector fields 7, K (not
necessarily distinct) with timelike span on M\H T and for which H* becomes a non-
degenerate “almost Killing” horizon. These estimates extend the it decay rate
established in the region {r < 1} of Schwarzschild spacetime by Schlue in [34].
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9.1 Further Assumptions and Geometric Constructions on (M, g)

Let (M?*!, g), d > 3, be a smooth Lorentzian manifold with possibly non-empty
piecewise smooth boundary d M. We assume that (M, g) satisfies the geometric
assumptions (G1)—(G13) stated in Sections 7 and 8, as well as Assumption (ILED1)
on integrated local energy decay with loss of derivatives. We will use the same notation
as in Section 8 for the subsets Naf,M,H, HT, 01im M, He, 31im M of M, the functions
r,ry,ton M and the vectorfields N, T, Y.

Recall that in the coordinate chart (u, v, o) on each connected component of the
region {r > 1}, the metric g takes the form:

g = — (4 + 0(}"_1—“)) dvdu + r2 . (ng*l +hSd71)+(hl”(u, 0)+0(r—a)) dudo_

+0(r“dvdo + 4 (—M + O(r—l—“)) du® + O(r~>“)dv?,  (9.1)

with hga-1 = O(r™!)

Assumptions on the vector fields 7, K We will also assume that (M, g) possesses
two smooth vector fields, 7" and K, not necessarily distinct, such that:

(EG1) The following equality holds: df(K) = di(T) = 1

(EG2) In the region {r > 1}, T is as in Section 7 and K = ® + T, where ® is a
generator of a rotation of se-1 (possibly being identically 0).

(EG3) The span of T and K everywhere on M\'’H contains a timelike direction.

(EG4) The span of {T, K} is tangential to H. Moreover, H™ is non degenerate with
respect to K, in the sense that g(K, K) = 0 and d(g(K, K)) # 0 on HT N
{t > 0} and the following red-shift type estimate holds for some r; > 0, any
0 <1 <1,any!/ € Nand any ¢ € C*°(M) (see also [9]):

l

Z/ IVio|2dg < C Z/ Vi[> dhy
—1 / (u=stsw)nir=r} {f=1)N{r<2r1)

l

i 12
oy Vol ds
j= {ti<t<u}N{ri<r<2r}

1—1
Z/ ) IV (@02 dg | - 9.2)
—o/ (usr=uin{r=2r}

Convention Since we have not assumed that 7, K commute in the near region
{r < 1}, iterated Lie derivatives in the directions of 7', K will not necessarily commute.
Hence, it will be useful to introduce the following pointwise norms for smooth tensors
m on M for any / € N and any two vector fields X @, x(D:

@ Springer



6 Page 114 of 194 G. Moschidis

1/2
Im[ o o = S [Lyen - Lyeom]; 9.3)
(e1,...eq)€{0,1}
and forany /,n € N:
. 172
mlGe o= (D D Viyen . Ly 9.4)

J=0 (ey,...eq)€{0,1}!

(EG5) We assume that we can bound for some small §9 > 0, any pair of integers
Ji>j2 > 0and any T > O:

s0p [gli S5 (14 7m0, ©9.5)
=1

Moreover, in the (u, v, 0) coordinate chart on each connected component of
the region {r > 1} the following precise bounds on the derivatives of g are
assumed to hold for j; > 1 and any (eq, ..., e;) € {0, 1}/!:

Cx(el) . £X<ej|>g
= O Ur+do—D)y {O(r_l_“)dvdu + 0(r)dods + O(1)dudo

+0G ™ dvdo + 0(~du? + 02 "dv? ©-6)

where X© = 7 and X = K.

Remark For any my € N and §o € (0, 1), inequalities (9.5) and (9.6) can be relaxed
to hold only for ji, j» less than some large constant M = M (mo, §0) € N depending
on mg, and then Theorem 9.1 will still hold provided m is restricted to take values
up to mq. This fact will also apply to all the assumptions regarding estimates on the
derivatives of the metric g appearing in the text, and will not be highlighted again.
In all the assumptions that are stated in this section, the number of derivatives of the
metric M = M (mo, d0) that need to appear in the related estimates can be bounded
from above by

mo+ 1278, " - dd -k, 9.7)

where k is the number expressing the loss of derivatives in Assumption (ILED1).

Let us define the vector field
O=K-T 9.8)

on M. Recall that @ is a rotation vector field in the region {r > 1} in view of
Assumption (EG2). Notice that (9.5) and (9.6) hold for ® in place of K. Moreover,
due to Assumption (EG1) we have df(®) = 0, and thus @ is tangent to the level sets
of .
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Definition of the K r_ vector field and the |- |¥) K., orm Let us introduce the (large)
parameter R, > 0. This parameter will be fixed after Lemma 9.4 has been established.
Fixing a smooth cut-off function x : [0, +00) — [0, 1] such that x = 1 on [0, 1] and
x = 0on[2, 400), and defining yr. : M — [0, 1] by the relation

= (2 9.9
XRC_X(R_C)’ 9.9)

we introduce the following vector field:
Kr, = xr. K + (1 = xgr)T. (9.10)

Notice that for any t > 0, the set {f = 1} N {g(Kg,, Kg,) > 0} is precompact and its
closure does not intersect the horizon.

Provided R, > 1, due to (9.5) we can bound for any pair of integers ji, jo» > 0
(using the (9.4) norm)

_sup |82 <y (1 7m0 ©.11)
{t=tN{r¢[Rc,2R1} ¢

while when restricted in the region {r > 1}, the following refined bounds hold (in the
(u, v, 0) coordinate chart on each connected component of {r > 1}) due to (9.6) for
j1 > 1andany (ey,...,e;) € {0, 11 (with X@ = T and XV = kg )!":

e Forr ¢ [R.,2R.]:

‘CX(el) L 8 = 0(-57(j1+5()*1))

X("jl
x {O(r_l_“)a’vdu + 0(r)dods + O(1)dudo

+ O Ydvdo + O Vdu® + 0(r*2*“)du2} . 9.12)
e For {R. <r <2R.}:

L@ - ‘Cx(e./l)g = (0(,,—1) + 0(.5—(1'1-0-80—1)))
x {O(r)dvdu + 0(r)dodo + O(rY)duds

+ 0 dvdo + O(r)du® + O(r)dvz} . 9.13)

Moreover, it will be convenient to introduce the following truncated version of the
pointwise norm (9.3) for any smooth tensor k on M:

0) . 0) I
|k|T’K’R( = | xr.k .k T 1Lkl 9.14)

17 For the calculation of the Lie derivatives in the direction of KR, it is convenient to use the formula
£fAX(a)) = fLx(w) +df - ix(w) for any smooth function f, vector field X and 1-form w.
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The Riemannian metric /i« g, o on the hyperboloids {f = 1} According to Section
A of the Appendix, for any T > 0 we can define the Riemannian metric At k.. ¢ on
the hypersurfaces {f = t} associated to Kg,, ®. Due to the fact that g(K, K) = 0
and dg(K, K) # 0 on HT, for any T > 0 there exists some ro(t) > 0 such that in
a neighborhood of H- of the form {r < ro(v)} N {f = 1} the metric A<, Kg,.® has the
form:

he kg 0 = (r_l n 0(1)) dr? + hy. . (9.15)

where hyy, , is a symmetric (0, 2)-tensor on {r < ro(t)} N {f = t}, smooth up to
‘H-~, satisfying hy¢, (Y, -) = 0 (where the vector field Y is transversal to H. and was
defined in Section 8.1). Hence, in the language of Section B of the Appendix, i x Rer®
corresponds to the singular metric 4. For notational simplicity, from now on we will
adopt the shorthand notation hg, = h kg e @

While & g, will be useful to define certain elliptic operators, we will mostly measure
the norms of tensors on the {f = t} hypersurfaces with the previously defined non
singular metric s y associated to N.

In view of the aforementioned assumptions on the almost-Killing vector fields
K, T, ®, as well as the expression (9.1) for the asymptotics of g and the expression
(A.15) for Lg, we can bound for any smooth ¢ : M — C and any integer [ > 0 and
RC > 1:

2
|V£lt,N (Ath*mOd (P) |h1.N
2
< C(L RV}, (O, + C, R -T2 (9]

[+1 1+2—j; )
+COx~r Y > (IV2, 9l % R) (9.16)

J1=0 ja=1

where
T & [9]

2 (1ol™  )? /it 24D )2
=TIy (‘w}T,K,RC) + Z (' 1 (‘0|T2K,R(.)

Jitjp=m=2
. . . . 2
—2(m—j1—j2—1) —2_—2(80+m—j1—j2—2) J1 (2+1D)
+ Z (’+ triT Vi n @17k R
0<ji+j2=m-2
—2-2(m=2—j)_—23 —2_—230+m—2—) Jj+1 2
+ > (% 0 4 2 AN CAY)
0<j<m-2

Xr~R, 1s identically 1 on {R. < r < 2R.} and O elsewhere, and the elliptic operator
Ang..mod on {t = T)\'Hy is defined as:

Ahgemod¥ =107 o - divhg, (W ky, 0 -d¥), (9.18)
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with wy k., o > 0 on {t = t}\'H. satisfying W Kp, . & 1 r% near H* and
Wt Kp, . ® R, 1 in the region r >> 1 (for its precise form, see Section A of the
Appendix).'8

It will also be convenient to introduce the higher order pointwise norm

TR0 = D TR R Vi, (TR0 ©.19)
Jit+j2=<n

for any pair of integers m, n > 0 and ¢ € C*°(M).
Similarly, in the region {r > Ry} for some Ry > 1 we can bound:

Vi B 7@, < COIY @O +C0- T P0l 920)
where

(m)[(p]
_ 2 j1+1 i 2
L R YN
Ji+ja=m—2
+ z (’,J:z(m—jl—jz—l) +r;2172(80+m*j1*j2*2)) |V}Jl'iN(Tj2+1(p)|i .
0<ji+j2=m-2 Y .
—2-2(m=2=) . ~28 =2 -2(0+m—2— p) J+l )2
+ > (% 47 Vitlels @21

ht N
0<j<m-2

and the operator Ay, , 7 on {t =1} N {r > Ry} is defined as:

Ape 7V = (\/—g(T, T))_l - divi, , (\/W : dlll) . 9.22)

The following higher order pointwise norm will also be useful:

TT(m’n)[(P]i z T;m)[vl’jl:,N(TjZ(p)] (9.23)
Jit+jp=n

for any pair of integers m,n > 0 and ¢ € C*®°(M).

Assumptions on the uniformity of the degenerate elliptic estimates on the hyper-
boloids {f = t} Let us introduce the functions rjy, rsim : M — [0, 1] by the
relations

disty(x, H)

() = S T 24
Thor () = T st e ) ©-24)

18 1t is obivious that we do not need all the terms of TT(";() Re [¢] to bound the left hand side of (9.16), but
since this expression will appear frequently in what follows, we chose to introduce it here.
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and

disty(x, imM)
1 4+ disty(x, dimM)’

(9.25)

Trim (X) =

Notice that this definition does not guarantee that r,, and ry;;,, are smooth functions
away from dM. For this reason, we will mollify rj,, and r;;,, way from d.M so that
they are smooth functions on M, and we will replace the original ry,, and ry;;,, by the
corresponding mollified functions.

Using Propositions B.1 and B.3 of the Appendix, together with (9.15), (9.16) and
(9.20), we can deduce the following elliptic estimate:

Lemma Foranyl € Nwithl < L%J, any ng € N, any B € (=8, 1) (for some
Sny > 0 depending on no and 1) and any Ry > 1 large in terms of the geometry of
(M, g), we can bound for any ¢ € C°(M) satisfying for all j1 + jo <1+ ng the
finite radiation field condition lim sup,_, | ., |r%+-i1 Vﬂi N(sz (P)IhT L, < Foo:

ng [—1

—B—2j nt—j 12
ZZ/ T Vey Pl togtrin) g, 4N

n=0 j=0" =1

no
-B +1-2 2 (I,no)
=< Cpono (T, Re) /{H} i {Z Vi OOl gty n +TT,K?R{_[¢>]] dhy
- n=0

no -1 1—ji ) ) 2
+C/3,n (1) / r*ﬂ V12+n<0 1) dhy
’ HZ::0]12=;J/22=1 (f=UN(Re<r<2R) (| e |T‘K'RC)
1
-I—C;g,no(t)Zmax[—Re[/a g (Vi eyl %) dhaﬁth] ,o]
J:O tim T tim tim
(9.26)
and for any 0 < ¢ < 1 — B (provided that R. > Ry):
S o 2D+ 2
J=D=B+5 | j+n
2.2/ I |Vt el iy
n=0 j=1 {t=t)N{R.<r<2R.}
no
— _ 2 l,
< Cpeno(t.Re) [ PP IR @y Tl dhy
{F=0N{r=2Ro) A :
. no+l )
+Cpeng (DR Y / IVI9|Z dhy. 9.27)
j=1 7 I=UN{ZRo=r=4Ro}

Our extra assumptions will be the following uniformity conditions on the elliptic
estimates (9.26) and the Sobolev-type estimates of Lemmas 9.10 and 9.11:

(EG6) The constants Sno, Cp.no (D), Cpeng () and Cg e no (T, Re) in Lemma 9.1 can
be chosen not to depend on t.
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(EG7) The constants in the estimates of Lemmas 9.10 and 9.11 can be chosen not to
depend on T.

We will also need the following assumption regarding the volume of the domains
{f=1Nn{r<llast— +oo:

(EG8) There exists some C > 0 such that for any T > 0 the A y-volume of the
{t = 1} N {r < 1} region is uniformly bounded in t:

Voly,, ({f=tn{r=<1}) <C. (9.28)

The higher order integrated local energy decay estimate assumption In Section
8.1.2 we defined the class C;rgp of admissible boundary conditions on 9y, M for
which the integrated local energy decay statement (8.19) holds, and we assumed
that C;gp # . However, since the class C;p gp was not necessarily closed under
differentiation with respect to the vector fields 7', K introduced in this section, we do
not know a priori that (8.19) holds for 7 and K derivatives of functions belonging
to Cyrgp. the In this section, therefore, we will assume that a slightly stronger form
of the integrated local energy decay statement (8.19) (including also higher order T
and K derivatives of ¢) holds on (M, g), which further restricts the class of allowed
boundary conditions imposed on 9y, M:

(ILED2) We assume that there exists a non empty class ng 5 of boundary conditions
on d;;,, M, which is contained in the class of admissible boundary conditions
Caam, so that the following integrated local energy decay statement holds
on (M, g): There exists an integer k > 0 such that for any R, Ry > 0, any
integers m > 0 and ji, j» > 0,any 0 < M < a, any smooth ¢ : M — C
solving L, @ = F satisfying boundary conditions on 9;;,, M belonging to
the class C;{b{% and any 0 < 1| < 15, we can bound

m

Z/{ — |vf T/‘K”(P)lh—i-Z/ V(T K @)
T <I<nN{r<R

{t1<t<t}NdimM

j=0
m+k—1 ) ) )

< Cpumirin(R, Rf) - z (/{ }Jlf’(Nf(TuK}étp))ﬁu
j=o MH=m

+ / PV (O KR 9) 1 dh)
(<<t} ¢

oy 3 [

i=0 i1+ir=i

—|—r+2|V” (T2 Klz (p)| +r*2|Tt+Jl+1K/2 ¢| ) (9.29)

_ 1 in 7 j 2
l’ 60r+1 (|VLI+](T12+” K[JQZ w)!
TN c
]<t<‘[]}ﬂl>Rf
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Remark Notice that (9.29) follows trivially from (8.19) (provided that the last term in
the right hand side of (8.19) is replaced by

s 3 |

- _ i . 2
ot (v avE el
; _— {(u<r<tu}N{r=Ry} oN
J=0 ji+j=j " V1== ="f

+r2 |V (N + r;2|Nf+1<p|2) dg, (9.30)

which is consistent with the remark below Lemma 4.1 in view of the assumptions on
the vector field T') in the case when 0;;,, M = @, or in the case when T and K are
tangential to d;;,, M and Cjp gp is restricted to include only the Dirichlet boundary

conditions. In these cases, Cgb{{ g = Cypep. Furthermore, the results of this section
also hold if one replaces Assumption (ILED2) by a pair of alternative integrated local
energy decay assumptions similar to (8.21) and (8.22), but we will not pursue this
issue any further.

9.2 Shorthand Notation for Energy Norms

In order to state and prove Theorem 9.1 conveniently, it will be useful to introduce
some shorthand notation for a variety of energy norms on the hyperboloids {f = t}.
More precisely, we will make use of the following notations for p € R, € € (0, 1) and
q,l,m,keN:

1. The following energy norms will appear when using the r”-weighted estimates of
Sections 5 and 6:

Envik & 11D

S|

) FP=2(q+j=jn) Vl]z:NTjZ(Q(P)‘z , Q—Zth
J=00<ji+jp<q+; I=1NIr=R) ‘ ’

(9.31)
and
(p.q.m)
gbound,R[(p] (t)

m

. _ s s : . 2

- z E /_ FP=2q+j=h—=D (|V£NTJ23U(QQP)|}HN
{r=tN{r=R} ' '

Jj=00<j1+j2<q+j—1
2|1t 2 —4 | p+1 2
+r Vi, TP@QO, Vi TP @,

+rd |V TR@O; ) @ %dhy. (9.32)

2. The following weighted non degenerate energy norms on {f = t} will also appear
frequently (fixing some R; large in terms of the geometry of (M, g)):
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m
. ) s i
ge(r‘ll) q m)[(P](T) - 2 2 /_ l"_I:_ (g+j J2—J3)
{r=1}

J=01<p+j3=q+j—1
j2+1 7 2 — i 12
< (IVE VR0l N o) dhy,  933)
ELAM01(r) = ELTR 191D
m
ji Nzl
DI Vi Nl din

J=00=ji+j2=q+j 7 F=UNI=R1)
(9.34)

and
g(p,q,m) - 5(p,q,m)
bound [(‘D](T) - hound,Rl[(p](r)

m
J1 i |2
+Z z - |Vht,NNj2(p|ht,N th
J=00<ji+jo=g+j 7 I=HUNr=R}
(9.35)

3. The following energy norm (associated to the vector fields K g_, ®) which degen-
erates at H and 9;;,, M will also appear:

m
(p.q,m) - p=2(+j—=1=jo—j3)
SFECUED YD VY

J=0 1= jo+ja<i+j—1
2+l i3 oy |2 2| i |2
x (|Vht,N KR Ot togtrmnong, T7+ K. 0] ) dhy-
(9.36)

4. Finally, we will make use of the following spacetime norms for the source terms,
for some C = Cj 4 .k > 0 that will be fixed in the statement of Theorem 9.1:

2l,q,m,k
Fab O (1)
m+QI+1)k—1

— —2+e 34204 V11+i1 Nt R 2 d
' jgo Z z /{Osfsﬂr ’ h"N( )|ht.N 8

Ji+p=jii+i2<q—1
-1 m—+Q2s+1)k—1 g—(—s)—1 [—s
1D D N WD WD 3 B
,] =
s=1 J=0  jith=j 0=0 i=071C" ==Y
Ji+in Ja+in 2
x\vhm (N F)| by 48
1 m—+2sk—1 qg—(U—s)—1 [—s
DRSS WD IS 3 N
,1 T
s=1 =0 jitp=j i1=0 i=0’{CTT=I=1}
Ji+i1 Jo+in 2
x\vhw (N 1] hey 48
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m—+2k—1 g—1 -1

n Z Z ZZ/{C_ltSfSt}(rl+e+2i1+r1+n)

J=0  ji+j2=ji1=0i2=0
x|V (vt | g (9.37)
and

Fiegn" 10

g,
m+ Q4+ Dk—1 S
— 2 Z Z Z ) F3+201 |V/2;” (KIJQZCJHZF)‘it . dg
J=0 ji+i=j itinzq—1 7 10SI=Y ' ’
-1 mAQs+1)k—1 g—(=s)—1 I—s
+ZT—2S Z Z Z Z/ 342
s=1 im0 jith=j =0 i=0’1C7lt=i=T)
x| VI KRR, de
1 m—+2sk—1 q—U—s)—1 [—s
+ZI*23+1 Z Z Z z/ 242l
s—1 =0 ji4p=j =0 i=o’{C7't=i=")

Jiti1 g Jotin 2
XWhT,N (K, F)|hLN dg

m+2k—1 q—1 -1

142 1+n
* j Z Z Z /{Cl tgfgt}(r ot )

=0 ji+j2=ji1=0i2=0
Jitit g j2ti2 2
|V (KB, e (9.38)

9.3 Statement of the Results on Improved Polynomial Decay

In this class of spacetimes (M, g) we will establish the following result:

Theorem 9.1 Assume that (M?T, ¢), d > 3, satisfies Assumptions (G1)~(G13),
(EG1)~(EGS) and (ILED2). Then for any smooth function ¢ on M solving U,¢ = F
on JT({t = 0}) with suitably decaying initial data on {t = 0} and satisfying boundary
conditions on ;i M belonging to the class C;{gg) and such that

Re{/ Yo (Ddha”.mMr} > 0 and
8tim-/\/l

rel [ g i (i V9 Vi ) i} 20, 939)
Brim € im im

the following bounds hold for any integer 1 < q < L#J, any 0 < & <K 8§, any
integer m > 1 and any © > 0, provided (7.2) holds for all 0 < j < q + f%} +m +
o' -2(¢ = D1Gq + 1) - k:
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+00
E MO0 + Egin T01(0) + / En T IO1(s) ds

24,9, “L2(g—1)1Bg+1) -k
Sm,e 172q+C,,, S(c/»; q.9 m+(60 (g—1)1(3g+1) )[(P](O)

ound
29,9, “L2(g=1)1Bg+1)-k .k
+f8<’gqqm+mo (g—11Gq+1) >[F](T) (0.40)
and
0.q, 29 #(2q.q.m+[55 1 2(g—1D)1Gg+1)-k)
ELIMNQNT) e T HE ™20 HOTVICITD D )0
24,4, ~12(g—1)1Bg+1)k.k

- et oo 2D DED oy ) ©.41)

See Section 9.2 for the notations on the energy norms used.

Remark Notice that the condition (9.39) is satisfied when ¢ is subject to Dirichlet or
Neumann boundary conditions. Theorem 9.1 still holds if one replaces the condition
(9.39) with any boundary condition for which Lemma 9.5 can still be established.
Let us also remark in the case the integrated local energy decay statement in
Assumption (ILED2) does not lose derivatives (i.e. kK = 0), we can replace Assump-
tion (EG5) on the % decay of the deformation tensors of T and K with the following
O (gp)-smallness assumption:
Uniform smallness of the deformation tensor: There exists some (small) g9 > 0 so
that:

sup (|Lrg|+ |Lkgl) = OCe0) (9.42)

{i=1}

and in the (u, r, o) coordinate chart on each connected component of the region
Naf M

Lrg = O(go) {O(rilfa)drdu + O(r)dodo + O(1)dudo

+ 0@~ Ydrdo + O(r~"du* + O(r_2_“)dr2} (9.43)
and

Lxg = 0(gy) {O(rflf“)drdu + O(r)dodo + O(1)dudo

+0G™)drdo + 0G™du® + 07> ")dr?}. (9.44)

Moreover, any further Lie differentiation of g in the direction of 7" or K should improve
the above decay rates by a factor of 7!

In this case, we also relax the integrated local energy decay assumption (ILED2),
by replacing the 7% factor in the last term of the right hand side of (9.29) with €.
Under these weaker assumptions, we can still obtain (9.40) and (9.41), but with an
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O (gp) loss in the exponents of both inequalities. The proof in this case is similar, and
actually easier.

The proof of Theorem 9.1 will be presented in Section 9.7.
As a Corollary of Theorem 9.1, we will establish improved pointwise decay rates
for ¢ and its derivatives:

Corollary 9.2 Assume that (M?*1, ¢), d > 3, satisfies Assumptions (G1)~(G13),
(EG1)~(EGS) and (ILED2). Then for any smooth function ¢ on M solving U,¢ = F
on JT({t = 0}) with suitably decaying initial data on {t = 0} and satisfying boundary
conditions on ;i M belonging to the class C;{gg) and such that

Re[/ Y(P'(PdhatimMr} > 0 and

atim-/\/(

Re{/ M hatim-/\/lI (Vhf)t- MT (Y(P)’ Vh«'it~ MT (p) dhatim-/\/lt} z 0’ (945)
Byim M im im

the following pointwise decay estimates hold for any 0 < ¢ K 3o, any integer m > 0
and any © > 0, provided (7.2) holds forall0 < j <d+1+m+ R‘)al 2(g—1)13qg+
1) - k:

1. In case the dimesion d is odd, we can bound.:

sup 0% <o T4+ £0,4[P10) + Futeg .04l F1(T), (9.46)

{t=1)

and ifm > 1:

sup [V20[} Sne T4 Eni2al@10) + Fuegems2.alFI(0.  (947)

{r=1)
2. In case the dimension d is even, we can bound.:

Sup [V @[} Ko THNE L 8, 4[010) + Femal FI(D.  (948)

{r=1}
In the above,

. ST T e sy 2T - 1)1 BT 4+ 1))
Emal®)(0) = &, 2 "2 DT 2 [91(0), (9.49)

Fueen d[F](T);fm%w’%ymmg'~2(r”’%11—1ﬂ(3q+1>-k,k>
eg,ll,m, -

deg.n [FI(v)  (9:50)

and

QI 14 o Tsy 21441 1)1GBg+1)4,k)
€

FemdlF(U) = Fe, [F1(D. (9.51)

See Section 9.2 for the notations on the energy norms used.

@ Springer



The r”-Weighted Energy Method of Dafermos and Rodnianski... Page 125 of 194 6

Remark Again, Corollary 9.2 still holds if one replaces the condition (9.45) with any
boundary condition for which Lemma 9.5 can still be established. Moreover, in case
the integrated local energy decay statement in Assumption (ILED2) does not lose
derivatives (i.e. k = 0), Assumption (EG5) can be replaced by (9.42)—(9.44) and the
integrated local energy decay assumption (ILED2) can be relaxed by replacing the 730
factor in the last term of the right hand side of (9.29) with ¢y. In this case, inequalities
(9.46), (9.47) and (9.48) still hold with an O(gp) loss in the exponent of T.

The proof of Corollary 9.2 will be presented in Section 9.9.

9.4 Sketch of the Proof of Theorem 9.1 and Corollary 9.2

In this Section, we will first sketch the proof of Theorem 9.1 and Corollary 9.2 under
some simplifying assumptions on the structure of the spacetime (M, g), and then we
will highlight the main difficulties arising in the general case.

Let us assume first that d = 3, oM = @, F = 0, k = 0 (i.e. there is no derivative
loss in the integrated local energy decay statement (8.19)), m = 1 and the vector field
T is globally timelike and Killing. In this case, there is no condition on 9d;;,, M that
¢ is assumed to satisfy, and we can assume without loss of generality that the vector
field K has been fixed so that T = K. Let us also note that in this case, the ¢-loss in
(9.40) can be dropped, and the estimates of Theorem 9.1 and Corollary 9.2 read as
follows:

i j 2 — 2 —
ig‘:l/{_ﬂ} (\v;;{_jl(rw)]hr +r 72| T )th < T E[9100), (9.52)

sup @] < 13 (9.53)
i=1)

and:

sup |Ve@lp <172 (9.54)
{i=1)

The main idea for the proof of (9.52) is the following (assuming without loss of
generality that ¢ is real valued): From Theorem 8.2 we deduce that:

> /{ }(r2|Vft,T‘P|iT+|VZLT(T1”2“")\Z) dhy S T 2E,[0100).  (9.55)
i1 ip=17U=T

Let us fix a vector field L on M so that [T, L] = 0 and L = 9, in the (¢, v, 0)
coordinate system on each connected component of the region (» >> 1). Using the
expression for the equation LJ¢ = 0, from (9.55) we deduce that

Z /{_ } (’2|L(T(P)|2 + |V;‘,ILT (T1+i2<P)|iT) dhr < 172E,[€10).  (9.56)
i1+ir=1 1=t
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Fixing a dyadic sequence {t,},cN, by repeating the proof Theorem 8.1 on the
intervals {t, < f < 71,41} with T9 in place of ¢ and using the estimate (9.56)
(notice that for the sketch of the proof we have assumed that T is Killing, and thus
[T, Og] = 0), we readily obtain:

/_ (|Vh1,T(T<P)|2T + r‘2|T2<p|2) dhy < 174E,19](0). (9.57)
{i=1)

Using again the expression for the wave equation [J¢ = 0, from (9.57) we deduce
that

/_ (Aeur®)* dhy S T *E,[€1(0) (9.58)
{r=1}

for a suitable elliptic operator A,y on the hyperboloids {f = t}. The elliptic estimates
of Section B of the Appendix then yield:

/{_ } Vi @1, dhr S T ER1010), (9.59)
=t

which combined with (9.57) yields (9.52).

The estimate (9.54) for V, ¢ follows readily from a Sobolev inequality applied on
(9.52) for ¢ and T'¢ (combined with elliptic estimates). The zeroth order estimate
(9.53), on the other hand, follows from (9.52), the decay estimate from Theorem 8.1:

/{_ (Vs el + 2 (T6l7) dhr S T2 Enl010)
=1

and the following Gagliardo—Nirenberg type estimate on {f = t} (see Section 9.8):

1/2
sup |92 < (/ (|thr(p|iT +r_2|T(P|2) th)
{t=1}

{t=7}
1/2

< > / (}VZi‘;l(T&(P)’flT+r_2|T2<P|2) dhy
i1+ip=17 =1 '

o
+ 2 /{__T} (Ivistasoli, +r2(120) dhr. 960

i\ +ip=1"U

One important difficulty arising in the proof of Theorem 9.1 in the more general
class of spacetimes (M, g) under consideration comes from the fact that T is not in
general a Killing vector field, and in fact its deformation tensor decays only like %
for some small §¢ > 0. This results in a number of error terms appearing each time [J
is commuted with 7', which can only be controlled in the final step of the estimates,
using also some refined elliptic estimates leading to the e-loss in (9.40) (however, we
avoid this loss in (9.41)). Furthermore, the slow O(f7%) decay of the deformation
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tensor of 7 combined with the loss of derivatives in the integrated local energy decay
statement (8.19) require an iteration of the above procedure ~ §, Uk times, leading
to the corresponding derivative loss in the estimates of Theorem 9.1. Notice, however,
that in case where the integrated local energy decay statement (8.19) does not lose
derivatives, the same steps can be applied (without the need of the extra iterations of
the procedure) even when the deformation tensor of 7" does not decay at all, but is,
instead, merely bounded by some small constant gy > 0.

We should also notice that in the general case where T is not everywhere non-
spacelike (and thus we necessarily have K # T'), one extra difficulty arises from the
fact that, in order to avoid losing unnecessary r-weights in the estimates of Theorem
9.1, we only commute [J with x K instead of K, for a cut-off function x supported in
the far away region {r >> 1} (notice that g(K, K) ~ r? incase K # T in the far away
region). However, commutation with x K leads to additional error terms which do not
decay in time. A key element in dealing with these terms are the elliptic estimates of
Lemma B.3.

9.5 Commutation with T, Kg, and Control of the Error Terms

The following Lemma will provide us with some useful estimates for the commutator
of g with the almost Killing vector field 7" and the vector field K g, which fails to be
almost Killing in the region » ~ R, of M.

Lemma 9.3 Provided that 1 < Ry < R, let us fix xg,, x~r, : M — [0, 1] so that

r

XRy = X © (R_o) 9.61)

for some smooth x : [0, +00) — [0, 1] satisfying x = 1 on [0, 1] and x = 0 on
[2, +00) and

n {o, on {r ¢ [Re, 2R.1} 062

1, on{rel[R: 2R.]}.

Then the following commutation relations hold for any ¢ € C*° (M) and any integer
[ >0:

l
g (1'9) = T' (@) + xry - 3, 0™ =07) (IV/ ), + V70,
j=1
+(1 = Xr)E D1 l#] (9.63)
and for any (eq, ...e;) € {0, 1}1 setting XO =7 and XV = KRg,:

Dg(X(El) L. X(el)(p) — X(El) L. X(el)(Dg(P) + xRy
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l
x >0 D7) (197 gl + 71y

j=1
!
+ (1= xr) (1= Xe~RE gy e [9)
l
Fren, 3 0TV, .

Jj=0
where (setting for simplicity $;, i, = X ... X(ei_i)(p)

(O]
g(X(el),...X(el)) [¢]

= Z l_zl Z 0z~ U=7i=D=d0)

components j=0 {iy,...i;}C{1,..I}
of Nap,m

x {0002(i.) + 0G™20,05(0i,.i)

" O(r*3)8080(80i1.‘.ij) + O(r’]’“)auav(%...ij)

+ 002 0,8a(9ii) + O ) (Piiy)

+ O(r—l—“)au(%...f_,)+0(r—2—“>ac(<oi....i,-)+0<r_2_“)3u(‘pf'~~if)} - (9:63)

Proof The relations (9.63) and (9.64) follow readily by differnetiating the expression
for the wave equation

1
09 = " 8,0, + ————0, (V/= det() - ") 8,0 9.66
8 w9 — et (2) n (g)-g v ( )
withrespectto T and K g, using Assumption (EGS5) on the almost Killing vector fields
T, K and the relation Kg, = xg K + (1 — xg)T. |

The error term obtained from the commutation of [J with K g, on the regionr ~ R,
(where K p_ fails to be almost Killing) will be controlled with the use of suitable elliptic
estimates. In particular, we will establish the following Lemma:

Lemma 9.4 Foranyl € Nwithl < Ld%lj, anyng € N, any B € (=8p,, 1) (for some
Sng > 0 depending on ng) and any 0 < ¢ < 1 — B, if R. is large in terms of B, € and
the geometry of (M, g) we can bound for any ¢ € C°° (M) satisfying for all j1+ jr <
I + ny the finite radiation field condition lim sup,_, . o ’rdflﬂl Vﬁ N (N1 @) ’hr v <
+o0:

ng -3

—B=2j on+i—j 2
ZZ/{ e Vi " ®li-togtriimn he, hN

n=0 j=0" ="
ng 1 )
2(j—1)—B+2¢|oj+n
> R A
720 jo1 J I=TUN(Re<r<2Rc)
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no
B +-2 2 (1,no)
< Cpny(Re) /{Z_T} ry [Z \V,’;LN @) (—togrumn ey T IT. ,?f’&[w]] dhy
- n=0

1
+Cpng (Re) Zmax {—Re [/
0,

J J G
i=0 im MT han a1 (vhf’n‘m/\’lT ). vhi’n'm/‘/lt (P) dhg;/,-,,,M‘} ,O] ’
j= im

(9.67)

where TT(lI?) Rl,[@] is given by (9.17).

Remark From now on, we will assume that R. has been fixed large in terms of 8
and the geometry of (M, g). Hence, we will drop the dependence of constants on R,
(replacing it with dependence on the parameters on which  will depend on).

Proof Inequality (9.67) follows readily after adding (9.26) and (9.27) (for 4 € in place
of €), and absorbing the last term of the right hand side of (9.27) into the left hand side
of (9.26), which can be done provided R, has been fixed large in terms of 8, Ry and
0 < & <« 1 — B. Recall that in view of Assumption (EG6), the constants in the right
hand sides of (9.26) and (9.27) do not depend on T. O

9.6 Integrated Local Energy Decay After Commuting with 7', Kg,

Let us fix a vector field L on M such that [L, T] = 0 everywhere, L = 0 in the region
{r <2R.} and L = 9, in the coordinate chart (7, v, o) on each connected component
of the region {r > 2R, + 1}.

Lemma 9.5 For anyl € N with] < L%J, and any 0 < ¢ < 1, if R. is large in
terms of € and the geometry of (M, g) we can bound for any integer m > 1, any
0 <71 <1 and any ¢ € C®°(M) solving ¢ = F satisfying boundary conditions
on 9;im M belonging to the class C;{g [)) and such that

Re{/ Y<P~¢>dh3”mMr} > 0 and

arith

Re{ / hy, Mo (vha_ YOV ¢>) dhy, MT} >0 (9.68)
atith tim tim

(provided (7.2) holds for all 0 < j < m +1+k + [47):

m—1

—14e |2t a1z o |2
> > el
j=0 7SR ot =t -1

—l4e—2(+j—jp—j } i3 oy |2 —1- i ol?
I Z ry e=2(+j—j ./3)|V}jliN(Nj3(P)|hLN+r+1 8|Nl+j(p} dg
I<jp+ja=i+j-1

m—1

i . ‘
+Z Z /{t T }r+ (+j—1=jr—j3) (rilﬁLV;ﬁ,N(N“‘P)IZ
=12

Jj=0 1< jp+j3<l+j-1
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HVEL WO+ N6 dhy

N

m—1
ir+1 j3 2
+ VETUKE )| dh
Z . Z . /’H"’(T,] 1‘,2)| hrt Re |hH H
J=0 1<ja+j3=<l+j—1 ’
k+m—1

SCe,m{ D D /{ }rifz(wjflszfja)
=11

J=0 1=jp+j3<i+j-1

< (|vE a2 N6 dny

N
m—+k+1-2 5
=3 —l+e(,m+k—1) 1+ J
+1 0/ o leldg + D / ook E‘ng|hdg}
{ti<i<t} j=1—1 J{u=r=m)

(9.69)

(where L] denotes the Lie derivative in the direction of the outgoing vector field L)
and

m—

Z / 2 =1=j2=j3)
_ +
{t="12}

J=01<pp+j3<l+j—1
R W N 2| gl )2
x (‘Vhw (KRL»(p)|(l—log(r,5m))~hRC +ry ‘KRC ‘p‘ dhy

k+m—1

el > > /{ }r;2(l+j—1—jz—j3)
=11

J=0 1<jpp+j3<l+j—1

(9 PO o) dh

m—1
-3 e=2(l+j—1—j2—j3)
D S B
=T

J=0 1< jp+j3<l+j—1
i N _ P2
(VBTN o) dny
m—+k+1—2 5
- — Im+k—1 j
b [ g S L |VEF dg
{ti<r<w}

j=l—1 {ti<t<tw}

(9.70)
In the above,

(.m+k—1)
T7 K Reust [#]

. 1, k—1 —2-2(1-2—j
Skl CEIED YD M (NN Gt
) {ti<t<tw}

0<ij+iz=m 0<j=<I-2
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0 2(—2—i j+it 1 i 2
+r+ T 2(1 2 j)) |V}'jlt1ill (KZR;c(p)|hTN dg

_ _ e — Gy 1
FY Y [ e (e ) e
0<iy+ir<m 0< jj+ ja<i—2 7 {T1=I=T2}

9.71)

Remark Notice that in comparison to (9.69), the left hand side of (9.70) controls only
a degenerate energy norm of ¢ on {f = 1} and no bulk terms. However, in the right
hand side of (9.70) the dependence on the r®-weighted initial energy comes with a
factor decaying polynomially in time.

Proof Without loss of generality, we will assume that t; is large in terms of ¢, m.
Moreover, we will assume that ¢ is real valued.

Recall that according to Assumption (G8), in each connected component of the
region {r > 1} we have:

Lrg = O(x™) {O(r_l_“)dvdu + 0(r)dods + 0(1)dudo

+0(r~Ydvdo + O~ Hdu® + O(r*H)duz} ) 9.72)

Thus, in view of the integrated local energy decay assumption (ILED2) (which is
satisfied in view of our assumption that ¢ has boundary conditions on 9;;,,, M belonging

to the class C;{EIF l))) and Lemma 4.1 in the region {r >> 1} (see the remark below that
Lemma for the case when 7" has deformation tensor with slow polynomial decay in
t), we can bound for any (eq, ...¢;—1) € {0, 1}1_1 and any Ry > 0 to be fixed later
(setting XO =7 and XD = KR,):

m

N : 2
Z/{VT e ) r+ € (|V£(£X(fl)...x‘“l—l>(p)|h
j=1 I1SI=T)

- 2
P Lyen xan 9| ) dg

m
+Z Z ] /a |V£(£X(e]).__x(c[,])(p)|i dhan'm./\/l

j=0 ji+jr=j im MN{T <I<13}
m-+k—1

141 A7 2
= Cs,m,Rf Z /{f ) (|V,ﬁv (szﬁx(el)mx(el—l)‘p)|hN)
=1

J=0 ji+jp=j
2| Arj+1 2
+r NI L ey yen @1 dhy

m—1
reny 3

=0 ji+jr=j {u<t<uin{rz1}

—1 1+ 2 2
ry (|Vht,N (T"Z(Ex(el)“_x(elfl)(P)) |ht,N
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+r.|_.2 (|Tm (LX(EI)_..X(el—l)(‘p) |2 + |‘CX(€1)..AX<"1*')QP|2)) ds
k+m—1 i 2
+ Cs,m,R/- Z /{v r-}-+8|vg] (Dﬁx(el)“.x(fl—l)(p)’h dg. O
=0

T <f<tu}

Using Lemma 8.3 for L)y ¢ in place of ¢ (and adapting the proof a bit so
as to use (9.73) instead of simply (8.19) and repeating the proof of Lemma 4.1), we
obtain the following energy boundedness statement for any yp > 0 to be fixed small
later:

m—1

1+ 7 2 2| A7itl 2
Z Z /; o) (|VZIN (NJZLX(PH..,X“’I—H‘P)|hN +ry |N]+ Lyen_ xta-n®l ) dhy
J=0 jitp=j VT

m+k—1

1, 2 _ i

<Cuel >, D, / (}V,{'N (Nfzcxwmx(e,_,><p)|hN+r+2|NJ+'LX<E,>WX(E,_,>tp|2) dhy
=0 jiip=j =T

m—1

+TIBO z Z r;l+s

J=0 ji+p=j SIS

x (|V,{;\,H(N/?LX(CI)MX@H)(p)|iN +r;2 (‘NHI (Lxen..xan9) |2

m—+k—1

+{£x<ﬂ1>44.x<"1—1’(9|2)) dg + Z /

j=0 /tusisu

j 2
) Ve Ly xan O dg -

(9.74)

'Fixing some §, N > 0 small in terms of €, we obtain from (5.1) for p = ¢ and for
T/¢inplaceof ¢ for j=1—1,...m+1—-2:

m—+1—2
_ i 2 —1— i — i 12
/{ F<0Nr>2Rc) (r+l+€}vhx,N(T“P)‘hLN T O 4 E|T g ) dg
j=l—1" T =I=T2M\r=2Re
m+1—2 ) )
+ > / re (|L(Tf<p)} +r 2 Vi (T, +r;2|Tf<p|2) dhy
j=l—1 {r=t2}N{r=2R.} ’
m—+1-2

<Cemi{ D, /

i 2 — i — i 2
) (ri|thN(Tf<o)\htN AT QR 4 2 T g ) dhy
j=1-1 {t=t}N{r=Rc} !

m+1—-2
— i 2 i — i 12
+ / 2 r+1+s (|VhLN(Tj(P)}h N + |T‘/+1(P‘2 + r+2|Tj(p| ) dg
jeim1 M sT=TIN(Resr<2Re) b
m+1—-2 5
+ 3 / A OTiefdg . 9.75)
j=l—1 {tisft<t)
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Using the elliptic estimate (9.67) repeatedly together with the expression (9.64) for
the commutation of [J with L ;) at each step (notice that Theorem 7.1 applies to
yield lim sup, _, , o |rd2;1+j‘ Vit (P9, < oo forall ji + jo < +m+k),

in view of the condition (9.68) for ¢ at 9;;,, M, we can bound after summing over all
possible combinations of (e, ...e;—1) € {0, 1}1_1:

—l4e—20—1—i1—i2) |oit+j1+] , izt (2
z Z /<7< (r+ ‘Vht,N (KR(‘ (P)|(1—l()g(rrim))‘hkp
0= ji+ja=m—1 0=ij+ir<i—1* (M1=I=72}

+r;‘*9|1(§“1“2<p|2) dg

m

< Z Z/ B 71 E(‘V (L x(e)  xle— 1)(P)|h+r+ ‘E (ep)  xla— 1'(P| )
{fu=<i<u}

(e1,...e;—1)€{0, 1)/~ | j=1

+Cem Z/

j=i—1 {1 <t<u)N{r=>2R.}
_ —2-2(1-2—j) _—
4 Com Z z / r+]+a (r+ ( N=2%
0<it+ir<m—10<j<i—27 (==}

+ +2 —2(80+—2— ,)) |Vj+l|+1(Klz (p)|h

rlee (}vht.N(quJ)ﬁnN +r+2|TJ(p} )

hn
. . . . 2
Cage e 1

LD YD M I s el (AL R

0<ii+ir=m—10=ji+jp<i—2” (M=I=0}

m+1-3 5
+Cem D / ry |V Fl, dg, (9.76)

j=1—2" {u<i<t}

and

—2(I—1—i1—i) it+ji+1 it ja oy 2
/{;7 T+ (Vi KO g,
0<ji+ja<m—1 0<ij+ip<i—17 V=72

+r+2|K1+J@| ) dhy

<Cn z Z Z / } Vijz';j_l(sz[’X(fl).,,X@Ifl)(p)’iN
=0

(e1,...ei—Ef0, 1} =1 | J=0 jit+)2=]

+r_T_z’N'iﬁx(el)___x(l’l—l)(p|2) th}

—2-2(1-2—j)_—2 2250t —2—j
X F [ e )
0<iy+ia<m—10<j<l—27 =2}

]+11+1 i 2
x|V R{m)}hw dhy
Lo . . 2
—2_—2@0+—j1—j2—2) Jitit g Gatiz+1)

+Cn Y > / r 2200t (IVhLN“PIT,K,RC ) dhy
0<iy+ia<m—10<ji+jp<i—2” =2}
m+1-3

+Cn 2 / Vi F [, dhy. 9.77)
j=i-2

@ Springer



6 Page 134 of 194 G. Moschidis

Moreover, using the expression (3.14) for the wave equation in the region {r >> 1} and
Lemma 6.3 to estimate the commutator of [J with L (and recalling that L is supported
in the region {r > 2R.}), we can also bound in view of Lemma 9.4:

m—1

e=2(+j—1=j2—j3) 2 73 o |2
> > / Ty [LLVi KR DL togrmy g, 4PN
=0 1<jptja<l+j—1 =2}

m+1-2

<Cem{ >, / re (|L(Tj(p)}2+r;2|VhLN(Tj(P)|,2hN+r;2—e|Tj+l(P|2th
j=1-1 {t=1}N{r=2R.} !

m—1

£ X X2 (e e a9,

(e1 e €0, 1)1 j=0 ji+jo=j 7 V=72

+r72 N Ly yan to|2) dhy

DN

] (ri—2—2(1—2—1>fzao +ri—2_[72(50+1727j))
0<i+ia<m—10<j<i—2” (=02}

JHi+l i 2
x \thN (KRZ{<P)|hI_N dhy

. . . . 2
€=2_—2@30+ —j1—j2—2) Ji+it o (Go+iz+1)
+ > > / ry T iy Plixr ) dhn
0<it+ip<m—10<ji+jp<i—2” =72}

m-+1-3

+ 2 / P VIF|dhy t (9.78)

j=1-2 {r=1}

Therefore, fixing Ry large enough in terms of ¢, m, after adding (for all possible
combinations of (e, ...e—1) € {0, 1}1_1) the estimates (9.73), (9.74) and a small
multiple (in terms of €, m) of (9.75), and using the expression (9.64) for the commu-
tation of J with L ;) , we obtain in view of (9.76), (9.77) and (9.78) as well as a

trace-type inequality for the terms [i;_, |VIF?, Si=n |V,{j}i}'+] (K}?C <P)|zT , and

Lo Lo 2
f{t—:m (|Vﬁ"{:’l (PI(TJZI_(HIZJD) (and recalling that t;was assumed to be large in terms
of &, m):

. B o N
Z/ z r+l+8|vkjvl (K'I?L»(p)}(lflog(r“m))-hkr

=0 M=l g it -1

—l4e =2(+j= 2= J3) | g2 B3 oy |2 —l—¢| g l+i |2
+ Z ry |vh1,N(KRa(P)|(l—10g(r,,’m))>h1g(. +ri K67 ) dg
1<jo+j3=l+j-1

- ' —2+j—1=j=j3) (6 PP S
DD / Ty (’ ILL Vi, K i D1 10g1im)h,
J=0 1= jp+js<i4j—1 7 1=}

@ Springer



The r”-Weighted Energy Method of Dafermos and Rodnianski... Page 135 0of 194 6

+}V/’+1 K” ‘p)|(1 gt e +r+2|K1+’<P| )

k+m—1
=2(l+j—1—=jp—7 jp+1 i 2 — P12
< Cem Z > / A=) (\V,ﬁ; (NP, 4+ [N | )th
=0 1<j+jzsi+j—171=0) '
m+k+1-2
- - Lmtk—1
+1 Bo/ _ 1+e7—T( l;n; sl)[(‘o] dg + Z / 1+E|V1F‘h dg (979)
{1151512) j=i—1 (1 <f<t)

Letr; > 0be the small constant appearing in (9.2), and fix a smooth cut-off function

r + M — [0, 1] such that x,, is a function of r satisfying x,, = 1 on {r < r;} and

Xr = 0on {r > 2ri}. Integrating V* (x,, J;"*[¢]) over M (where J/"*![¢] is given
by 8.40), and using the red shift estimate (9.2), we obtain:

m—+1—1
I @l +/ I et + / viel; dg
/7'(+(T1,T2) " " {r=n2}N{r=r1} Z {u<t<t}n V<l‘1}| ¢ |h

m—+l—1 m4l1—1

<Cp Z/ Vio|> dhy + Z/ Vo] dg
{t=71 ﬁ{r<2r|}

{ti<t<t}n{ri<r<2r}

m+1—2

+ Z / [ViFfdg - (9.80)

{(t1<t<t}N{r<2r}

Adding to (9.79) a small multiple of the non degenerate estimate 9.80, and using
Assumptions (G10) and (G11) (together with a Hardy type inequality for the terms

— i 12 .
20 Ji<ar,) [VAF |, dg), we obtain (9.69):

m—1

Z/ Z —1+e}vjz+1 NJ3<P)}
{ti<f<1}

Jj=0 Jti=ltj-1

—l4e =2(+j—j2—J3) |2 3|2 —1—¢| nrl+j (]2
+ > 4+ Viz (¥ (‘p)|hLN+r+ [N gl
I<p+j3<l+j-1

m—1

n z Z _ r;2(1+‘1_1_‘12_/3) ("ivaiﬁ N(st o)
J=0 1=+ jasij—1 7 =) ’

HVEL WO+ N6 dhy

m—1

* Z Z /H+(r1 ) ’V}{ZH(KIJ;"‘ (P)’iﬁ dhy

J=0 1<jo+j3<l+j—1
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k+m—1

i
<Com Z Z / P2 1=
{t=11}

=0 1<jp+j3<i+j-1
x (|v,{f;l(Nf3<p)| +r 2N gl ) dhy

m4-k+1-2
_ — I,m+k—1
+T] BO/ ) 1+ST]€ Ig’l; Sl)[(p]dg+ Z / 1+£|V]F’h dg
{T|<T<Tz}

j=l-1 {u<i<tu}

9.81)

Moreover, by adding (for all possible combinations of (e, ...e;—1) € {0, 1=
the estimates (9.73), (9.74) and 1;60 times a small multiple of (9.75), we also obtain
the degenerate energy boundedness statement (9.70):

—21+ 1—jo— +1 I
Z Z / (+j=1=j2=j3) (|V’ + (K <P)|(1 logrim) . +r+2|K +/(p| ) dhy
J=0 1<ja+ja<l+j—1

k+m—1
—2(l4+j—1—jo—j3) j2+1 j 2 =2 nrl+i o2
< CE,m‘ > > /t-—n}r+ i (\Vﬁw (NP, +r? [N gl )th

J=0 1=jptja=i+j—171=

m—1
B B L ) . )
+rlao Z z / ”i 2(0+j—1=ja—j3) (|Viiijrvl(Nj3(p)|h1N +r+2|NH'/‘P| )th
J=0 1<t ja=<i+j—17 =11} ’ '

m+k-+1-2

vt [ e S /
{u=i<t}

j= —=I—1 '[1 <)‘<Iz

P Vi dg’ (9.82)

9.7 Proof of Theorem 9.1 on Improved Polynomial Decay

Without loss of generality, we will assume that ¢ is real valued. Moreover, in order to
avoid confusion with unnecessarily complicated notations, we will assume that F = 0,
since the proof of (9.40) and (9.41) in the case F # 0 follows by repeating exactly
the same steps.

Thf; pfoof of Theorem 9.1 will proceed by induction on ¢, from g = 1 up to
qg=19]

Moré precisely, we will assume the following inductive hypothesis for some integer
1 <qo0 <4 ):

Inductive hypothesis: For any integer 1 < g < go — 1, any 0 < € < 30, any integer
m > 1l,any0 < p < 2¢g — 1 and any 0 < 1| < 1, the following bounds hold:

(p,gq.m) T3 (p—1.q.m)
gen [(P]('Cz) + gen [(P]('t) dt

2

2 12(g-11Gg+D-k
24+ Cue g 204 m b 2= DIGHED D g0y (g 83)

Sme (T2 —11)" bound
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+00
[652*"’“[@]@»+5,§§*3,;Z)[<p](rz)+ / &y 1+”*””W](s)ds]
1%]

_ 2q.q.m+55"2(g—D1Gg+1)-k)
S (Tg — 1) "2 FCmeg ST HHATHIBIT D ) (1) (9.84)
and
0.9, 20 0(q.q,m+T85"2(g=1)1Gg+1)4)
Eandeg 19(2) S (12 = 1) 208" [#1Cz). - O-85)

Granted this inductve hypothesis, the inductive step of our induction scheme will be
the following:

Inductive step: For any 0 < ¢ < §¢, any integer m > 1, any 0 < p < 2qo — | and
any 0 < 11 < 12 the following bounds hold:

3
.90, h —1,q0,
LM )(1) + / L0 )1y d v
1)
_ 240,q0.m~+T57 " -2(go—1)1Bgo+1)-k
e (T2 — T1) 2qo+p+cms5;03(;50m I8y -2(g0—1)1(3gqo+1) )[@](11)7
(9.86)

0 T
{Sén*q(’”")[w](rz)+6,§2'5,2;l"’>[<p1<r2>+ / Eon +E”O”“[«p](s)ds]
1)

2q0.q0-m+T85 ' -2(qo—1)1(Bgo+1)-k)
ound

S (12 — 1) 20T Cn g [@1(t))  (9.87)

and

0,90, - (290,q0,m+18g ' 2(q0—1)1Gqo+1)-k)
ENITION(T2) S (12 — 1) 20E, o0 HOTHIEO T D ) ),

(9.88)

Note that for ¢ = 1 Theorem 9.1 degenerates to Theorem 8.2, and thus the basis of
the induction has already been established.

9.7.1 Proof of the Inductive Step

In order to establish inequalities (9.86), (9.87) and (9.88) of the inductive step, we will
first need to prove a series of lemmas. Without loss of generality, we will assume that
11 = 01in (9.86), (9.87) and (9.88).

Lemma 9.6 There exists a C > 1 such that for any integer 1 <1 < q, any integer
m > 1, and any ¢ € C*®°(M) solving 0@ = 0, there exists a sequence {T,},eN Of
positive numbers satisfying (1 + Cbr, < Tut1 < (1 4+ C)1, such that
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2(qo—1),q0—1+1,m)
Z Syt " m[ﬁx@l).,,x‘gl—l)(p]ﬁ")
(e1,...ei—1)€{0, 1}~
S U 2A—i) (2 30k
_21 o(2q0.q0,m+31k _ —2j—@I—i —i.go—j.m+31-
TR el U (VR S Mt i CO1C
i=1 j=0
2N i@ty [T gomiotigo—m 3k
D ID IR / A O IOP 9.89)
i=1 j=0 Tn—2

where X© =T and XV = Kpg,.

Proof The proof of (9.89) will follow by induction on /.

Inequality (9.89) forl = 1 follows directly from the proof of Lemma 8.2 (using also
Hardy-type inequalities of the form established in Lemma C.3) adapted to the case
when |£’T g‘ n S 1% for all integers j > 0 (see also the remark below Lemma 8.2).
It thus remains to prove (9.89) for any 1 < ;4 < qo, assuming the cases ] < l;,q — 1
have been established. Without loss of generality, we will assume that /;,; = go, since
this is the hardest case. The case /;,,; < go will follow in the same way, and hence the
relevant details will be omitted.

Since we have assumed that (9.89) holds for / = gop — 1 and any integer m > 1, we
can bound on a sequence {T,},en satisfying (1 + C™ 1, < 1,41 < (1 4+ )1,

2,2.m)
Z Eputk L yiery xteqy-2 P1(Tn)
(e1 ,...eqofz)e{(), l}qO’2

<, 1 200~ gC-90.m+3G0=Dh) g1 )

~ bound
2(go—1) go—1 ) ) ) )
+t;80 Z z 1;2]_(2(%_1)_’)Séﬁqo_l’qO_J’m+3(q°_1)'k)[(p](tn)
i=1 j=0
2((1071)(1071 . . Tn+1 . .
DY zt;zf—awo—n—z)/ £2a0=i=1.d0=jm+3@0=1) (1) gs.
i=1 j=0 Tn—2

(9.90)

Using the expression (A.2) for the wave operator in the region {r > 1} (and hence
morally interchanging VhZt v L — 8,T), we can bound (using also some Hardy
type inequalities of the form established in Lemma C.3):

(2,1,m)
Z gb()und [‘CX(el)mX(eq()fl) q)] (Tn)

(e1....eqy—1)€{0,1}90~!

2,2,
Sm z glgulk " [‘Cx(t’l)mx(gqo—z) (P] (Tn)

(e1...eqy—2)€{0,1}9072
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n > mz_:l > / 2-2(q+j~2— 1)

(e1,..eqy2)€(0,1)902 j=0 01+ o< =T Olr=Re)

< [V (TR0 gy iy 29) |7 dhv. 9.91)

hI,N

Thus, from (9.90) and (9.91), we obtain in view of the expression (9.64) for the
commutator of (J with £ y;):

2,1,m)
Z gbound [’C’X(el).__x(eqo—l) ¢I(tn)
(e ,...eqo_l)e{O,l}‘IO—1

me .[;2(%*1)5(2610%0,m+3(q()*1)'k) [(P] (0)

bound
2(go—1) qo—1 ) ] ) )
+I;80 Z ZT;2J—(Z(qo—1)—t)5e(r21qo—t,qo—/,m+3(qo—1)-k)[(p](Tn)
i=1 j=0
2(q0—1 qo—1 ) T ) )
Y Zt;zj—(zwo—l)—z)/ £2a0=i=1ao=j.m+3a0=D) [ g1 g
i=1 j=0 Tn—2

(9.92)

Repeating the first steps of the proof of Theorem 8.1 for £ s xaq-n® in place
of ¢, using Lemma 9.5 (and in particular the estimate (9.69)) in place of the simple
integrated local energy decay assumption 8.19, in view of (9.64) we can bound on a
sequence {T,},eny With (1+C N1, < 1,41 < (1 + €)1, (possibly different than the
one appearing before):

(0.1,m)
Z gbulk [’Cx(el)mx(eqo—z)(p](‘cn)
(e1,--eqy-1)E(0, 1)90!
-2 2,1,m+2k
Sm ‘[n Z 8b(0un21 )[‘Cx(el)mx(‘)qo—l)(p](.tn)
(61,...6(10,1)6{0,1}‘7071
2q0 qo—1 e i . b
— —_ — — —1, -7, + — .
+T"8022Tn J=@40=D) £Qg0=1-q0=1-m+Ga0= DR [
i=1 j=0
2q0 qO—l yilo . Tntl 5 i1 . 3 Dk
SRS S A / gQa=i=lao=j.m+Gao=D0) g5y g5 (9.93)
i=1 j=0 -2

Using the bound (9.92) with m + 2k in place of m, we finally obtain the desired
inequality:

@ Springer



6 Page 140 of 194 G. Moschidis

0,1,m)
Z 5bulkm [Ex(el)“.x(eqo—l)(p](tn)

(e1...-eqg—1)€{0,1}90~!

< 2q0 5(2% ,q0,m+(3q0—1)-k) [(P] (0)

~m bound
2q0 qo—1
_,_Tfaozz —2j—Q2q0— 1)5(240 i,qo—j.m+(3qo— l)k)[(P](‘tn)
i=1 j=0
240 qo—1
_,_.E—aozz 2~ (2q0— t)/ S(2q° i—1,q0—j,m+(3q0— l)k)[cp](s)ds. (9.94)
i=1 j=0
Thus, the proof of the Lemma is complete. O

Lemma 9.7 For any integer m > 1, any 0 < ¢ < §¢ small in terms of m and any
smooth function ¢ on M solving (19 = O we can bound:

+00
[ E ™™ 191(0) + Eginy [91(0) + / Ee T 0)(s) ds

— . 2 3 1)k
gmﬁ 1 2q0+Cm 85( q0,90,m+(3go+1) )[(P](O)

bound
20 go—1 ‘ _
+ T_SO Z Z .[—2j—(zqo—l)8;5’1071+8s(10*./am+(340+1)'k)[(p](.t)
i=1 j=0
20 qo—1 ' ‘
0N 2D / 1 £2a0=i=1+e.q0—i.m+Gaot DR o106y g6 (9.95)
-
i= 1] 0 Lm
and
0, - 2 +(3q0+1)-k
e(n Z(;g’”)[q;](-c) 21105(032!:10"1 GaotD0) 1410y
21 go—1
- —2i—Qqgo—i) c(2q0—i —j 3go+1)-
41 BOZ Z 20— Ca0=i) g 2q0=i+e.q0=J.m+Bg0+ DR ) (1)
i=1 j=0
21 go—1 . '
0 TN 20 z)/ £Qao—i=l+e.qo—j.m+GaotD-K) g1y ds.
i=1 j=0 Cs:i:

(9.96)

Proof From Lemma (9.6), we can bound on a sequence {t,},cn satisfying (1 +
Cbr, < Tt+1 < (1 4+ C)7, for some large C > 0:

0,1,m)
Z gbulk [EX(el)mX(erfl) (P] (Tn)
(e1,...e1—1)€{0,1}90~!
-2 2 3q0-k
SO L)
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2q0 qo0—1
— —2j—2q0—1) ¢(2q0—i,q0— j,m+3qo-k
+Tn 30 Z Z 1, J—Q2qo l)ge(nqo 1,q0—J,m+3qo )[(P](Tn)
i=1 j=0
i Cari) [ ar—imldo—sm+3a0k
+t;80 Z Z T; ]_( qo—l)/ génQO_l_ ,q0—J,m—+3qo- )[(P](S) dS. (997)
i=1 j=0 Tn—2

Using (9.67) successively for L, gy P, EX(Q)"_X(eqp,l)(P, ..., @ (in place of
¥), making also use of (9.64) for the commutator of [J with Ly, we can bound
(assuming without loss of generality that t; is large enough in terms of m):

0,90, 0,1,
EQOM9)(1,) < > Ep ™ 1L
(e1,...ei—1)€{0, 1}~

X("'l)“,X(c‘IO*l)(P](tn)' (998)

Therefore, from (9.97) and (9.98) we obtain:

0,90, -2, 240,90, 3q0-k
EXMQ)(1,) S T “10ELI0-40-m 390D )0

240 qo—1
_ —2j—Qqo—i) o(qo—i,qo—j.m+3qo-k
+‘7naozztn J—2q0 z)ge(nqo i,q0—j,m+3qo )[@](In)
i=1 j=0
290 q0—1 il . Tn+1 5 i1 . 300k
) IR qo—l)/ ga—i=La=im 3k g1 g (9.99)

i=1 j=0 Tn—2

From (6.1) and (8.19), we also obtain after repeating the first steps of the proof of
Theorem 8.1 on a sequence {T,},ey With (1 +C™ DT, < Tp1 < (1 + O)Ty:

2g0—1—¢.q0, - -—1 (2q0,q0.m+k
ELTITRAO M 9)(3,) <, T ELADM I [9] (0), (9.100)

Notice that, a priori, {T,},cn might be different than {t,},cn. However, we can run
the pigeonhole principle argument leading to the choice of these sequences more
carefully and arrange so that t, = T, provided C > 0 had been fixed large enough in
terms of ¢, m and the geometry of (M, g) (henceforth we will thus assume without
loss of generality that T, = T,); this follows from the following general fact: If
f1, f> : (0, 400) — (0, +00) are measurable functions satisfying

+o00
filx)ydx < C; (9.101)

for i = 1, 2, then there exists a sequence {x,},cn With 2x, < x,41 < 4x, such that
foralln € Nand fori =1, 2:

4 C;
filx) < log‘l(g) = (9.102)

]
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Proof of (9.102): This is established by contradiction: If there exists an interval
[a, 2a] C (0, +00) such that the measurable sets

1@ = Ix € la.2al] fi(x) < IOg”(;—l) : 9] (9.103)
X

for i = 1,2 are disjoint, then there exists an ig € {1, 2} such that the complement of

I,.E)”) on [a, 2a] is at least of half measure, i.e.
@\ a
m{ (Iio ) N la, 2a]} = 3. (9.104)
But then one obtains
“+00
Ci, > filx)dx > / . Sfio(x) dx (9.105)
0 (1) Nta,2a1

4 G 4 1
> / . log~ (=) =2 dx > log7 ! (=) - cio/ —dx = Cj,
(1) Nta.2a] 3 x 3 [3¢,24] X

o

(the second to last inequality following because the integral of )lc over subsets of

[a, 2a] of measure at least % is minimized over [37”, 2a]), which is a contradiction.
Thus, there exists an infinite sequence {x,},cn With 2x, < x,4+1 < 4x, on which
(9.102) is satisfied.

By interpolating between (9.99) and (9.100) (note again that we have assumed
T, = T,), we obtain:

géz,qo,m)[@](Tn) Sm t;2t]o+Cm 85(2q0,q0,rn+3q0~k)[(p](0)

bound
290 qo—1 ] ) ) )
+ .E;Bo Z Z T;ZJ*(211071)Se(zqo*t,qoﬁ,mﬁqo-k)[@](Tn)
i=1 j=0
290 q0—1 ) Tt . )
Fr 0SS g2 CnD / £a0=i=1ao=1m+300K) 1) 149 106)
i=1 j=0 Tn—2

By applying Lemma 9.5 in the regions {1, <7 < 1,41} and using (9.99), (9.106)
and the fact that 1, ~¢, T,41, we thus obtain provided ¢ has been chosen small in
terms of m and §¢:

+o00
[552’%’"”[(4)]@)+5;f;3,‘;;,’”>[w](r>+ / E ‘*S""”’”)[@](s)ds]
T

_ 240.90,m~+3qgo+1)-k
gm’g T 2q0+Cm85; q0,90,m~+(3qo+1) )[(p](o)

ound
21 go—1
- —2j—Qq0—i) c(2q0—i+€,q0—j,m+(3qo+1)-k)
LRI D D iy [€1(T)
i=1 j=0
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20 qo—1

+1 BOZ Z.C—ZI (2g0— l)/il 5(2QO i—l+e,q0— ]m+(%f1()+l)k)[(p](s)ds
i=1 j=0 T
(9.107)
and
0,
Eivy 191V
— 2 3 1)-k
gm 2QO£(OZ(’)1‘IO ;m+(3qo+1)- )[(p](o)
21 qo—1 . ' ) ]
+ I_SO Z Z 1—2]—(2q0—l)£‘§3!q0_l+quO_Jvm+(3q0+l)‘k) [(P](‘t)
i=1 j=0
20 qo—1 ) ]
A YD I ,)/ £Q40=i=1+e.qo=]mtGaot DR g o) g,
i=1 j=0 Com T
(9.108)
O

We are now ready to establish inequalities (9.84) and (9.85) of the inductive step:

Lemma 9.8 For any integer m > 1, any 0 < ¢ < 3o small in terms of m and any
smooth function ¢ on M solving (0¢ = 0 we can bound.:

+
[ £090M [g](1) 4+ £E1 [g](1) + / Eg TH m)[@](S)dS]

2 12(g0=1)1Gqo+1)-k
ST A N O (9.109)
and
_ 2 +185 20— D1Bg0+ 1)k
Eqing"LOND) Sy 720yl I OIS D g10). (9.110)

Proof From Lemma 9.6 we can bound:

+00
{652*‘10”")[ 100 + Epriny 101 (D) + / £ T [9)(s) dis
T

- 2 +QGqo+1)-k
< e 2610+Cm Eg( q0.90,m~+(3qo+1)- )[ ](O)

~m, bound
21 go—1
B I . . 5 )
+1 aozzt 2j—(21 z)ge(ﬁqo i+e,q0—j,m+( qo+1)k)[(p](1)
i=1 j=0
21 qo—1 ) )
Fr ST 2 z)/ £a0=i=1+e.qo=]m+Gaot D) g1 o) 1
o
i=1 j=0 em T

©.111)
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and

0,90,
e 191

— 240,q0,m~+3qo+1)-k
gm T 2‘]08;0321507” (Bgo+1) )[(P](O)

21 go—1
+ T*SU Z Z 172j7(2q07i)g£%—l+€’LI0—J,m+(3QO+1)~k) [(P] (T)

i=1 j=0

STy h [T Lge—i jm+(3qo+1)-k
DI I / gQmII A=l Car DR g4 g,

i=1 j=0 Cem ™

(9.112)
Using the inductive hypothesis (i.e. (9.83), (9.84) and (9.85)) as well as Theorem

8.1 and the integrated local energy decay statement (8.19), we obtain from (9.111)
and (9.112):

0.q0.m) (e.q0.m) T (—1te.go.m)
Een [P1(D) + Eppuna [P1(D) + Een [®](s)ds
T

me,E T min{2+8072q0_Cm'3}5233(2’30”""'(3(10‘1‘1)']() [(p] (0) (91 13)
and
0,90, —mi 240,490, 3 1)-k
Eqri Q) (1) Sy T MR 200} 200D B 01 0) (9.114)

Going back to (9.111) and (9.112) and using (9.113) (with m 4 (3go + 1) - k) in place
of m) for the error terms in the right hand side, combined with the inductive hypoth-
esis’ inequalities (9.83), (9.84) for the lower order terms, we obtain the following
improvement of (9.113) and (9.114):

0 tee 1
[5én’q°”")[<p](r)+5,§i;5;;;;")[<p](r)+ / Een +E*q‘)*””[<p]<s)als]

Sm,s T min{2+280,2qo—Cm-E}glgiz?l,go,m+2(3qo+l)-k) [9](0) (9.115)

and

ELWMQ)(1) < T M0 2000 0 0. 200D D g10). (9.116)

en,deg ound

Repeating the same procedure [3§, o 2(go — 1)] times, we finally obtain the desired
decay statement:

0 O
[65,;‘”’"”[@](0+5,§f;5,‘;;1””w](r)+ / Een +8*"°*"”[<r>]<s>ds]
T

_ £ 0(290,0,m+T85 " 2(qo—1)1Ggo+1)-k
e T 2q0+Cp 85;03?130m 3 2(q0—1)1(3q0 ))[(P](O) ©.117)
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and

_ 240.40. o' 2(qo—11(3g0+1)k
Exriiy 191 S w20y it T STV gy 0). - 0.118)

O

Finally, we will establish inequality (9.83) of the inductive step:

Lemma 9.9 Forany 0 < p < 2qg — 2, any integer m > 1, any 0 < ¢ K 3o small in
terms of m and any smooth function ¢ on M solving [J¢ = 0 we can bound:

+00 1
ELNMIO1(D + / £ 101(s) ds

T

_ 2q0.q0,m+T85 " -2(q0—1)1(g0+1)-k
S T 2qo+p+C,,18€IEOZ(;l:ZIO m+[8; -2(go—1)13qo0 ))[(P](O). (9.119)

Proof Inequality (9.119) follows readily after interpolating between (9.109) and
(8.31). O

9.8 Gagliardo—Nirenberg Type Inequalities on the Hyperboloids {f = const)

In the proof of Corollary 9.2, we need to obtain refined pointwise control for functions
W on the hyperboloids {f = const} by estimating the L? norms of higher order deriv-
atives of them. To this end, we will make use of the following Gagliardo—Nirenberg
type estimates:

Lemma 9.10 For any ro > 0, any © > 0 and any smooth function ¥V : S ,, — C

(where Sz, = {t = T} N {r > ro}) satisfying r%wl Yl =0)for0 <1 <

ho N
f%} —lasr - 4oo:

1. Ifd is odd, we can bound":

1 1

2 a2 ’ ol 9 :
sup [W |2 < C(v) / IV, 2 IR dhy / IVl VIR dhy
S Sery T ’ Serg T '

Tro

d+1
+ / |vth\11|,31N th]. (9.120)

-T0

19 Recall that d is the dimension of the hypersurface {f = t}.
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and

1 d=2

d—1 dtl d—1
sup |2 <C(v) / Vien ®li, , dhn / v,2 \11|,1 wdhy
St.ro St,ro ' SI,rO

“.
S‘[V

)

d+1
IV, 2 Wi o th] (9.121)

2. If d is even, we can bound for any ¢ > 0:

sup |W|?
St,ro

< Ce(v) (/
Serg
(/.
( S

d-2
|Vh1.N \Il |%LT,N th)

e-2d—2)
2(d—2)

+1
(|V2 vl N +|v ‘I’lﬁw) th)
N0

1 d
+/S (WZ* \11|,11N + |V wﬁw) th+/S ri|L2\11|2th}.
T T.rg

(9.122)

In the above, L is a vector field which is identically O in the region {r < 1} and equals
the coordinate vector field 9, of the coordinate system (v, o) on {t =t} N {r > 1}.

Proof Let us fix an Ry > 0 large in terms of the geometry of (M, g).
On R, the following Gagliardo—Nirenberg type inequalities hold for f € C, o (R9)
(see [30] and [36]):

1. If d is odd:
1 1
1 fllzee < CIFIZ 4o AN (9.123)
HZ R H 2 (RY)
and
[ f1lLee <C||f||H1(Rd) ||f|| %(Rd) (9.124)
2. If d is even: ]
1 flle < Cell fII2 4 ||f||2 a, (9.125)
H2*(Rd) H? st)

In the above, we have used the homogeneous norms H® (Rd) defined with the use of
the Fourier transform as
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11y gy = /R £ 7P e, 9.126)

where f is the Fourier transform of f.
Using a simple interpolation argument, we can also bound

ey < I AT ©9.127)
and
W vy < G AU g (9.128)
and thus we obtain from (9.125) in the case d is even:
& Ed
IIfIILocsCeIIfIIZ,?(Rd IIfII _‘i IIfIIZ2+1 Rty (9.129)

Let xg, : {f = 1} — [0, 1] be a smooth cut-off function such that x g, is a function
of r satisfying xg, = O on {r < Ro} and xg, = 1 on {r > 2Ro}. Since g,V
is supported on {r > Ry}, by pulling back through the diffeomorphism (r, o) the
operator Ve on {t = t} and using the bound

1
Va9l < C O r 2|05 (9.130)
j=1

we obtain from (9.123), (9.124) and (9.129):
1. In case d is odd:

Bl—

sup|xR0\IJ| <C- Z/ |V ’(xRow)|hNth

tr()

d—
7?’ i
Z/ 2, W dhy | 013D)
: S'[I'O
and

d—1
sup [k, WI sc-( /S Vi ORI th)
T.rQ

T,rQ

*
()

T

Z /S 19,5 T W, di | 0132)
T.ro
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2. In case d is even:

d-2
sup | xr, 1> SCE'(/ Ve R0 W), th)
'[)'0

o
2 i
4p3 /S . 21V G IR dh
2
x Z/ *21|v (XRO\IJ)|hNth . (9.133)
Ser

By applying the Leibnitz rule and using Hardy type inequalities of the form established
in Lemma C.3, we obtain from (9.131), (9.132) and (9.133):

1. In case d is odd:

1 1

d—1 2 dil 2
sup [k, ¥ < C- / 19,2, W2, dhy / 19,2, W2, dhy
S ’St,r() S‘[.r()

T,rQ
+/ \W12dhy . (9.134)
Sr.rom{ROErszO}
and
L d=2
d—1 d+1 d—1
sup | xry ¥ < C- / Vi W2, dhy / 19,2 W2, dhy
Sr.ro St,r() ' St.r()
+ / |W|*dhy (9.135)
Sr,roﬂ{RoirSQRo}

2. In case d is even:

7=
sup |XR0"I'|2 <Ce¢- / |Vhr,Nlp|%rN dhy
S Sury Y

70
€-(2d—2)

il 1- 2(51 2)
(/ (|V2 v ot |v \mﬁm) th)
St,r() '
+/ W dhy ¢ (9.136)
St,r()m{ROSrSzRO}
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Since (1 — xg,) is supported in the compact region {f = t} N {r < 2Ry} and Ry is
fixed in terms of the geometry of {f = 1}, using the Sobolev inequality (see e.g. [19])

I—d+]
2
w101 =) =€) /. Vi W any ©137)

o St ;Oﬂ{rSZRO}

and the Poincare inequality

2
/ \W1>dhy < C(1) Vion Wl dhn
SeryNr<2Ro} Sr.ryN{r=<2Ro} -

+/ W dhy, (9.138)
St,rom{ROfrszO}

we obtain from (9.134), (9.135) and (9.136):
1. In case d is odd:

d—1
sup (W < co ([ 19,7 0, dh
S Sery ol

D=

©ro

1
ISR 2
/ |Vht.1v\y|hr.1v dhy
Sty

d+1
+/ 7% xp|h wdhy + |\11|2th].
S

<0 ~/St_roﬂ{Ro<r<2Ro}
(9.139)

and

1

d-—2
d—1 d—T1
sup [W)2 < C(1) (/ |th.N\y|§tNth) (/ |v xy|h Nth)
S1,r0 SI.rO ' SI,"()
d+1
+/ 7% \y|h Nth+/
Sz, S.

0 T.rg

|xu|2th] (9.140)

N{Ro<r=<2Ro}

2. In case d is even:

sup W[ < Ce(1) / \Vien ¥l dhy
s Sty '

T.rQ

€-(2d—-2)

. i B -5
2 2 2 2
X (/S (lvhzr,zv \Ijlht,N + Itht,N\IJIhLN) dhy
T

4+ 2 g 2 2
+/ (IV2 g + |V | dhy + W dhy t .
Js. he N he,N hx, N he,N -SL,-UQ[R(JSVSZR())

T
(9.141)
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Finally, in case d is odd, using Lemma C.4 (as well as Lemma C.3) we can bound

1
2
/ W dhy sc-/ Viow W, iy
Sty NMRo<r<2Ro} Serg '

1
a1 2
x/ |vh2N\y|§Nth . (9.142)
Sr,ro T, T,

and

P
/ WPdhy <C- /
Sr,rom{R(JerzRO} T,

Y

d+] %l
x(/ V)2 W2 Nth) (9.143)
S

0

Vien ¥l th)
d

)

and thus (9.140) and (9.139) become

1 1

a1 2 a1 2
sup |W|2 < C(v) / V2 Wi, dhy / V2 Yl dhy
St,ro STJO ' ' SI.rO

d+1
+/ V2 Wl dhn t -
Str

(9.144)

IO

and

1

-2
d—1 d+1 d—1
sup |W|?> < C(v) / \Vien Wi, dhn / v,z qJ|h wdhy
S‘[.ro va’() ' STv’O

d+1
+/ IV, \y|hrNth} (9.145)
S

Tro

Y

In case d is even, on the other hand, from Lemma C.3 we can readily bound

/ \W>dhy < CS/ ri|L%\p|2th, (9.146)
StrgN{Ro=r=<2Ro}

Tro
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and hence (9.141) becomes:

sup [W|* < Ce(t) (/
S St,r

T,rQ

d-2
Vien iy th)

0

|_e2d=2)

11 d 2(d-2)
x / (|V2 wlE . |v,jIN\IJ|§TN) dhy
St,ro ' '
Q+] i
+/ (|V]”121N\Il|%tN+|thrN\y|%ltN) th+/
St ' ’ ' ’ S

ri|Lg\Il|2th}.
-0

(9.147)

m}

Lemma 9.11 For any T > 0 and any smooth function ¥ : {f =t} N{r < 1} - C
we can bound

sp ((—log() + 7T jwp?)
{f=un(r=3)

d+1

[5=1.412
SC(‘)[/ Vs W togeumy e, 4N
{f:t}ﬂ{r§1}| hT‘N |(1 10g(rtlm))'hRC
<

+Z/ Vi, |ht dhy . (9.148)

= t}ﬂ{2<r<1}

Remark Notice that the energy norm in the right hand side of (9.148) degenerates
polynomially at H ™ and logarithmically at 3, M.

Proof Using the fundamental theorem of calculus and a Cauchy—Schwarz inequality,
we can bound for any smooth ¢ : [0, 1] — C and any xq € (0, 1]:

L de
|<P<xo>|s/ | %5 dx + o) <
xp ax

X IR 1
s(/ x_ldx)z(/ x|d—(p!2dx)2+|w<1)|
X0 x dx

1

1 d 2
< (~log(x0)) - (/ x!d—(‘)fdx) + (D). (9.149)
0 X

Let us fix a small rg = ro(t), so that {f = t} N {r < 2rp} is diffeomorphic to
[0, 2r9] x H< and hg, has the form (9.15) there. It then readily follows in view of
(9.149) and a Sobolev inequality on the surfaces {r = const} that
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swp ((—logr) 2w p?)

{I=tN{r=ro}

et
=cw{>] / Phor (—10g(rein) 2T 1 |V, (8,9)|" dhy
=0 {t=tN{r<2rp}
[ o
+ / R/ dhy t, (9.150)
Z ﬂ{r0<r<2r0}| h N |ht,N

where Vy_ is the covariant derivative on the surfaces {r = const} associated to the
metric h7¢, in (9.15). Inequality (9.148) now readily follows from (9.150) in view of
the Sobolev-inequality in the region {ro < r < %}:

|—d+1-|

sup WP < C(v) z / van\p|fw dhy, (9.151)

{f=t}n{ro<r=<3} i=tniro=r<j}
the Hardy-type inequality:

4
_ord=1 j 2
/| hor (—Tog(ran)) 271 ], 0, 0)F iy
=0 {t=1}N{r<2rp}
d+1

(51,12
SC(T)[/ v, 2wl dhy
{f=t}m{r51}| hn ‘(1 log(rsim))-hr.
r4h

+Z/ LN‘I’M dhy (9.152)

i=yn{y<r<n)

and the Poincare-type inequality

2
hew dhy

d+l
j
z/ Vi,
{t=1}N{ro<r=< 2} ’

rély o
SC(t)[/ |V, 2 W], dhy
i=untr=<1y N ke
"d l-‘

+ Z/ htN\yﬁLNth . (9.153)

i=gn{l<r<1
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9.9 Proof of Corollary 9.2

Inequality (9.48) for any dimension d follows readily from the Gagliardo—Nirenberg
type inequalities (9.121) and (9.122) for ro = 0, Assumption (EG7) and the decay
estimate (9.40) of Theorem 9.1 forg = 1, Ld%lj and m + 1 in place of m.

In case the dimension d is odd, after adding the Gagliardo—Nirenberg type inequal-
ities (9.121) (for some small rp > 0) and (9.148), and using a Poincare type inequality
and the “critical” Hardy-type estimate (C.8) (together with Lemma C.3) to bound

K

vl e|* dn
Z /l t} ﬂ{%5r51}| haN |hr.N N

a5l 74 dtl P
<c ( Eomace 191 + (5 i 1010) T ( Eon s °>[<p]<r)) )

(9.154)
we obtain in view of Assumption (EG7):
sup ((—log(r) + D72 o)
{I=tnir<3}
0,1,0) e 20510 = 0450
=C (ge” deg [(P]('t)) ( en deg [(P]('t)) + gen dezg [(P](t) .
(9.155)
Therefore, from (9.155) and (9.41) we deduce that
sup ((~log(r) + 27T jof2)
(=1}
- d+1,4941 gt 2d- D16 + 1)k
<1 d 5150und [3g 2d—113% ) )[ ©1(0)
d+1 d+1
+f;:;i Ty @=DIGE Dk PP, (9.156)

Moreover, using a standard Sobolev estimate we can also bound:

d-
swp  foP<c el O)[@](r)+/

oPdhy),  ©.157)
(f=un{r<1} {=n{r=1}

which, in view of a Poincare inequality and the Hardy inequality (C.8) (together with
Lemma C.3), yields:

1

di1 a1 2 d+l 3
sup  [@2<C- {5( [w](r>+( £, )[cp]m) (Sjﬁjdzg"’)[w](r)) ]

{i=n{r<1}

(9.158)
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Therefore, from Theorem 9.1 and (9.158) we obtain

—d (1, L st 2d- D163 +1) k)
sup QP S vrg et [910) + Faeg.e.0.al F1(D),
{t=t}N{r=<1}

(9.159)

which combined with (9.156) yields the required estimate (9.46) for the pointwise
decay of ¢.

Incasem > 1, we can bound in view of the Gagliardo-Nirenberg inequality (9.120)
for some fixed small rog > 0:

1

m
. (0 d+1 )
> sup |Vi@li < G |( o dee €T ))
i=1 {I=tuN{r=ro}

en,deg n,deg

) 1
x (gw’dz”"“’[w](r)y + 550’%’””[@](1)} S ©160)

Therefore, from Theorem 9.1 and (9.160) we obtain:

: _ @+1 S 1475, 2(d- )16 S + 1)k
Sup |v;,(P|i ,Sm,ro,e T - 1(c:bouna' 0 : [@](O)

i=1 {t=tN{r=ro}
+fdeg,£,m+2,d[F](T)~
(9.161)

Moreover, using Lemma 9.11 for 9 ¢ in place of W, we can bound (in view also of
Theorem 9.1):

m—+1
_ord=ly (o, +2)
> swp (= log(r) T Ve S £ e

i=1 {r=yn{r=<3}

_ @+1, 9 ma 241551 2d— D13 +1) k)
Sme T E ppuna 0 = 16010) + Fuegemir.al F10.

(9.162)

Since the function (— log(r))zr%W is integrable near r = 0, using the fundamental
theorem of calculus and a Cauchy—Schwarz inequality we can bound for any smooth
function Won {f =t} N{r < %}:20

20 Here we have also used Assumption (EG8) on the boundedness of the volume of the region {r = t}N{r <

1.
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d—1
sip [w=ct sup (=10 |V W)

{I=un(r=3} {F=unir<1}

+ sup (wizt. (9.163)

{f=tn{i=<r<hy

Thus, from (9.161), (9.162) and (9.163) (for 3¢ in place of W) we deduce the desired
bound (9.47):

m

2 —d— (d+1, %L 24551 2d— DG4 +1)-k)
Z %up }Vm(p|h Sm,z T -t 5bound ’ ’ ’ [€1(0)
i=1 {t=1}

+ Fdeg,e,m+2,d [ F1(T). (9.164)
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Appendix A: Construction of the Natural Riemannian Metrics A,y and
hek o

Let (M?*! g), d > 1, be a Lorentzian manifold and 7 : M — R a smooth function
with acausal level sets.?! For any timelike vector field N on M such that d7(N) = 1,
there exists a special Riemannian metric s defined on the S; = {f = t} hyper-
surfaces naturally associated to the vector field N. This metric does not necessarily
coincide with the induced metric on S¢, but its usefulness lies in the fact that the
Laplace operator associated to s y appears naturally in a “useful” decomposition
of the wave operator [J,. A similar construction of a Riemannian metric /i g, ¢ (not
natural in this case) can be constructed in case one has two vector fields K, ® with
merely timelike span, such that K satisfies df(K) = 1 and becomes non timelike only
on a set with compact intersection with each Sy, and & is tangent to the level sets of
t. We will now proceed with the details of the construction of these metrics.

A.1 Construction of A, n

Let N be a timelike vector field on M with df(N) = 1. Let V4 denote vector bundle
on S; defined as the pullback of 7. M through the inclusion i : S; — M, the latter
giving rise to the natural inclusion 7'S; < V. The vector bundle V4 inherits from
T M the Lorentzian metric i*g and the timelike section i* N, which will be denoted
as g and N respectively for notational simplicity. Similarly, the one form df on M

21 This manifold M will correspond to the manifold M\dM in the language of Sections 8-9.
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can also be viewed as a section of the dual bundle V. Let us denote with g~ ! the
Lorentzian metric on Vj\/l associated to g on V.

Let Ky — ij be the vector subbundle of Vj\/t defined as the set of v € F(V/*\/l)
such that v(N) = 0. Then the Lorentzian metric g_l on V;"Vl induces a metric hipy «, N
on K. It is easy to verify that A;,; - v is positive definite, owing to the fact that
g(N,N) <0O.

We can naturally identify 7* S and Ky in the following way: Since V¢ can be split
as TS @ (N) (where (N) is the line bundle spanned by N), any w € ['(T*S) can be
extended to a sectionwy € I (V}‘VI) by demanding that wy|rs, = w and wy (N) = 0.
But then, since wy (N) = 0, wy is a section of . It is easy to verify that the mapping
® — wy is a vector bundle isomorphism. Thereofore, 7*S- inherits the Lorentzian
metric Ajuy < N of K.

Finally, we define the (positive definite) metric s x on T Sy as the dual metric of
hiny.<,n on T*Sz. Thus, (Sk, hr, n) becomes a Riemannian manifold. Notice that the
following relation holds:

dvolg = \/—g(N, N) - dt ndvoly_ (A.1)

where dvol, is the natural volume form on M associated with g, while dvol;_ , is
the natural volume form on (S, /- x) extended to a d-form on M by the requirement
that iydvoly, , = 0.

The connection of the metric A,y with the wave operator L1, on M is the following:
In any local coordinate system (xl, e, xd) on S;, extended to a local coordinate
system (7, xt ., xd) on M by the requirement that N (xi) = 0, the wave operator
0, on M around S satisfies:

Oy = (V=8 "'V (V=88™N) + /=90 (V28" 'N)
+(/=8)! («/_g )+Ahr.N,N’ (A2)

where the operator Ay, n on St is defined as:

—diu,,, (\/W d) (A3)

Aht,N,N

1
v/ —8&(N,N)

and divj,  acting on the one form w on Sy is defined as the divergence (with respect

to h._y) of the dual vector field w*.?*> Equivalently, (] ¢ @ takes the following covariant
form for any W € C°°(M) (assuming that M is orientable):

oW = divg (NW) - di) 4+ +Ly (Nign¥) - dvoly) + Ay y NV, (A4)

where * is the Hodge star operator on (M, g) and Ny, is the projection of V7 on S¢
along N.

2 Equivalently, it is the dual of the gradient operator on functions with respect to the inner product
fSI (" ')ht.N dvothN.
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A.2 Construction of h g, o

Let K, ® be two vector fields on M with timelike span such that d7(K) = 1 and ®
is tangent to the leaves of the foliation {St};cr. Assume also that for any T € R, the
set A, = {p € S; : g(K, K) > 0} is compact. In this case, we will also define a
Riemannian metric /i k., on S which will prove helpful in decomposing the wave
operator [, but contrary to the metric /. y constructed in the previous Section, the
construction of A g ¢ will not be natural.

Proceeding as in the previous Section, we can define the natural metric /i g on Se,
but /., x will now not be Riemannian on 2. Moreover, i x will be singular at the
points where g(K, K) = 0, although its inverse (i.e. the associated metric on the dual
bndle 7*S;) will be smooth everywhere on S;.

Since the span of K, ® is everywhere timelike on M and 2 is compact, for any
T € R there exists some C; > 0 such that everywhere on Sx:

g(K, K)
g(®, P)g(K, K) — (g(, K))*

> —C-. (A.5)

Notice that the bound (A.5) holds trivially outside 2. Thus, if &, denotes the pro-
jecton of ® on the orthogonal complement of K, we have

! 8K, K) c (A.6)
= > —C(q, .
(@1, ®1) g, d)g(K,K) — (g(D, K))?
and
g(®y,®1)<0 (A7)

on U2l;. Recall also that for any vector fields X, Y with timelike (or null) span the
following inverted Cauchy inequality holds pointwise:

(X, ¥))* = [g(X, X)| - [g(Y, V). (A.8)

Thus, for any vector field X on M with g(X, K) = 0 and g(X, X) < O (notice that
such a vector field must be identically O outside U2(;) we can bound due to (A.6),
(A.7) and (A.8):

(¢(X. ®)*  (g(X, P))*

- —Cr (g(X, 9))*. A9
—|g(®1, @) g(@l,q>L)> (8(X, ®)) (A.9)

X, X) >

Recall that for any w € I'(T*S7), extended to an element of I' (V;{,I) by the condition
w(K) = 0, we have everywhere on Sx:

h k(@ 0) =g (0 o). (A.10)
The bound (A.9) then readily implies that for any w € I'(T*S) we have

h g (@, ®) + C: (0())* > 0. (A.11)
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Therefore, the symmetric (2, 0)-tensor
hinv ko =hi g +Co @@ ® (A.12)

is a positive definite metric on the dual bundle 7*S:, and its inverse i g ¢ is a
Riemannian metric on S-.

Notice that in this case, S; carries two volume forms, d volhn xo and igdvolg, and
their Radon-Nikodym derivative, i.e. '

d(ixdvolg)
= —— <7 A.13
MK o S@dvoly o) (A.13)
is a smooth function on Sy satisfying
(8(K, )’
~ | = K. K) — ———— A.14
My, K, (g( ) 2(®. D) (A.14)

(compare with (A.1)).
Using the Riemannian metric 4 g ¢, we can decompose the wave operator as:

OV = divg (KW) - di) +*Lg ((Kian'V) - dvoly)
—Cy (*,Cq; ((CD\I’) . dvolg)) + Ah.[_K_cp,ln()d\Ila (A.15)

where x is the Hodge star operator on (M, g), K;ay is the projection of V£ on S along
K and the elliptic operator Ay, x4 moqa ON St is defined as

Ay g pmodV =W g ¢ divy, ¢ o (We g0 dV). (A.16)

Appendix B: Elliptic Estimates on Asymptotically Euclidean Riemannian
Manifolds with Boundary

In this section, we will establish some general elliptic estimates for asymptotically
Euclidean Riemannian manifolds. This class of manifolds will include, in particular,
the slices {f = const} of the hyperboloidal foliation of the spacetimes (M, g) appear-
ing in Sections 8 and 9, equipped with a Riemannian metric of the form that was
introduced in Section A of the Appendix. However, the results of the current section
might also be of independent interest.

Let S be a smooth manifold with boundary of dimension d > 3, with smooth
compact boundary dS?~! (allowed to be empty). We will assume that 3S splits into
two (not necessarily connected) components:

3S = dimS U dhor S. (B.1)
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The reason for assuming such a splitting for dS is that the hypersurfaces { = t} of
the spacetimes (M, g) in Sections 8 and 9 (i.e. the hypersurfaces on which the elliptic
estimates of the current Section will be applied) have boundary {f = t} N .M, which
is split as the disjoint union of {f = t} N 8;;,, M and {f = T} N H.

Let & be a Riemannian metric on S\3S. We would like / to model the Riemannian
metric h¢ g e ® ON the hypersurfaces {f = t} of Section 9 (constructed as in the previ-
ous Section of the Appendix). To this end, we assume that (S\S, /) is asymptotically
flat in the sense that there exists a compact subset  C S containing dS such that
S\K has a finite number of connected components, each mapped diffeomorphically
onto (R, +00) x S¢-1 through a coordinate chart (7, o), and in this chart % has the
expression

h =dr® + r’gsi-1 + has, (B.2)
with
V" haslh = O™ 1 (B.3)

for all integers m > 0. In what follows, V will denote the covariant connection with
respect to h.

We extend r smoothly on the whole of S, so that it is strictly positive on S\9S
and satisfies 7 = 0 and dr # 0 on 9S8, if S # 0. If S = ¥, we simply require that
r > 1 everywhere on S. Notice that the assumtion dr # 0 on dS together with the
compactness of S imply that for {r < 1} the level sets of the function r are smooth
hypersurfaces of S, and r can be used as a coordinate function.

As for the behaviour of /4 near the boundary 95, we impose the following assump-
tions (in accordance with the behaviour of metric i+ g e, ® ON the hypersurfaces {f = t}
of Section 9): Let us denote by h;,, the induced metric on the {r = const} hyper-
surfaces for {0 < r « 1}, and extend it to a symmetric (0, 2)-form on S\9S by the
requirement that /4, (Vr,-) = 0. Then we assume that the metric 4 in the region
{r « 1} takes the following form:

1. Near the 9j,S component of the boundary:
h= (r_l + 0(1)) dr? + hyan, (B.4)

and /4, extends smoothly on 9p0,S, With /74s3,,,.s being positive definite.
2. Near the 9, S component of the boundary:

h=04 0)dr? + hian, (B.5)

and /4, extends smoothly on 9;;,, S, with hsanls,,,s being positive definite.

We will also assume that we are given a continuous function w : S — [0, +00) which
is smooth on 8\ 0j,,S, such that
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o = 0 only on 9y, S

w=cri (1 4+ O(r)) for some ¢ > 0 near 9j,,S
e w > 0 near 9;;,S and

e w =1+ 0@~ ") in the region {r > 1}.

For this class of Riemannian manifolds we will establish a series of elliptic estimates
in the following sections. But before that, we have to carry out the construction of
some geometric objects that will appear in our estimates.

B.1 Geometric Constructions on (S, h)

We will define the perturbed Laplacian
Ap. associated to 1, @ by the relation:

Aho = 'div, (@-d). (B.6)

This operator models the operator (A.16) associated to the metric st g ¢ on the
hypersurfaces {f = t} of the spacetimes (M, g) of Section 9.

On each connected component of the region {r > 1} in the (r, o) coordinate chart,
(B.6) takes the form:

Ahw=Ap+ 00 0, + 00 )ds. (B.7)

On the other hand, near the boundary dS we have the following relations:

1. According to (B.4),if Y = |Vr|;2 - Vr,2 near 9j,,S we have:
Apw=a"'Y (ra(l+ 0(r) - ¥) + Ap,,, + O() - X, (B.8)

where a is a positive function smooth up to d,,S, Ap,,, is the Laplacian of the
induced metric on the {r = const} hypersuerfaces and X is a vector field in a
neighborhood of dS smooth up to dS. Hence, A, is degenerate elliptic near
ahorS~

2. According to (B.5), near 9;;,, S we have

Apow =Y (A +0) -Y)+ Ay, +X. (B.9)

Hence, Ay, is uniformly elliptic near 9;;;,S.

It will be convenient to have a canonical coordinate “chart” near the boundary of 9S.
If r; is small enough, we can define the diffeomorphism

J:{r<n}c8S—1[0,r]xaS, (B.10)

so that for any point p € {r < r}:

23 Notice that ¥ can be extended smoothly on 3S.
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o 11(J(p) =r(p)
e 1 (J(p)) is the unique point on dS connected with p through an integral line of

the vector field Y = |Vr|,72 -Vr.

In the above, m; : [0,r1] x S — [0,r;] and 712 : [0,71] x 8S — 9S are the
projections onto the first and second factor of [0, r{] x 98 respectively.

Notice that through this map, the vector field Y is mapped to the vector field 9,,
i.e. the coordinate vector field on [0, r1] x dS which is tangent to the lines {7r) = const}
and is mapped to % by 1. Moreover, /,,, is a smooth non-degenerate Riemannian
metric on the hypersurfaces {m; = p}, varying smoothly with p. From now on, we
will assume that {r < r;} and [0, r;] x dS have been identified through 7.

Construction of the auxilliary metrics h, i m Since h is singular on 9, S, it will
be useful to have a second Riemannian metric z on S that is smooth up to e, S, 24 50
that we can measure the norms of tensors with the use of /. The metric 4 will also be
used to define covariant derivative operators and geometric volume forms which are
regular up to dp,-S (Where the associated constructions with 4 will either be singular
or degenerate). This metric will model the metric /- y on the hypersurfaces {r = t}
of the spacetimes (M, g) of Sections 8 and 9. To this end, we define a Riemannian
metric 4 on S such that 4 = h on {r > 1}, and

h=dr? + hin (B.11)

in the region r < 1.
It will be convenient to define the smooth functions

=1+ (B.12)

1 —1
= (1 + —) . (B.13)
r

Notice that 4 ~ r forr > landry ~ 1 forr < 1, whiler_— ~ rneardSandr_ ~ 1
away from 0S.

We also define the smooth funcions rygp, r1im : S — [0, 1] by the following
requirements

and

® rhor = 1 in the region {dist; (-, 9porS) K 1} (Where dist;; (-, dporS) is smooth),
Thor > 0 0n S\9porS and rpor = 1 on {dist; (-, 0porS) > 1}.

e 71im = r in the region {dist; (-, 0imS) K 1}, rrim > 0 0n S\0yimS and ryjp = 1
on {dist; (-, dimS) > 1}.

Finally, define the Riemannian metric hyimonS \0simS so that Riim = hon {rim > %}
and
hiim = r=2dr* 4 (=10g(rtim)) - htan (B.14)

2 pis already smooth up to 9, S.
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in the region {r;;;, < 1}. This metric will only be used to handle difficulties appearing
near 9, S in the derivation of the elliptic estimates in this Section, and is not associated
with any geometric construction performed in Sections 8 and 9.

Remark We will raise and lower indices only with the use of the singular metric /. The
non-singular metric 4 will only be used to measure norms of tensors on S. Covariant
derivatives with respect to 7 will be simply denoted by V, while the ones associated

to i and hjy, will be denoted by v and v rim) respectively.

B.2 Elliptic Estimates on (S, &)

In this Section, we will establish elliptic estimates on the Riemannian manifolds (S, &)
associated to the elliptic operators (B.6) and (B.72). To this end, we will need some
shorthand notation for weighted norms of derivatives of functions # on S, with weights
which are either regular or degenerate on parts of the boundary dS. These weights are
tied naturally to the use of differential operators associated to the different Riemannian
metrics h, h and h;j,, that we have already defined on S\9S. With this motivation,
after fixing some smooth cut-off functions x>, x<, : S — [0, 1] so that x>, =1
on{r > ri}and x>, = 0on {r < r;/2} and x<,, = 1 — x>,,, we introduce the
following definition:

Definition We will introduce the following pointwise norm on S\dS for any pair of

Riemannian metrics 21, hy on S\3S and any integer m > 2:

2
|u|h1.h2;m
. moa
= Xzr| (V(hl)) ulj,
m—2 2 m—2 . 2
+ X< - Thor | (Vam) (qu)|h2 + Xery * Thor | (V(/m) (l*v(hmn)(yu)) |h2
m—2 2
e - [(V0) " (69 [ (B.15)
In the above the i, notation is used as follows: For any (0, k)-tensor m on the surfaces
{r = const} on {r < r} varying smoothly with » we denote with i,m the unique
tensor on {r < r1} such that for any local frame {Eq, E1, ... Eq—1} on {r < r1} with

Eo=YandEir=...=Es_1r =0andanyiy,...i € {0,...d — 1}, the following
relation holds:

0, if f the ig’s is 0
bn(Er, .. Ey) = | omeon etk s 8 (B.16)
m(E;,, ... E;) if none of the iy’s is 0.

Remark In most instances where the notation (B.15) will appear, i will be the every-
where regular metric /2, while /7 will be a metric which is singular on 9, S.

We will establish the following lemma:
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Proposition B.1 (Degenerate elliptic estimates). For any | € N with 2 < | <
|4+, any ko € N and any B € (=8, 1) for some &, > 0 depending on ko,
there exists a (small) ro > 0 so that we can bound for any u € C°(S) with

lim sup, _, | o |r 2 +JV-’u|h < +oo forany j <1+ ko:
ko -1 N
B2 3 —2j-B (V(h)) T2 dvol-
ZO |/Sr+ 1415 it TV T z/{rzro} R | vl
— j—l
-1

=\ k+l—j—1 . A (T—
2 f, () o e (5)

j=1
=\ kHl—j—1
| (v(h)) (l'*(v(h[an)u)) |%tim) dvolﬁ]
ko )
< Cg ko Z/ (h) (Ah!w”)|ﬁ,im dvolj,
! j
+Cﬁ,kozmax[_Re{/ Sh,an ((V(h/an)) (Yu), (V(hmn)) IZ) dhmn},O]
‘ i
j=0 tim
(B.17)
and
3 g dvol; +Z I (v“;))HH 12 dvol;
Z S’+ |t |h (=log(rim))-hik+1 CVOR >0} | uly avoly
k=0 4

-1

P\ r_
) “11og2 (=
+Z/r<m} (l (v) (Y“)|(1 togtrun i 7= 108 (2)

j=17tr=

-\ kHl—j—1
1 (v Bian) ) 2 )
'(V ) ( v ”)>|<1 1og(r,,m>>h) dwlh]

k+1-2
2 (h> 2 )
= Cpio / (Ao tog(rim s TVl

1 , ,
J J
+Cy, max [—Re [/ h ( v a) )" (yu), (v an) zz) dh ] ,0],
23 oMo ((70) o () ) an
(B.18)
where the constant Cg i, of the right hand side depends only on B, ko and on the
geometry of (S, h), h and w.

Remark Notice that the boundary terms on the right hand side of (B.17) and (B.18)
contain only terms on the 9y, S part of the boundary. These terms vanish when u
satisfies the Dirichlet or Neumann conditions on 9;;,,S.
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Proof Withot loss of generality, we can assume that u is real valued. We will treat rq
and Sko as small parameters (which will be fixed later in the proof).

The region {r < 2rg} will be identified with [0, 2rg] x dS through the diffeo-
morphism 7. We will assume that ry is small enough so that [0, 2rg] X 9p0rS and
[0, 2rg] x 0:imS are disjoint. Let us define two smooth cut-off functions Xé‘r’g , xgr”g :
S — [0, 1] such that

1. supp()(g‘,’g) C [0, 2r9] X dporS and x"9" =1 on [0, rg] X dporS and

=ro
tim tim

2. supp(xZy) € 10, 2r0] X 3imS and x 25 = 1 on [0, ro] X 0imS.

We will also set x>, = 1 — XQ% — X;’:ﬁ Let us also define =g, = 1 — X(RLO) for

some Ry large and fixed in terms of B and the geometry of (S, h).

Without loss of generality, we can assume that ko = 0 (since the proof in the case
ko > 1 follows in exactly the same way). In order to present the necessary ideas in a
simpler form, we will first establish the case when [ = 2.

Remark Notice that for [ = 2, it is most difficult to treat the case d = 3, since in
that case one is not able to obtain control over weighted L? norms of u using only the
finiteness of || S r;ﬁ |V2u|? dvol ; together with Hardy and Poincare inequalities. The
same difficulties occur generally in dimension d for [ = L%J.

We will start by establishing the following elliptic estimate on each connected
component of the far away region {r > 1}:

2
/ X=ro? " ("_(d_l)ar (”d_laru) + r_zASzHu) dvoly,
S
> Cﬁ/ Xyt P (IVzul}i +r‘2|Vu|§) dvol,
S

+/S OV =Ryl + IV x=r, ) Vul3 dvoly. (B.19)

Without loss of generality, it suffices to establish (B.19)inthecase 0 < 1 — 8 < 1,
since the case 8 € (—Sko, 0] (provided Sko is small enough) follows by a straightfor-
ward integration by parts scheme (and thus (B.19) for intermediate values of g will
follow by an easy interpolation argument).

On each connected component of the region {r > Ry} in the coordinate chart (7, o)
we calculate

Ap U = rf(dfl)ar (rdflaru) + rszS,Hu
+0,,(r"HYVEV U 4 0, (r ) V. (B.20)

Assuming (B.19) has been established, from (B.19) and (B.20) the following estimate
isreadily deduced (provided that R has been fixed large in terms of 8 and the geometry
of (S, h)):
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/ XzROr_ﬁ (Ah,wu)z dvol, > 05/ XzROr_ﬂ (|V2u|% +r_2|VuI%) dvoly,
S S

+/S O(IV xRyl + IV? xRy ) IVul? dvoly.
(B.21)

We will now establish (B.19). By expanding the square we can trivially infer for
any a; € [0, 1] (which will be fixed later):

2
/XzRoV_ﬁ (700, (" 0pu) + r 2 Agaaiu)” r*drdo
S
2
=as/ X>R0r_ﬁ[("_(d_l)3r (rd_laru)) +2r~@=Dg, (rd—la,u)
S
2 Agiu+r (Agi)®} 4 Ndrdo

2
+(1—as>/xZROr’3[(r(‘“>ar (+="0pu)) "+ 20700, (+40yu)
S

2 Aguei+ 177 (Agamu)?} 47 drdo. (B.22)

Using a Cauchy—Schwarz inequality

2 2
2agr—4=Dy, (rdflaru) -rszSd_lu > —% (r*@’*“a, (rdflaru))

s

— by (Aga-u)’ (B.23)

(for a parameter by, > 0 to be fixed later) in the first summand of the right hand side
of (B.22), and then applying the product rule and an integration by parts in the 9, and
the angular directions for both summands, we obtain from (B.22):

2
/XzRor_ﬁ (”_(d_l)ar ("d_laru)+r_2A§d71u) r?~ldrdo
S

2
z / X=ror " [(1 - a—s) ((3r2u)2 +@d—- DA+ p)r? (Bru)z)
S by

+2(1 — as)r—2|vsdflaru|zgd_1

+ (1 = by) r4 (Asd—lu)2} " ldrdo
—/ x=re2(1 —as) 2+ Byr>7P . du - Agarur?drdo
S

+/ O(IVx=r,|) ((a,u)2 + Opu - ASHM) r?=ldrdo. (B.24)
S
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Using the Hardy type inequality

4 2
4530 (3,u)* drd <—/ 10 (92u) drd
/SXZROV (0,u)* drdo < e szROr “u rdo

+Cp / O(IV x=r, ) (3u)* ¥~ drdo, (B.25)
S

we obtain from (B.24) for any 0 < §y < 1 (also to be fixed later):
2
/szRorfﬁ (rf(dfl)‘d, (rdflaru) + rszS(Hu) ri=drdo

a? 2 d—2— 2
> / serr P V(0= Y (sm (02 + ((a—1- 222F) & 0w |r=2 3,u
S bs 2
+2(1 = ay)r 2| Vgann a,u|;d7l (1= b)) r ™ (A u)z} r=Vdrds
3-8 . d—1
—/ X=Ro2(1 —ag)(2+ B)r < 0ru - Aga—1ur® drdo
s

+/ O(IVx=roD) ((31)* + dytt - Agarut) r¥~'drdo.
S

(B.26)
Setting
1
= d B.27
1o Vol(S4=1) Jga-1 wao ( )
and
U>1 = U — Uuo, (B.28)

and noting that ug and u> | are orthogonal with respect to the L%(d gsa—-1) inner product,
we obtain from (B.26):

2 2
/ X>R0r_ﬂ (r—(d—l)a, (rd_IBru) + r_zASdf]u) r?=ldrdo > (1 - ZS)E‘,H
=

S
B (2.\% a1
. szRor (Bru> r®~drdo

Lo [ 2 2 o)

_ 2 _ 2 —
+2(1 —ag)r 2|V§d—13ruzl|gsd_l + (1 —=bs)r 4 (Aquuzl) } rd ldrdo
- 2(1 — ag)(2 =3B A =1 g4rq

SXzRo (I —as)2+ P)r fU>1 - Agd—1U>1T rdo

+/S O(IVx=Rol) ((a,u)2 + O - AS,HM) rd=drdo. (B.29)

Since the first non zero eigenvalue of Ags—1 equals d — 1, we can bound (in view of
(B.27) and (B.28)):

/ |ng718,u21 2 ds > (d — 1)/ (8,u21)2 ds (B.30)
Sd-1 8sd—1 Sd-1
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and thus, since d > 3, from (B.29) we obtain after setting eg =1 — 8 > 0:
2
/ X=ro? P (l’f(dfl)ar (rd*laru) +772ASd—lM) rYdrdo
S
2
> c(ay, by, SH)/ XzROr_ﬁ (afu) r?drdo
S

_ a? e\ 2 B
+/SXZROI’ ﬁ[(l_Z) (2—7’3) +4(1—as)+0(8H)}r 2 (Byus1)’

+ (1 — by) rt (Agd—luzl)z r*drdo

—/ xR 2(1 —ag)3 —ep)r =P dus1 - Aga-rus1r?'drdo
S
betannby) [ xenr T @u? 1 drda
S
+/ O(IVx=ro|) ((a,u)2 + 0pu - AS,HM) rdrdo. (B.31)
S

Using a Cauchy—Schwarz inequality for the third line of the right hand side of
(B.31):

‘/ Xoro2(1 —ag)(3 —ep)r =P - dusy - Aga-rus1 r*~drdo
S
B—ep)? 5 2 g
< 1| —a)?———F ,—2-F 0y rildrdo
_/SXzRo( 5) T =D —5m) (Oru=1)
+/ Xory(1 = by — 88) - P (Agaciuz1)” r~'drdo,  (B.32)
S

we infer from (B.31):
/szROr_ﬂ (r—(d—“a, (rd_laru) +r—2ASd71u)2 rildrdo
> c(as, by, BH)/SXZROr_ﬂ (8,2u)2 r?ldrdo
+/S X=Rro? P {Aco 2 (aruzl)z +spr (Agdquz])z} r*drdo

+ c(ay. by) / Xeryr 2P (aruoﬁ) r*ldrdo
S

+/ O(IVx=r,l) ((a,u)2 + 1 - Asd_lu) r’ldrdo, (B.33)
S
where
Ao = (1 @ (2—8—ﬁ)2+4(1 )+ 06 — (1 —a =
« by 2 g . YA =bs =)
(B.34)
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It thus remains to show that the parameters as, bs, 8 can be suitably chosen in
terms of ¢4 (provided that g < 1, which we have assumed without loss of generality
for the proof of (B.19)) so that Acpery > 0, and then (B.19) will follow. Setting
ag=1—31and by =1 — %31, we can directly calculate from (B.34):

1
Acoeff = (581 + 0(8%)) (4 —2ep + 0(8/32)) + 431+ O0QH)
2 2 —1
~Za (9= 68+ Oces ) (1+ 06 'sm)
= +3e551 (14 0(ep) + 0 "5 + 0~ '8751)) . (B35
and thus it follows that A¢perr > 0 provided that 55 < 81 K ¢ < 1 (8, 81 can be
fixed in terms of ¢g). Therefore, from (B.33) (using also an integration by parts for the
last term of the right hand side of (B.33), as well as the fact that ri=ldrds ~ dvoly, in

that region) we finally obtain the desired estimate (B.19) on each connected component
of the region {r > 1}:

2
/ szor_ﬁ (r—<d—1>a, (rd_laru) +r_2AS,1_1u) r?drdo
S
= Cﬂ/ X=Rror " (IVZMI% +r‘2|Vu|ﬁ) dvoly,
S
+/SO(|VXZRO|+|v2X2RO|)|W|§dvolh. (B.36)

We will now proceed to establish estimates in the region {r < Rp}. Proceeding
through integrations by parts using the formula

Vuvuxal...ak - Vvvu.xal.”ak
= WP Rynpion Xprasoap + -+ -+ WP Ry Xaags (B37)

we readily obtain that:

/Sero(l — X=Ry) - (Anott)* dvol,
:/ Xzro(1 = X=Ro) - (V*Viu + O, (r ") Vi) - (V' Vyu + 0, (r =) V1) dvoly,
S

1
> E/ Xzro (1 — X>Ry) - |V2u|i dvoly, — C/ |VM|% dvoly,. (B.38)
S {r

0<r<2Ro}

Notice that here we have used the volume form associated with % (in place of h).

Therefore, from (B.38) and (B.21), and recalling that in the region {r > ro} we
have | - [ ~y, | - |; and dvoly ~, dvolj;, we deduce that there exists some large
R1 > 0 depending only on on $ and on the geometry of (S, &) in the region {r > 1}
such that:
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/S XZrOr;ﬁ(Ah,wu)z dvoly,

> Cﬁ/ erorlﬂlvzub% dvol; + cp / r727ﬂ|Vu|%l dvolj;
S {r=R1}

_Cro,ﬂ/ |Vu|? dvoly,. (B.39)
{ro<r<Ri}

In the region {r < 2rp} we will perform the same integration by parts procedure,
but here we will use the explicit forms (B.8) and (B.9) for the Laplacian of /& near
OnorS and 9y, S respectively, as well as the form (B.11) for the non-singular metric h.

On [0, 2rp] X 9porS, the perturbed Laplacian Ay, ,, takes the form (B.8):

Anow=a"'d, (ra-8,)+ Ap,, +O@) - X, (B.40)

wherea =a - (1 4+ O(r)).
Let us define the weight function w : [0, 2r¢] X 9,,,S — (0, 400) by the relation:

w(r, ) =a(r, ) - (1 +/r&*‘(p, f})dp). (B.41)
0

hor

Since X<ro is supported in [0, 2rg] X IS, We calculate:

2
/ Xﬁ‘r’g (Ah wu) dvol},
2rg
/ / X2 w (a3, (radeu) + Ap,g,u + O@r) - Xu) dhandr
Ohor S
2ro 5
/ / xﬁﬁg a=? (3 (radeu))
Ohor S
+2a7" (8, (rad,u)) (Apnt) + (Ahmnu)z) dhigndr

2ro
+ / / K0y |a™ 0y (radyu) + Apy,u
0 ahvr

| Xul + 0(r2)yxu12) dhiandr.

(B.42)

Integrating by parts three times in the mixed 9, (rd,u) - Ap,,, u term, and using the fact
that

O (wa™y=a",

we estimate (notice that the resulting boundary terms at » = 0 vanish because 9, u
and rV"an) y vanish there):

2ro
/ /a Xi%wa (0, (rad,u)) (Ahmu) dhandr
har

2ro
z/ / X2ra - r(14 0@r)) - |V, u|h dhiandr
ahor
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ro
—c/ / (P10l + 19 ul? ) dhyandr
ahor

2ro
_Cro/ / IWI dhigndr. (B.43)
3hor

Thus, from (B.42) and (B.43) we obtain:
hor 2
/ X<ro (Ah wu) dvolj,

2ro
>c / / Xﬁj’g (0, (raa,u))2+r|v<"mn>a,u|im + (Ahmu)z) dhiandr
horS

2rp
_C/ / P218,ul? + |V Fandy 2 )dhmndr ,0/ / |Vu|§ dhyandr
3hor )

mr

2rg
[ (0@ i + A
3hor

|Xul + 00D Xul?) dhiandr.
(B.44)
By expanding

@, (radyu))? = r?a®(0*u)® 4+ 2ra* (1 + 0(r))0%u - dyu + a* (1 + O(r)) (Byu)?

(B.45)
and integrating by parts in the resulting 3°ud,u term, we obtain from (B.44):
/ Xﬁ{r}g (Ah wu) dvol;,
2o h 2 2 h 2 2
> c/ / X<(r)g ) —Cr-@u)?+ r|V( mn)aru}hmn + (Ah,,,,,u) ) dhgndr
nor S

2ro
_C/ / 2|a u|2+lv(h1an)u|2 )dhmndr VO/ / |Vu|% dhtandr
OhorS OnorS

2ro
/ / xﬁﬁg O(r)\a—lar(r&aruHAh,mu
aImr

| Xu| + 0(r2)|xu|2) dhyandr.
(B.46)
Using, now a Hardy type inequality (of the form established in Lemma C.1) for theBrzu

and Van) 5y terms in the right hand side of (B.44), as well as elliptic estimates for

the Ap,,,u term (using here the compactness of the level sets of r) we obtain from
(B.46):

/qu (A, wu) dvolj

2rg 2
. 2 2
>c/ / Xﬁgg( 32) r|v<”mn>a,u|hm+|(v<hm~>) u|hm”) dhyandr
&7

hor S

2ro ,
+C/ / XZ?S (3 w)? +rMog ™2 (r) - | (V(hmn)) u
Ohor S

)wmm

tan
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70 2ro
—c/ / 2|8 ul? 4 [Vt 2 )dh,u,,dr ,0/ / \Vul2 dhiandr
Ohor S hor S

2rg
/ / xlor 0(r)‘a718, (radeu) + Ap,, u
Ohor S

. |Xu| + 0(”2)|X’4}2) dhyandr.
(B.47)
Applying a Cauchy—Schwarz inequality on the last term of the right hand side of

(B.47), and absorbing all lower order (with respect to decaying powers in r) terms
into their top order counterparts, we obtain provided thar r¢ is small enough:

/ Xﬁ’r’g (Ah wu)2 dvol;,

2ro 2
2 2
> c/ / Xﬁ% ( 32 +r‘V(h’”")8ru‘hm + ! (V(h’“")) ”‘hmn> dhyandr
ahm

(B.48)
2rg o
hor -1 -2 . (htan) 2
+c/ /ahg,S X<ro ((Bru) +r7 " log™=(r) | (V )u|hmn) dhiandr
2rg
— Cm/ / |Vu| dhgndr.
3hor
In the region [0, 2rg] X 9;i;»S, on the other hand, we have
Ahw = 0 (L+ O()d,) + A, + X. (B.49)

Hence, we calculate after expanding the square (and applying the product rule for
derivatives):

/ XL’:’; (A, wu)z dvol;,
2ro 2
/ / XEm (3 (1 + OG)u) + Apyy,u + Xu)” dhygndr (B.50)
himS
2ro 5 \2 ) 2
/ / xi’,';‘ (1+0) (87u)” + 21+ O3 u - Apyy e + (A, 1) ) dhiandr
9

im S

2ro
e [T (07 )« (10t + 90, )
TII71

+ (|a,u| T |V(h’””)u|hm")) dhyandr.

After integrating by parts in the Brzu - Ap u term and using elliptic estimates for A
on the surfaces {r = const}, we obtain from (B.50):

/ Xi’r’g (A, wu)z dvol;;

2r0 ! 2.\ hran) g |2 hea )2 12
> c/ /a xlﬁfj 8 u) + |V tan 8’u|hmn + \ (V tan ) u|htan dhigndr
ttm
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+2 / Baan (V090,95 ) dhgan
dttm

2ro
—C// x (1921 + 180,01
3”"1

(90, ) 9, )
2ro
—C/ / X1V %ul; - \Vuly dhiandr
0 8Iim
2ro )
—C/ / (19281 + IV i) + 1) IVal? dhandr. (B.51)
0 atim‘S -

Applying a Cauchy—Schwarz inequality for the second and fourth terms of the right
hand side and using the Hardy type inequality

2ro 2
/ / X;’;’g( 82u) +|V(h’“”)8,u|2t )dhm,,dr
afln‘l an
ro )
>c / / r= log™*(r) ((Bru)2+ | ey | ) dhyandr
Otim an
2ro )
—c, / / ((a,u)z [t 2 )a’h,,mdr, (B.52)
ro Otim tan
we deduce from (B.51) provided rg is small enough:
/ XM (Ap o) dvol

2rg 2 2 2 2
>C/ / 2;,;( 8214) n ’V(h,an>aru|hm H(V(hm)) ”‘h,an) dhandr
‘)ttm

+c// rjllog_z(r,)((aru)zjt’V(h’“”)u’i )dhmndr
0 ByimS tan

2rg )
—Cy / / ((aru)2 + [V ey | ) dhyandr
ro 0imS o

) / Bian (v“wn)a,u, V(h“’")u) dhyan. (B.53)

arim
By adding (B.39), (B.48) and (B.53) we infer that:
/ r;ﬂ (Ah,wu)z dvol;;
S
-\ 2

> c/ i1 (VP) ulj dvol;

S

i, _ 2 (T— ) 12
—i—c/5r+ p (I(Xﬁ{r]g +Xt<'r’:)’)Yu|2+r_llog 2 (7) }V(h)u|h) dvolj,
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—Cry / Vul? dvol; +2 / Rtan (v<hm>Yu, V(h’“”)u) dhyan.
{ro<r=Ri} imS

From now on, we will assume that r( has been fixed, and we will drop the dependence
of constants on it.

Let us denote with HZ(S Jh, ﬁ) the semi-norm space consisting of the functions ¥
of Hp..(S) with |[W|l; 05 5 ) < +00, where

loc

N2
2 - _/3 h 2 -
152 s iy _/Sr+ |(V( )) W, dvolj

_0_ . r—
+/$r+2 p (|(x§$g + XY W) 4 = log 2 (7) |vw|i) dvol; (B.54)

(this is the semi-norm appearing in the right hand side of (B.54)). Notice that || -
42 (S becomes an actual norm if we mod out the constant functions (the resulting
normed space being a Hilbert space). It will be also convenient to introduce the semi-
norm space H! (S, h, ﬁ) defined by the norm:

2 . -8 2
W1 snim = /SV+ |Vw|, dvolj. (B.55)

Using the Rellich—Kondrachov theorem for smooth manifolds with boundary (see
e.g. [19]), we infer that for any ¢y > 0 (which will be fixed small with respect to
all the constants, and their inverses, appearing in (B.54), as well as the restriction of
the weights in the integrals of (B.54) over {ro < r < Rj}), the set Dy, of functions
U e H%(S, h, h) satisfying

2 _
1150 s iy = 1 (B.56)
and

2 N 2 i
/{roerRl} VW[ dvolj, > 80||‘V||H2(3,h,h) (B.57)

is a precompact subset of the semi-norm space H'(S, h, h). ~
From Lemma B.4 we deduce that any non-constant function ¥ € Hz(S ,h, h)
satisfies for any £ > f:

||Ah,w‘l’||L§(3 ,;)+max{—/ YV - Wdhg,, 0} > 0, (B.58)
' 2)z‘imS
where

By = [ s dvols (B.59)

Therefore, since D, is precompact and no constant function lies in its closure in the

seminorm space HY(S, h, ﬁ) (due to (B.56)), we infer that we can bound for any
v e D:
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V|2 dvol; < Ceo (1A4.0%I1, o - +max | — YV - Wdh ,0).
/{V()SrSRl} | Ih h = %eo <|| h,w IIL%(S,h) { by S tan }
(B.60)
Thus, fixing g9 small enough in terms of ¢, 8 and the geometry of (S, &), returning
to our original function u we distinguish between two cases:

1 In case u is constant or ||u||7:{1l Sy u € Dy, from (B.54) and (B.60) we can

bound:

- 2 2 R ; 1y 2 (T— 2
/Srﬂ(v(”)) u|hdvolﬁ+/sr+ P10k 4+ xmvur + = 1og ™2 () |Vuly) dvory

< cﬁ/ 1% (Anw)’ dvol; + Cpmax { — Tian (v<hw>Yu, V(h‘“")u) dhian, 0}
S

Orim

+ Cp max{— YV - Wdhg,, 0. (B.61)
3rims

—1

2. In case u is not constant and ||u|| - u ¢ Dy, from the definition of Dy,

H (S, h,h)
(i.e. (B.57)) we can bound:
2 N 2
/{roirsRl} Vulj dvoly < eollullyy s, - (B.62)

Thus, if €g has been fixed small enough in terms of r, 8 and the geometry of (S, h),
from (B.54) and (B.62) we deduce that:

_ =\ 2 o _ (T
/Sr+ﬂ| (V(h>) ”|2dv01}2+/8r+2 5(|X5,0Yu|2+r_110g 2(7) |Vu|lz1) dvol;,

< Cg /Sr;ﬂ (Ah,wu)2 dvol; + Cp max{—/

J Otim

htun (V(h!an)Yu’ V(hmn)u) dhtanv 0}

+Cp max { —/ YU - U dhyy,, 0). (B.63)
JimS

Therefore, the elliptic estimates (B.17) and (B.18) in the case / = 2 (and k9 = 0) have
been established.
The case when 2 < [ < L%J follows in an analogous way: In order to derive

the analogue of (B.54), one needs to commute / — 2 times with v (hiim) (the curvature
terms appearing in this way are treated exactly as we did for the simple curvature
terms in the / = 2 case using the flat asymptotics of (S, h)). By applying a Hardy
type inequality near S (using the form of the metric hyim there) in order to obtain an
estimate of the form

-3 _
)’ 2 ) )
Z/ |(V(h)) (Dhot)]j, dvolﬁg/ |(V(h)) Anow)}. dvol;
j=0 {r<ro} im {r<2ro} im
1-3 .
)’ 2 i
+> /{ <r<2r}}(v ) (Ano); dvoly, (B.64)
j=0" 0=r=2ro
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and then integrating by parts as before, one readily obtains the following estimate:

N
/Sr;ﬂ| (v““) Brow); dvol,;zc/sr;ﬂm%mldvoz,; (B.65)

-1

e N
+cZ/ P (YP) T i dvor;
j=1 {r>ro}

-1

-\ [—j—1 r_
+CZ/ (l (V(h)) (Yu)l% -+ ro! log_2 (7)
{r<ro} o

j=1

S\ I—j—1
N (V(h)) (i*(v(htan)u)) |%”_m) dvolﬁ

-1
—C,OZ/ V! )2 dvol,

j=17{ro=r=Ri}

. 1 (htan) (htan)
+c¢-min [/a,,-ms Bran ((v ) (Yu), (v ) u) dhm"] 0. (B.66)
Using the relation

Apou=Y((14+0) -Y)u+ Ap,,,u+ Xu (B.67)

near d;,, S, together with a Hardy-type inequality, we can immediately estimate:

2 2
lu|7 -~ dvol; ,S/ lul; - dvol;
/{,<m} h(=tog@rmhit R > f N O

~\[=2 )

+ (V(h)) Apott) .z dvol;
~/{r§2ro} | ( @ }(1_10g(rtlm))h h
-1 .

+Z/ IV a2 dvoly (B.68)

F

j=1 {ro<r=2ro}

and thus from (B.65) we also obtain:

F\[=2
Bl (v 2 ~ B2 ~
/Sr+ |(V ) (Bt (1togir i VO Z€ /S’+ 141 (1 togtrg s 40T

-1 ,
i i\ {—J
+cZ/ P (V) i dvo
j=1 {r=ro}
- (h) I=j-1 2 11092 r—
“Z}/{r«o} (' (YO) T O i+ o)
o=

-1
) -y ) 12 )
xA(v®) T (e ”))|(1—log(r,,-m>)fz) dwlh]
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-1
—C,OZ/ IV w2 dvol,

j=1"{ro=r=Ri}

+¢-min [ /8 s Bian ((v“'m)) (Yu), (v“lwn)) u) dh,,m} , 0] . (B.69)

Using the same Fredholm-type technique as before, we can absorb the f{ ro<r<Ri)

|vi—i ’1u|}%l terms in the right hand side of (B.65) and (B.69) after adding to the left
hand side of each of these estimates a large multiple of

a N ) )
/Sr+ﬁ| (V(h)) (Ahku)|ﬁ,;m dvol; + max [_/a[- s Yu-u dh,an] , O] (B.70)

and

=\ [=2
-B (h) 2 i
/Sr+ | (V ) (Ah‘wu)’(l—log(r,,-m))fl dvolj; +max [—/3

Yu- udhmn] ,O]
timS

(B.71)

respectively, thus obtaining inequalities (B.17) and (B.18). We will omit the details.
The case kg > 1 follows in exactly the same way. O
Let us assume that we are given a smooth function w,qy : S — (0, 400) with
wpg = 1+ 0@~ in {r > 1} (notice that we necessarily have w,q # 0 on 9S5), and
let us define the non-degenerate elliptic operator
oy = ©Opg AV (@na - d) . (B.72)
This operator will model the operator (A.3) associated to the metric ¢y on the

hypersurfaces {f = t} of the spacetimes (M, g) of Section 8. The following non-
degenerate variant of Proposition B.1 holds for (B.72):

Proposition B.2 (Non-degenerate elliptic estimates). For any l € N with2 <[ <
L%J, any ko € N and any B € (=8, 1) for some 8, > 0 depending on ko, we can

bound for any u € C°°(S) satisfying limsup, _, | o, |r%+jvju|h < +o0 for any
Jj <I1+ko:

. ko
=\ k+l—j =\ k-2
h 2 -B h 2
1(v@) T iz dvoly) = Cpag > /Sr+ [(VP) T @0 dvol;
k=0

ko+l—1

+Cpry D max [—Re VBS hian ((V(h’”"))J (Yu), (v“mn))] u) dh,,m] ,0],

=0
(B.73)
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where VW denotes the covariant derivative with respect to the metric h and the
constant Cg of the right hand side depends only on B and on the geometry of (S, h),
h and wy,g.

Remark Notice that in contrast to (B.18), the right hand side of (B.73) contains terms
on the whole of 9S.

The proof of Proposition B.2 follows in the same lines as that for Lemma B.1 (using
everywhere the metric hin place of & and ﬁtim)’ and hence it will be omitted.

It will also be useful to establish the following estimate in the region {r >> 1} (this

estimate will be used in Section 9 to control the error terms arising when commuting
U, with the vector field K, which is not settling to a Killing field in the region
{r ~R¢}):
Proposition B.3 (Improved control of derivatives in the far away region). There exists
some Ry > 1 large in terms of the geometry of (S, h), such that for any R > Ry the
following bound holds for anyl € N withl < L%J, any ko € N, any B € (—8k,, 1)
for some 8, > 0 depending on ko, any 0 < ¢ < 1 and any u € C®(N) with
Ziozo lj:] f{VZRO} r_z(l_j)|Vj+ku|%l dvoly, < oo:

ko l

Sy / P2U=D=Fe g 2 duol)
iz | =1/ (R=r=2my
1
+ Z/ r2ED=B iRy 2 dvol,,
j=1 {r>Ro}

ko
- - 2
= CR.B.eko Z/ r P V2 (A o) [, dvoly,
{
k=0

r>Ro}
I+ko
+Cpeko D, / |V u|? dvoly. (B.74)
j=1 {Ro<r=<2Ro}

Remark Notice that the constant in front of the last term of the right hand side of
(B.74) does not depend on R.

Proof Without loss of generality, we can assume that ko = 0, since the proof in the
case ko > 1 follows in exactly the same way.
It suffices to establish the following estimate on R4 for Ro, R, [, B, € as above and

u € C®(R?Y) with lim sup, _, | o |r%+jvju|h < +ooforj <lI:

I
Z/ rz(j_l)_ﬂ“wju‘idvole
j=I1 {R<r<2R}

1
—l—Z/ r_z(l_j)_’gwjuﬁdvole
j=1 {r=Ro}

@ Springer



6 Page 178 of 194 G. Moschidis

— — 2
< CR,RO,/B,E/ r PV (Agaw) [} dvol,
{r=Ro}

1
+ CRo pre Z/ VI ul? dvol,. (B.75)
o {R
j=1

0=r=<2Ro}
Assuming that (B.75) holds, by substituting
Apott = Agau + O(rHYViu 4+ 0~ Vu (B.76)

one obtains (B.74) by absorbing the resulting error terms into the left hand side,
provided that R\ has been fixed sufficiently large in terms of the geometry of (S, h)
(in view also of the flat asymptotics of (S, h)).

As we did in the proof of Proposition B.1, we will prove (B.75) in detail in the
case I = 2, and omit the details for the case [ > 2 (which follows in a similar, albeit
notationally more complicated, way).

Fix a function w : [0, +00) — [0, +00) such that

o w(x)=x*forx <1,

e w(x)=1forx >2and

° ‘fi—'j > 0 on [0, +00).

We then define the function wg : RY — (0, +00) by the relation

Wg = R2+Ew(%). (B.77)

Fixing also a smooth cut-off xg, : R? — [0, 1] such that XR, = 0 on {r < Ro}
and xg, = 1 on {r > Ry}, we obtain after integrating by parts:

/ XRoWR -r—ﬁ(ARdu)z dvol, :/ XRoWR 'V_ﬁ|V2u|g dvol,
R4 Rd
7 ! P [ v
L XRWR |\ Vi Vory © = S (Anry Dy | - VEu - Viudvol,
R4
+/Rd ORy(IV xRy le + 1V XRole) IVl dvol,

+/Rd xRy O (IVwrle - 1VF Pl 4+ |V2wgr|er =) | Vul? dvol,. (B.78)

Notice that the boudary terms at infinity obtained through this integration by parts
procedure vanish. This follows from the fact that, because le:l f{r> Ro) p20=J )_/3|
Vjulz dvol, < 00, exactly as in the proof of Lemma B.4, we can find a sequence of
positive numbers {R, },N tending to 400 so that

25 Let us note that for more general /, one should choose w = x2U=D+e gor x <1.

@ Springer



The r”-Weighted Energy Method of Dafermos and Rodnianski... Page 179 of 194 6

lim an / r2=D=B Vi u? dvol =g, | = 0. (B.79)
r

n—o00
Thus, in view of the relation
_ 1 _
VuVor P — E(Ahqﬁ)hw
~ g 4 hyy + 2B + 2)dry - dry) r 2P —2p 80
_Eﬂ(( =B =4 hyy +2(B+2)dr, - rv)r +o(r ), (B.80)
using a Hardy type inequality we readily obtain from (B.78) after adding to both sides

?f (B.78) the quantity [z _. g/ (IV2u|2 4 |Vul2) (notice that we have assumed
3k, > 0 to be small enough):

/ rrte (r7’3|V2u|g + r727’3|Vu|Z) dvol,
{R<r<2R}

/ (r BV + r 2 '3|W|2) dvol,
{r=Ro}
<C -B 2
R,Ro.B.c (Agau)”dvol,
+CRO,,SE/ r¢ =B 1vu|? dvol,
{Ro<r<2R}

+CRo,ﬂ,s/ (|V2u|§ + |Vu|§) dvol,. (B.81)
{Ro=<r=<2Ro}

Let us consider the seminorm space H%e 0.8 defined as the completion of the space
C®({r = Ro}) with the seminorm

||‘I’|| = r ﬁlvzllflz—f-r 2 ‘3|V\IJIZ dvol,. (B.82)
e e
{r=Ro}

Roﬂ

Notice that H2 Ro.B modulo the constant functions becomes a Hilbert space.
The subspace of harmonic functions

Virm = {W € g, 5|Apaw = 0} (B.83)

isaclosed subspace of H% 0.5 If we introduce the following semi-definite inner product
on H% WL

(W1, ¥2) g, i/ (VEVYW) -V, VW, + V* Psiy - VW) dvole,
{Ro<r<2Ro}
(B.84)
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then (-, -) g, is continuous with respect to || - ||H%a 5 and for any W € V., which is
0
not a constant we can bound
(W, W)g, > 0. (B.85)

This follows from the fact that if (W, W)g, = 0, i.e. if W is constant on {Ry < r <
2Ry}, and W is harmonic (i.e. belongs to Vj,;1,), then W must be identically constant.
Therefore, the orthogonal complement of V., with respect to (-, -)g,, that is the
subspace

Vorin = (W € M, 5 [Y0 € Vi (0, 905, =0}, (B.86)

is a closed subspace of ’H%O 8 satisfying Viym N Vo =< 1 >. Moreover, we can
decompose any ¥ € H%O g as

V= Wy + WYoren, (B87)

uniquely modulo addition of some constant function, where Wy, € Vi and W,y €
Vorth-

Remark We should emphasize that we will not need to establish that the resulting
projection of H%eo,ﬂ/ < 1 > onto Vy4p/ < 1 > along Vyp/ < 1 > is continuous

with respect to the topology of H%?o, g/ <1>.

Let us introduce the semi-norm

w17, ﬁ/ rP |V w2 dvol,. (B.88)
{r=Ro}

Ro.B

Moreover, fixing a sufficiently small g9 > 0, using the Rellich—-Kondrachov theorem
(see e.g. [19]), we can establish that the subset D of functions W in V,,; satisfying

Wl =1 (B.89)

and
/ IVW[; dvol, = egR™>°|| W[5, (B.90)
{Ro<r=<2R) Ry.p
is a pre-compact subset of the semi-norm space H}?o FE Therefore, since no constant

function lies in the closure of D with the semi norm ||’~ HH}e 5 (due to (B.89)) and for

any non constant ¥ € V,,;;, we have || Aps V|| I ; > 0, where
0>

DPll;2
191l |

ﬁ/ r~Pe? dvol,, (B.91)
{r=Ro}
there exists some large Cr > 0 so that we can bound for any ¥ € D:

/ r*PIVW|Z dvol, < Crgypell Apa¥l7, . (B.92)
{Ro=r<2R) Ro.8
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Therefore, for any ¥ € H%?o,ﬁ’ using (B.81) in case Wy1p, ¢ {A}D| A > 0} and
(B.92) in case W1y € {AD|A > 0} (and recalling the definition of D), we obtain
(provided eg was chosen sufficiently small):

/ P (P12 772 VW 2) dvol,
{R<r=<2R}
+ / (r 1V Worihl2 + 2PV 412) dvol
{r=Ro}
< Crutops | 7 (AnWar) ol Cao s <Yorsh: Vori=. (B9
{r=Ro}

We will now establish the necessary estimates for functions belonging to V-, . For
any function W solving ApsW = 0 on {r > Ry} and having finite || - ”H?e 5 norm, we
readily deduce after decomposing it into spherical harmonics and using (B.145) and
(B.146) (as well as the fact that 2 + ¢ —f8 < d) that

/ P2 (V2 + -2V W 2) dvol
{R<r<2R}
< cRO,ﬁ,g/ (V202 + VW) dvol., (B.94)
{Ro<r=2Ro}
while the estimate
/ (r 192w 2 + 2PV 2) dvol,
{r>Ro}
< CRO,ﬂ/ (19202 + VW) dvol, (B.95)
{Ro=r=2Ro}
follows readily after integrating by parts in the expression

/ xrr P (Mgt ¥)? dvol, = 0. (B.96)

Thus, for any ¥ € H%O, p We can bound

/ P (192 W 2 4+ 172 VW 2) dvol,
{R<r<2R}

+/ (r7ﬁ|vijhrm|g + riziﬁlv\yhrm@) dvol, < CRo,ﬁ,s(\I’hrmv \phrm)Ro-
{r=Ro}

(B.97)

Therefore, adding (B.93) and (B.97) for u in place of W and using a triangle inequal-
ity and the fact that

(u, M)Ro = (Uorth, uorth)Ro + (Unrm, uhrm>R0’ (B.93)
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we readily deduce the desired bound (B.75) for [ = 2:
/ r2te (r_ﬂ|V2u|g + r_z_ﬂ|Vu|z) dvol,
{R=r=<2R}
+/ (r= 1922 + r 2771V ul2) dvol,
{r>Ro}
< CR,Ry.p.c / r~P(Agau)* dvol,
{r=Ro}

+ CRo,ﬁ,S/ (|V2M|g + IVulg) dvol,.
{Ro<r<2Ro}

Inequality (B.75) for2 <[ < L%J follows in a similar way, and hence the details
will be omitted. m|

B.3 Lemma on Harmonic Functions on (S, )

Lemma B.4 Let § > 0 be small in terms of the geometry of (S, h). If a function
u:S — Rwith

/Sr;ﬁWZMﬁ dvol; + /S (—log(r-) + )2 r:lrlz_ﬁWuﬁ dvol;;
x/ |Yul? dvol; < +oo (B.99)
{r=<ro}
for some B € (=8, 1) and ry > 0 solves

Apott =0 (B.100)

satisfying the following boundary condition on ;i S :
/ u-Yudhy, >0, (B.101)
alims

then u is necessarily a constant function.

Proof By standard elliptic regularity results (see i.e. [18]), u € C*°(S\9S). Let us fix

some § < ¢ < 1 small enough in terms of 1 — B and the geometry of (S, h) (this is

possible since § was considered small in terms of (S, 4)). In this way, 0 < 8 +¢ < 1.
Suppose first that

/ (r;ﬂ_EWuli —i—r;z_ﬂ_suz) dvol, < +o0. (B.102)
S
In this case, we will show that u = 0.
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We can define for p > Ry (large in terms of the geometry of (S, h)) the function:
Flp) = / ppe (|Vu|ﬁ T r*zuz) dvoly (r—p). (B.103)
{r=p}

Due to the flat asymptotics of (S, &), from (B.102) we deduce that:
+00
f(p)dp < +o0. (B.104)

Ro

Therefore, since the function % is not integrable in {p > 1}, using the pigeonhole

principle we deduce that there exists a sequence {R, },cn tending to +oo such that
R, f(R,) — O. (B.105)

Without loss of generality, we can assume that rp small in terms of the geometry
of (S, h). In the [0, rg] X d0rS coordinate chart near d,,S, h takes the form

h = (r_l + 0(1)) dr® + hyan, (B.106)
and thus our main assumption

/ (—log(r_) + 12 r:]riz_ﬁWuﬁldvolﬁ +/ |Yu|2dvolﬁ < 400
S {r=ro}

(B.107)
implies (through a Hardy inequality for the zeroth order term) that

ro
/ / 1 (= 10g(r) 72 (r@u + 1V ul} 4 ul?) dhiandr < +oo,
0 8h0r8

(B.108)
Similarly, in the [0, ro] X ;i S region, h takes the form

h=(1+0@)dr* + hun, (B.109)

and thus (B.107) implies that

ro
/ / r~! (= log(r)) 2 ((a,u)2 + |V andyf 4 |u|2) dhygndr < +00.
0 8imS
’ (B.110)

Setting for p < 1:

g(p) = / (=108 ™" (rhor (0% + 1V ul2 4 |ul?) dhrgn,  (B.111)
{r=p}

since f(r) = rl log_l(r) is not integrable around 0, from (B.108), (B.110) and a
trivial pigeonhole principle argument we infer the existence of a sequence {r,},cn
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tending to O so that:
g(rp) — 0. (B.112)

Let us fix a C! and piecewise C 2 function wg, : S — (0, 1] which satisfies the
following properties for some ¢ > 0 depending only on the geometry of A:

wg, is a function of 7,
wg, = 1forr < Ry,
drwg, <0, aEle < —c- R1_2 for R{ <r < 2R; and

—B—¢
WR, = (R%) for r > 2R;.

Since (S, h) has a finite number of asymptotically flat regions, we compute that in the
(r, 0) coordinate system on each connected component of the region {r > 1}:

Anowr, = (1 + 0(r*‘)) 82w, + (d 1+ O(r*‘)) r9wg,.  (B.113)

On the other hand, in the region {r < R} we have A, ,wg, = 0 since wg, is a
constant there.

Therefore, if Ry is fixed large and ry is fixed small in terms the geometry of (S, h)
and w, from (B.113) and the properties of wg, (and the fact that0 <  +¢ < 1) we
infer that

Appwgr, <0 (B.114)

almost everywhere on S (recall that wg, is C' but only piecewise C 2).

Let us fix the vector fields v; = —|Vr|;1Vr in the region {r < 1} and v, =
|Vr|,:1Vr in the region {r > 1}. Since Aj ,u = 0 by assumption, after integrating
by parts (and using the fact that wg, is C! and piecewise C 2) we obtain for any integer
n sufficiently large:

O=—/ WR,® - Ap i - udvoly
{rn<r<R,}
1
=/ (w-wR]|Vu|i — —w- Ap oW, ~u2) dvolj, (B.115)
{rn<r<Ry} 2
1
—/ (a) SWR VU - U — —w(VIwR,) - uz) dvoly (r=r,)
r=ra) 2
1 2
— ® - WR WU - U — —w(WVwR,) - u” ) dvoly (r=g,}-
{r=Ru) 2

In view if the form of % in the [0, o] x S coordinate chart (see (B.4) and (B.5)),
we compute that

dvozh,{r:r,,} = dhtan |r=r,, s (B.116)

1
vi = —r2 (1+ 0(r)d,, (B.117)
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and

IVul? = rhor (3u)* + [V ey (B.118)

tan "

-2
Since [1° [ <] v u|2 dhandr < +00 and h is regular up to 9y, S, by apply-
0 JimS h g p Y apply

ing a trace theorem we infer that Yu has a well defined limit on L?(3;imS, hs). Thus,
1

since wg, = 1 and w ~ rhéor near S, we obtain in view of (B.111) and (B.112):

1
lim sup/ 1) (levlu ‘u— —(viwg,) - uz) dvoly (r=r,)
r=r) 2

n—-+o0o

5—/ Yu-udhgn +0 <0, (B.119)
atimS

because of (B.101).
Similarly, by a Cauchy—Schwarz inequality we have because of (B.105) as n —
+00:

1
/ w (wrl,Rlvzu cu— =(VWr R - uz) dvoly (r=r,)
{r:Rn} 2

< CRiep / reth (lvu|h cu+ r_luz) dvolp, (r—p
{r=p}

= CRl,s,ﬁRn : f(Rn) -0 (BIZO)

Thus, by letti ng n — 400 in (B.115), from (B.119), (B.120) and (B.114) we deduce
that:

/ ® (le IVul? + w, - u2) dvoly, <0 (B.121)
S

for some suitably decaying w, > 0 which is not identically 0. Therefore, u = 0.

In order to establish Lemma B.4, therefore, it suffices to establish that for any
u € C®(S) satisfying Ay ,u = 0 and (B.99), there exists some constant ¢, so that
u — ¢, satisfies (B.102). In view of (B.99), it suffices to show that

/ rotf (IVulﬁ +r - cu)z) dvoly < +00 (B.122)
(r=2R,)

for some R, large depending on u itself.

We will work in the (r, o) coordinate system on a single connected component A}
of the region {r > 1} (since the proof for each component is identical, this is not
actually a restriction). In this coordinate system on N7, we will define the coordinate
flat metric

e=dr’ +r’gg, (B.123)

and the associated flat Laplacian:
Aga = r=@=Dp, (r‘Ha,) +r 2 Agat. (B.124)
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Since Ay ,u = 0 and Ay, has the asymptotics (B.7), while & is asymptotically of
the form (B.2), u satisfies the equation

Agau = Fy, (B.125)

where
F,= 00 HV*u+ 0 ?)Vu. (B.126)

We will first show that there exists a smooth solution u# to the boundary value
problem

Apaity = Fy, {r> Ry} N
RAUI w {r=R,JNN (B.127)
M1=0 On{rZRu}le
with:
/ i (|w1|§ + r—2u%) dvol, < +o0. (B.128)
{r>Ru}le

To this end, considering the sequence of cut-off functions xg, = x(+ R ) for some
dyadic sequence {R,},cn and some fixed smooth cut-off function x : R — [0, 1]
satisfying x(x) = 1 forx < 1 and x(x) = 0 for x > 2, we first solve the boundary
value problems:

[ARM],H = Xr, " Fur {r > RJNMN (B.129)

ui =0 on{r =R,} NMN.
The existence of solutions u; , to (B.129) readily follows using the variational
approach: Let us define the Hilbert space 'H }eu as the completion of the vector space

Cir,
C§%, = {¥ € C{r = R} N ND)|¥i=g, = 0} (B.130)

with the norm

1/2
Wl = (lV\I/|2 +r*2x112) dvol,) . (B.131)
Ru {r>R, NN ¢

Then the function F, : C(?lel — R given by the relation

1
Fo (W) ﬁ/ (-|vw|§ — x&, Fu - \1:) dvol, (B.132)
{r>R }ﬁNl 2

extends to a continuous function on H}eu’ since x g, F, is compactly supported. Thus,
we can bound through a Cauchy—Schwarz inequality for any v € H}eu

/ | xR, Fu - v| dvole Sg, [vlly - (B.133)
{r>R, NN} Ru
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Moreover, F, is convex and satisfies F,, (V) — 400 as ||V |H}e — +00. By mini-

mizing F,, over H}eu using the usual techniques (and using elliptic regularity results),

we arrive at a strong solution u , of (B.129) belonging to H}eu-
Since ||141,,1||H}e < 400, using the approach leading to (B.105) we deduce that

there exists a dyadic sequence { ,o,(,?)}meN such that
o8 / (|vu|§ + r_2u2) dvole y—py < 1. (B.134)
fr=pu AN

Hence, by multiplying (B.129) with r~u; ,, and integrating by parts over {R,, < r <
,o,(,f’ )} N N7, we obtain after taking the limit m — +oo:

1
/ (r_ﬂIWl,nlg — = (Agar Pyt n) dvol,
{r>Ru}m-/\/'l 2 ’

< / xr," P Fy - ui, dvol,. (B.135)
{r>R,,}ﬂN1

Notice that

0, B €l0.1)

d—1)-37F2 Be(=30] (3130

Agar P =—pd—-2-8)-rF2< [

since d > 3. Using also a Hardy-type inequality of the form established in Lemma
(C.2), we deduce from (B.135) and (B.136) (and the assumption that § is small in
terms of the geometry of (S, h)):

/ (r‘ﬂlwl,nli +r 2 Pu? n) dvol,
{r>R“}ﬂ/\f1 ’
= Cﬁ/ xR, P Fy - upn dvole. (B.137)
{r>R,}NN]
Using a Cauchy—Schwarz inequality, from (B.137) we infer that
/ (Vﬁﬂ|vu1,n|§ + riz*ﬁuin) dvol,
{r>R, NN
< Cﬂ/ xr, 7> PIF, > dvol, < Cg, < 400 (B.138)
{r>R,}NN
with the constants not depending on n. Similarly, we can also bound:
/ (r_ﬁlv(ul,n-H - ul,n)lz + r_z_ﬁ(ul,n-i-l - ”l,n)z) dvol,
{r>Ru}rW1

< cﬁ/ (XRyiy — XRITPIF, | dvol,. (B.139)
{r>R, NN
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From (B.126) and (B.99) we can bound
/ r> B F,? dvol, < C,, < . (B.140)
{r>R, NN

Thus, from (B.138) and (B.139) we infer that the sequence of functions u , converges
to a function u| which is a weak (and hence strong, due to elliptic regularity) solution
of (B.127) satisfying (B.128).

Moreoever, after integrating by parts in the expression

/ rP(1 = xar,) (Agaur)® dvol,
{rZRLt}mM
=/ =B (1 = yar,) F2 dvol,
{rzRu}le
and using (B.128), (B.99) and the fact that ({r > R, } NN, e) is flat, we obtain that:
/ r~P1V2uy|2 dvol, < 4oo0. (B.141)
{r=2R,)NN}

We will now return to our function u € C°°(S) solving Ay, ,u = 0 and satisfying
(B.99). Setting on {r > 2R, } N N

Uy =u —uy, (B.142)
the new function up will satisfy on {r > 2R, } N N1:
Apauz = 0. (B.143)

(being smooth by elliptic regularity) and
/ rF (|v2u2|3 + r—2|w2|§) dvol, < +00 (B.144)
{VZZRH}QM

because of (B.99), (B.141) and (B.128).

For any p > 2Ry, usl(,=p)n; is @ smooth function on S?=1 (by elliptic regularity)
and hence we can decompose uz|(—p)nA; in spherical harmonics. This turns (B.143)
into the following system of ODE’s:

d d
p@=n 4 rdfl_(uz)m _ Amr’z(uz)m =0, (B.145)
dr dr

where the integer m corresponds to an enumeration of the spherical haromics, W,,
denotes the projection of a function ¥ € L*(S?~!) on m-th spherical harmonic, and
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— A, is the eigenvalue of Agu-1 corresponding to the m-th spherical harmonic (by
convention A, is increasing in m and Ay = 0). Therefore, we can explicitly solve:

U2)m = Cpr + dyyr =472 am (B.146)

where:

® Cpy, dm eR
e a, € Nis an increasing sequence with ¢p = 0 and a; = 1.

By (B.144) we deduce that

/+°° s (dz(uz)m)2
Z r 2
meN r=2R. dr

d 2
HAm + 1)r2 (%) +(A% +1) V_4(u2),2n} ri=ldr < 40, (B.147)
r

which, in view of the fact that 8 € (=3, 1), forces ¢,, = 0 for m # 0 in (B.146).
Therefore, from (B.146), (B.147) and the fact that ¢,, = 0 for m # 0, we infer that
forallm € N:

+00 d 2
/ b [ (_(“2)’”) - Amr_2(u2),2,,] r*~ldr < 400 (B.148)

_ dr
meN =2R,

(recall that Ay = 0). Therefore
/ r P |Vu,|? dvol, < 4oo0. (B.149)
{rZ2Ru}W\f1

Furthermore, using standard ode theory (and elliptic regularity), we can establish
in this case that the series Zm(uz)mem converges to up pointwise (together with all
its derivatives). Moreover, because of (B.146) and the fact that ¢,,, = 0 for m # 0, we
deduce that:

lim up = . (B.150)

r—+0o00

Thus, (B.149) implies that (through a Hardy-type inequality) that:
/ rh-e (|Vu2|§ 2 — c0)2) dvol, < +oo. (B.151)
{rZ2Rll}mM

All in all, from (B.128) and (B.151) and the fact that u = u| + u;, we finally infer
(B.122) for ¢, = ¢p:

/ phe (|W|§ 2 — co)z) dvol, < 400, (B.152)
{r=2R NN}
Hence, the proof of the Lemma is complete. O

@ Springer



6 Page 190 of 194 G. Moschidis

Appendix C: Hardy Type Inequalities

In this Section, we will state the main Hardy type inequalities that are used throughout
this paper. We will start with the following lemma:

Lemma C.1 For any strictly increasing function g : (0, +00) — R, the following
inequality holds for any u € C! (0, 400)) and 0 < a < b:

dx
<cC /b 2 (42 ‘d“fd + gB)lu(b)? .1
. —= c|—| dx u .
-8 a & dx dx §
while for g strictly decreasing we have:
b d
/ (——g) ul> dx + g () lud)?
a dx

b dg\""\ dup
SCg'(/ (—g2 (ﬁ) ) ﬁ‘ dX+g(a)|u(a)|2). (C.2)

Proof The proof follows readily after performing an integration by parts in the terms

b
d
/ E8 P dx + g(@)|u(a)?

/ ab fl—f |u|? and / ab ( — ‘di—f) |u|? respectively, and then using a Cauchy—Schwarz inequal-

ity. O

Lemma C.2 Foranyk € Nanda € R, there exists a constant Cy 4 > 0 such that for
any function ¥ € C®(RY) and any 0 < R; < Ra we can bound

min{| 4144 | k)

> l / r2 10w dvol, + / r”*“zflaf‘f\vlzdvol{r:m]
=1 {R1<r=<Ry} r=Ri}

Ld—é+ﬂ |

< Cra- / 4195 w)2 dvol, + Z/ rH1=2108 T W12 dvoljr—py) |
{R1=r=Rs} j=1 Jir=R}
(C.3)

where 3, denotes the gradient of the polar distance r on RY, dvol, is the natural
volume form of the flat metric e on R? and dvoly.—p;) is the natural volume form of
the induced metric on the sphere {r = R;}.

Proof From (C.1) for g(x) = x”*! for any b > —1, it follows that for any function
h € C*®([R):

R o bt 2 R pindh bt 2
/ PP dx + xR sch-(/ DR gy o+ |h<R2>|)
Ry Ry dx
(C.4)
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(with the constant C, depending only on b). Therefore, recalling that in polar coordi-
nates (r, ) on R? we can write for anyb > 0and h € C®(RY):

Ry
/ P )? :/ phrd-l (/ h(r, o) dcr) dr,
{R1<r<R;} Ry S

inequality (C.3) follows readily after repeated applications of (C.4). O

Let (M, g) be asin Section 8. Recall that we denote with V;,_ , the covariant derivative
associated to the Riemannian metric -y on the hyperboloid {f = t} (see Section 8).
Let us also denote with L the 9, coordinate vector field in the (v, o) coordinate chart
on each connected component of {f = t} N {r > 1} (notice that this vector field does
not coincide with the 9, vector field on M in the (u, v, 0) coordinate chart). Using
Lemma C.2, we can establish the following Hardy type inequality for functions ¥ on
the hyperboloids {f = const} with tame behaviour near 77"

Lemma C.3 There exists an Ry > 0 (large) such that for any T > 0, any k € N,
any integer 0 < m < k, any a € R, any smooth tensor field ¥ on {f = t} satisfying

lim,— 4 o0 rdﬂfz |ElL\Il|thN =0for0 <l <k, and any Ry > Ry we can bound

min{| 4=} | k)

Z | / r 1L w2 Q2dvdo
j=1 {r=R1}N{i=1}

+ / At =2 g deo]
(r=R)N{i=1)

< Cia- / r w2 Q2 dvdo, (C.5)
{r=Ry)N{i=1)

where L denotes the Lie derivative in the direction of L.

Proof Fixan R, > R;.Anapplication of Lemma C.2 on each connected component of
{R1 < r < Ry}N{f = t}(using the coordinate chart (v, ¢) intheregion {r > R;}N{f =
1}, so that £ becomes differentiation with respect to 9, ) readily yields that:

min{| =144 | k)

Z [/ ra_2j|£li_jw|2 Q%dvdo
j=1 {Ri<r<Ry}nf{r=1}

+/ ret1=201 A w12 Q2o
(r=R))N{i=7)

< Cra- / r1 LA w2 Q% dvdo
{R1<r<Rp}n{r=1}

Ld—;raj
+ > / rH 2 L2 Q2o | (C.6)
j=1 {r=Ra}N{t=7}
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. . d+a-2 .
Since lim,_, ;5o 7 2 |LZL\IJ|;,LN = 0for 0 <[ <k, we infer:

Ld_;+aJ
lim Z / P2 w2 Q2do = 0. (C.7)
Ra=too ST Jir=Rojnli=1}
Thus, (C.5) follows from (C.6) after taking the limit R, — +00. O

We will also need the following “critical” Hardy type inequality:

Lemma C.4 Forany R > 0 large in terms of the geometry of {t = t} and any smooth
function WV on {t = t} satisfying lim, _, 1 oo |¥| — 0 we can bound:

1

, > " > 2
/ r 1= N = C (/l =T hN)
{R_< <_2R} { } { >_R} { }

1
2
x(/ rd+2|Lw|2th) . (C.3)
{r>R}N{r=1}

Remark The exponent of the second term of the right hand side of (C.8) can not be

increased, since then the inequality would not be satisfied by the function Wy, (r) =
log(Ro)

Tog() Hlog(RQ) for some large enough Ry > 0.

Proof It suffices to establish the following inequality on R? for any R > 0 and any
real ¥ € C®(RY) sarisfying lim,_, { o0 |¥| — 0:

1
2
/ r~ w2 dvol, < C - (/ r_d\ll2dvole)
{R<r<2R) {r=R}

1
2
x( / r_d+2(8rl11)2dvole). (C.9)
{r=R)

In turn, (C.9) will follow (using polar coordinates) by the following “critical” Hardy-
type inequality on R for any function ¥ € C*°(R) with lim, 1o [¥| — 0:

2R +o00 % +00 %
/ r_llllzdrfC~(/ r_l\Ifzdr) (/ r-(8,‘~IJ)2dr) . (C.10)
R R R

In order to establish (C.10), let us fix a continuous and piecewise C ! function
x1 : [0, +00) — [0, 1] by the relation:

0, x <1
x1x)=3x—-1, 1<x<2 (C.11)
1, x > 2,
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and define the function xp g : [0, +00) — [0, 1] by the relation:

KLR() = m(%)- (C.12)

Using the fact that x; is contnuous and piecewise C!, we obtain after integrating

by parts (in view of the fact that lim, _, ;o ¥ = 0):

+o00 +o00
/ xR Vidr = —2/ X1, - Vo, Wdr (C.13)
0 0

+o00 % +o00 3
< (/ )(LRr_l\Il2 dr) (/ X1.RT - (Br\IJ)2 dr) .
0 0

Thus, (C.10) follows from (1) in view of the fact that ;g is supported on [R, +00)

and 0, x1,g is identically 1 on [R, 2R] and O elsewhere. O
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