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Abstract This paper is motivated by the problem of the nonlinear stability of the Kerr
solution for axially symmetric perturbations. We consider a model problem concerning
the axially symmetric perturbations of a wave map � defined from a fixed Kerr solution
K(M, a), 0 ≤ a ≤ M , with values in the two dimensional hyperbolic space H

2. A
particular such wave map is given by the complex Ernst potential associated to the axial
Killing vector-field Z of K(M, a). We conjecture that this stationary solution is stable,
under small axially symmetric perturbations, in the domain of outer communication
(DOC) of K(M, a), for all 0 ≤ a < M and we provide preliminary support for its
validity, by deriving convincing stability estimates for the linearized system.
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1 Introduction

According to the general expectations the Kerr family K(a, M), in the sub-extremal
regime |a| < M , is stable under general perturbations. More precisely, it is expected
that:

Kerr Stability Conjecture An initial data set (�0, g0, k0), sufficiently close to the
initial data set of a fixed sub-extremal Kerr spacetime K(Mi , ai ), admits a maximal,
vacuum, future, Cauchy development (M, g), with a complete future null infinity I+
and whose causal past J−(I+) is bounded in the future by a smooth, complete, event
horizonH+. Moreover (M, g) remains close to K(Mi , ai ) and approaches asymptot-
ically another sub-extremal Kerr spacetime K(M f , a f ).

Despite its extraordinary importance, in both mathematical and astrophysical1

terms, and despite half a century of sustained efforts to settle it, the conjecture remains

1 If the Kerr family would turn out to be unstable under perturbations, black holes would be nothing more
than mathematical artifacts. See [7] for a comprehensive account of efforts made by physicists to establish
the linear stability of the Kerr family.
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wide open. The main known mathematical arguments in favor of the conjecture are in
fact few and, so far, not at all decisive.

(1) We know that the Minkowski space, corresponding to a = 0, M = 0 is stable,
see [8].

(2) We know that, perturbatively, the Kerr family exhausts all stationary, smooth,
solutions of the Einstein vacuum equations, see [15] and [1]. In other words, any
stationary solution sufficiently close to a sub-extremal Kerr must belong to the
Kerr family. A full review of rigidity results in the smooth setting is discussed in
[16].

(3) We possess a significantly large class of examples of dynamical black holes,
settling down to a sub-extremal Kerr, constructed from infinity, see [13].

(4) Most importantly, we have now a satisfactory understanding of the so called
poor man linearization. More precisely, we have a general method for establish-
ing boundedness and quantitative decay of solutions to the scalar wave equation
�gM,aφ = 0, for all sub-extremal Kerr metrics gM,a . Such results were first estab-
lished in Schwarzschild, see [3–6,10,19] and later extended for |a| � M in
[2,12,21]. The full sub-extremal regime was recently settled in [14].

(5) We have results establishing the non-existence of exponentially growing modes
for the more realistic linearized Teukolsky equations, see [20,23]2.

The goal of this paper is to provide additional evidence for the conjecture in the
special case of axi-symetric perturbations.

1.1 A Non-linear Model Problem

As well known (see [22] ) the Ernst potential � = (�1,�2) of a Killing vector-field Z
on a 3+1 dimensional Einstein-vacuum manifold (M, g) can be interpreted as a wave
map � : M −→ H

2 where H
2 denotes the upper-half Poincare space with constant

negative curvature K = −1. More precisely,

�g�
a + gμν�a

bc(�)∂μ�b∂ν�
c = 0, (1.1)

where � denotes the Christoffel symbols of the metric h of H. The full, axially sym-
metric, space-time metric g decomposes into its dynamic component � and a reduced
1 + 2 metric ĝ defined on the orbit space M̂ = M/Z verifying,

Ric(ĝ)αβ =< ∂α�, ∂β� >h . (1.2)

Thus, in axial symmetry, the Einstein vacuum equations are equivalent3 to the coupled
system (1.1)–(1.2), on the reduced space-time ̂M. A particular, stationary, solution of
the system is provided by the pair (̂gM,a,�M,a) denoting the decomposition of the

2 Results on boundedness and decay for these equations near Schwarzschild were recently announced by
Dafermos, Holzegel and Rodnianski, see [9].
3 See [22] for a very clear exposition of the reduction. Note that (1.1) can also be interpreted as a wave
map from ̂M to H.
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1 Page 4 of 78 A. D. Ionescu, S. Klainerman

Kerr metric gM,a of a fixed Kerr spacetime M = K(M, a). The full problem of the
stability of the Kerr solution, for axially symmetric perturbations, can be reformulated
as a problem of stability of this special solution for the system (1.1)–(1.2). As this is
still an extremely difficult problem we make one further important simplification by
partially linearizing the system, that is we fix the reduced metric ĝ = ĝM,a but allow
fully nonlinear perturbations of �M,a . It is easy to see that this amounts to the problem
of stability of axially symmetric perturbations of the stationary solution �M,a of the
wave map system (1.1), where g is fixed to be the Kerr metric gM,a .

Partial Stability Conjecture The stationary solution �M,a : K(M, a) −→ H of the
wavemap system (1.1)with g = gM,a themetric ofK(M, a), |a| < M, is future asymp-
totically stable in the domain of outer communication of K(M, a), for all smooth,
axially symmetric, admissible, perturbations4.

Remark 1.1 We note that the conjecture is consistent with the full nonlinear stability
conjecture, for axially symmetric perturbations. More precisely the validity of the
Kerr stability conjecture, for axially symmetric perturbations, implies (in principle)
the validity of our partial stability conjecture, at least for initial data in the orthogonal
complement of a finite dimensional space (corresponding to possible modulation). In
this paper we produce convincing evidence that the conjecture is in fact true for all
initial data.

We take the first step in proving the conjecture by deriving stability estimates for
the linearized system. More precisely we introduce the linearized variables

� = �M,a + A
, 
 = (φ,ψ).

and show that the linearized equations in 
 possess a a coercive, conserved, energy
quantity (for all |a| ≤ M) and verify, at least for a/M small, a Morawetz type estimate
comparable to those derived in recent years, see [3–6,10,19], for the scalar wave
equation �φ = 0.

Remark 1.2 In the simplest case a = 0 the system for 
 = (φ,ψ) is the decoupled
system

�φ = 0, �ψ −
( 4

r2(sin θ)2 − 8M

r3

)

ψ = 0. (1.3)

Note the non-trivial nature of the potential for the ψ equation, singular on the axis.
The precise form of the potential is important in order to derive the needed stability
estimates.

1.2 Kerr Metric

The domain of outer communications of the Kerr spacetime K(M, a), in standard
Boyer–Lindquist coordinates, is given by

4 That is: for all axially symmetric initial data, defined on a spacelike hypersurface�0, which are sufficiently
close to the corresponding data of �M,a and vanishing in a suitable way on the axis of symmetry.
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ga,M = −q2

�2 (dt)2 + �2(sin θ)2

q2

(

dφ − 2aMr

�2 dt
)2 + q2


(dr)2 + q2(dθ)2,

(1.4)

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 = r2 + a2 − 2Mr;
q2 = r2 + a2(cos θ)2;
�2 = (r2 + a2)q2 + 2Mra2(sin θ)2 = (r2 + a2)2 − a2(sin θ)2.

(1.5)

Observe that

(2mr − q2)�2 = −q4 + 4a2m2r2(sin θ)2. (1.6)

Note also the useful identities,

�2

q2 = q2 + (p + 1)a2(sin θ)2,  = q2(1 − p) + a2(sin θ)2, p := 2Mr

q2 .

(1.7)

Thus the metric can also be written in the form,

ga,M = −
(

 − a2 sin2 θ
)

q2 dt2 − 4aMr

q2 sin2 θdtdφ

+q2


dr2 + q2dθ2 + �2

q2 sin2 θdφ2 (1.8)

and,

gt tgφφ − g2
tφ = − sin2 θ.

The volume element dμ of g is given by

dμ = q2| sin θ |dtdrdθdφ

We also note that T = ∂t , Z = ∂φ are both Killing and T is only time-like in the
complement of the ergoregion, i.e. q2 > 2Mr .

The domain of outer communication of K(M, a) is given by,

R = {(θ, r, t, ϕ) ∈ (−π, π) × ( rH,∞) × R × S
1},

where rH := M +√
M2 − a2, the larger root of , corresponds to the event horizon.

The metric posesses the Killing v-fields T = ∂t and Z = ∂φ .
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1 Page 6 of 78 A. D. Ionescu, S. Klainerman

The Ernst potential �̊ = (A, B) associated to the Killing vector-field Z = ∂ϕ , is
given explicitly by the formula,

A + i B := �2(sin θ)2

q2 − i
[

2aM(3 cos θ − (cos θ)3) + 2a3M(sin θ)4 cos θ

q2

]

,

A = g(Z,Z). (1.9)

One can easily check5 that (A, B) verify the system,

A�A = DμADμA − DμBDμB,

A�B = 2DμADμB.
(1.10)

where � = �gM,a denotes the usual wave operator with respect to the metric. We can

interpret �̊ := (A, B) as a stationary, axisymmetric, wave map from K(M, a) to the
hyperbolic space H

2 = (R2+, h) with the metric h given by,

ds2 = 1

A2

(

dA2 + dB2)

1.3 Reinterpreting the Conjecture

As mentioned above the goal of this paper is to investigate the future global asymptotic
stability, in the exterior region of K(M, a), of the special stationary map �̊ = (A, B),
under general axially symmetric perturbations. In other words we consider solutions
� = (X,Y ) of the wave map system,

X�X = DμXDμX − DμYDμY,

X�Y = 2DμXDμY.
(1.11)

which are Z-invariant, i.e. Z(�1) = Z(�2) = 0, and whose initial conditions on a
given space-like hypersurface in R are a small perturbation of the initial data of �̊.
We have to be careful however that the perturbed map � = (X,Y ) has the same axis
of rotation as �̊ = (A, B), i.e. � = �̊ on the axis of symmetry of K(M, a), i.e.
sin2 θ = 0. To make sure that this latter condition is satisfied we search for solutions
� = (X,Y ) of the form,

� = �̊ + A
, 
 = (φ,ψ). (1.12)

with ψ vanishing on the axis of symmetry A. With these notation we can interpret the
system (1.11) as a nonlinear system of equations for 
, depending also on the fixed
�̊, of the form,

F(�̊;
) = 0. (1.13)

5 Or derive from first principles, see [22].
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Our Conjecture can thus be interpreted as a statement on the stability of the trivial
solution 
 ≡ 0 for the nonlinear system (1.13) .

Conjecture The trivial solution
 = 0 of the nonlinear system (1.13) is future asymp-
totically stable in the exterior region r ≥ rH for arbitrary, smooth, axially symmetric,
admissible (i.e. such that ψ = 0 on the axis A) initial conditions on a Z-invariant
spacelike hypersurface.

1.4 Main Difficulties

A simple comparison with the far simpler case of nonlinear systems of wave equations
in Minkowski space shows that we cannot expect the conjecture to be valid without
addressing the following obstacles.

(1) Strong linear stability. To start with, one needs to show that the solutions to the
wave map system system cannot grow out of control. It does not suffice to show
that the solutions to the linearized equations are simply bounded; one needs to
prove quantitative decay estimates comparable to the known decay estimates for
the standard wave equation in the Minkowski space R

1+3. Moreover these esti-
mates have to be robust, i.e. the methods used in their derivation can be extended,
in principle, to the nonlinear equations.

(2) Nonlinear stability. Though strong linear stability is an essential ingredient in
the proof of nonlinear stability, it is by no means enough. The nonlinear terms
of the equation also have to satisfy special structural conditions, such as the null
condition.

(3) Degeneracy on the axis. An additional difficulty is the degeneracy of our system
on the axis of symmetry, i.e where A vanishes, see (1.3). Our functional analysis
framework, see Definition 1.6, is adapted to handle such a situation.

The first difficulty is the most serious one. The case when the linearized equation
is simply �g
 = 0 has now been well understood in full generality, for all |a| <

M and under no symmetry assumptions, see [14] and the references therein. Our
linearized equations differ significantly, however, from this case. Indeed taking the
Fréchet derivative of F with respect to 
 we obtain a linear operator with coefficients
which depend on �̊ = (A, B) in a non-trivial fashion. The linearized equations are in
fact of the form:

0 = �φ + 2
DμB

A
Dμψ − 2

DμBDμB

A2 φ + 2
DμBDμA

A2 ψ

0 = �ψ − 2
DμB

A
Dμφ − DμADμA + DμBDμB

A2 ψ.

(1.14)

and cannot be decoupled. It is not apriori clear that such an equation possesses a well
defined notion of energy, i.e. a conserved and coercive integral quantity similar to the
standard energy quantity for �
 = 0. Though the existence of such a quantity is by
no means enough to prove strong linear stability it is an absolutely necessary first step.
Our first result is the following:
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1 Page 8 of 78 A. D. Ionescu, S. Klainerman

Theorem 1.3 The linearized equations (1.14) (for axi-symmmetric solutions
) admit
an energy-momentum tensor type quantity Qμν = Q[
]μν and a source Jν , both
quadratic in (
, ∂
), depending also on (�̊, ∂�̊), verifying the following:

(a) Q(X,Y ) > 0, for any future-oriented, timelike, vector-fields X,Y ;
(b) DνQμν = Jν .
(c) g(T,J ) = 0.
(d) Q(Z , X) = 0, for any vector-field X orthogonal to Z.

The underlying reason for the existence of a quantity verifying (b) and (c) is a some-
what less familiar manifestation of Noether’s principle, which we discuss below. The
positivity (a), on the other hand, is a consequence of the negative curvature properties
of H. The property (d) can be easily derived from the form of Q, displayed below, and
the Z-invariance of 
.

As a consequence of the Theorem we deduce that the current Pμ := QμνTν is
conserved, i.e.

DμPμ = 0.

which leads, by integration on causal domains, to conserved energy type quantities
and fluxes. In view of (d) the energy is a coercive quantity inRwith a mild degeneracy
on the horizon r = rH. Theorem 1.3 is thus a strong first indication of the validity of
our conjecture for all values of the Kerr parameters, |a| < M . Yet, as alluded above,
the bounds provided by the energy are not by themselves enough to even prove the
boundedness of solutions to the system (1.14), subject to nice initial conditions.

To actually go beyond the bounds provided by the energy and prove strong linear
stability we encounter the same difficulties as for the simpler case of axially symmet-
ric6 solutions of the standard wave equation �φ = 0 in the DOC of K(a,m), i.e.
degeneracy of the energy at the horizon, presence of trapped null geodesics and slow
decay at null infinity. As it is now well understood, the major ingredient for proving
strong linear stability for linear systems on black holes is the derivation of an integrated
decay estimate of Morawetz type. Such estimates, which degenerate in the trapping
region, i.e. region of K(M, a) which contain trapped null geodesics, are quite subtle,
and difficult to derive.

Fortunately, in the case of axial symmetry, all trapped null geodesics are restricted to
the hypersurface at r = r∗, the largest root of the polynomial equation in r , r3−3r2M+
a2(r + M) = 0. This allows one, in principle, to use a vector-field method approach
similar to that used in the derivation of the Morawetz type integrated decay estimate
for solutions of the scalar wave equation in Schwarzschild. The main new difficulties
are the presence of the source term J in the divergence equation DivQ = J , and
the degeneracy on the axis. We overcome these difficulties in this paper, for small
values of a/M . Inspired by the r -weighted estimates of Dafermos–Rodnianski7, see

6 In the case of general solutions there is another major obstacle, namely the lack of coerciveness of the
energy in the ergoregion. The strong linear stability of �φ = 0 in Kerr has recently been fully resolved for
all values |a| < m in [14].
7 Their estimates provide similar decay information for the outgoing energy associated to null hypersur-
faces.
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[11], we also prove a stronger version of the Morawetz estimate which provides decay
information for an appropriate notion of outgoing energy associated to space-like
hypersurfaces.

A precise version of our second theorem requires a space-like Z-invariant foliation
�t of the entire domain of outer communication, transversal to the horizon and whose
leaves are transported by T. In what follows we give a first, informal, version of the
theorem, for the linearized equations (1.14) in which we do not specify the foliation.
A more precise version will be given later in this section.

To state the theorem we choose a smooth, increasing function χ≥4M supported for
r ≥ 4M , equal to 1 for r ≥ 6M , and define the outgoing energy density (e(φ), e(ψ)),

e(φ)2 := (∂1φ)2

r2 + (Lφ)2 + M2
[

(∂2φ)2 + (∂3φ)2
]

r2 + φ2

r2 ,

e(ψ)2 := (∂1ψ)2 + ψ2(sin θ)−2

r2 + (Lψ)2 + M2
[

(∂2ψ)2 + (∂3ψ)2
]

r2 + ψ2

r2 .

where L is the future outgoing vector-field,

L := χ≥4M (r)
(

∂r + r

r − 2M
∂t

)

.

The vector-fields ∂1, ∂2, ∂3 are defined precisely in (1.22), as coordinate derivatives
in a new set of variables. They agree with the coordinate derivatives ∂θ , ∂r , ∂t outside
a small neighborhood of the event horizon.

Theorem 1.4 Assume that (φ,ψ) is an admissible Z-invariant solution of the linear
system (1.14). Then, for any α ∈ (0, 2) and any t1 ≤ t2,

Bα(t1, t2) +
∫

�t2

rα

Mα

[

e(φ)2 + e(ψ)2] dμt ≤ Cα

∫

�t1

rα

Mα

[

e(φ)2 + e(ψ)2] dμt

with dμt the induced measure on �t and Bα the bulk integral,

Bα(t1, t2) :=
∫

D[t1,t2]

rα

Mα

{

(r − r∗)2

r3

|∂θφ|2 + |∂θψ |2 + ψ2(sin θ)−2

r2

+1

r

[

(Lφ)2 + (Lψ)2] + 1

r3

(

φ2 + ψ2) + M2

r3

[

(∂rφ)2 + (∂rψ)2]

+M2(r − r∗)2

r5

[

(∂tφ)2 + (∂tψ)2]
}

dμ.

Note that, as expected the integrand of the bulk integral Bα degenerates at r = r∗.
Though the presence of the rα-weights in our Morawetz type estimate appear to
be new even in the particular case of the standard scalar wave equation, they were
clearly inspired by the work of Dafermos-Rodnianski [11]. The main new idea in
[11] was to observe that one can replace the (t, r) weights of the classical conformal
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1 Page 10 of 78 A. D. Ionescu, S. Klainerman

multiplier method, along outgoing null hypersurfaces, by weights which depend only
on r , provided that one has already derived a local decay estimate. The new twist in
our work is to show that similar estimates can be derived on spacelike hypersurfaces.
Unlike in the case of [11], where the proof of r -weighted estimates are can be neatly
separated from the main local decay estimate, we are obliged in our work to prove
them simultaneously. Proving a simultaneous estimate, on both the space-time integral,
requires much more careful choices of the multipliers at infinity.

1.5 Proof of Theorem 1.3

In this section we give a first, informal, derivation of Theorem 1.3, based on first
principles, which can be easily generalized to other situations. In the next section we
shall re-derive the result by a straightforward verification.

Observe first that the linear system (1.14) is derivable from a Lagrangian8 L[�̊,
],
�̊ = (�̊1, �̊2) = (A, B), 
 = (
1, 
2) = (φ,ψ), defined as follows:

L[�̊,
] = gμν
[

D̊μφD̊νφ + D̊μψD̊νψ + A−2(φ∂μB − ψ∂μA)(φ∂νB − ψ∂ν A)
]

(1.15)

with,

D̊μφ = ∂μφ + A−1∂μB ψ D̊μψ = ∂μψ − A−1∂μB φ.

We then define, as ususal, the energy momentum tensor of the linearized field equation
to be the quantity,

Q[�̊,
]μν := ∂L
∂gμν

− 1

2
gμνL. (1.16)

We also define the source:

J [�̊,
]μ := 2
∂L[ψ]
∂�̊c

∂μ�̊c, c = 1, 2. (1.17)

Note that, in view of the stationarity of �̊,

TμJμ = 2
∂L[ψ]
∂�̊c

Tμ∂μ�̊c = 0.

Lemma 1.5 We have the local conservation law:

DνQμν = Jμ.

8 One can identify L as the quadratic form in 
 generated by the Taylor expansion at �̊ of the Lagrangian
of the original, nonlinear, system (1.11).
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On the Global Stability of the Wave-map Equation in Kerr... Page 11 of 78 1

Proof Let χs be the one-parameter group of local diffeomorphisms generated by a
given vector-field X . We shall use the flow χ to vary the fields 
 according to

gs = (χs)∗g, ψs = (χs)∗
, φs = (χs)∗�̊.

From the invariance of the action integral under diffeomorphisms, S(s) =
S[
s, gs, �̊s] = S[
, g; �̊]. Therefore,

0 = d

ds
S(s)

∣

∣

∣

s=0
=

∫

∂L
∂
a

X (
a)dvg

+
∫ (

∂L
gμν

− 1

2
gμν

(lin)L
)

ġμνdvg +
∫

∂L
∂�̊a

˙̊
�advg

=
∫

Qμν(DμXν + DνXμ)dvg + 2
∫

J μXμdvg

= −2
∫

DνQμνXμdvg + 2
∫

J μXμdvg

Since the vector-field Xμ is arbitrary we deduce,

−DνQμν + J μ = 0

as desired. �
In view of the definitions of Q and L we can write

Qμν = Tμν − 1

2
gμν(trgT ), Tμν := EμEν + FμFν + MμMν (1.18)

where,

Eμ := D̊μφ = ∂μφ + ψ A−1∂μB, Fμ := D̊μψ = ∂μψ − φA−1∂μB,

Mμ := A−1(φ∂μB − ψ∂μA).

The positivity property (a) is now an immediate consequence of the structure (1.18)
of the energy momentum tensor. Indeed, it is well known that at every point of the
ergoregion where r > rH , there exists a linear combination of T and Z, T+cZ, which
is timelike. Therefore, since T · E = T · F = T · M = 0,

0 < T (T + cZ, X) = T (T, X).

On the other hand, since X is orthogonal to Z,

g(T + cZ , X) = g(T, X).

Hence,

0 < Q(T + cZ, X) = Q(T, X),

as desired.
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1 Page 12 of 78 A. D. Ionescu, S. Klainerman

1.6 New Coordinates

As well known the Boyer-Lindquist coordinates, are singular near the horizon and as
such are not appropriate for our task. To avoid this difficulty it has become standard to
define a new set of variables which are well behaved across the horizon and coincide
with the Boyer-Lindquist coordinates away from it.

We fix first a smooth functionχ : R → [0, 1] supported in the interval (−∞, 5M/2]
and equal to 1 in the interval (−∞, 9M/4], and define g1, g2 : (rH,∞) → R such
that

g′
1(r) = χ(r)

2Mr


, g′

2(r) = χ(r)
a


. (1.19)

We define the functions

t+ := t + g1(r), φ+ := φ + g2(r). (1.20)

Therefore

dt+ = dt + χ(r)
2Mr


dr, dφ+ = dφ + χ(r)

a


dr.

In (θ, r, t+, φ+) coordinates, the metric g becomes9

g = q2(dθ)2 +
[q2


(1 − χ2(r)) + 2Mr + q2

q2 χ2(r)
]

(dr)2

+ 2χ(r)
2Mr

q2 drdt+ − 2χ(r)
a(sin θ)2(q2 + 2Mr)

q2 drdφ+

+2Mr − q2

q2 (dt+)2 − 4aMr(sin θ)2

q2 dt+dφ+ + �2(sin θ)2

q2 (dφ+)2. (1.21)

Let

∂1 = ∂θ = d

dθ
, ∂2 = ∂r = d

dr
, ∂3 = ∂t = d

dt+
= T, ∂4 = ∂φ = d

dφ+
= Z.

(1.22)

The nontrivial components of the metric g are

g11 = q2, g33 = 2Mr − q2

q2 , g34 = −2aMr(sin θ)2

q2 , g44 = �2(sin θ)2

q2 ,

g22 = q2


(1 − χ2(r)) + 2Mr + q2

q2 χ2(r),

g23 = χ(r)
2Mr

q2 , g24 = −χ(r)
a(sin θ)2(q2 + 2Mr)

q2 .

(1.23)

9 See the appendix for more calculations in these coordinates.
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On the Global Stability of the Wave-map Equation in Kerr... Page 13 of 78 1

The metric g extends smoothly to the larger open set

˜R = {(θ, r, t+, φ+) ∈ (−π, π) × (0,∞) × R × S
1}.

For t ∈ R and c ∈ (0,∞) let

�c
t := {(θ, r, t+, φ+) ∈ ˜R : t+ = t and r > c}. (1.24)

The surfaces �
rH
t , t ∈ R, form a Z-invariant foliation of spacelike surfaces of the

domain of outer communications of the Kerr spacetime K(M, a). Moreover, the foli-
ation is compatible with the Killing vector-field T, i. e. �t1(�

c
t2) = �c

t1+t2 for any
t1, t2 ∈ R, where �t denotes the flow associated to T.

As mentioned earlier we are interested in solutions of the form (1.12), i.e., � =
(A′, B ′) = (A, B) + ε(Aφ, Aψ) of the wave-map equation (1.10), in causal domains
of the form

Dc
I := ∪t∈I�c

t = {(θ, r, t+, φ+) ∈ ˜R : t+ ∈ I and r > c}, (1.25)

where I ⊆ R is an interval and c < rH. Notice that if c < rH then Dc
R

contains a
small neighborhood of the future event horizon H+ as well as the entire domain of
outer communication. For any c ∈ (0,∞) and any interval I ⊆ R let

N c
I := {(θ, r, t+, φ+) ∈ ˜R : t+ ∈ I and r = c}. (1.26)

Notice that the hypersurfaces N c
I are spacelike if c < rH, null (and contained in the

future event horizon H+) if c = rH, and timelike if c > rH.

1.7 Precise Version of Our Second Theorem

We define now our main function spaces:

Definition 1.6 For any m ∈ Z
+, c ∈ (0,∞), and t ∈ R let Hm(�c

t ) denote the
usual L2-based Sobolev space of functions on the hypersurface �c

t , with respect to
the induced Kerr metric (see (1.23)). Let

˜Hm(�c
t ) :=

{

f : �c
t → R : ‖ f ‖

˜Hm (�c
t )

:= ‖ f ‖Hm (�c
t )

+
m

∑

m′+m′′=1

‖(˜∂1/r)
m′

˜∂m
′′

2 f ‖L2(�c
t )

< ∞
}

, (1.27)

where, by definition,

˜∂1g :=
(

∂1 − 2 cos θ

sin θ

)

g, ˜∂2g := ∂2g. (1.28)
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For any g ∈ C1(�c
t ) satisfying Z(g) = 0 let

∇g := (∂1g/r, ∂2g), ˜∇g := (˜∂1g/r,˜∂2g). (1.29)

Finally, let

Hm(�c
t ) := {(φ,ψ) : �c

t → R × R : ‖(φ,ψ)‖Hm (�c
t )

:= ‖φ‖Hm (�c
t )

+ ‖ψ‖
˜Hm (�c

t )
< ∞}. (1.30)

For any R ≥ 33M/16 let χ≥R : [0,∞) → [0, 1] denote a smooth increasing
function supported in [R,∞), equal to 1 in [2R − 2M,∞), and satisfying the natural
differential inequalities. Let

L := χ≥4M (r)
(

∂2 + r

r − 2M
∂3

)

, (1.31)

For any t ∈ R and (φ,ψ) ∈ H1(�c
t ) we define the outgoing energy density

(e(φ), e(ψ)),

e(φ)2 := (∂1φ)2

r2 + (Lφ)2 + M2
[

(∂2φ)2 + (∂3φ)2
]

r2 + φ2

r2 ,

e(ψ)2 := (∂1ψ)2 + ψ2(sin θ)−2

r2 + (Lψ)2 + M2
[

(∂2ψ)2 + (∂3ψ)2
]

r2 + ψ2

r2 .

(1.32)

We work in the axially symmetric case, therefore the relevant trapped null geodesics
are still confined to a codimension 1 set. Assuming that a � M , it is easy to see that
the equation

r3 − 3Mr2 + a2r + Ma2 = 0

has a unique solution r∗ ∈ (M,∞). Moreover, r∗ ∈ [3M − a2/M, 3M].
Theorem 1.7 Assume that M ∈ (0,∞), N0 := 4, a ∈ [0, εM] and c0 ∈ [rH −
εM, rH], where ε ∈ (0, 1] is a sufficiently small constant. Assume that T ≥ 0, and
(φ,ψ) ∈ Ck([0, T ] : HN0−k(�

c0
t )), k ∈ [0, N0], is a solution of the system

�φ + 2
DμB

A
Dμψ − 2

DμBDμB

A2 φ + 2
DμBDμA

A2 ψ = Nφ,

�ψ − 2
DμB

A
Dμφ − DμADμA + DμBDμB

A2 ψ = Nψ,

(1.33)

satisfying

Z(φ,ψ) = 0 in Dc0[0,T ]. (1.34)
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Then, for any α ∈ (0, 2) and any t1 ≤ t2 ∈ [0, T ],

Bc0
α (t1, t2) +

∫

�
c0
t2

rα

Mα

[

e(φ)2 + e(ψ)2] dμt

≤ Cα

∫

�
c0
t1

rα

Mα

[

e(φ)2 + e(ψ)2] dμt

+Cα

∫

Dc0[t1,t2]

rα

Mα

[

e(φ,Nφ) + e(ψ,Nψ)
]

dμ, (1.35)

where Cα is a large constant that may depend on α,

Bc0
α (t1, t2) :=

∫

Dc0[t1,t2]

rα

Mα

{

(r − r∗)2

r3

|∂1φ|2 + |∂1ψ |2 + ψ2(sin θ)−2

r2

+1

r

[

(Lφ)2 + (Lψ)2] + 1

r3

(

φ2 + ψ2) + M2

r3

[

(∂2φ)2 + (∂2ψ)2]

+M2(r − r∗)2

r5

[

(∂3φ)2 + (∂3ψ)2]
}

dμ, (1.36)

and, for f ∈ {φ,ψ},

e( f,N f ) := |N f |
[

(L f )2 + M2
[

(∂2 f )2 + (∂3 f )2
] + f 2

r2

]1/2
. (1.37)

The point of proving an energy estimate such as (1.35) involving outgoing ener-
gies is that it leads directly to decay estimates. For example, we have the following
corrolary:

Corollary 1.8 Assume that N1 = 8 and (φ,ψ) ∈ Ck([0, T ] : HN1−k(�
c0
t )), k ∈

[0, N1], is a solution of the system (1.33) withNφ = Nψ = 0. Then, for any t ∈ [0, T ]
and β < 2,

∫

�
c0
t

[

e(φ)2 + e(ψ)2] dμt

�β (1 + t/M)−β
4

∑

k=0

M2k
∫

�
c0
0

r2

M2

[

e(Tkφ)2 + e(Tkψ)2] dμt . (1.38)

The point of the corollary is the almost (1 + t/M)−2 decay of the outgoing energy
on the hypersurface �

c0
t , in terms of initial data; such a decay is not possible, of course,

for the standard energy. One can further commute the equation with the vector-field
∂r and use elliptic estimates to prove control decay of higher order outgoing energies
as well. Such estimates, with improved decay, can then be combined, in principle,
with a bootstrap argument to analyze globally the full semilinear system and prove
the Partial Stability Conjecture in the case a � M . Note that the precise form of the
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system is given in Proposition 2.1; the nonlinearities N ε
φ and N ε

ψ are quadratic and
appear to satisfy suitable null conditions which are needed to prove global existence.

The explicit loss of derivatives of the estimate (1.38) can be improved; however
some loss is unavoidable due to the degeneracy of the bulk integral at r = r∗ in
(1.35). We note that the analogous decay estimate for the standard wave equation in
Minkowski space follows, with β = 2 and without the loss of derivatives, from the
conservation of the conformal energy (see, for example, section 3 in [17]).

1.8 Conclusions

The estimates presented in this paper offer convincing evidence for the validity of
our conjecture. Further work is needed to remove the smallness condition for a/M ,
provide sufficiently strong pointwise decay estimate in the wave zone region and
implement the standard approach for proving global existence results for nonlinear
wave equations which satisfy the null condition10.

1.9 Organization

The rest of the paper is organized as follows. In section 2 we derive the main identities
in the paper, including the precise form of the system and the divergence identities;
this provides an alternative explicit proof of Theorem 1.3. In section 3 we give an
outline of the proof of the main theorem in the simplified case (1.3). In sections 4
and 5 we give a complete proof of the main Theorem 1.7, first in the case of the pure
wave equation on the Schwarzschild space, and then for the full system on the Kerr
spaces. In section 6 we provide a proof of Corollary 1.8, using Theorem 1.7 and an
elliptic estimate. Finally, the appendix contains several explicit calculations in Kerr
spaces, some Hardy inequalities, and some properties of the modified Sobolev spaces
˜Hm .

2 Derivation of the Main Algebraic Identities. Theorem 1.3 Revisited

Assume that (A′, B ′) = (A, B)+(εAφ, εAψ) is a solution of the wave-map equation
(1.10) on some interval I , where (φ,ψ) ∈ Ck(I : HN1−k(�

c0
t )), k = 0, . . . , N1. The

functions (φ,ψ) satisfy the system

A2�φ + 2ADμBDμψ − 2DμBDμBφ + 2DμBDμAψ

+ ε
[

Aφ�(Aφ) − Dμ(Aφ)Dμ(Aφ) + Dμ(Aψ)Dμ(Aψ)
] = 0,

10 Such a program was carried out by J. Luk (in the simpler case of the nonlinear stability of the trivial
solution), for semi-linear wave equations verifying the null condition, see [18].
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and

A2�ψ − 2ADμBDμφ − (DμADμA + DμBDμB)ψ

+ ε
[

Aφ�(Aψ) − 2Dμ(Aφ)Dμ(Aψ)] = 0.

Using the formulas (1.10) these equations become

A2(1 + εφ)�φ + 2ADμBDμψ − 2DμBDμBφ + 2DμBDμAψ

+ ε
[

A2DμψDμψ + 2AψDμADμψ + DμADμAψ2

− A2DμφDμφ − DμBDμBφ2] = 0,

and

A2(1 + εφ)�ψ − 2ADμBDμφ − (DμADμA + DμBDμB)ψ

+ ε
[ − 2A2DμφDμψ − DμADμAφψ − DμBDμBφψ − 2AψDμADμφ] = 0.

We divide the equations by A2(1 + εφ) to conclude that

�φ + 2
DμB

A
Dμψ − 2

DμBDμB

A2 φ + 2
DμBDμA

A2 ψ = εN ε
φ ,

�ψ − 2
DμB

A
Dμφ − DμADμA + DμBDμB

A2 ψ = εN ε
ψ ,

(2.1)

where

N ε
φ = A2DμφDμφ−A2DμψDμψ−2AψDμADμψ+DμBDμBφ2−DμADμAψ2

A2(1 + εφ)

+ φ

A2(1 + εφ)
[2ADμBDμψ − 2DμBDμBφ + 2DμBDμAψ],

and

N ε
ψ = 2A2DμφDμψ + (DμADμA + DμBDμB)φψ + 2AψDμADμφ

A2(1 + εφ)

− φ

A2(1 + εφ)
[2ADμBDμφ + (DμADμA + DμBDμB)ψ].

The formulas for the nonlinear termsN ε
φ andN ε

ψ can be simplified, and the calculations
can be reversed. To summarize, we have proved the following:

Proposition 2.1 Assume I ⊆ R is an interval, ε > 0, and (φ,ψ) ∈ Ck(I :
HN1−k(�

c0
t )), k = 0, . . . , N1. Then (A′, B ′) = (A, B) + (εAφ, εAψ) is a solu-

tion of the wave-map equation (1.10) on the interval I if and only if (φ,ψ) satisfy the
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nonlinear system

�φ + 2
DμB

A
Dμψ − 2

DμBDμB

A2 φ + 2
DμBDμA

A2 ψ = εN ε
φ ,

�ψ − 2
DμB

A
Dμφ − DμADμA + DμBDμB

A2 ψ = εN ε
ψ ,

(2.2)

where

N ε
φ = A2(DμφDμφ−DμψDμψ)+(φDμB−ψDμA)(2ADμψ−φDμB+ψDμA)

A2(1 + εφ)
,

N ε
ψ = 2A2DμφDμψ + 2A(ψDμA − φDμB)Dμφ

A2(1 + εφ)
.

(2.3)

2.1 The Energy–Momentum Tensor

We study now solutions of the system

�φ + 2
DμB

A
Dμψ − 2

DμBDμB

A2 φ + 2
DμBDμA

A2 ψ = Nφ,

�ψ − 2
DμB

A
Dμφ − DμADμA + DμBDμB

A2 ψ = Nψ.

(2.4)

Our main goal is to construct a suitable energy-momentum tensor that verifies a good
divergence equation. More precisely, let

Eμ := Dμφ+ψ A−1DμB, Fμ := Dμψ−φA−1DμB, Mμ := φDμB−ψDμA

A
.

(2.5)

Using the formulas

ADμφ = AEμ − ψDμB, ADμψ = AFμ + φDμB, (2.6)

the identities (2.4) and (1.10) show that

DμEμ + DμBFμ

A
− DμBMμ

A
= Nφ,

DμFμ − DμBEμ

A
+ DμAMμ

A
= Nψ,

DμMμ − DμBEμ

A
+ DμAFμ

A
= 0.

(2.7)
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We also calculate

DμEν − DνEμ = FμDνB − FνDμB

A
+ MμDνB − MνDμB

A
,

DμFν − DνFμ = − EμDνB − EνDμB

A
− MμDν A − MνDμA

A
,

DμMν − DνMμ = EμDνB − EνDμB

A
− FμDν A − FνDμA

A
.

(2.8)

Let

Tμν := EμEν + FμFν + MμMν,

Qμν := Tμν + gμνL,

L := −(1/2)gαβTαβ = −(1/2)(EαE
α + FαF

α + MαM
α).

(2.9)

We calculate the divergence

DμQμν = EνDμEμ + Eμ(DμEν − DνEμ)

+ FνDμFμ + Fμ(DμFν − DνFμ)

+ MνDμMμ + Mμ(DμMν − DνMμ),

Using (2.7) and (2.8) we calculate

EνDμEμ + Eμ(DμEν − DνEμ)

= Eν(DμBMμ − DμBFμ) − FνEμDμB − MνEμDμB

A

+DνB(EμFμ + EμMμ)

A
+ NφEν,

FνDμFμ + Fμ(DμFν − DνFμ)

= EνFμDμB + Fν(DμBEμ − DμAMμ) + MνFμDμA

A

+−DνBEμFμ − Dν AFμMμ

A
+ Nψ Fν,

and

MνDμMμ + Mμ(DμMν − DνMμ)

= −EνMμDμB + FνMμDμA + Mν(DμBEμ − DμAFμ)

A

+DνBMμEμ − Dν AMμFμ

A
.

Therefore

DμQμν = 2DνBMμEμ − 2Dν AMμFμ

A
+ NφEν + Nψ Fν. (2.10)
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2.2 Divergence Identities

Given a vector-field X , a function w, and 1-forms m,m′ we define the form

Pμ = Pμ[X, w,m,m′] := QμνX
ν + 1

2
w(φEμ + ψFμ)

−1

4
Dμw(φ2 + ψ2) + 1

4
(mμφ2 + m′

μψ2). (2.11)

Then, using (2.5)–(2.7) we calculate the divergence

DμPμ = XνJν + 1

2
Qμν

(X)πμν + 1

2
Dμw(φEμ + ψFμ) + 1

2
w(DμφEμ + DμψFμ)

+ 1

2
w(φDμEμ + ψDμFμ) − 1

4
�w(φ2 + ψ2) − 1

2
Dμw(φDμφ + ψDμψ)

+ 1

4
(φ2Dμmμ + ψ2Dμm′

μ) + 1

2
(φmμDμφ + ψm′μDμψ)

= XνJν + 1

2
Qμν

(X)πμν − 1

4
�w(φ2 + ψ2)

+ 1

4
(φ2Dμmμ + ψ2Dμm′

μ) + 1

2
(φmμDμφ + ψm′μDμψ) + E ′,

where

E ′ = 1

2
Dμw(φEμ + ψFμ − φDμφ − ψDμψ)

+ 1

2
w(DμφEμ + DμψFμ + φDμEμ + ψDμFμ)

= 0 + 1

2
w(EμEμ + FμFμ + MμMμ + φNφ + ψNψ).

Therefore

DμPμ = XνJν + 1

2
Qμν

(X)πμν − 1

4
�w(φ2 + ψ2) − wL

+ 1

4
(φ2Dμmμ + ψ2Dμm′

μ) + 1

2
(φmμDμφ + ψm′μDμψ)

+ 1

2
w(φNφ + ψNψ).

2.3 Summary

We summarize the results of the section in the following:

Proposition 2.2 (i) Assume that (φ,ψ) ∈ Ck(I : HN0−k(�
c0
t )), k = 0, . . . , N0

satisfy the system (2.4). Let
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Eμ := Dμφ+ψ A−1DμB, Fμ := Dμψ−φA−1DμB, Mμ := φDμB−ψDμA

A
,

Qμν := EμEν + FμFν + MμMν + gμνL,

L := −1

2
(EαE

α + FαF
α + MαM

α).

(2.12)

Then

DμQμν =: Jν = 2DνBMμEμ − 2Dν AMμFμ

A
+ NφEν + Nψ Fν. (2.13)

(ii) Let

Pμ = Pμ[X, w,m,m′] := QμνX
ν + 1

2
w(φEμ + ψFμ)

−1

4
Dμw(φ2 + ψ2) + 1

4
(mμφ2 + m′

μψ2), (2.14)

where X is a smooth vector-field, w is a smooth function, and m,m′ are smooth
1-forms. Then

2DμPμ = 2Xν Jν + Qμν
(X)πμν − 2wL + (φmμDμφ + ψm′μDμψ)

+1

2
φ2(Dμmμ − �w) + 1

2
ψ2(Dμm′

μ − �w) + w(φNφ + ψNψ).

(2.15)

Note that theorem 1.3 is an immediate consequence of the first part of the proposi-
tion. Indeed, assuming that (Nφ,Nψ) = 0 it is immediate that J is orthogonal to T.
The positivity of the energy momentum tensor Q is an immediate consequence of its
form (2.12).

3 Main Ideas in the Proof of Theorem 1.7

In this section we provide main ideas and motivation for the various choices we need
to make in the proof of theorem 1.7. Our proof follows the well established pattern of
proving integrated local energy decay estimates on black holes, such as Schwarzschild,
for which the ergoregion is trivial and the trapped region is contained to a level surface
r = r∗ > rH. It is quite fortunate that our axially symmetric linearized system can
be treated in the same manner. Though our treatment follows the clear and efficient
approach of [19], we should point out that many of the ideas go back to other authors
such as [5,6,10]. An essential ingredient in the proof is to take into account the red
shift effects of the horizon, idea which goes back to [10].

In our problem we need to make two important modifications. Most importantly,
to get any estimate at all, we need to account for the source term J . This requires, in
particular, a serious modification of the current Pμ in (2.15), modification which adds
considerably to the complexity of the proof.
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The second important modification has to do with the presence of weights in our
main estimate. Typically, integrated decay estimates are designed to deal with the
region close to the black hole, most importantly the trapping region. They are then com-
plemented by weighted estimates in the asymptotic region. Thus, for example, J. Luk
(see [18]), relies on an integrated local decay estimate (proved earlier by Dafermos-
Rodnianski (see [12]) for small a/M), which he combines with weighted estimates in
the asymptotic region based on a straightforward adaptation of the classical conformal
method. The use of conformal method, however, is quite awkward in the black hole
region, because the weights involved in the conformal method lead to errors which
grow linearly in t . This problem was later fixed by a different method of Dafermos-
Rodnianski in [11], who replace the conformal method by r -weighted estimates. The
new method allows one to prove decay estimate for the energy associated to hypersur-
faces which are spacelike near the black hole region but become null in the asymptotic
region. This depends, however, on having first derived an integrated local decay esti-
mate11. In our work here we refine the analysis significantly by deriving r -weighted
estimates for the outgoing energy across spacelike hypersurfaces, simultaneously with
the integrated local decay estimates.

3.1 Outline of the Proof

We discuss now the main ideas in the proof. For simplicity, we consider only the
equation for ψ in the Schwarzschild case a = 0, which carries most of the conceptual
difficulties of the problem. In this case B = 0, A = r2(sin θ)2, and the equation is

�ψ − 4 − 8(M/r)(sin θ)2

r2(sin θ)2 ψ = 0. (3.1)

As in (2.2) we define

Fμ :=Dμψ, Mμ := −ψDμA

A
, Qμν :=FμFν +MμMν − 1

2
gμν(FαF

α+MαM
α).

(3.2)

For suitable triplets (X, w,m′) we define

˜Pμ = ˜Pμ[X, w,m′] := QμνX
ν + w

2
ψFμ− ψ2

4
Dμw+ ψ2

4
m′

μ− XνDν A

A

DμA

A
ψ2.

(3.3)

Notice the correction − XνDν A
A

DμA
A ψ2, compared to the definition of P in (2.14), which

is needed to partially compensate for the source term J . Then we have the divergence
identity

11 The r -weighted estimates produce boundary terms which are estimated with the help of the integrated
decay estimate. Because of the degenerate nature of this latter, the method leads to an overall a loss of
derivatives.
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2Dμ
˜Pμ =

5
∑

j=1

L j , (3.4)

where

L1 = L1[X, w,m′] := Qμν
(X)πμν + w(FαF

α + MαM
α),

L2 = L2[X, w,m′] := ψm′μDμψ,

L3 = L3[X, w,m′] := 1

2
ψ2(Dμm′

μ − �w),

L4 = L4[X, w,m′] := −2Dμ
[ XνDν A

A

DμA

A

]

ψ2.

(3.5)

The divergence identity gives

∫

�c
t1

˜Pμn
μ
0 dμt1 =

∫

�c
t2

˜Pμn
μ
0 dμt2 +

∫

N c[t1,t2]
˜Pμk

μ
0 dμc +

∫

Dc[t1,t2]
Dμ

˜Pμ dμ,

(3.6)

where t1, t2 ∈ [0, T ], c ∈ (c0, 2M], n0 := n/|g33|1/2, k0 := k/|g22|1/2, and the
integration is with respect to the natural measures induced by the metric g. To prove
the main theorem we need to choose a suitable multiplier triplet (X, w,m′) in a such
a way that all the terms in the identity above are nonnegative. This is the method of
simultaneous inequalities of Marzuola–Metcalfe–Tataru–Tohaneanu [19].

To accomplish our task we need to superimpose four different choices of multiplier
triplets (X, w,m′), denoted (X(k), w(k),m′

(k)), k ∈ {1, 2, 3, 4}. The first multiplier
(k = 1) is important in a neighborhood of the trapped set {r = 3M}; the second
multiplier (k = 2) is important in a neighborhood of the horizon {r = rH}; the third
multiplier (k = 3) is important at infinity, in the construction of outgoing energies at
infinity; the fourth multiplier is important to control the term L4, which is connected
to the presence of the nontrivial potential in (3.1).

3.1.1 The Multipliers (X(1), w(1),m′
(1)) and (X(2), w(2),m′

(2)).

The first two multipliers are similar to the multipliers used in [19] in the case of the
homogeneous wave equation. Set

X(1) := f1(r)∂2 + g1(r)∂3, f1(r) := a1(r)

r2 , g1(r) := a1(r)χ(r)2M

r
+ 1,

w(1)(r, θ) := f ′
1(r) + f1(r)∂r log

(

r4/) − ε1w̃(r),

w̃(r) := M2(r − 33M/16)3(r − r∗)2r−81[33M/16,∞)(r),

m′
(1) := 0,

where r∗ = 3M , ε1 ∈ (0, 1] is a small constant, and a1 : (0,∞) → R is a smooth
function. The important function a1, which vanishes on the trapped region {r = r∗},
is defined by
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R(r) := (r − r∗)(r + 2M) + 6M2 log
( r − 2M

r∗ − 2M

)

,

a1(r) := r−2δ−1κ(δR(r)) +
[r∗ − 2M

r
− 6M2

r2 log
( r − rH
r∗ − rH

)]

χ≥DM (r),

where D is a sufficiently large constant, δ = ε2
2 M

−2 for a small positive constant ε2,
and κ : R → R is an increasing smooth function satisfying κ(y) = y on [−1,∞)

and κ(y) = −2 on (−∞,−3]. This is essentially the choice of [19], except for the
correction at infinity, containing the cutoff function χ≥DM ; this correction is needed
in order to match properly with the third multiplier at infinity to produce outgoing
energies.

In a small neighborhood of the horizon we need to use the redshift effect. We define
the second multiplier

X(2) := f2(r)∂2 + g2(r)∂3, f2(r) := −ε2a2(r), g2(r) := ε2a2(r)(1 − ε2),

w(2)(r) := −2ε2a2(r)/r, m′
(2)2 = m′

(2)3 := ε2M
−2γ (r), m′

(2)1 = m′
(2)4 := 0,

where

a2(r) :=
{

M−3(9M/4 − r)3 if r ≤ 9M/4,

0 if r ≥ 9M/4,

and γ : [c0,∞) → [0, 1] is a function supported in [c0, 17M/8], satisfying
γ (2M) = 1/2 and the more technical property (4.38). As in [19], the multipliers
(X(1), w(1),m′

(1)) and (X(2), w(2),m′
(2)) cooperate well to generate mostly positive

bulk contributions. More precisely, the constants ε1, ε2 can be chosen such that, for
some absolute constant ε3 > 0,

4
∑

j=1

(

L j
(1) + L j

(2)

) ≥ ε3

∑

Y∈{F,M}

[ (r−r∗)2

r3 (Y1/r)
2+ M2

r3 (Y2)
2+ M2(r−r∗)2

r5
(Y3)

2
]

+ ε3
M

r4 ψ2 − ε−1
3

M

r4 1[DM,∞)(r)ψ
2 + ˜L, (3.7)

where

˜L := 8(r2−4Mr)

r7 a1(r)ψ
2+(1−2C1ε1)1[r∗,∞)(r)

{

M

r4

(

7− 44M

r
+ 72M2

r2

)

ψ2

+8a1(r)(r − r∗)
r4

(cos θ)2

(sin θ)2 ψ2 + 2a1(r)(r − r∗)
r4 (F1)

2 + 2a′
1(r)

2

r4 (F2)
2
}

.

(3.8)
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On the Global Stability of the Wave-map Equation in Kerr... Page 25 of 78 1

Moreover, letting ˜P( j) := ˜Pμ[X( j), w( j),m′
( j)], j = 1, 2, we have

2(˜P(1)μ + ˜P(2)μ)kμ ≥ ε3

∑

Y∈{F,M}

[

(Y1/r)
2 + (Y2)

2(2 − c/M)
]

+ ε3M
−2ψ2 − ε−1

3 (F3)
2, (3.9)

along N c[t1,t2]. Also, with p = 2M/r ,

2(˜P(1)μ + ˜P(2)μ)nμ ≥ −ε−1
3

{

ẽ0 + 1[8M,2DM](r)(F3)
2}

− χ≥8M (r)(1 − p)

r2 ∂2(rψ
2) + ε3(F2)

21(c0,17M/8](r),

(3.10)

and

2(˜P(1)μ + ˜P(2)μ)nμ ≤ ε−1
3

{

ẽ0 + 1[8M,2DM](r)(F3)
2}

− χ≥8M (r)(1 − p)

r2 ∂2(rψ
2) + ε−1

3 (F2)
21(c0,17M/8](r),

(3.11)

where

ẽ0 = (F1)
2 + (M1)

2

r2 + (Lψ)2 + M2|r − 2M |
r3 (F2)

2 + M2

r2 (F3)
2 + 1

r2 ψ2.

Notice that the bulk terms in (3.7) are mostly positive, with the exception of the term ˜L .
The terms along N c[t1,t2] are also mostly positive. On the other hand, the bounds (3.10)
and (3.11) we have so far on the integrals along the hypersurfaces �c

t are very weak;
these bounds will be improved by choosing a suitable multiplier (X(3), w(3),m′

(3)) at
infinity.

3.1.2 The Multiplier (X(4), w(4),m′
(4))

Our next goal is to control the term ˜L in (3.8). This is a new term, when compared to
solutions of the homogeneous wave equation, connected to the nontrivial potential in
(3.1) and the bulk term L4 in (3.5). Since a′

1(r) ≥ 0 and a1(r)(r − r∗) ≥ 0, this term
can only be problematic in the region {r ∈ [r∗, 4M]}. We define

X(4) := 0, w(4) := 0,

m̃′
(4)1(r, θ) := −(1 − 2C1ε1)

8(r − r∗)a1(r)χ≤6R(r)

r2

cos θ

sin θ
1[r∗,∞)(r),

m̃′
(4)2(r) := (1 − 2C1ε1)

2b(r)


, m̃′

(4)3 := 0, m̃′
(4)4 := 0,
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for a suitable function b supported in [r∗, 4M]. Careful estimates, as in Lemma 5.3,
and completion of squares show that one can choose the function b in such a way that

L1
(4) = L4

(4) = 0, ˜L + L2
(4) + L3

(4) ≥ −C2|2M − c0|r−4ψ2 (3.12)

for some constant C2 sufficiently large, and

∣

∣2˜P(4)μn
μ
∣

∣ � ε−1
3 ψ2/r2 and 2˜P(4)μk

μ = 0 along N c[t1,t2]. (3.13)

These two bounds can be combined with (3.7)–(3.11) to effectively remove the con-
tribution of the term ˜L .

3.1.3 The Multiplier (X(3), w(3),m′
(3))

Finally, we are ready to define the multiplier at infinity and close the estimate. First
of all, to obtain any simultaneous estimate at all, we need to make sure that the
contributions of the integrals of 2˜Pμnμ on the hypersurfaces �c

t are positive. So far,
these integrals are far from positive, in view of the estimates (3.10), (3.11), and (3.13).

The formula (A.16) shows that

2nμ
˜Pμ[K∂3, 0, 0] = 2nμQμν(K∂3)

ν

= K
∑

Y∈{F,M}

[

g11(Y1)
2 + g22(Y2)

2 + (−g33)(Y3)
2].

Therefore, one could make the integrals of 2˜Pμnμ along the hypersurfaces �c
t positive

by adding a multiplier of the form (K∂3, 0, 0), for some positive constant K sufficiently
large, and using a Hardy estimate to control the integral of the 0’s order term in terms
of the first order terms. Notice that such a multiplier does not affect the bulk integrals.
This is precisely the argument used in [19] to close the simultaneous estimate for the
standard energy for the wave equation.

In our case, however, we are looking to prove stronger estimates involving outgoing
energies. A multiplier of the form (K∂3, 0, 0) is not allowed, since this would create
contributions at infinity of the form (F2)

2 + (F3)
2, which are unacceptable in view of

the definition (1.32). Instead, we choose the last multiplier of the form

X(3) := f3∂2 +
( f3

1 − p
+ g3

)

∂3, w(3) := 2 f3
r

,

m′
(3)1 := m′

(3)4 := 0, m′
(3)2 := 2h3

r(1 − p)
, m′

(3)3 := −2h3

r
,

(3.14)

for some suitable functions f3, g3, h3. The function f3 should behave like (r/M)α for
large r , in order to produce the desired power in the outgoing energy. To make sure
that it does not interfere with the crucial trapping region we have to choose it to vanish
for r ≤ 8M . The role of the function g3 is to match, to some extent, the role played by
the multiplier KT in the boundary estimate discussed earlier. Thus we choose g3 to
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be a very large constant when r ≤ C4M , for some large constant C4, but we choose it
to decay as r → ∞, at the rate rα−2, such that it does not interfere with the outgoing
energy. Precise choices are provided in (5.59)–(5.61),

f3(r) := ε4χ≥8M (r)eβ(r), g3(r) :=
∫ ∞

r

[

ρ(s) + ε4M2

s3 f3(s)
]

ds,

where

β(8M) := 0, β ′(r) :=
(4M

r2 + 1

r

)

(

1 − χ≥C4
4 M

(r)
) + α

r
χ≥C4

4 M
(r),

and

ρ(r) := δM−1
[

χ≥C4M (r) + χ≥4C4
4 M

(r)
(

C7
4e

β(r) M
3

r3 − 1
)]

.

The constants ε4,C4 satisfy ε4 = ε2
3 and C4 ≥ ε−4

4 α−1(2 − α)−1, while δ ∈
[10−4C−3

4 , 104C−3
4 ] is such that

∫ ∞
C4M

ρ(s) ds = C4.
The function h3 can be chosen explicitly in terms of f3 and g3, in such a way to

complete squares and create positive 0’s order contributions. The positivity of the bulk
terms in (3.7) and (3.12), together with the choice ε4 � ε3, is used to show positivity
of the total bulk contribution in the transition region. Overall, we derive the desired
lower bound on the bulk term,

4
∑

j=1

(

L j
(1) + L j

(2) + L j
(4) + L j

(3)

)

�α eβ

{

(r − r∗)2

r2

(∂1ψ)2 + (ψ/ sin θ)2

r3

+M2

r3 (∂2ψ)2 + M2(r − r∗)2

r5
(∂3φ)2 + ψ2

r3 + (Lψ)2

r

}

. (3.15)

At the same time one can estimate precisely the size of the term 2˜P(3)μnμ at infinity,
and use positivity of the function g3 in the transition region to absorb the contributions
of the other terms 2˜P( j)μnμ, j ∈ {1, 2, 4}. Overall, we find that

∫

�c
t

2
[

˜P(1)μ + ˜P(2)μ + ˜P(3)μ + ˜P(4)μ

]

nμ
0 dμt ≈α

∫

�c
t

eβ
[

e(φ)2 + e(ψ)2] dμt .

(3.16)

Finally we find that

2
[

˜P(1)μ + ˜P(2)μ + ˜P(3)μ + ˜P(4)μ

]

kμ ≥ 0 along N c
[0,T ]. (3.17)

The theorem follows from (3.15)–(3.17), and the divergence identity (3.6).
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4 The Wave Equation in the Schwarzschild Spacetime

We show first how to prove Theorem 1.7 in the simplest case: a = 0 (the Schwarzschild
spacetime) and ψ = 0. In this case B = 0 and we are simply considering Z-invariant
solutions of the wave equation

�φ = 0.

In the rest of this section we use the coordinates (θ, r, u+, φ+) and the induced
vector-fields ∂1 = ∂θ , ∂2 = ∂r , ∂3 = ∂t , ∂4 = ∂φ , see (1.21)–(1.22). For simplicity
of notation, we identify functions that depend on r (or on some of the other variables)
with the corresponding functions defined on the spacetime.

Notice that

q2 = r2, p = 2M

r
, (4.1)

with p introduced in (1.7). The nontrivial components of the metric are

g11 = r−2,

g22 = 1 − p,

g23 = pχ, (4.2)

g33 = −1 + p2χ2

1 − p
,

g44 = 1

r2(sin θ)2 .

Given a function H that depends only on r , the formula (A.9) shows that

�H = g22∂2
2 H + D2∂2H = r − 2M

r
∂2

2 H + 2r − 2M

r2 ∂2H. (4.3)

Similarly, if m is a 1-form with m4 = 0,LTm = 0,LZm = 0, then

Dμmμ = gαβ∂αmβ + [

∂μgμν + (1/2)gμν∂μ log |r4(sin θ)2|]mν

= 1

r2

[

∂1m1 + cos θ

sin θ
m1

]

+
[

(1 − p)∂2m2 + 2r − 2M

r2 m2

]

+ p
[

χ∂2m3 + (χ ′ + χ/r)m3

]

. (4.4)

Therefore, given a vector-field

X = f (r)∂2 + g(r)∂3, (4.5)

as in (A.12), and a 1-form Y with Y4 = 0, and letting

(Y )Qμν = YμYν − (1/2)gμν(YρY
ρ),
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we have, see (A.15)–(A.17),

(Y )Qμν
(X)πμν = (Y1)

2 − f ′(r)
r2 + (Y2)

2 − f (r)(2r − 2M) + f ′(r)(r2 − 2Mr)

r2

+ (Y3)
2
[

− f (r)∂2g33 + 2g′(r)g23 − f ′(r)g33 − 2r f (r)g33

r2

]

+ 2Y2Y3
−2Mr f (r)χ ′(r) − 2M f (r)χ(r) + g′(r)(r2 − 2Mr)

r2 ,

(4.6)

2(Y )Q(n, X) = (Y1)
2 g(r)

r2 + (Y2)
2[g(r)(1 − p) − 2 f (r)g23]

+ (Y3)
2[−g(r)g33] + 2Y2Y3[− f (r)g33], (4.7)

and

2(Y )Q(k, X) = (Y1)
2 − f (r)

r2 + (Y2)
2[ f (r)(1 − p)]

+ (Y3)
2[− f (r)g33 + 2g(r)g23] + 2Y2Y3[g(r)(1 − p)]. (4.8)

Here f ′ and g′ denote the derivatives with respect to r of the functions f and g, and

n = −g3μ∂μ = −g23∂2 − g33∂3, k = g2μ∂μ = (1 − p)∂2 + g23∂3. (4.9)

In this section we prove the following:

Theorem 4.1 Assume that M ∈ (0,∞), N0 = 4, a = 0 and c0 := 2M − εM, where
ε ∈ [0, 1) is a sufficiently small constant. Assume that T ≥ 0, and φ ∈ Ck([0, T ] :
HN0−k(�

c0
t )), k ∈ [0, N0], is aZ-invariant real-valued solution of the wave equation

�φ = 0. (4.10)

Then, for any α ∈ (0, 2) and any t1 ≤ t2 ∈ [0, T ],

Ec0
α (t2) + Bc0

α (t1, t2) ≤ CαEc0
α (t1), (4.11)

where Cα is a large constant that may depend on α,

Eμ := Dμφ, Lφ := χ≥4M (r)
(

∂2 + 1

1 − p
∂3

)

φ = χ≥4M (r)
(

E2 + 1

1 − p
E3

)

,

(4.12)

Ec0
α (t) :=

∫

�
c0
t

rα

Mα

[

(E1/r)
2 + (Lφ)2 + M2r−2[(E2)

2 + (E2
3)

] + r−2φ2
]

dμt ,

(4.13)
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Bc0
α (t1, t2) :=

∫

Dc0[t1,t2]

rα

Mα

{ (r − 3M)2

r3

(E1)
2

r2 + 1

r
(Lφ)2

+ 1

r3 φ2 + M2

r3

[

(E2)
2 + (r − 3M)2

r2 (E3)
2
]}

dμ. (4.14)

The rest of the section is concerned with the proof of Theorem 4.1. Let

Qμν := EμEν − (1/2)gμν(EρE
ρ), Jν := DμQμν = N Eν . (4.15)

For any vector-field X , real scalar function w, and 1-form m we define

Pμ = Pμ[X, w,m] := QμνX
ν + 1

2
wφEμ − 1

4
φ2Dμw + 1

4
mμφ2. (4.16)

The formula (2.15) becomes

2DμPμ = T [X, w,m] := (X)πμνQμν + wEμEμ + φmμEμ

+ 1

2
φ2(Dμmμ − �w

)

. (4.17)

We use the divergence identity

∫

�c
t1

Pμn
μ
0 dμt1 =

∫

�c
t2

Pμn
μ
0 dμt2 +

∫

N c[t1,t2]
Pμk

μ
0 dμc +

∫

Dc[t1,t2]
DμPμ dμ,

(4.18)

where t1, t2 ∈ [0, T ], c ∈ (c0, 2M], n0 := n/|g33|1/2, k0 := k/|g22|1/2, and the
integration is with respect to the natural measures induced by the metric g. We would
like to find multipliers (X, w,m) in such a way that the contributions of the integrals
in (4.18) are all nonnegative.

4.1 The Multipliers (X(k), w(k),m(k)), k ∈ {1, 2}

In this subsection we define three multipliers (X(k), w(k),m(k)), k ∈ {1, 2, 3}, which
are used to generate positive terms in the divergence identity (4.18). The first multiplier
(X(1), w(1),m(1)) is relevant in a neighborhood of the trapped set {r = 3M} and
the second multiplier (X(2), w(2),m(2)) is relevant in a neighborhood of the horizon
{r = 2M}. The third multiplier (X(3), w(3),m(3)) generates outgoing energies at
infinity; at the same time it contains a large multiple of the vector-field ∂3 which helps
with the positivity of the boundary integrals Pμnμ.
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4.1.1 Analysis Around the Trapped Set r = 3M

This is similar to the construction in [19]. We define the first multiplier (X(1), w(1),

m(1)) by the formulas

X(1) := f1(r)∂2 + g1(r)∂3, f1(r) := a1(r)

r2 , g1(r) := a1(r)χ(r)2M

r
+ 1,

w(1)(r) := f ′
1(r) + f1(r)∂r log

(

r4/) − ε1w̃(r), m(1) ≡ 0,

w̃(r) := M2(r − 33M/16)3(r − 3M)2r−81[33M/16,∞)(r),

(4.19)

where a1 : (0,∞) → R is a smooth increasing function to be fixed, limr→∞ a1(r) =
1, and ε1 ∈ (0, 1] is a small constant. Using (4.6),

Qμν
(X(1))πμν + w(1)EμE

μ =[

K 11
(1)(E1)

2 + K 22
(1)(E2)

2 + K 33
(1)(E3)

2 + 2K 23
(1)E2E3

]

,

where

K 11
(1) = − f ′

1(r)

r2 + w(1)(r)g11 = 2(r − 3M)

r4 a1 − ε1w̃g11,

K 22
(1) = − f1(r)(2r − 2M) + f ′

1(r)

r2 + w(1)(r)g22 = 22

r4 a′
1 − ε1w̃g22,

K 33
(1) = − f1(r)∂2g33 + 2g′

1(r)g
23 − f ′

1(r)g
33 − 2r f1(r)g33

r2 + w(1)(r)g33

= 8M2χ2

r2 a′
1 − ε1w̃g33,

K 23
(1) = −2Mr f1(r)χ ′(r) − 2M f1(r)χ(r) + g′

1(r)

r2 + w(1)(r)g23

= 4Mχ

r3 a′
1 − ε1w̃g23.

where a′
1 denotes the r derivative of the function a1. Therefore

Qμν
(X(1))πμν + w(1)EμE

μ = 2(r − 3M)a1 − ε1w̃r2

r4 (E1)
2

+
(

2a′
1− ε1w̃

1− p

)( 

r2 E2+ 2Mχ

r
E3

)2+ ε1w̃

1− p
(E3)

2.

(4.20)

Moreover

φmμ

(1)Eμ + 1

2
φ2(Dμm(1)μ − �w(1)

) = −1

2
�w(1)φ

2. (4.21)

123



1 Page 32 of 78 A. D. Ionescu, S. Klainerman

We define now the important function a1(r). Assume κ : R → R is an increasing
smooth function satisfying κ(y) = y on [−1,∞) and κ(y) = −2 on (−∞,−3]. We
set

R(r) := (r − 3M)(r + 2M) + 6M2 log
[r − 2M

M

]

,

a1(r) := r−2δ−1κ(δR(r)) +
[M

r
− 6M2

r2 log
(r − 2M

M

)]

χ≥DM (r),

(4.22)

where δ := ε2
2 M

−2 is a small constant and D � 1 is a large constant. The function
a1 is well defined, using the formula above, for r > 2M . Clearly a1(r) = −2r−2δ−1

for r sufficiently close to 2M . Therefore a1 can be extended smoothly by this formula
to the full interval r ∈ (c0,∞).

Clearly

R′(r) = 2r − M + 6M2

r − 2M
. (4.23)

The function R is increasing on (2M,∞). Let rδ denote the unique number in (2M,∞)

with the property that R(rδ) = −1/δ, and notice that

rδ − 2M

M
≈ e−(6δM2)−1

.

Clearly a1(3M) = 0,

a′
1(r) = r−2

[

R′(r)κ ′(δR(r)) − 2κ(δR(r))

δr

]

(4.24)

if r ≤ DM , and

a′
1(r) = 12M2

r3 +
[M

r
− 6M2

r2 log
(r − 2M

M

)]

χ ′≥DM (r)

+
[M

r2 − 12M2

r3 log
(r − 2M

M

)

+ 6M2

r2(r − 2M)

]

(1 − χ≥DM (r)) (4.25)

if r ≥ rδ . In view of (4.24), if r ∈ (c0, rδ] then a′
1(r) ≥ 2δ−1r−3. On the other hand,

if r ∈ [rδ,∞) then a′
1(r) ≥ 12M2r−3. Therefore

a1(3M) = 0 and a′
1(r) ≥ 12M2r−3 for r ∈ (c0,∞), (4.26)

provided that δ ≤ (10M)−2.
Let

h1(r) := f ′
1(r) + f1(r)∂r log

(

r4/) = r − 2M

r3 ∂r
(

r2a1(r)
)

. (4.27)
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We calculate, as before,

h1(r) = r − 2M

r3 R′(r)κ ′(δR(r)) (4.28)

if r ≤ DM , and

h1(r) = r − 2M

r3

{

2r −
[

M − 6M2

r − 2M

]

(1 − χ≥DM (r))

+
[

Mr − 6M2 log
(r − 2M

M

)]

χ ′≥DM (r)
}

(4.29)

if r ≥ rδ . Letting

˜R(r) := r − 2M

r3 R′(r) = 2

r
− 5M

r2 + 8M2

r3 ,

we have

(�h1)(r) = ∂2( · ∂2h1)

r2

= r−2
{

κ ′(δR(r))∂r [˜R′(r)] + δ2κ ′′′(δR(r))r7
˜R(r)3(r − 2M)−1

+ δκ ′′(δR(r))[3r4
˜R(r)˜R′(r) + 4r3

˜R(r)2]
}

if r ≤ DM , and

(�h1)(r) = ∂2( · ∂2h1)

r2

= r−2∂r [˜R′(r)] + O(Mr−4)1[DM,∞)(r)

= −2M

r4

(

7 − 44M

r
+ 72M2

r2

)

+ O(Mr−4)1[DM,∞)(r).

if r ≥ rδ . Therefore, the last two identities show that

(�h1)(r) = −2M

r4

(

7 − 44M

r
+ 72M2

r2

)

+ O(Mr−4)1[DM,∞)(r)

+ M−3O(1)1(c0,rδ](r) + O
( δ2M2

r − 2M

)

1[r ′
δ,rδ](r), (4.30)

where r ′
δ denotes the unique number in (2M,∞) with the property that R(r ′

δ) = −2/δ.
Notice that

7 − 44M

r
+ 72M2

r2 ≥ 1/10 for any r ≥ M. (4.31)
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Therefore, since w(1) = h1 − ε1w̃, it follows that

− 1

2
(�w(1))(r) ≥ M

10r4 − C1M

r4 1[DM,∞)(r) − C1

M3 1(c0,rδ](r) − C1δ
2M2

r−2M
1[r ′

δ,rδ](r),

(4.32)

for a sufficiently large constant C1, provided that the constant ε1 is sufficiently small.
Using also (4.20)–(4.21) and (4.26),

T [X(1), w(1),m(1)] ≥ (2 − C1ε1)(r − 3M)a1(r)

r4 (E1)
2

+ (2 − C1ε1)a
′
1(r)

(

(1 − p)E2 + pχ(r)E3
)2 + ε1w̃(r)(E3)

2 + M

10r4 φ2

−C1M

r4 1[DM,∞)(r)φ
2 − C1

M3 1(c0,rδ](r)φ2 − C1δ
2M2

r − 2M
1[r ′

δ,rδ](r)φ
2, (4.33)

for a sufficiently large constant C1, provided that the constant ε1 is sufficiently small.
The remaining contributions 2Pμn

μ
0 and 2Pμk

μ
0 in the divergence identity (4.18)

cannot be estimated effectively at this time. We will prove partial estimates for these
terms in Lemma 4.2 below, after we construct the second multiplier (X(2), w(2),m(2))

and show how to fix some of the parameters.

4.1.2 Analysis in a Neighborhood of the Horizon

In a small neighborhood of the horizon we need to use the redshift effect. For this we
define the second multiplier (X(2), w(2),m(2)) by the formulas

X(2) := f2(r)∂2 + g2(r)∂3, f2(r) := −ε2a2(r), g2(r) := ε2a2(r)(1 − ε2),

w(2)(r) := −2ε2a2(r)/r, m(2)2 := ε2M
−2γ (r), m(2)3 := ε2M

−2γ (r)

(4.34)

where ε2 is a small positive constant (recall that δ = ε2
2 M

−2),

a2(r) :=
{

M−3(9M/4 − r)3 if r ≤ 9M/4,

0 if r ≥ 9M/4,
(4.35)

and γ : [c0,∞) → [0, 1] is a suitable function (to be fixed later) supported in
[c0, 17M/8] and satisfying γ (2M) = 1/2.

Notice that χ = 1 in the support of the functions a2 and γ . As before, we calculate

Qμν
(X(2))πμν + w(2)EμE

μ =[

K 11
(2)(E1)

2 + K 22
(2)(E2)

2 + K 33
(2)(E3)

2 + 2K 23
(2)E2E3

]

,
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where

K 11
(2) = − f ′

2(r)

r2 + w(2)(r)g11 = ε2
ra′

2 − 2a2

r3 ,

K 22
(2) = − f2(r)(2r − 2M) + f ′

2(r)

r2 + w2(r)g22 = ε2

[

− r − 2M

r
a′

2 + 2M

r2 a2

]

,

K 33
(2) = − f2(r)∂2g33 + 2g′

2(r)g
23 − f ′

2(r)g
33 − 2r f2(r)g33

r2 + w2(r)g33

= ε2

[

− r − 2M + 4ε2M

r
a′

2 + 2M

r2 a2

]

,

K 23
(2) = −2Mr f2(r)χ ′(r) − 2M f2(r)χ(r) + g′

2(r)

r2 + w2(r)g23

= −ε2

[

− (1 − ε2)(r − 2M)

r
a′

2(r) + 2M

r2 a2(r)
]

.

Using the explicit formula (4.35), it is easy to see that

Qμν
(X(2))πμν + w(2)EμE

μ ≥ 1(c0,9M/4)(r)(9M/4 − r)2M−3

×
[

C−1
2 ε2(E2 − E3)

2 + C−1
2 ε2

2(E3)
2 − C2ε2(E1)

2/r2
]

, (4.36)

for a sufficiently large constant C2, provided that ε2 is sufficiently small and c0 is
sufficiently close to 2M . Moreover, using the definitions and (4.3)–(4.4),

φmμ

(2)Eμ + 1

2
φ2(Dμm(2)μ − �w(2)

)

= ε2γ

M2 φ(E2 − E3) + ε2

2
φ2

( 1

M2 γ ′ + 2

rM2 γ + 2�(a2/r)
)

.

Therefore, recalling also that γ ∈ [0, 1] and completing the square,

T [X(2), w(2),m(2)] ≥ ε2

2M2 φ2γ ′ + M−1ε4
21(c0,17M/8)(r)

[

(E2)
2 + (E3)

2]

−C2ε21(c0,9M/4)(r)
[

M−1(E1)
2/r2 + M−3φ2], (4.37)

provided that ε2 is sufficiently small and c0 is sufficiently close to 2M .
We examine now (4.33) and (4.37) and fix the constant ε1, ε2 and the function

γ such that the sum T [X(1), w(1),m(1)] + T [X(2), w(2),m(2)] is nonnegative when
r ∈ (c0, DM]. For the positivity of the zero order term we need that

M

20r4 + ε2γ
′(r)

2M2 ≥ C1

M3 1(c0,rδ](r) + C1δ
2M2

r − 2M
1[r ′

δ,rδ](r) + C2ε2

M3 1(c0,9M/4)(r).

(4.38)
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Recall that δ = ε2
2 M

−2. The point is that

∫ ∞

c0

C1

M3 1(c0,rδ](r) + C1δ
2M2

r − 2M
1[r ′

δ,rδ](r) dr ≤ C2
1ε2

2

M2 ,

provided that 2M − c0 ≤ ε2
2 . This is easy to see if one recalls the definitions of rδ

and r ′
δ . Therefore, assuming that ε2 is sufficiently small, one can fix the function γ to

achieve the inequality (4.38), while still preserving the other properties of γ , namely

γ : [c0,∞) → [0, 1] is supported in [c0, 17M/8] and satisfies γ (2M) = 1/2.

(4.39)

Indeed, the function γ can be chosen to increase on the interval (c0, rδ] and then
decrease for r ≥ 2rδ − 2M in a way to satisfy both (4.38) and (4.39).

Notice that the sum of the first order terms in T [X(1), w(1),m(1)] + T [X(2), w(2),

m(2)] is nonnegative and nondegenerate if we simply have ε1, ε2 > 0 sufficiently
small. Therefore, one can fix the parameters ε1, ε2 and the function γ in such a way
that

T [X(1), w(1),m(1)] + T [X(2), w(2),m(2)]
≥ ε3

[ (r − 3M)2

r3 (E1/r)
2 + M2

r3 (E2)
2 + M2(r − 3M)2

r5
(E3)

2 + M

r4 φ2
]

− ε−1
3

M

r4 1[DM,∞)(r)φ
2, (4.40)

for a constant ε3 > 0 sufficiently small (relative to ε1 and ε2). The parameter D will
be fixed later, sufficiently large depending on ε3.

We can prove now some partial bounds on the remaining terms

2(P(1)μ + P(2)μ)nμ
0 , 2(P(1)μ + P(2)μ)kμ

0 ,

in the divergence identity (4.18), where P(k) := P[X(k), w(k),m(k)], k ∈ {1, 2}.
Lemma 4.2 There is a sufficiently small absolute constant ε3 such that

2(P(1)μ + P(2)μ)kμ ≥ ε3
[

(E1/r)
2 + (E2)

2(2 − c/M) + M−2φ2] − ε−1
3 (E3)

2.

(4.41)

along N c[t1,t2]. Also

2(P(1)μ + P(2)μ)nμ ≥ −ε−1
3

[

˜F0 + 1[8M,2DM](r)(E3)
2]

−χ≥8M (r)(1 − p)

r2 ∂2(rφ
2) + ε3(E2)

21(c0,17M/8](r),

(4.42)
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and

2(P(1)μ + P(2)μ)nμ ≤ ε−1
3

[

˜F0 + 1[8M,2DM](r)(E3)
2 + (E2)

21(c0,17M/8](r)
]

−χ≥8M (r)(1 − p)

r2 ∂2(rφ
2), (4.43)

where

˜F0 = (E1/r)
2 + (Lφ)2 + M2r−2[(E2)

2|1 − p| + (E2
3)

] + r−2φ2. (4.44)

Proof We start with the term 2(P(1)μ + P(2)μ)kμ,

2(P(1)μ + P(2)μ)kμ = 2kμQμν

(

Xν
(1) + Xν

(2)

) + (w(1) + w(2))φEμk
μ

−1

2
φ2kμ(Dμw(1) + Dμw(2)) + 1

2
kμm(2)μφ2.

When r = c ∈ (c0, 2M] and assuming that 2M − c is sufficiently small, we use the
definitions, the identity m(2)3(2M) ≥ ε2/(2M2), and the identities (4.8). We have

2kμQμν

(

Xν
(1) + Xν

(2)

) ≥ ε3
[

(E1/r)
2 + (E2)

2(2 − c/M)
]

− ε−1
3 (E3)

2 − ε−1
3 |E2E3|(2 − c/M),

∣

∣(w(1) + w(2))φEμk
μ
∣

∣ ≤ ε−1
3 M−1|φ|[(2 − c/M)|E2| + |E3|

]

,

and

−1

2
φ2kμ(Dμw(1) + Dμw(2)) + 1

2
kμm(2)μφ2 ≥ ε3M

−2φ2,

provided that ε3 is sufficiently small. The bound (4.41) follows by further reducing ε3
and assuming that 2M − c is sufficiently small.

We consider now the term 2(P(1)μ + P(2)μ)nμ,

2(P(1)μ + P(2)μ)nμ = 2nμQμν

(

Xν
(1) + Xν

(2)

) + (w(1) + w(2))φEμn
μ

−1

2
φ2nμ(Dμw(1) + Dμw(2)) + 1

2
nμm(2)μφ2.

Using the definitions and the identities (4.7) we estimate

∣

∣φ2nμ(Dμw(1) + Dμw(2))
∣

∣ + ∣

∣nμm(2)μφ2
∣

∣ ≤ ε−1
3 M2r−4φ2. (4.45)
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Moreover, with ˜F0 as in (4.44), we write

2nμQμνX
ν
(1) + w(1)φEμn

μ

= (E1)
2 g1(r)

r2 + (E2)
2[g1(r)(1 − p) − 2 f1(r)g23]

+(E3)
2[−g1(r)g33] + 2E2E3[− f1(r)g33] + w1φ(−g33E3 − g23E2)

≥ −(10ε3)
−1

˜F0 + [

(E2)
2(1 − p) + (E3)

2(1 − p)−1

+2E2E3a1 + φE3w1(1 − p)−1]χ≥8M (r).

Using the definitions and the formula (4.29),

|a1 − 1|χ≥8M (r) � Mr−11[8M,2DM](r) + M2r−21[8M,∞)(r),

|w1 − 2(1 − p)/r |χ≥8M (r) � Mr−21[8M,2DM](r) + M2r−31[8M,∞)(r).

Therefore

2nμQμνX
ν
(1) + w(1)φEμn

μ

≥ −(9ε3)
−1[

˜F0 + 1[8M,2DM](r)(E3)
2] −

[φ2

r2 + 2φ

r
E2

]

χ≥8M (r)(1 − p)

≥ −(8ε3)
−1[

˜F0 + 1[8M,2DM](r)(E3)
2] − χ≥8M (r)(1 − p)

r2 ∂2(rφ
2).

Similarly, using also the observation that − f2(2M) � 1,

2nμQμνX
ν
(2) + w(2)φEμn

μ ≥ −(8ε3)
−1

˜F0 + ε3(E2)
21(c0,17M/8](r).

The bound (4.42) follows using the last two inequalities and (4.45).
The proof of the upper bound (4.43) follows in a similar way. �

Remark 4.3 At this point one can recover the energy estimate of Marzuola–Metcalfe–
Tataru–Tohaneanu [19, Theorem1.2],

Ec0(t2) + Bc0(t1, t2) ≤ CEc0(t1),

where

Ec0(t) :=
∫

�
c0
t

[

(E1/r)
2 + (E2)

2 + (E2
3)

]

dμt ,

Bc0(t1, t2) :=
∫

Dc0[t1,t2]

[ (r − 3M)2

r3 (E1/r)
2 + M2

r3 (E2)
2

+M2(r − 3M)2

r5
(E3)

2 + M

r4 φ2
]

dμ.
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To see this, we simply set D := ∞ and add in a very large multiple of the Killing
vector-field ∂3. The spacetime integral Bc0(t1, t2) is generated by the right-hand side
of (4.40) (some of the powers of r in the spacetime integral could in fact be improved
by reexamining the proof). The formulas for the nondegenerate energies Ec0(t) follow
from the bounds (4.42) and (4.43), the identity (4.7), and the Hardy inequality in
Lemma A.1 (i). The contribution of Pμkμ along N c[t1,t2] becomes nonnegative, in view
of (4.8), and can be neglected.

4.2 Outgoing Energies

To prove the stronger estimates in Theorem 4.1 we consider now a multiplier
(X(3), w(3),m(3)) of the form

X(3) = f3∂2 +
( f3

1 − p
+ g3

)

∂3, w(3) = 2 f3
r

,

m(3)1 = m(3)4 = 0, m(3)2 = 2h3

r(1 − p)
, m(3)3 = −2h3

r
,

(4.46)

where f3, g′
3, h3 are smooth functions supported in {r ≥ 8M}, which depend only on

r . The function g3 is not supported in {r ≥ 8M}, it is in fact a very large constant in
the region r ∈ [c, 10M].

As before, using (4.6), we calculate

Qμν
(X(3))πμν + w(3)EμE

μ =[

K 11
(3)(E1)

2 + K 22
(3)(E2)

2 + K 33
(3)(E3)

2 + 2K 23
(3)E2E3

]

,

where

K 11
(3) = − f ′

3(r)

r2 + w(3)(r)g11 = 2 f3 − r f ′
3

r3 ,

K 22
(3) = − f3(r)(2r − 2M) + f ′

3(r)

r2 + w(3)(r)g22 = (1 − p) f ′
3 − 2M f3

r2 ,

K 33
(3) = − f3(r)∂2g33− f ′

3(r)g
33− 2 f3(r)g33

r
+w(3)(r)g33 = f ′

3

1 − p
− 2M f3
r2(1 − p)2 ,

K 23
(3) = (1 − p)

( f3
1 − p

+ g3

)′ = f ′
3 − 2M f3

r2(1 − p)
+ (1 − p)g′

3.

Moreover

φmμ

(3)Eμ + 1

2
φ2(Dμm(3)μ − �w(3)

)

= 2h3
φ

r

(

E2 + E3

1 − p

)

+ φ2
[h′

3

r
+ h3

r2 − (1 − p) f ′′
3

r
− 2M f ′

3

r3 + 2M f3
r4

]

.
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Set

H3 := (1 − p) f ′
3 − 2M f3

r2 + (1 − p)2g′
3,

h3 := H3 · (1 − α̃),

(4.47)

where α̃ = (2 − α)/10 > 0. The identities above show that

T [X(3), w(3),m(3)] = (E1)
2

r2

2 f3 − r f ′
3

r
+ H3

(

E2 + E3

1 − p

)2

− (1 − p)2g′
3

[

(E2)
2 + (E3)

2

(1 − p)2

]

+ 2h3
φ

r

(

E2 + E3

1 − p

)

+φ2
[h3

r2 + h′
3

r
− (1 − p) f ′′

3

r
− 2M f ′

3

r3 + 2M f3
r4

]

.

After completing the square this becomes

T [X(3), w(3),m(3)] = (E1)
2

r2

2 f3 − r f ′
3

r
+ H3

(

Lφ + (1 − α̃)φ

r

)2

− (1 − p)2g′
3

[

(E2)
2 + (E3)

2

(1 − p)2

]

+φ2
[ (̃α − α̃2)H3 − α̃r H ′

3

r2 + 6M f3
r4

− 2M f ′
3

r3 + (1 − p)2g′′
3

r
+ 4M(1 − p)g′

3

r3

]

. (4.48)

Using (4.7) we calculate

2P(3)μn
μ = 2QμνX

ν
(3)n

μ + w(3)φEμn
μ − 1

2
φ2nμDμw(3) + 1

2
nμm(3)μφ2

= (E1)
2

r2

[ f3
1 − p

+ g3

]

+ (E2)
2[ f3 + g3(1 − p)

]

+ (E3)
2
[ f3
(1 − p)2 + g3(1 − p2χ2)

1 − p

]

+ 2E2E3
f3

1 − p
+ 2 f3

r(1 − p)
φE3 + m(3)3

2(1 − p)
φ2

= (E1)
2

r2

[ f3
1 − p

+ g3

]

+ f3
[

E2 + E3

1 − p
+ φ

r

]2 − f3
φ2

r2

− 2 f3E2
φ

r
+ g3(1 − p)

[

(E2)
2 + (E3)

2(1 − p2χ2)

(1 − p)2

]

− h3

r(1 − p)
φ2.
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Therefore

2P(3)μn
μ = (E1)

2

r2

[ f3
1 − p

+ g3

]

+ f3
[

Lφ + φ

r

]2

+ g3(1 − p)
[

(E2)
2 + (E3)

2(1 − p2χ2)

(1 − p)2

]

− 1

r2 ∂2
[

f3rφ
2] + φ2

[ α̃H3

r(1 − p)
+ 2M f3

r3(1 − p)
− (1 − p)g′

3

r

]

. (4.49)

4.3 Proof of the Theorem 4.1

We compare now the expressions (4.48) and (4.49) with the lower bounds in (4.40)
and (4.42). We would like to fix the functions f3 and g3 and the constant D in such
a way that the sum of the corresponding expressions is bounded from below. More
precisely, the sum of the spacetime integrals is pointwise bounded from below, while
the sum of the integrals on the surfaces �c

t is bounded from below after integration
by parts and the use of a simple Hardy-type inequality.

One should think of the functions f3 and g3 in the following way: the function
f3 vanishes when r ≤ 8M and behaves like rα as r → ∞. On the other hand the
function g3 is an extremely large constant when r ≤ C4M , for some large constant C4
but vanishes as r → ∞ at a rate of rα−2. More precisely, we are looking for functions
f3, g3 of the form

f3(r) = ε4χ≥8M (r)eβ(r), g3(r) =
∫ ∞

r
ρ(s) ds, (4.50)

where ε4 = ε2
3 is a small constant,C4 = C4(α) ≥ ε−4

4 α−1(2−α)−1 is a large constant
(to be fixed), and β, ρ : (c,∞) → [0,∞) are smooth functions satisfying

β(r) ∈ [−10, 0] and Mβ ′(r) ∈ [1/10, 10] if r ∈ (c, 8M],
max

( α

100r
,

4M

r2 + 1

r
1[8M,C4M](r)

)

≤ β ′(r) ≤ 2

r
if r ∈ [8M,∞),

ρ(r) = 0 and g3(r) ∈ [C4/2, 2C4] if r ≤ C4M,

ρ(r) ≤ ε4

100
β ′(r)eβ(r) and ρ′(r) ≤ ε4M

100r3 e
β(r) if r ≥ C4M,

eβM2

r2 ≤ g3(r) ≤ C10
4 eβM2

r2 if r ≥ C4M,

(1 − 2α̃)H3(r) − r H ′
3(r) ≥ 0 if r ∈ [16M,∞).

(4.51)
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A specific choice satisfying these conditions is given in (4.58)–(4.59). As a result of
these conditions, we clearly have

g′
3 = −ρ,

H3 ≥ ε4

100
eββ ′χ≥8M , (4.52)

eβ(r) ∈ [r/(100M), r2/M2] for r ∈ (c,C4M].

Let

(X, w,m) := (X(1), w(1),m(1)) + (X(2), w(2),m(2)) + (X(3), w(3),m(3)),

T [X, w,m] := T [X(1), w(1),m(1)] + T [X(2), w(2),m(2)] + T [X(3), w(3),m(3)],
Pμ := P(1)μ + P(2)μ + P(3)μ.

Our next lemma contains the main bounds on the terms in the divergence identity
(4.18).

Lemma 4.4 Assume that the conditions (4.51) hold and that C4 sufficiently large
(depending on ε4). Then there is an absolute constant ε5 = ε5(α) > 0 sufficiently
small such that

T [X, w,m] ≥ ε5

[(2

r
eβ − β ′eβ + 100

r

) (r − 3M)2

r2

(E1)
2

r2 + eββ ′(Lφ)2

+
(

ρ + M2

r3

)

(E2)
2 +

(

ρ + M2(r − 3M)2

r5

)

(E3)
2 + eββ ′

r2 φ2
]

.

(4.53)

Moreover, for any t ∈ [0, T ],
∫

�c
t

2Pμn
μ
0 dμt ≥ ε5

∫

�c
t

eβ (E1)
2

r2 + eβ(Lφ)2 + g3
[

(E2)
2 + (E3)

2] + eββ ′

r
φ2 dμt

(4.54)

and

∫

�c
t

2Pμn
μ
0 dμt ≤ ε−1

5

∫

�c
t

eβ (E1)
2

r2 +eβ(Lφ)2+g3
[

(E2)
2+(E3)

2]+ eββ ′

r
φ2 dμt .

(4.55)

Finally,

2Pμk
μ ≥ ε5

[ (E1)
2

M2 + (E2)
2 2M − c

M
+ (E3)

2 + φ2

M2

]

along N c[t1,t2], (4.56)
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Proof We start with the proof of (4.53). Using the definitions we have

2 f3 − r f ′
3

r
= ε4e

β
[

(2/r − β ′)χ≥8M − χ ′≥8M

]

,

6M f3
r4 − 2M f ′

3

r3 + (1− p)2g′′
3

r
+ 4M(1− p)g′

3

r3 ≥ ε4M

100r4 e
βχ≥8M− 2ε4M

r3 eβχ ′≥8M .

(4.57)

We combine the formulas (4.40) and (4.48) to estimate

T [X, w,m] ≥ I1 + I2 + I ′
2 + I3,

where

I1 := (E1)
2

r2

2 f3 − r f ′
3

r
+ ε3

(E1)
2

r2

(r − 3M)2

r3 ,

I2 := H3

(

Lφ + (1 − α̃)φ

r

)2
,

I ′
2 := −(1 − p)2g′

3

[

(E2)
2 + (E3)

2

(1 − p)2

]

+ ε3

[M2

r3 (E2)
2 + M2(r − 3M)2

r5
(E3)

2
]

,

I3 := φ2
[ (̃α − α̃2)H3 − α̃r H ′

3

r2 + ε4M

100r4 e
βχ≥8M

−2ε4M

r3 eβχ ′≥8M + ε3M

r4 − ε−1
3

M

r4 1[DM,∞)(r)
]

.

Using (4.51), (4.52), and (4.57) it is easy to see that, for some sufficiently small
constant ε5 (which may depend on α),

I1 ≥ ε5

[

eβ
(2

r
− β ′)χ≥8M + (r − 3M)2

r3

] (E1)
2

r2 ,

I2 + I ′
2 ≥ ε5e

ββ ′χ≥8M

(

Lφ + (1 − α̃)φ

r

)2 + ε5

(

ρ + M2

r3

)

(E2)
2

+ ε5

(

ρ + M2(r − 3M)2

r5

)

(E3)
2,

I3 ≥ ε5

(M

r4 e
βχ≥8M + eββ ′

r2

)

φ2,

provided that ε4 is fixed (sufficiently small relative to ε3), and D is sufficiently large
depending on ε4 such that eβ(DM) ≥ ε−4

4 ). The bound (4.53) follows.
To prove (4.54) we combine now the formulas (4.49), (4.42), and (4.44) to estimate

2Pμn
μ ≥ I4 + I5 + I6 − 1

r2 ∂2
[

f3rφ
2] − χ≥8M (r)(1 − p)

r2 ∂2(rφ
2),
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where

I4 := (E1)
2

r2

[ f3
1 − p

+ g3

]

− ε−1
3

(E1)
2

r2 ,

I5 := f3
(

Lφ + φ

r

)2 + g3(1 − p)
[

(E2)
2 + (E3)

2(1 − p2χ2)

(1 − p)2

]

+ ε3(E2)
21(c0,17M/8](r) − ε−1

3

[

(Lφ)2 + M2

r2

[

(E2)
2|1 − p| + (E2

3)
]

]

,

I6 := φ2
[ α̃F3

r(1 − p)
+ 2M f3

r3(1 − p)
− (1 − p)g′

3

r

]

− ε−1
3

1

r2 φ2.

Using (4.51), (4.52), and (4.57) it follows that

I4 ≥ ε5e
β (E1)

2

r2 ,

I5 + I6 ≥ ε5e
β
(

Lφ + φ

r

)2 + [g3(1 − p) + ε31(c0,17M/8](r)] (E2)
2

2
+ ε5g3(E3)

2

+ ε4
α̃eββ ′

1000r
φ2 − 10ε−1

3
1

r2 φ2,

provided that C4 is sufficiently large (relative to ε4) and |c0 − 2M | ≤ C−10
4 is suffi-

ciently small. Using the Hardy inequalities in Lemma A.1 (i) and (ii) it is easy to see
that the integral on the negative term −10ε−1

3 r−2φ2 in I6 along �c
t can be absorbed

by the integrals of the positive terms ε4
α̃eββ ′
1000r φ2 and g3(1 − p) (E2)

2

2 , provided that the
constant C4 is sufficiently large.

Moreover, notice that for any t ∈ [0, T ]
∫

�c
t

2Pμn
μ
0 dμt = C

∫

S2

∫ ∞

c
2Pμn

μr2(sin θ) drdθ.

After integration by parts in r it follows that

∣

∣

∣

∫

S2

∫ ∞

c

1

r2 ∂2
[

f3rφ
2]r2(sin θ) drdθ

∣

∣

∣

+
∣

∣

∣

∫

S2

∫ ∞

c

χ≥8M (r)(1 − p)

r2 ∂2(rφ
2)r2(sin θ) drdθ

∣

∣

∣ ≤ ε−1
4

∫

�c
t

1

r2 φ2 dμt ,

so these terms can also be absorbed. The desired bound (4.54) follows.
The proof of (4.55) is similar, starting from the inequality (4.43) and the identity

(4.49). To prove (4.56) we start from the bound (4.41),

2(P(1)μ + P(2)μ)kμ ≥ ε3
[

(E1/r)
2 + (E2)

2(2 − c/M) + M−2φ2] − ε−1
3 (E3)

2.
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The identity (4.8) shows that

2P(3)μk
μ = 2kμQμνX

ν
(3) = 2g3(c)p(E3)

2 + 2g3(c)(1 − p)E2E3.

The lower bound (4.56) follows since g3(c) ∈ [C4/2, 2C4], provided that C4 is suffi-
ciently large and |c − 2M |/M is sufficiently small. �
Proof of Theorem 4.1 We can now complete the proof of Theorem 4.1, using Lemma
4.4 and the divergence identity. We have to fix functions β and ρ satisfying (4.51).
With α as in the statement of the theorem, we define first the smooth function β by
setting β(8M) = 0 and

β ′(r) =
(4M

r2 + 1

r

)

(

1 − χ≥C4
4 M

(r)
) + α

r
χ≥C4

4 M
(r). (4.58)

This choice clearly satisfies the first two conditions in (4.51). Then we define

ρ(r) = δM−1
[

χ≥C4M (r) + χ≥4C4
4 M

(r)
(

C7
4e

β(r) M
3

r3 − 1
)]

, (4.59)

where δ ∈ [10−4C−3
4 , 104C−3

4 ] is such that
∫ ∞
C4M

ρ(s) ds = C4.
Notice that

eβ(r) ≈ r

M
if r ≤ 10C4

4 M and eβ(r) ≈ C4
4

( r

C4
4 M

)α

if r ≥ (1/10)C4
4 M.

(4.60)

The other bounds in (4.51) follow easily. Moreover, the definitions show that

eβ(r) ≈C5

rα

Mα
, β ′(r) ≈C5

1

r
,

(2

r
− β ′(r)

)

≈C5

1

r
,

ρ(r) ≈C5 χ≥C4M (r)
M2−α

r3−α
, g3(r) ≈C5

rα−2

Mα−2 .

for some large constant C5, where A ≈C5 B means A ∈ [C−1
5 B,C5B]. The desired

conclusion of the theorem follows from Lemma 4.4 and the divergence identity. �

5 Proof of Theorem 1.7

In this section we prove Theorem 1.7. We still use some of the ideas from the previous
section. We use the more complicated divergence identities (2.14) and (2.15),

2DμPμ = 2Xν Jν + Qμν
(X)πμν + w(EαE

α + FαF
α + MαM

α)

+ (φmμDμφ + ψm′μDμψ) + 1

2
φ2(Dμmμ − �w)

+1

2
ψ2(Dμm′

μ − �w) + w(φNφ + ψNψ), (5.1)

123



1 Page 46 of 78 A. D. Ionescu, S. Klainerman

where

Eμ = Dμφ+ψ A−1DμB, Fμ = Dμψ−φA−1DμB, Mμ = φDμB−ψDμA

A
,

(5.2)

Qμν := EμEν + FμFν + MμMν − (1/2)gμν(EαE
α + FαF

α + MαM
α), (5.3)

Pμ = Pμ[X, w,m,m′] = QμνX
ν + 1

2
w(φEμ + ψFμ) − 1

4
Dμw(φ2 + ψ2)

+ 1

4
(mμφ2 + m′

μψ2), (5.4)

and

Jν = 2DνBMμEμ − 2Dν AMμFμ

A
+ NφEν + Nψ Fν. (5.5)

Recall (see (1.9)) that

A= �2(sin θ)2

q2 , B = −
[

2aM(3 cos θ−(cos θ)3)+ 2a3M(sin θ)4 cos θ

q2

]

. (5.6)

These formulas show that

A−1D1B = 6aMq2 sin θ

�2 − 2a3M[4 sin θq2 − 5(sin θ)3q2 + 2a2(sin θ)3(cos θ)2]
�2q2 ,

A−1D2B = 4ra3M(sin θ)2 cos θ

q2�2 ,

A−1D1A = 2 cos θ

sin θ
− 2a2 sin θ cos θ

�2 − 2a2 sin θ cos θ

q2 ,

A−1D2A = 4r(r2 + a2) − a2(sin θ)2(2r − 2M)

�2 − 2r

q2 .

(5.7)

Notice that

r−1
∣

∣

∣

D1B

A

∣

∣

∣ +
∣

∣

∣

D2B

A

∣

∣

∣ + r−1
∣

∣

∣

D1A

A
− 2 cos θ

sin θ

∣

∣

∣ +
∣

∣

∣

D2A

A
− 2

r

∣

∣

∣ � aMr−3. (5.8)

and

|E1 − D1φ|
r

+ |E2 − D2φ| + |E3 − D3φ| � aMr−3(|φ| + |ψ |),
|F1 − D1ψ |

r
+ |F2 − D2ψ | + |F3 − D3ψ | � aMr−3(|φ| + |ψ |),

∣

∣

∣

M1

r
+ 2 cos θ

r sin θ
ψ

∣

∣

∣ +
∣

∣

∣M2 + 2ψ

r

∣

∣

∣ + |M3| � aMr−3(|φ| + |ψ |).

(5.9)
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Letting 0gαβ denote the Schwarzschild components of the metric, see (4.2), and
gαβ the Kerr components, we notice that

g11 = 0g11 + O(a2r−4), g22 = 0g22 + O(a2r−2),

g23 = 0g23 + O(a2M2r−4), g33 = 0g33 + O(a2r−2).
(5.10)

We notice that the term J1 in (5.5) is singular when θ = 0, due to the fraction
D1A/A. To eliminate this singularity we work with a modification of the 1-form P ,
namely

˜Pμ = ˜Pμ[X, w,m,m′] := Pμ − XνDν A

A

DμA

A
ψ2. (5.11)

Then

2Dμ
˜Pμ = 2DμPμ − 4

XνDν A

A

DμA

A
ψDμψ − 2Dμ

[ XνDν A

A

DμA

A

]

ψ2 =
5

∑

j=1

L j ,

(5.12)

where

L1 = L1[X, w,m,m′] := Qμν
(X)πμν + w(EαE

α + FαF
α + MαM

α),

L2 = L2[X, w,m,m′] := φmμDμφ + ψm′μDμψ,

L3 = L3[X, w,m,m′] := 1

2
φ2(Dμmμ − �w) + 1

2
ψ2(Dμm′

μ − �w),

L4 = L4[X, w,m,m′] := −2Dμ
[ XνDν A

A

DμA

A

]

ψ2,

L5 = L5[X, w,m,m′] := 2Xν Jν − 4
XνDν A

A

DμA

A
ψDμψ + w(φNφ + ψNψ).

(5.13)

The terms L1, L2, L3 are similar to the corresponding terms we estimated in the
proof of Theorem 4.1. The main new terms are L4 and the quadratic part of L5. We
describe these terms below.

Lemma 5.1 Assuming that X = f ∂2 + g∂3, where f may depend only on r, we have

L4 = −8
g22

r
∂2

[

r−1 f
]

ψ2 + O(a2r−5)
[| f | + r | f ′|]ψ2 (5.14)

and

|L5| � aM

r4 | f |(|φ| + |ψ |)
{

∑

Y∈{E,F}

( |Y1|
r

+ M

r
|Y2| + M

r
|Y3|

)

+ 1

r

(|φ| + |ψ |)
}

+ |Nφ |∣∣2 f E2 + 2gE3 + wφ
∣

∣ + |Nψ |∣∣2 f F2 + 2gF3 + wψ
∣

∣. (5.15)
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Proof We rewrite

L4 = −2Dμ
[ XνDν A

A

DμA

A

]

ψ2 = −2Dμ
[ fD2A

A

DμA

A

]

ψ2.

In view of (1.10) and (5.7),

∣

∣

∣

fD2A

A
Dμ

[DμA

A

]∣

∣

∣ =
∣

∣

∣

fD2A

A

DμBDμB

A2

∣

∣

∣ � a2M2

r7 | f |.

Also

∣

∣

∣g11∂1

[ f ∂2A

A

]∂1A

A

∣

∣

∣ � a2

r5
| f |.

and

∣

∣

∣g22∂2

[ f ∂2A

A

]∂2A

A
− g22∂2

[2 f

r

]2

r

∣

∣

∣ � a2

r5
| f | + a2

r4 | f ′|.

The desired formula (5.14) follows.
We estimate now the term L5. We start by rewriting

L5 = 2Xν
[2DνBMμEμ − 2Dν AMμFμ

A

]

− 4
XνDν A

A

DμA

A
ψDμψ

+Nφ

(

2XνEν + wφ
) + Nψ

(

2XνFν + wψ
)

.

Using (5.7) and (5.2), we estimate

∣

∣

∣2Xν 2DνBMμEμ

A

∣

∣

∣ � a2M

r5
| f |(|φ| + |ψ |)[|E1/r | + Mr−1|E2| + Mr−1|E3|

]

,

and

∣

∣

∣2Xν
[−2Dν AMμFμ

A

]

− 4
XνDν A

A

DμA

A
ψDμψ

∣

∣

∣

� aM

r4 | f ||φ|
[

|F1/r | + M

r
|F2| + M

r
|F3| + 1

r
|ψ |

]

.

The desired formula (5.15) follows. �
As in the proof of Theorem 4.1, our goal is to choose suitable multipliers

(X, w,m,m′) in a such a way that the quadratic terms in the divergence formula

∫

�c
t1

˜Pμn
μ
0 dμt1 =

∫

�c
t2

˜Pμn
μ
0 dμt2 +

∫

N c[t1,t2]
˜Pμk

μ
0 dμc +

∫

Dc[t1,t2]
Dμ

˜Pμ dμ

(5.16)
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are nonegative, where t1, t2 ∈ [0, T ], c ∈ (c0, rH], n0 := n/|g33|1/2, k0 := k/|g22|1/2,
and the integration is with respect to the natural measures induced by the metric g.

5.1 The Multipliers (X(k), w(k),m(k),m′
(k)), k ∈ {1, 2, 3, 4}

In this subsection we introduce the main multipliers. The multipliers (X(k), w(k),

m(k),m′
(k)), k ∈ {1, 2, 3} are analogous to the multipliers (X(k), w(k),m(k)), k ∈

{1, 2, 3}, used in the analysis of the wave equation in Schwarzschild spacetime in the
previous section. On the other hand, the multiplier (X(4), w(4),m(4),m′

(4)), which is
supported in a small region close to the trapped set, is new and is used mostly to control
the contribution of the new term L4 in (5.13).

5.1.1 Analysis Around the Trapped Set

As in the previous section, we start by constructing the multiplier (X(1), w(1),m(1),

m′
(1)), which is relevant in a neighborhood of the trapped set. For now our main concern

is the positivity of the spacetime integral Dμ
˜Pμ; as in the proof of Theorem 4.1, the

positivity of the surfaces integrals along �c
t and N c[t1,t2] can only be addressed after

the other multipliers are introduced.
It is important to recall that we are in the axially symmetric case. Therefore the

relevant trapped null geodesics are still confined to a codimension 1 set. More precisely,
recalling that a � M , it is easy to see that the equation r3 − 3Mr2 + a2r + Ma2 = 0
has a unique solution r∗ ∈ (c0,∞). Moreover, r∗ ∈ [3M − a2/M, 3M] and

∣

∣r3 − 3Mr2 + a2r + Ma2 − (r − r∗)r2
∣

∣ � (a2/M)r |r − r∗| if r ∈ (c0,∞).

(5.17)

We start by setting, as before,

X(1) := f1(r)∂2 + g1(r)∂3, f1(r) := a1(r)

r2 , g1(r) := a1(r)χ(r)2M

r
+ 1,

w(1)(r, θ) := f ′
1(r) + f1(r)∂r log

(

�2/) − ε1w̃(r),

w̃(r) := M2(r − 33M/16)3(r − r∗)2r−81[33M/16,∞)(r),

m(1) = m′
(1) := 0,

(5.18)

where a1 : (0,∞) → R is a smooth function to be fixed, limr→∞ a1(r) = 1, ε1 ∈
(0, 1] is a small constant and �2 = (r2 + a2)2 − a2(sin θ)2 is as in (1.5).

Let

L j
(1) := L j [X(1), w(1),m(1),m

′
(1)],
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for j ∈ {1, 2, 3, 4, 5}, see (5.13). Notice that

L2
(1) = 0, L3

(1) = −1

2
�w(1)(φ

2 + ψ2). (5.19)

Using (A.15),

L1
(1) =

∑

Y∈{E,F,M}

[

K 11
(1)(Y1)

2 + K 22
(1)(Y2)

2 + K 33
(1)(Y3)

2 + 2K 23
(1)Y2Y3

]

,

where

K 11
(1) = − f ′

1(r)

q2 + w(1)(r, θ)g11,

K 22
(1) = − f1(r)(2r − 2M) + f ′

1(r)

q2 + w(1)(r, θ)g22,

K 33
(1) = − f1(r)∂2g33 + 2g′

1(r)g
23 − f ′

1(r)g
33 − 2r f1(r)g33

q2 + w(1)(r, θ)g33,

K 23
(1) = −2Mr f1(r)χ ′(r) − 2M f1(r)χ(r) + g′

1(r)

q2 + w(1)(r, θ)g23.

Simple calculations, using also (A.6), show that

∂r log
(

�2/) = ∂r�
2 − �2∂r

�2 = 2(r2 + a2)(r3 − 3Mr2 + a2r + Ma2)

�2 ,

g33 = − �2

q2
+ 4M2r2

q2
χ(r)2.

(5.20)

Using also the formulas (4.19) and (A.6) we calculate

K 11
(1) = a1(r)

2(r2 + a2)(r3 − 3Mr2 + a2r + Ma2)

r2q2�2 − ε1w̃(r)g11,

K 22
(1) = 22

q2r2

[

a′
1(r) + a1(r)

−2a2(r2 + a2) + a2(sin θ)2(r2 − 3Mr + 2a2)

�2r

]

− ε1w̃(r)g22,

K 33
(1) = 8M2χ(r)2

q2

[

a′
1(r) + a1(r)

−2a2(r2 + a2) + a2(sin θ)2(r2 − 3Mr + 2a2)

�2r

]

− ε1w̃(r)g33,

K 23
(1) = 4Mχ(r)

q2r

[

a′
1(r) + a1(r)

−2a2(r2 + a2) + a2(sin θ)2(r2 − 3Mr + 2a2)

�2r

]

− ε1w̃(r)g23.
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Therefore

L1
(1) ≥

∑

Y∈{E,F,M}

{ (2 − a/M)a1(r)(r − r∗) − ε1r4w̃(r)q−2

r4 (Y1)
2

+
[

(2 − a/M)a′
1(r) − ε1w̃(r)

r4

q2

]( 

r2 Y2 + 2Mχ(r)

r
Y3

)2

+ ε1w̃(r)
�2

q2
(Y3)

2
}

, (5.21)

provided that a is sufficiently small and

a1(r
∗) = 0 and a′

1(r) ≥ a1/2M3/2r−3|a1(r)| for r ∈ (c0,∞). (5.22)

This condition is clearly satisfied by the function a1 defined below.
The important function a1 is defined as in the proof of Theorem 4.1, see (4.22),

R(r) := (r − r∗)(r + 2M) + 6M2 log
( r − rH
r∗ − rH

)

,

a1(r) := r−2δ−1κ(δR(r)) +
[r∗ − 2M

r
− 6M2

r2 log
( r − rH
r∗ − rH

)]

χ≥DM (r),
(5.23)

where δ := ε2
2 M

−2 is a small constant and D � 1 is a large constant. This function
can be analyzed as in section 4, see (4.23)–(4.32), once we observe that

rH = 2M + O(a2/M), r∗ = 3M + O(a2/M), �2 = r4 + O(a2r2).

Recalling also the identities (5.10) and defining

h1(r, θ) := f ′
1(r) + f1(r)∂r log

(

�2/) = 

�2 ∂r
[

a1(r)�
2r−2], (5.24)

we estimate, as in (4.30),

(�h1)(r, θ) = −2M

r4

(

7 − 44M

r
+ 72M2

r2

)

+ O(ar−4) + O(Mr−4)1[DM,∞)(r)

+ M−3O(1)1(c0,rδ](r) + O
( δ2M2

r − rH

)

1[r ′
δ,rδ](r), (5.25)

where rδ and r ′
δ denote the unique numbers in (rH,∞) with the property that R(rδ) =

−1/δ and R(r ′
δ) = −2/δ. We also have, compare with (4.26),

a1(r
∗) = 0 and a′

1(r) ≥ 10M2r−3 for r ∈ (c0,∞), (5.26)

if δ is sufficiently small. In particular, this implies (5.22) if a is sufficiently small
relative to ε2.
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The bound (5.21) shows that

L1
(1) ≥

∑

Y∈{E,F,M}

{ (2 − C1ε1)a1(r)(r − r∗)
r4 (Y1)

2 + ε1w̃(r)(Y3)
2

+ (2 − C1ε1)a
′
1(r)

( 

r2 Y2 + 2Mχ(r)

r
Y3

)2}

, (5.27)

for a sufficiently large constant C1, provided that the constant ε1 is sufficiently small
and a/M ≤ ε1. Moreover, the identities (5.19) and (5.25) show that

L3
(1) ≥ M(1−C1ε1)

r4

(

7− 44M

r
+ 72M2

r2

)

(φ2+ψ2)−C1M

r4 1[DM,∞)(r)(φ
2+ψ2)

− C1

M3 1(c0,rδ](r)(φ2 + ψ2) − C1δ
2M2

r − rH
1[r ′

δ,rδ](r)(φ
2 + ψ)2. (5.28)

The bounds (5.14) and (5.15) and the definitions show that

L2
(1) = 0, (5.29)

L4
(1) = −8

g22

r
∂2

[

r−1 f1
]

ψ2 + O(a2r−5)
[| f1| + r | f ′

1|
]

ψ2

=
[

− 82

q2r4 a
′
1(r) + 8(r2 − 4Mr)

q2r5
a1(r)

]

ψ2

+ O(a2r−5)
[|a1| + |r − rH||a′

1|
]

ψ2. (5.30)

and

|L5
(1)| � aM

r4 | f |(|φ| + |ψ |)
{

∑

Y∈{E,F}

( |Y1|
r

+ M

r
|Y2| + M

r
|Y3|

)

+ 1

r

(|φ| + |ψ |)
}

+ |Nφ |∣∣2 f1E2 + 2g1E3 + w1φ
∣

∣ + |Nψ |∣∣2 f1F2 + 2g1F3 + w1ψ
∣

∣. (5.31)

Using (5.25) and (5.30), together with the inequalities in the last line of (5.9), after
possibly increasing the constant C1 we have

L1
(1) + L4

(1) ≥
∑

Y∈{E,F}

{ (2 − C1ε1)a1(r)(r − r∗)
r4 (Y1)

2 + ε1w̃(r)(Y3)
2

+ (2−C1ε1)a
′
1(r)

( 

r2 Y2+ 2Mχ(r)

r
Y3

)2}+ 8(r2−4Mr)

r7 a1(r)ψ
2

+ (2 − C1ε1)a1(r)(r − r∗)
r4

4(cos θ)2ψ2

(sin θ)2

−C1
a2|a1(r)| + ε1r2|r − rH|a′

1(r)

r5
(φ2 + ψ2). (5.32)
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5.1.2 Analysis in a Neighborhood of the Horizon

In a small neighborhood of the horizon we need to use the redshift effect. As in
subsection 4.1, we define

X(2) := f2(r)∂2 + g2(r)∂3, f2(r) := −ε2a2(r), g2(r) := ε2a2(r)(1 − ε2),

w(2)(r) := −2ε2a2(r)/r, m(2)2 = m(2)3 = m′
(2)2 = m′

(2)3 := ε2M
−2γ (r),

m(2)1 = m(2)4 = m′
(2)1 = m′

(2)4 := 0,

(5.33)

where ε2 is a small positive constant (recall that δ = ε2
2 M

−2),

a2(r) :=
{

M−3(9M/4 − r)3 if r ≤ 9M/4,

0 if r ≥ 9M/4,
(5.34)

and γ : [c0,∞) → [0, 1] is a function supported in [c0, 17M/8], and satisfying
γ (rH) = 1/2 and a property similar to (4.38).

Let L j
(2) := L j [X(2), w(2),m(2),m′

(2)], j ∈ {1, 2, 3, 4, 5}. As in the proof of
Theorem 4.1, see Lemma 4.2 and (4.40), the multipliers (X(1), w(1),m(1),m′

(1)) and
(X(2), w(2),m(2),m′

(2)) can be combined to prove the following:

Lemma 5.2 The constants ε1, ε2 can be fixed small enough such that there is a suffi-
ciently small absolute constant ε3 > 0 with the property that

4
∑

j=1

(

L j
(1) + L j

(2)

)

≥ ε3

∑

Y∈{E,F,M}

[ (r − r∗)2

r3 (Y1/r)
2 + M2

r3 (Y2)
2 + M2(r − r∗)2

r5
(Y3)

2
]

+ ε3
M

r4

(

φ2 + ψ2) − ε−1
3

M

r4 1[DM,∞)(r)
(

φ2 + ψ2) + ˜L, (5.35)

where

˜L := 8(r2 − 4Mr)

r7 a1(r)ψ
2 + (1 − 2C1ε1)1[r∗,∞)(r)

{M

r4

(

7− 44M

r
+ 72M2

r2

)

ψ2

+8a1(r)(r − r∗)
r4

(cos θ)2

(sin θ)2 ψ2 + 2a1(r)(r − r∗)
r4 (F1)

2 + 2a′
1(r)

2

r4 (F2)
2
}

,

(5.36)

123



1 Page 54 of 78 A. D. Ionescu, S. Klainerman

provided that a/M and (rH − c0)/M are very small relative to ε3. Moreover

2(˜P(1)μ + ˜P(2)μ)kμ ≥ ε3

∑

Y∈{E,F,M}

[

(Y1/r)
2+(Y2)

2(rH−c)/M
]+ε3M

−2(φ2+ψ2)

− ε−1
3

[

(E3)
2 + (F3)

2], (5.37)

along N c[t1,t2]. Also

2(˜P(1)μ + ˜P(2)μ)nμ ≥ −ε−1
3

{

ẽ0 + 1[8M,2DM](r)
[

(E3)
2 + (F3)

2]}

− χ≥8M (r)(1 − p)

r2 ∂2(rφ
2 + rψ2)

+ ε3
[

(E2)
2 + (F2)

2]1(c0,17M/8](r), (5.38)

and

2(˜P(1)μ + ˜P(2)μ)nμ ≤ ε−1
3

{

ẽ0 + 1[8M,2DM](r)
[

(E3)
2 + (F3)

2]}

− χ≥8M (r)(1 − p)

r2 ∂2(rφ
2 + rψ2)

+ ε−1
3

[

(E2)
2 + (F2)

2]1(c0,17M/8](r), (5.39)

where

ẽ0 = (E1)
2 + (F1)

2 + (M1)
2

r2 + (Lφ)2 + (Lψ)2

+ M2|r − rH|
r3

[

(E2)
2 + (F2)

2] + M2

r2

[

(E2
3) + (F3)

2] + 1

r2 (φ2 + ψ2).

(5.40)

Finally,

∣

∣L5
(1)

∣

∣ + ∣

∣L5
(2)

∣

∣ ≤ ε−1
3 aM |r − r∗|

r5

(|φ| + |ψ |)

×
{

∑

Y∈{E,F}

( |Y1|
r

+ M(|Y2| + |Y3|)
r

)

+ 1

r

(|φ| + |ψ |)
}

+ ε−1
3

[

e(φ,Nφ) + e(ψ,Nψ)
]

. (5.41)

Proof The order of the constants to keep in mind is

max
(

a/M, (rH − c0)/M
) � ε3 � min(ε1, ε2) ≤ max(ε1, ε2) � C−1

1 � 1.

(5.42)

Most of the proof follows in the same way as in Lemma 4.2, using the identi-
ties/inequalities (A.16), (A.17), (5.25), (5.31), and (5.32)
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The term ˜L is new, when compared to the corresponding inequality (4.40) in the
case of the pure wave equation. It is necessary to have this term because of the term
L4

(1) in (5.30), which leads to the term

8(r2 − 4Mr)

r7 a1(r)ψ
2

in (5.32). This term is clearly nonnegative if r ≤ r∗ or r ≥ 4M ; however, for r ∈
[r∗, 4M] we need an additional multiplier to control this term. The other terms in
(5.36) are coming from corresponding terms in (5.32) and (5.25), and their role is to
help ˜L become positive. We show how to control this term below. �

5.1.3 The New Multiplier (X(4), w(4),m(4),m′
(4))

We define, with a1 as in (5.23),

X(4) := 0, w(4) = 0, m(4) = 0,

m̃′
(4)1(r, θ) := −(1 − 2C1ε1)

8(r − r∗)a1(r)χ≤6R(r)

r2

cos θ

sin θ
1[r∗,∞)(r),

m̃′
(4)2(r) := (1 − 2C1ε1)

2b(r)


, m̃′

(4)3 := 0, m̃′
(4)4 := 0,

(5.43)

for some function b supported in [r∗, 4M] to be fixed. We prove the following:

Lemma 5.3 Letting L j
(4) := L j [X(4), w(4),m(4),m′

(4)], j ∈ {1, 2, 3, 4, 5}, we have

L1
(4) = L4

(4) = L5
(4) = 0 (5.44)

and, for some constant C2 sufficiently large,

˜L + L2
(4) + L3

(4) ≥ −C2(a + |rH − c0|)r−4(φ2 + ψ2). (5.45)

Moreover,

∣

∣2˜P(4)μn
μ
∣

∣ � ε−1
3 ψ2/r2 and 2˜P(4)μk

μ = 0 along N c[t1,t2]. (5.46)

Proof The identities in (5.44) are clear. The inequality in (5.45) is also clear in the
regions {r ≤ r∗} and {r ≥ 12M}.

Using the formula (A.10) we calculate, in the region {r ∈ [r∗, 12M]},

1

2
Dμm̃′

(4)μ = (1 − 2C1ε1)
[4(r − r∗)a1(r)χ≤6R(r)

q2r2 + b′(r)
q2

]

,

ψm̃′μ
(4)Dμψ = (1−2C1ε1)

[

− 8(r−r∗)a1(r)χ≤6R(r)

q2r2

cos θ

sin θ
ψD1ψ+ 2b(r)

q2 ψD2ψ
]

.
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Therefore, in the region {r ∈ [r∗, 12M]},

L2
(4) + L3

(4) + ˜L

= 8(r2 − 4Mr)

r7 a1(r)ψ
2 + (1 − 2C1ε1)

{M

r4

(

7 − 44M

r
+ 72M2

r2

)

ψ2

+8a1(r)(r − r∗)
r4

(cos θ)2

(sin θ)2 ψ2 + 2a1(r)(r − r∗)
r4 (F1)

2 + 2a′
1(r)

2

r4 F2
2

}

+ (1 − 2C1ε1)
[4(r − r∗)a1(r)χ≤6R(r))

q2r2 + b′(r)
q2

]

ψ2

+ (1 − 2C1ε1)
[

− 8(r − r∗)a1(r)χ≤6R(r)

q2r2

cos θ

sin θ
ψD1ψ + 2b(r)

q2 ψD2ψ
]

.

Recalling (5.9), we may replaceD1ψ andD2ψ with F1 and F2, up to acceptable errors.
Then we divide by (1 − 2C1ε1) and complete squares. For (5.45) it suffices to prove
that

−C2a ≤ 8(r2 − 4Mr)a1(r)

r7(1 − 2C1ε1)
+ M

r4

(

7 − 44M

r
+ 72M2

r2

)

+
[4(r − r∗)a1(r)χ≤6R(r))

r4 + b′(r)
r2

]

− b(r)2

22a′
1(r)

,

for any r ∈ [r∗, 12M], for some function b supported in [r∗, 4M] to be fixed. After
algebraic simplifications, it suffices to prove that, for any r ∈ [r∗, 4M],

0 ≤ M

r4

(

7 − 44M

r
+ 72M2

r2

)

+ 8(r − 4M)a1(r)

r6(1 − 2C1ε1)

+
[4(r − r∗)a1(r)

r4 + b′(r)
r2

]

− b(r)2

2a′
1(r)

2 . (5.47)

We multiply both sides of (5.47) by r6/M3. It suffices to find a function b supported
in [r∗, 4M] such that, for r ∈ [r∗, 4M],

1 � r4b′(r)
M3 +

(7r2

M2 − 44r

M
+ 72

)

− r4b(r)2

2M3a′
1(r)(r − 2M)2

+ 4a1(r)
(3r3

M3 − 15r2

M2 + 16r

M

)

. (5.48)

Let

r = (3 + s)M, ˜b(s) := b((3 + s)M).

Notice also that, for s ∈ [0, 1],
∣

∣a1((3 + s)M) − ã1(s)
∣

∣ + ∣

∣Ma′
1((3 + s)M) − ã′

1(s)
∣

∣ � a,

123



On the Global Stability of the Wave-map Equation in Kerr... Page 57 of 78 1

where

ã1(s) := 5s + s2 + 6 log(1 + s)

(3 + s)2 , ã′
1(s) := 33 + s − 12 log(1 + s) − 12 s

s+1

(3 + s)3 .

(5.49)

For (5.48) it suffices to prove that, for s ∈ [0, 1],

1 � ˜b′(s) − ˜b(s)2

2̃a′
1(s)(1 + s)2 + 7s2 − 2s + 3

(3 + s)4 + 4̃a1(s)
3s2 + 3s − 2

(3 + s)3 . (5.50)

Notice that ã′
1(s)(1 + s)2 ≥ 1 for any s ∈ [0, 1]. Indeed, using (5.49),

(3+s)3[ã′
1(s)(1+s)2−1] = (1 + s)[33 + 10s − 11s2 + 12(1 + s)(s − log(1 + s))]

−(3 + s)3

= 12(1 + s)2(s − log(1 + s)) + 6 + 16s − 10s2 − 12s3

≥ 0.

Therefore, for (5.50) it suffices to prove that, for s ∈ [0, 1],

1 � ˜b′(s) − ˜b(s)2

2
+ 7s2 − 2s + 3

(3 + s)4 + 4̃a1(s)
3s2 + 3s − 2

(3 + s)3 . (5.51)

Moreover, for s ∈ [0, 1],

7s2 − 2s + 3

(3 + s)4 + 4̃a1(s)
3s2 + 3s − 2

(3 + s)3 = 9 − 91s + 167s2 + 115s3 − 24s4

(3 + s)5

+24(−2 + 3s + 3s2)[log(1 + s) − s + s2/2]
(3 + s)5

≥ 9 − 91s + 167s2 + 91s3

(3 + s)5

≥ 9(1 − 10s + 18s2)

(3 + s)5
1[1/10,1](s) + 4s2

(3 + s)5
+ 10−10.

Therefore, to prove (5.51) it suffices to find a function ˜b supported in [1/10, 1] such
that

˜b′(s) + 9(1 − 10s + 18s2)

(3 + s)5
≥ 0 and |˜b(s)| ≤

√
2s

16
(5.52)

for any s ∈ [1/10, 1].
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Notice that 1 − 10s + 18s2 = 18(s − s1)(s − s2) where s1 = (5 − √
7)/18,

s2 = (5 + √
7)/18. We define ˜b(s) = 0 for s ≤ s1 and

˜b(s) :=
∫ s

s1

9(10ρ − 1 − 18ρ2)

35
dρ

for s ∈ [s1, s2]. The desired inequalities (5.52) are easy to verify for s ∈ [1/10, s2],
and, moreover, ˜b(s2) = 73/29−4 ≤ 3 · 10−3.

On the other hand, for s ≥ s2, we would like to define the function˜b decreasing, still
satisfying (5.52), and vanishing for s ≥ 1. The only condition for this to be possible
is the inequality

∫ 1

s2

9(1 − 10ρ + 18ρ2)

45
dρ ≥ ˜b(s2),

which is easy to verify. This completes the proof of the main inequality (5.45).
The identity and the inequality in (5.46) follow from definitions. �
As a consequence of Lemma 5.2 and Lemma 5.3 we have:

Corollary 5.4 There is a sufficiently small absolute constant ε3 > 0 with the property
that

4
∑

j=1

(

L j
(1) + L j

(2) + L j
(4)

)

≥ ε3

∑

Y∈{E,F,M}

[ (r − r∗)2

r3 (Y1/r)
2 + M2

r3 (Y2)
2 + M2(r − r∗)2

r5
(Y3)

2
]

+ ε3
M

r4

(

φ2 + ψ2) − ε−1
3

M

r4 1[DM,∞)(r)
(

φ2 + ψ2), (5.53)

and

2(˜P(1)μ + ˜P(2)μ + ˜P(4)μ)kμ ≥ ε3

∑

Y∈{E,F,M}

[

(Y1/r)
2 + (Y2)

2(rH − c)/M
]

+ ε3M
−2(φ2 + ψ2) − ε−1

3

[

(E3)
2 + (F3)

2], (5.54)

along N c[t1,t2]. Moreover, with ẽ0 as in (5.40),

2(˜P(1)μ + ˜P(2)μ + ˜P(4)μ)nμ ≥ −ε−1
3

{

ẽ0 + 1[8M,2DM](r)
[

(E3)
2 + (F3)

2]}

−χ≥8M (r)(1 − p)

r2 ∂2(rφ
2 + rψ2)

+ ε3
[

(E2)
2 + (F2)

2]1(c0,17M/8](r), (5.55)
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and

2(˜P(1)μ + ˜P(2)μ + ˜P(4)μ)nμ ≤ ε−1
3

{

ẽ0 + 1[8M,2DM](r)
[

(E3)
2 + (F3)

2]}

−χ≥8M (r)(1 − p)

r2 ∂2(rφ
2 + rψ2)

+ ε−1
3

[

(E2)
2 + (F2)

2]1(c0,17M/8](r). (5.56)

Finally,

∣

∣L5
(1)

∣

∣ + ∣

∣L5
(2)

∣

∣ + ∣

∣L5
(4)

∣

∣ ≤ ε−1
3 aM |r − r∗|

r5

(|φ| + |ψ |)

×
{

∑

Y∈{E,F}

( |Y1|
r

+ M(|Y2| + |Y3|)
r

)

+ 1

r

(|φ| + |ψ |)
}

+ ε−1
3

[

e(φ,Nφ) + e(ψ,Nψ)
]

. (5.57)

These inequalities should be compared with the inequalities (4.40) and the corre-
sponding inequalities in Lemma 4.2.

5.1.4 Outgoing Energies

Finally, as in subsection 4.2, we define (X(3), w(3),m(3),m′
(3)) by

X(3) := f3∂2 +
( f3

1 − p̃
+ g3

)

∂3, w(3) := 2 f3
r

, m′
(3) := m(3),

m(3)1 := m(3)4 := 0, m(3)2 := 2h3

r(1 − p̃)
, m(3)3 := −2h3

r
,

(5.58)

where p̃ := 2M/r , and f3, g3 are defined by

f3(r) := ε4χ≥8M (r)eβ(r), g3(r) :=
∫ ∞

r

[

ρ(s) + ε4M2

s3 f3(s)
]

ds, (5.59)

where

β(8M) := 0, β ′(r) :=
(4M

r2 + 1

r

)

(

1 − χ≥C4
4 M

(r)
) + α

r
χ≥C4

4 M
(r), (5.60)

and

ρ(r) := δM−1
[

χ≥C4M (r) + χ≥4C4
4 M

(r)
(

C7
4e

β(r) M
3

r3 − 1
)]

. (5.61)
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The constants ε4,C4 satisfy ε4 = ε2
3 and C4 ≥ ε−4

4 α−1(2 − α)−1, while δ ∈
[10−4C−3

4 , 104C−3
4 ] is such that

∫ ∞
C4M

ρ(s) ds = C4. Recall (4.60),

eβ(r) ≈ r

M
if r ≤ 10C4

4 M and eβ(r) ≈ C4
4

( r

C4
4 M

)α

if r ≥ (1/10)C4
4 M.

(5.62)

Notice the additional term M2s−3 f3(s) in the definition of the function g3; this term
is needed in order to be able to estimate the contributions of the new terms containing
the small coefficient a, in a way that is uniform as α → 0 or α → 2.

Also let

H3 := (1 − p̃) f ′
3 − 2M f3

r2 − (1 − p̃)2ρ − ε4M2 f3
r3 (1 − p̃)2, h3 := H3 · (1 − α̃),

(5.63)

where α̃ := (2 − α)/10. Recall the bounds (4.51) and (4.52),

β(r) ∈ [−10, 0] and Mβ ′(r) ∈ [1/10, 10] if r ∈ (c, 8M],
max

( α

100r
,

4M

r2 + 1

r
1[8M,C4M](r)

)

≤ β ′(r) ≤ 2

r
if r ∈ [8M,∞),

ρ(r) = 0 and g3(r) ∈ [C4/2, 2C4] if r ≤ C4M,

ρ(r) ≤ ε4

100
β ′(r)eβ(r) and ρ′(r) ≤ ε4M

100r3 e
β(r) if r ≥ C4M,

eβM2

r2 ≤ g3(r) ≤ C10
4 eβM2

r2 if r ≥ C4M,

(1 − 2α̃)H3(r) − r H ′
3(r) ≥ 0 if r ∈ [16M,∞),

(5.64)

g′
3 = −ρ − ε4M

2r−3 f3,
∣

∣H3 − (1 − p̃) f ′
3

∣

∣ ≤ (2 + ε4)M f3
r2 + ρ,

eβ(r) ∈ [r/(100M), r2/M2] for r ∈ (c,C4M],
(5.65)

and

2 f3 − r f ′
3

r
= ε4e

β
[

(2/r − β ′)χ≥8M − χ ′≥8M

]

,

6M f3
r4 − 2M f ′

3

r3 + (1− p̃)2g′′
3

r
+ 4M(1− p̃)g′

3

r3 ≥ ε4M

100r4 e
βχ≥8M− 2ε4M

r3 eβχ ′≥8M .

(5.66)

Notice that

g33 = −r2 + a2


+ O(a2Mr−3) if r ≥ 5M/2. (5.67)
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Proof of Theorem 1.7 Let L j
(3) := L j [X(3), w(3),m(3),m′

(3)], j ∈ {1, 2, 3, 4, 5}. As
in the proof of (4.48), we have

L1
(3) =

∑

Y∈{E,F,M}

[

K 11
(3)(Y1)

2 + K 22
(3)(Y2)

2 + K 33
(3)(Y3)

2 + 2K 23
(3)Y2Y3

]

,

where, with O ′ := O[a2r−2( f3/r + f ′
3)],

K 11
(3) = − f ′

3(r)

q2 + w(3)(r)g11 = 2 f3 − r f ′
3

rq2 ,

K 22
(3) = − f3(r)(2r − 2M) + f ′

3(r)

q2 + w(3)(r)g22 = (1 − p̃) f ′
3 − 2M f3

r2 + O ′,

K 33
(3) = − f3(r)∂2g33− f ′

3(r)g
33− 2r f3(r)g33

q2 +w(3)(r)g33 = f ′
3

1− p̃
− 2M f3
r2(1− p̃)2

+ O ′,

K 23
(3) =

( f3
1 − p̃

+ g3

)′ 
q2 = f ′

3 − 2M f3
r2(1 − p̃)

− ρ(1 − p̃) − ε4M2 f3
r3 (1 − p̃) + O ′.

Therefore

L1
(3) ≥

∑

Y∈{E,F,M}

{2 f3 − r f ′
3

rq2 (Y1)
2 + H3

[

Y2 + Y3

1 − p̃

]2

+
[

ρ + ε4M2 f3
2r3

]

[(1 − p̃)2(Y2)
2 + (Y3)

2]
}

− aMr−3eβ(r)χ≥5M (r)[(Y2)
2 + (Y3)

2].

Also, using also (A.9), (A.10) the definitions (5.13), and Lemma 5.1,

L2
(3) ≥ 2h3

r
φ
[

D2φ + D3φ

1 − p̃

]

+ 2h3

r
ψ

[

D2ψ + D3ψ

1 − p̃

]

− aMr−4eβ(r)χ≥5M (r)
[|φ||D2φ| + |φ||D3φ| + |ψ ||D2ψ | + |ψ ||D3ψ |],

L3
(3) ≥ (φ2 + ψ2)

[h3

r2 + h′
3

r
+ 2M f3

r4 − 2M f ′
3

r3 − (1 − p̃) f ′′
3

r

]

− (φ2 + ψ2)ar−4eβ(r)χ≥5M (r),

and

L4
(3) ≥ 8(1 − p̃)

r3 ( f3 − r f ′
3)ψ

2 − ψ2ar−4eβ(r)χ≥5M (r).
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We combine now the M2
2 term in the right-hand side of L1

(3) and L4
(3). Recalling also

the definition and (5.9) we have (M2)
2 ≥ 4r−2ψ2 − (φ2 + ψ2)aMr−4. Therefore,

H3(M2)
2 + L4

(3) ≥ −(φ2 + ψ2)ar−4eβ(r)χ≥5M (r),

using the second inequality in (5.65) and the definitions.
We add up the estimates above and complete the square to conclude that

L1
(3) + L2

(3) + L3
(3) + L4

(3)

≥
∑

Y∈{E,F,M}

2 f3 − r f ′
3

2r3 (Y1)
2

+ H3

(

E2 + E3

1 − p̃
+ (1 − α̃)φ

r

)2 + H3

(

F2 + F3

1 − p̃
+ (1 − α̃)ψ

r

)2

+
[

ρ + ε4M2 f3
2r3

]

[(1 − p̃)2(E2)
2 + (E3)

2 + (1 − p̃)2(F2)
2 + (F3)

2]

+ (φ2 + ψ2)
[ (̃α − α̃2)H3 − α̃r H ′

3

r2 + H ′
3

r
+ 2M f3

r4 − 2M f ′
3

r3 − (1 − p̃) f ′′
3

r

]

− ε−1
3 ar−4eβ(r)χ≥5M (r)(φ2 + ψ2).

Combining this with (5.53) and estimating as in the proof of Lemma 4.4 we conclude
that

4
∑

j=1

(

L j
(1) + L j

(2) + L j
(4) + L j

(3)

)

≥
∑

Y∈{E,F,M}
ε2

4

(eβ(2 − rβ ′)
r

+ 100

r

) (r − r∗)2

r2

(Y1)
2

r2

+ ε2
4

( α̃2eββ ′

r2 + Meβ

r4

)

(

φ2+ψ2)+
∑

Y∈{E,F}
ε2

4
M2eβ

100r3

[

(Y2)
2+ (r−r∗)2

r2 (Y3)
2
]

+ ε2
4e

ββ ′[(E2+ E3

1− p̃
+ (1−α̃)φ

r

)2+
(

F2+ F3

1− p̃
+ (1−α̃)ψ

r

)2]

, (5.68)

provided that D is taken large enough and ε4 is sufficiently small.
Moreover, using Lemma 5.1,

|L5
(3)| ≤ aM

r4 ε4e
βχ≥8M

(|φ| + |ψ |)
{

∑

Y∈{E,F}

|Y1|+M |Y2|+M |Y3|
r

+ 1

r

(|φ|+|ψ |)
}

+ eβe(φ,Nφ) + eβe(ψ,Nψ).
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Combining this with (5.57), (5.68), and (5.9), we obtain the final lower bound on the
space-time term, for some small constant ε5 = ε5(α),

5
∑

j=1

(

L j
(1) + L j

(2) + L j
(4) + L j

(3)

)

≥ ε5e
β
{ (r − r∗)2

r2

(∂1φ)2 + (∂1ψ)2 + (ψ/ sin θ)2

r3

+M2

r3

[

(∂2φ)2 + (∂2ψ)2] + M2(r − r∗)2

r5

[

(∂3φ)2 + (∂3ψ)2]

+φ2 + ψ2

r3 + (Lφ)2 + (Lψ)2

r

}

− eβ
[

e(φ,Nφ) + e(ψ,Nψ)
]

. (5.69)

We consider now the contribution of ˜P(3)μnμ. Using (A.16) and the definitions we
write

2˜P(3)μn
μ = 2QμνX

ν
(3)n

μ + w(3)(φEμ + ψFμ)nμ − nμDμw(3)

2
(φ2 + ψ2)

+nμ

2
(m(3)μφ2 + m′

(3)μψ2) − 2
Xν

(3)Dν A

A

nμDμA

A
ψ2

= m(3)3(−g33)

2
(φ2 + ψ2)

+
∑

Y∈{E,F,M}

[ (Y1)
2

q2

( f3
1 − p̃

+ g3

)

+ (Y2)
2

q2

( f3
1 − p̃

+ g3

)

+ (Y3)
2(−g33)

( f3
1 − p̃

+ g3

)

+ 2Y2Y3(−g33) f3
]

+2 f3
r

(−g33)(φE3 + ψF3).

As before, the main point is that the function g3 is extremely large when r is small.
We can combine this last identity with the bounds (5.55) and (5.56), as in the proof of
Lemma 4.4 to conclude that, for any t ∈ [0, T ],

∫

�c
t

2
[

˜P(1)μ + ˜P(2)μ + ˜P(3)μ + ˜P(4)μ

]

nμ
0 dμt ≈α

∫

�c
t

eβ
[

e(φ)2 + e(ψ)2] dμt .

(5.70)

Finally, using (A.17), the contribution of ˜P(3)μkμ along N c
[0,T ] is

2˜P(3)μk
μ = 2QμνX

ν
(3)k

μ + w(3)(φEμ + ψFμ)kμ − kμDμw(3)

2
(φ2 + ψ2)

+kμ

2
(m(3)μφ2 + m′

(3)μψ2) − 2
Xν

(3)Dν A

A

kμDμA

A
ψ2
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=
∑

Y∈{E,F}

[

2g3(c)g23(Y3)
2 + 2Y2Y3g3(c)g22].

Combining with (5.54) we obtain

2
[

˜P(1)μ + ˜P(2)μ + ˜P(3)μ + ˜P(4)μ

]

kμ ≥ 0 along N c
[0,T ]. (5.71)

The theorem follows from (5.69), (5.70), (5.71), and the divergence identity (5.16). �

6 Proof of Corollary 1.8

In this section we provide a proof of Corollary 1.8. The main issue is the degeneracy
of the weights in the bulk term at r = r∗. We compensate for this by losing derivatives.
More precisely:

Lemma 6.1 Assume that (φ,ψ) ∈ Ck([0, T ] : H6−k(�
c0
t )), k ∈ [0, 6], is a solution

of the system (1.33) with Nφ = Nψ = 0. Then

BBc0
α (t1, t2) +

2
∑

k=0

∫

�
c0
t2

rα

Mα

[

e(φk)
2 + e(ψk)

2] dμt

�α

2
∑

k=0

∫

�
c0
t1

rα

Mα

[

e(φk)
2 + e(ψk)

2] dμt , (6.1)

for any α ∈ (0, 2) and any t1 ≤ t2 ∈ [0, T ], where φk := MkTkφ, ψk := MkTkψ ,
and

BBc0
α (t1, t2) :=

∫

Dc0[t1,t2]

rα

Mα

{ |∂1φ|2 + |∂1ψ |2 + ψ2(sin θ)−2

r3 + 1

r

[

(Lφ)2 + (Lψ)2]

+ 1

r3

(

φ2 + ψ2) + M2

r3

[

(∂2φ)2 + (∂2ψ)2 + (∂3φ)2 + (∂3ψ)2]
}

dμ.

(6.2)

Assuming Lemma 6.1, it is not hard to complete the proof of Corollary 1.8

Proof of Corollary 1.8 We prove the estimate in two steps. Notice first that the inequal-
ity (6.2) is equivalent to

∫ t2

t1

(

∫

�
c0
s

rα−1

Mα

[

e(φ)2 + e(ψ)2] dμs

)

ds +
2

∑

k=0

∫

�
c0
t2

rα

Mα

[

e(φk)
2 + e(ψk)

2] dμt

�α

2
∑

k=0

∫

�
c0
t1

rα

Mα

[

e(φk)
2 + e(ψk)

2] dμt ,
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for any t1 ≤ t2 ∈ [0, T ] and α ∈ (0, 2). Let

Iβ,l(s) :=
l

∑

k=0

∫

�
c0
s

rβ

Mβ

[

e(φk)
2 + e(ψk)

2] dμs . (6.3)

Therefore, for any α ∈ (0, 2), l ∈ {0, 1, 2}, and t1 ≤ t2 ∈ [0, T ], we have

Iα,l+2(t2) +
∫ t2

t1

1

M
Iα−1,l(s) ds �α Iα,l+2(t1). (6.4)

We apply (6.4) first with α close to 2 and l = 2, 4; the result is

∫ T

0

1

M
Iα−1,2(s) ds �α Iα,4(0) and Iα−1,2(s

′) �α Iα−1,2(s) if s ≤ s′.

These inequalities show easily that

Iα−1,2(s) �α Iα,4(0)
M

M + s
for any s ∈ [0, T ] and α ∈ (0, 2). (6.5)

To apply this argument again we need to improve slightly on (6.5). More precisely,
we’d like to show that

I1+ε,2(s) �ε I2,4(0)
M1−2ε

(M + s)1−2ε
for any s ∈ [0, T ] and ε ∈ (0, 1/10].

(6.6)

Indeed, we estimate

I1+ε,2(s) � I I (s) + I I I (s),

where, using (6.5) and (6.4),

II(s) :=
l

∑

k=0

∫

�
c0
s , r≤M+s

r1+ε

M1+ε

[

e(φk)
2 + e(ψk)

2] dμs

� I1−ε/2,2
(M + s)7ε/4

M7ε/4 �ε I2,4(0)
M1−2ε

(M + s)1−2ε

and

III(s) :=
l

∑

k=0

∫

�
c0
s , r≥M+s

r1+ε

M1+ε

[

e(φk)
2 + e(ψk)

2] dμs

� I2−ε/2,2
M1−3ε/2

(M + s)1−3ε/2 �ε I2,2(0)
M1−3ε/2

(M + s)1−3ε/2 .
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The bound (6.6) follows.
We can now repeat the argument at the beginning of the proof, starting from the

bounds,
∫ T

t1

1

M
Iε,0(s) ds �α I1+ε,2(t1) and Iε,0(s

′) �α Iε,0(s) if s ≤ s′,

which follow from (6.4) and Theorem 1.7. Using now (6.6) it follows easily that

Iε,0(s) �ε I2,4(0)
M2−2ε

(M + s)2−2ε
for any s ∈ [0, T ] and ε ∈ (0, 1/10],

which gives the conclusion of Corollary 1.8. �
We turn now to the proof of Lemma 6.1.

Proof of Lemma 6.1 In view of Theorem 1.7, with the notation (6.3), we know that

Iα,2(t2) +
2

∑

k=0

∫

Dc0[t1,t2]

rα

Mα

{ (r − r∗)2

r3

(∂1φk)
2 + (∂1ψk)

2 + ψ2
k (sin θ)−2

r2

+ 1

r3

(

φ2
k + ψ2

k

) + M2

r3

[

(∂2φk)
2 + (∂2ψk)

2]
}

dμ �α Iα,2(t1), (6.7)

for any t1 ≤ t2 ∈ [0, T ] and α ∈ (0, 2). It suffices to prove that

∫

Dc0[t1,T ]

rα

Mα
χ̃(r)

(∂1φ)2 + (∂1ψ)2 + ψ2(sin θ)−2

r3 dμ �α Iα,2(t1), (6.8)

where χ̃ := χ≥9M/4 − χ≥4M . For this we use elliptic estimate and (6.7).
The equation for φ and the formula (A.9) show that

g11
[

∂2
1 φ + cos θ

sin θ
∂1φ

]

+ g22∂2
2 φ + 2g11D1B

A
∂1ψ = −Fφ, (6.9)

where

Fφ := g33∂2
3 φ + 2g23∂2∂3φ + D2∂2φ + D3∂3φ

+ 2
D2BD2ψ + D3BD3ψ

A
− 2

DμBDμB

A2 φ + 2
DμBDμA

A2 ψ.

If follows from (6.7) that

∫

Dc0[t1,T ]

M4

r3 |Fφ |2 dμ �α Iα,2(t1). (6.10)
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Using then integration by parts and (6.9), we have

∫

Dc0[t1,T ]

rα

Mα
χ̃(r)

(∂1φ)2

r3 dμ

�
∫

[t1,T ]×(0,π)×(c0,∞)

χ̃ (r)
(∂1φ)2

M3 r2(sin θ) drdθdt

�
∣

∣

∣

∫

[t1,T ]×(0,π)×(c0,∞)

χ̃ (r)φ ·
[

∂2
1 φ + cos θ

sin θ
∂1φ

] r2

M3 (sin θ) drdθdt
∣

∣

∣

�
∣

∣

∣

∫

[t1,T ]×(0,π)×(c0,∞)

χ̃ (r)φ ·
[

∂2
2 φ + 2D1B

A
∂1ψ + Fφ

g11

] r2

M3 (sin θ) drdθdt
∣

∣

∣.

Using (6.7), (6.10), and integration by parts it follows that

∫

Dc0[t1,T ]

rα

Mα
χ̃(r)

(∂1φ)2

r3 dμ �α Iα,2(t1) + [Iα,2(t1)]1/2
(

∫

Dc0[t1,T ]
χ̃ (r)

(∂1ψ)2

r3 dμ
)1/2

.

(6.11)

Similarly, the equation for ψ and the formula (A.9) show that

g11
[

∂2
1 ψ + cos θ

sin θ
∂1ψ − 4(cos θ)2

(sin θ)2 ψ
]

+ g22∂2
2 ψ − 2g11D1B

A
∂1φ = −Fψ,

where Fψ satisfies the same bound (6.10) as Fφ , and the additional term in the left-
hand side comes from the fraction 2 cos θ

sin θ
in A−1D1A (see (5.7)). Integrating by parts

as before we have

∫

Dc0[t1,T ]

rα

Mα
χ̃(r)

(∂1ψ)2 + ψ2(sin θ)−2

r3 dμ

�α Iα,2(t1) + [Iα,2(t1)]1/2
(

∫

Dc0[t1,T ]
χ̃(r)

(∂1φ)2

r3 dμ
)1/2

.

The desired bound (6.8) follows using also (6.11). �
Acknowledgments The first author is supported in part by a Packard Fellowship and NSF Grant DMS-
1065710. The second author is supported by the NSF Grant DMS-1065710.

Appendix 1: Explicit Formulas in Kerr Spaces

Recall the Kerr spacetimes K(m, a), in standard Boyer–Lindquist coordinates,

g = −q2

�2 (dt)2 + �2(sin θ)2

q2

(

dφ − 2aMr

�2 dt
)2 + q2


(dr)2 + q2(dθ)2, (A.1)
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where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 = r2 + a2 − 2Mr;
q2 = r2 + a2(cos θ)2;
�2 = (r2 + a2)q2 + 2Mra2(sin θ)2 = (r2 + a2)2 − a2(sin θ)2.

(A.2)

Observe that

(2Mr − q2)�2 = −q4 + 4a2M2r2(sin θ)2. (A.3)

Recall the change of variables (1.19)–(1.20) and let

p := 2Mr

q2 .

Therefore

�2

q2 = q2 + (p + 1)a2(sin θ)2,  = q2(1 − p) + a2(sin θ)2.

Recall that

∂1 = ∂θ = d

dθ
, ∂2 = ∂r = d

dr
, ∂3 = ∂t = d

dt+
= T, ∂4 = ∂φ = d

dφ+
= Z.

(A.4)

The nontrivial components of the metric g become

g11 =q2, g33 = p−1, g34 =−a(sin θ)2 p, g44 =q2(sin θ)2+(p+1)a2(sin θ)4,

g22 = q2


(1 − χ2) + (p + 1)χ2, g23 = pχ, g24 = −a(sin θ)2(p + 1)χ,

(A.5)

and, letting Det := −q2(sin θ)2,
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g11 = 1

g11
= 1

q2 ,

g22 = g33g44 − g2
34

Det
= 

q2 ,

g23 = g24g34 − g23g44

Det
= pχ,

g24 = g23g34 − g33g24

Det
= aχ

q2 ,

g33 = g22g44 − g2
24

Det
= −(p + 1)χ2 − q2 + (p + 1)a2(sin θ)2


(1 − χ2),

g34 = g24g23 − g22g34

Det
= −ap


(1 − χ2),

g44 = g22g33 − g2
23

Det
=  − a2(sin θ)2(1 − χ2)

q2(sin θ)2 .

(A.6)

The metric g extends to the larger open set

˜R = {(θ, r, t+, φ+) ∈ (−π, π) × (0,∞) × R × S
1}.

Recall also the sets, see (1.24)–(1.26),

Dc
I = {(θ, r, t+, φ+) ∈ ˜R : t+ ∈ I and r > c},

�c
t := {(θ, r, t+, φ+) ∈ ˜R : t+ = t and r > c},

N c
I := {(θ, r, t+, φ+) ∈ ˜R : t+ ∈ I and r = c},

(A.7)

defined for c ∈ (0,∞), t ∈ R, and intervals I ⊆ R.
Notice that

∂1(q
2) = −2a2 sin θ cos θ, ∂2(q

2) = 2r,

∂1 p = 4Mra2 sin θ cos θ

q4 , ∂2 p = −2M(r2 − a2(cos θ)2)

q4 .
(A.8)

Recall the general formula

�μαβ = g(D∂β ∂α, ∂μ) = 1

2
(∂αgβμ + ∂βgαμ − ∂μgαβ).

In the case of Z-invariant functions f , i.e. if Z( f ) = 0, we have the general formula

� f = gαβ∂α∂β f − gαβgμν�μαβ∂ν f

= gαβ∂α∂β f + [

∂μgμν + (1/2)gμν∂μ log
∣

∣q4(sin θ)2
∣

∣

]

∂ν f

= g11∂2
1 f + g22∂2

2 f + g33∂2
3 f + 2g23∂2∂3 f

+ [

∂1g11 + (1/2)g11∂1 log
∣

∣q4(sin θ)2
∣

∣

]

∂1 f
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+ [

∂2g22 + (1/2)g22∂2 log
∣

∣q4(sin θ)2
∣

∣

]

∂2 f

+ [

∂2g23 + (1/2)g23∂2 log
∣

∣q4(sin θ)2
∣

∣

]

∂3 f

= g11
[

∂2
1 f + cos θ

sin θ
∂1 f

]

+ g22∂2
2 f + g33∂2

3 f

+ 2g23∂2∂3 f + D2∂2 f + D3∂3 f, (A.9)

where

D2 := ∂2g22+g22 2r

q2 = 2r−2M

q2 , D3 := ∂2g23+g23 2r

q2 = 2Mχ(r)+2Mrχ ′(r)
q2 .

Also, if m is a 1-form satisfying m4 = 0 and ∂4mα = 0, α ∈ {1, 2, 3, 4}, then

Dαmα = gαβ∂αmβ − gαβgμν�μαβmν

= g11
[

∂1m1 + cos θ

sin θ
m1

]

+ g22∂2m2

+ g33∂3m3 + g23(∂2m3 + ∂3m2) + D2m2 + D3m3. (A.10)

Vector-fields

Letting

παβ = (L∂2g)αβ = �α2β + �β2α,

we calculate

παβ = ∂2gαβ,

παβ = gαμgβνπμν = gαμgβν∂2gμν = −gβνgμν∂2gαμ = −∂2gαβ,

παβgαβ = ∂2 log |q4(sin θ)2| = 4r/q2.

(A.11)

Therefore, for any vector field

X = f (r)∂2 + g(r)∂3, (A.12)

we calculate

(X)πμν := DμXν + DνXμ

= f πμν + (Dμ f δν
2 + Dν f δμ

2 ) + (Dμgδν
3 + Dνgδμ

3 )

= f πμν + f ′(r)(gμ2δν
2 + gν2δ

μ
2 ) + g′(r)(gμ2δν

3 + gν2δ
μ
3 ). (A.13)

For any 1-form Y with Y4 = 0 let

(Y )Qμν = YμYν − (1/2)gμν(YρY
ρ). (A.14)
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We calculate the contraction

(Y )Qμν
(X)πμν = (X)πμνYμYν − (1/2)gμν(YρY

ρ)(X)πμν

= f (r)πμνYμYν + 2 f ′(r)Y 2Y2 + 2g′(r)Y 2Y3

− (YρY
ρ)[2r f (r)/q2 + f ′(r)]

= (Y1)
2
[

f (r)π11 − 2r f (r)g11

q2 − f ′(r)g11
]

+ (Y2)
2
[

f (r)π22 + f ′(r)g22 − 2r f (r)g22

q2

]

+ (Y3)
2
[

f (r)π33 + 2g′(r)g23 − f ′(r)g33 − 2r f (r)g33

q2

]

+ 2Y2Y3

[

f (r)π23 + g′(r)g22 − 2r f (r)g23

q2

]

.

Using also the formulas (A.6) and (A.11) this simplifies to

(Y )Qμν
(X)πμν = (Y1)

2 − f ′(r)
q2 + (Y2)

2 − f (r)(2r − 2M) + f ′(r)
q2

+ (Y3)
2
[

− f (r)∂2g33 + 2g′(r)g23 − f ′(r)g33 − 2r f (r)g33

q2

]

+ 2Y2Y3
−2Mr f (r)χ ′(r) − 2M f (r)χ(r) + g′(r)

q2 . (A.15)

Recall the vector-fields n = −gμν∂νu+∂μ = −g3μ∂μ and k = gμν∂νr∂μ = g2μ∂μ,
defined in ˜R, which are normal to the hypersurfaces �c

t and N c
I respectively. We

calculate

(Y )Q(n, ∂2) = −g3μYμY2 = −g32(Y2)
2 − g33Y2Y3,

(Y )Q(n, ∂3) = −g3μYμY3+(1/2)(YρY
ρ) = (1/2)[g11(Y1)

2+g22(Y2)
2−g33(Y3)

2],
(Y )Q(k, ∂2) = g2μYμY2−(1/2)(YρY

ρ) = (1/2)[−g11(Y1)
2+g22(Y2)

2−g33(Y3)
2],

and

(Y )Q(k, ∂3) = g2μYμY3 = g23(Y3)
2 + g22Y2Y3.

Therefore, if X = f (r)∂2 + g(r)∂3 as in (A.12) then

2(Y )Q(n, X) = (Y1)
2[g(r)g11] + (Y2)

2[g(r)g22 − 2 f (r)g23]
+ (Y3)

2[−g(r)g33] + 2Y2Y3[− f (r)g33] (A.16)
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and

2(Y )Q(k, X) = (Y1)
2[− f (r)g11] + (Y2)

2[ f (r)g22]
+ (Y3)

2[− f (r)g33 + 2g(r)g23] + 2Y2Y3[g(r)g22]. (A.17)

Hardy Inequalities

In this subsection we prove the following lemma:

Lemma A.1 (i) If c ≥ c0 and f ∈ H1
loc((c,∞)) satisfies limD→∞

∫ 2D
D | f (r)|2

dr = 0 then

∫ ∞

c
| f/r |2 · r2 dr �

∫ ∞

c
| f ′|2 · r2 dr. (A.18)

(ii) If g ∈ H1
loc((0, π)) and p ∈ [0, 10] then

∫ π

0
|g|2(sin θ)p dθ �

∫ π

0
|g′|2(sin θ)p+2 dθ +

∫ π

0
|g|2(sin θ)p+2 dθ. (A.19)

(iii) If f ∈ H1
loc((0, π)) then

∫ π

0
| f ′|2 sin θ dθ +

∫ π

0
| f |2(sin θ)−1 dθ

≈
∫ π

0

∣

∣

∣ f ′ − 2 cos θ

sin θ
f
∣

∣

∣

2
sin θ dθ +

∫ π

0
| f |2 sin θ dθ. (A.20)

(iv) If g ∈ L2
loc((0, π)) then

∫ π

0
|g|2(sin θ)−1 dθ �

∫ π

0

∣

∣

∣g′ + cos θ

sin θ
g
∣

∣

∣

2
sin θ dθ +

∫ π

0
|g|2 sin θ dθ. (A.21)

(v) If f ∈ H1
loc((0, π)) then

∫ π

0
| f ′′|2 sin θ + | f ′|2(sin θ)−1 + | f |2(sin θ)−3 dθ

�
∫ π

0

∣

∣

∣ f ′′ + cos θ

sin θ
f ′ − 4(cos θ)2

(sin θ)2 f
∣

∣

∣

2
sin θ dθ

+
∫ π

0
| f ′|2 sin θ + | f |2(sin θ)−1 dθ. (A.22)

Proof The inequalities in this lemma are standard Hardy-type inequalities, and we
provide the proofs mostly for sake of completeness.
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For (i) we may assume that f is real-valued and

∫ ∞

c
| f ′(r)|2r2 dr = 1.

Given δ > 0 small and D � 1 we fix a smooth function K = Kδ,D : R → R

supported in the interval [c + δ/2, 2D] with the properties

K ′(r) = 1 if r ∈ [c + δ, D],
|K ′(r)| � 1 if r ∈ [D, 2D],
K ′ is increasing on the interval [c + δ/2, c + δ].

(A.23)

By taking D sufficiently large, we may assume that
∫ 2D

D
| f (r)|2 dr ≤ 1.

Notice that K (r) � r K ′(r)1/2 for any r ∈ [c, D], which follows easily from (A.23).
Then we estimate, using integration by parts

∣

∣

∣

∫ D

c
f (r)2K ′(r) dr

∣

∣

∣ �
∣

∣

∣

∫

R

f (r)2K ′(r) dr
∣

∣

∣ +
∫ 2D

D
| f (r)|2 dr

�
∫

R

| f (r)|| f ′(r)||K (r)| dr + 1

�
∫ D

c
| f (r)|| f ′(r)||K (r)| dr + 1

�
∣

∣

∣

∫ D

c
| f (r)|2K ′(r) dr

∣

∣

∣

1/2∣
∣

∣

∫ D

c
| f ′(r)|r2 dr

∣

∣

∣

1/2 + 1.

Therefore
∣

∣

∣

∫ D

c
f (r)2K ′(r) dr

∣

∣

∣ � 1,

and the desired inequality follows by letting δ → 0 and D → ∞.
To prove (ii) we may assume that g is real-valued and

∫ π

0
|g′(θ)|2(sin θ)p+2 dθ +

∫ π

0
|g(θ)|2(sin θ)p+2 dθ = 1.

As before, given δ > 0 small we fix a smooth function K = Kδ : R → R supported
in the interval [δ/2, 1/2] with the properties

K ′(θ) = (sin θ)p if θ ∈ [δ, 1/4],
|K ′(θ)| � 1 if θ ∈ [1/4, 1/2],
K ′ is increasing on the interval [δ/2, δ].

(A.24)
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As before, we notice that these assumptions imply that K (θ) � (sin θ)(p+2)/2K ′(θ)1/2

for any θ ∈ [0, 1/4]. Then we estimate, using integration by parts,

∣

∣

∣

∫ 1/4

0
g(θ)2K ′(θ) dθ

∣

∣

∣ �
∣

∣

∣

∫ 1/2

0
g(θ)2K ′(θ) dθ

∣

∣

∣ + 1

�
∫ 1/2

0
|g(θ)||g′(θ)||K (θ)| dθ + 1

�
∫ 1/4

0
|g(θ)||g′(θ)||K (θ)| dθ + 1

�
∣

∣

∣

∫ 1/4

0
|g(θ)|2K ′(θ) dθ

∣

∣

∣

1/2∣
∣

∣

∫ 1/4

0
|g′(θ)|2(sin θ)p+2 dθ

∣

∣

∣

1/2 + 1.

Therefore
∣

∣

∣

∫ 1/4

0
g(θ)2K ′(θ) dθ

∣

∣

∣ � 1.

Letting δ → 0 it follows that

∫ 1/4

0
|g(θ)|2(sin θ)p dθ � 1.

The change of variables θ → π − θ now shows that

∫ π

π−1/4
|g(θ)|2(sin θ)p dθ � 1,

and the desired estimate follows.
To prove (iii), we notice first that the right-hand side of (A.20) is clearly dominated

by the left-hand side. To prove the reverse inequality, let f (θ) = (sin θ)2g(θ) and
notice that

f ′(θ) − 2 cos θ

sin θ
f (θ) = (sin θ)2g′(θ).

The desired bound follows from the inequality

∫ π

0
|g(θ)|2(sin θ)3 dθ �

∫ π

0
|g′(θ)|2(sin θ)5 dθ +

∫ π

0
|g(θ)|2(sin θ)5 dθ,

which is a consequence of (A.19).
To prove (iv), we may assume that g ∈ H1

loc((0, π)) is real-valued and let g(θ) =
h(θ)/ sin θ . Then

g′(θ) + cos θ

sin θ
g(θ) = h′(θ)

sin θ
.

123



On the Global Stability of the Wave-map Equation in Kerr... Page 75 of 78 1

The inequality to prove becomes

∫ π

0

h(θ)2

(sin θ)3 dθ �
∫ π

0

h′(θ)2

sin θ
dθ +

∫ π

0

h(θ)2

sin θ
dθ. (A.25)

This is nontrivial only ifh′ ∈ L2((0, π)), which shows thath′ ∈ L1((0, π)). Therefore,
in proving (A.25) we may assume that h extends to a continuous function on the interval
[0, π ] and h(0) = h(π) = 0 (otherwise the right-hand side of (A.25) is equal to ∞).
In particular, for any θ ∈ [0, π/2],

h(θ) =
∫ θ

0
h′(μ) dμ. (A.26)

For k ≤ 0 let ck := 2−k/2
[

∫

[2k−1,2k ] |h′(μ)|2 dμ
]1/2

. The formula (A.26) above shows

that

|h(θ)| �
∑

k′≤k

2k
′
ck′ if k ≤ 0 and θ ∈ [2k−1, 2k].

Therefore

∫ 1

0

h(θ)2

(sin θ)3 dθ �
∑

k≤0

(
∑

k′≤k

2k
′−kck′

)2
�

∑

k≤0

c2
k �

∫ 1

0

h′(θ)2

sin θ
dθ.

The change of variables θ → π − θ shows that

∫ π

π−1

h(θ)2

(sin θ)3 dθ �
∫ π

π−1

h′(θ)2

sin θ
dθ +

∫ π

0

h(θ)2

sin θ
dθ,

and the desired bound (A.25) follows.
To prove (v), we may assume that f ∈ H2

loc((0, π)) is real-valued and let f (θ) =
g(θ)(sin θ)2. Then

f ′′(θ) + cos θ

sin θ
f ′(θ) − 4(cos θ)2

(sin θ)2 f (θ)

= (sin θ)2g′′(θ) + 3 sin θ cos θg′(θ) − 2(sin θ)2g(θ).

The inequality (A.22) becomes

∫ π

0
|g′′|2(sin θ)5 + |g′|2(sin θ)3 + |g|2 sin θ dθ

�
∫ π

0
|(sin θ)2g′′ + 3 sin θ cos θg′|2 sin θ dθ

+
∫ π

0
|g′|2(sin θ)5 + |g|2(sin θ)3 dθ.
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In view of the inequality (A.19) with p = 1 it suffices to prove that

∫ π

0
|g′|2(sin θ)3 dθ �

∫ π

0
|(sin θ)2g′′ + 3 sin θ cos θg′|2 sin θ dθ

+
∫ π

0
|g′|2(sin θ)5 dθ.

Letting h(θ) = (sin θ)3g′(θ) this is equivalent to

∫ π

0

h(θ)2

(sin θ)3 dθ �
∫ π

0

h′(θ)2

sin θ
dθ +

∫ π

0

h(θ)2

sin θ
dθ,

which was proved earlier, see (A.25). �

The Main Function Spaces

We summarize now some of the main properties of the spaces Hm(�c
t ) and ˜Hm(�c

t ):

Lemma A.2 Assume t ∈ R and c ≥ c0.

(i) If f ∈ H1(�c
t ) satisfies Z( f ) = 0 then

‖ f ‖
˜H1(�c

t )
≈ ‖ f ‖H1(�c

t )
+ ‖(r sin θ)−1 f ‖L2(�c

t )
. (A.27)

(ii) If f ∈ H2(�c
t ), satisfies Z( f ) = 0 then

‖ f ‖
˜H2(�c

t )
≈ ‖ f ‖H2(�c

t )
+ ‖(r sin θ)−1 f ‖H1(�c

t )
+ ‖(r sin θ)−2 f ‖L2(�c

t )
.

(A.28)

Proof of Lemma A.2 The bound (A.27) follows easily from the definitions and (A.20).
We prove now part (ii) and the bounds (A.28) for m = 2. In view of the definition,
and using also (A.27),

‖ f ‖
˜H2(�c

t )
≈ ‖ f ‖H2(�c

t )
+ ‖˜∂2 f ‖˜H1(�c

t )
+ ‖(˜∂1/r)

2 f ‖L2(�c
t )

+ ‖(˜∂1/r) f ‖L2(�c
t )

≈ ‖ f ‖H2(�c
t )

+ ‖(r sin θ)−1∂2 f ‖L2(�c
t )

+ ‖(˜∂1/r)
2 f ‖L2(�c

t )

+‖(˜∂1/r) f ‖L2(�c
t )

. (A.29)

Using (A.18), we have

‖(r sin θ)−1∂2 f ‖L2(�c
t )

� ‖∂2[(r sin θ)−1 f ]‖L2(�c
t )

� ‖(r sin θ)−1 f ‖H1(�c
t )

.
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Moreover, using the definition,

‖(˜∂1/r)
2 f ‖L2(�c

t )
+ ‖(˜∂1/r) f ‖L2(�c

t )

� ‖(∂1/r)
2 f ‖L2(�c

t )
+ ‖[1 + (r sin θ)−1](∂1/r) f ‖L2(�c

t )

+‖[1 + (r sin θ)−2] f ‖L2(�c
t )

� ‖ f ‖H2(�c
t )

+ ‖(r sin θ)−1 f ‖H1(�c
t )

+ ‖(r sin θ)−2 f ‖L2(�c
t )

.

Using also (A.29), it follows that

‖ f ‖
˜H2(�c

t )
� ‖ f ‖H2(�c

t )
+ ‖(r sin θ)−1 f ‖H1(�c

t )
+ ‖(r sin θ)−2 f ‖L2(�c

t )
,

as desired.
For the reverse inequality, using (A.29), it remains to prove that

‖(r sin θ)−2 f ‖L2(�c
t )

+ ‖(r sin θ)−1(∂1/r) f ‖L2(�c
t )

� ‖ f ‖H2(�c
t )

+ ‖(r sin θ)−1∂2 f ‖L2(�c
t )

+ ‖(˜∂1/r)
2 f ‖L2(�c

t )

+‖(˜∂1/r) f ‖L2(�c
t )

. (A.30)

Using (A.20),

‖(r sin θ)−1(˜∂1/r) f ‖L2(�c
t )

� ‖(˜∂1/r)
2 f ‖L2(�c

t )
+ ‖(˜∂1/r) f ‖L2(�c

t )
.

Also, using (A.22) and then (A.27),

‖(r sin θ)−2 f ‖L2(�c
t )

�
∥

∥

∥r−2
[

∂2
1 + cos θ

sin θ
∂1 − 4(cos θ)2

(sin θ)2

]

f
∥

∥

∥

L2(�c
t )

+‖(∂1/r) f ‖L2(�c
t )

+ ‖(r sin θ)−1 f ‖L2(�c
t )

� ‖(˜∂1/r)
2 f ‖L2(�c

t )
+ ‖(r sin θ)−1(˜∂1/r) f ‖L2(�c

t )

+‖(˜∂1/r) f ‖L2(�c
t )

+ ‖ f ‖H1(�c
t )

.

The desired bound (A.30) follows from these two estimates. �
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