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Abstract Deep learning (DL) has captured the attention of

the community with an increasing number of recent papers

in regression applications, including surveys and reviews.

Despite the efficiency and good accuracy in systems with

high-dimensional data, many DL methodologies have

complex structures that are not readily transparent to

human users. Accessing the interpretability of these models

is an essential factor for addressing problems in sensitive

areas such as cyber-security systems, medical, financial

surveillance, and industrial processes. Fuzzy logic systems

(FLS) are inherently interpretable models capable of using

nonlinear representations for complex systems through

linguistic terms with membership degrees mimicking

human thought. This paper aims to investigate the state-of-

the-art of existing deep fuzzy systems (DFS) for regression,

i.e., methods that combine DL and FLS with the aim of

achieving good accuracy and good interpretability. Within

the concept of explainable artificial intelligence (XAI), it is

essential to contemplate interpretability in the development

of intelligent models and not only seek to promote

explanations after learning (post hoc methods), which is

currently well established in the literature. Therefore, this

work presents DFS for regression applications as the

leading point of discussion of this topic that is not suffi-

ciently explored in the literature and thus deserves a

comprehensive survey.

Keywords Deep fuzzy systems � Deep regression �
Explainable artificial intelligence (XAI) � Interpretability �
Deep learning

1 Introduction

The goal in regression is to predict one or more variables

yðkÞ ¼ ðy1ðkÞ; . . .; ymðkÞÞT from the information provided

by measurements xðkÞ ¼ ðx1ðkÞ; . . .; xpðkÞÞT for a given

sample k. Customary, yðkÞ are refereed as targets, outputs,

or dependent variables, while xðkÞ are commonly refereed

as predictors, inputs, covariates, regressors, or independent

variables. Regression models covers several application

areas, as economic growth problems [1, 2], air quality

prediction [3, 4], medicine [5, 6], chemical industries

[7, 8], and industrial processes [9, 10]. Recent studies show

that regression models have become predominant in

increasingly complex real-world systems due to the large

availability of data, inclusion of nonlinear parameters, and

other aspects intrinsic to the application area. For complex

systems, traditional machine learning techniques (i.e., non-

deep/shallow techniques) may become limited due to two

main challenges: big-data explosion (high-dimensionality,

high number of observations) and increase in complexity,

caused by dynamics of nowadays applications. Deep

learning (DL) methods have gained prominence in recent
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years due to their ability to represent systems in complex

structures with multiple levels of abstraction and high-level

features. However, DL may have limitations such as

dependence on a high number of samples, hyperparameter

sensitivity, and interpretability issues [11, 12], which limits

the application in critical systems or one that requires

accountability in its results. In this sense, deep fuzzy sys-

tems (DFS) have emerged as a viable method over DL to

balance accuracy and interpretability in complex real-

world systems.

Regression models can be categorized as [13]:

(i) ‘‘white-box’’ when the input–output mapping is built

upon first-principle equations, (ii) ‘‘black-box’’ when the

mapping is derived from the data (also referred to as data-

driven modeling), or (iii) ‘‘grey-box’’ when the knowledge

about the input–output mapping is known beforehand and

integrated along with data-driven modeling. White-box

models are advantageous for promoting interpretations of

the internal mechanisms associated with input–output

mapping. On the other hand, black-box models can address

complex systems with predictive analysis without prior

knowledge of the system. Grey-box models can combine

the interpretability presented by ‘‘white-box’’ and the

ability to learn from data given by ‘‘black-box’’ models

(e.g., fuzzy systems). Regarding data-driven modeling, the

dependency between input and output can be built by linear

or nonlinear models. A regression model is linear when the

rate of change between input–output is constant due to the

linear combination of the inputs. Examples include the

multivariate linear regression models. Data-driven nonlin-

ear regression is adopted when the input–output depen-

dence is nonlinear and can not be covered by linear

modeling. There is a plethora of methods for nonlinear

regression, and its applicability is problem-dependent.

Examples include fuzzy systems, support vector regression,

artificial neural networks (e.g., non-deep/shallow and deep

networks), and rule-based regression (e.g., decision trees

and random forest).

Following are brief discussions of recent surveys and

reviews that have showcased the applicability of DL to

various regression application domains. The work of Han

et al. [14] reviews DL models for time-series forecasting,

where the DL models are categorized as: (i) discriminative,

where the learning stage is based on the conditional

probability of the output/target given an observation, (ii)

generative, which learn the joint probability of both output

and observation, with the generation of random instances),

or (iii) hybrid, a combination of generative and discrimi-

native DL methods. The authors demonstrated that DL

models are effective at discriminating complex patterns in

time series with high-dimensional data by implementing

them in benchmark systems and using a real-world use case

from the steel industry. Sun et al. [11] discuss the use of

DL for soft sensor applications, showing the trends, the

scope of applications in industrial processes, and the best

practices for model development. The authors established

some directions for future research, such as working on DL

solutions to overcome the limitation in learning in sce-

narios with a lack of labeled samples (e.g., semi-supervised

methods), hyperparameter optimization, solutions to

improve model reliability (e.g., model visualization), and

the development of DL methods with distributed and par-

allel modeling. Torres et al. [15] survey DL architectures

for time-series forecasting. Furthermore, the authors dis-

cuss the practical aspects that must be considered when

using DL methods to solve complex real-world problems in

big-data settings, which include the existing

libraries/toolbox, the techniques for automatic optimization

of model structures, and the hardware infrastructure. Pang

et al. [16] and Chalapathy et al. [17] present an overview of

DL studies for anomaly detection; they also discuss the

complexities and different types of DL models for different

domains (e.g., classification, autoregressive, unsupervised,

and semi-supervised) with application to cyber-security

systems, medical monitoring, financial surveillance, and

industrial processes. Additional review papers on DL for

regression are referred to here: [18–20]. It is noted from

these works that DL techniques have some advantages over

non-deep methods, such as the ability to learn complex

representations with automatic feature engineering, not

requiring prior experience or knowledge, good perfor-

mance by increasing the dimensionality of the data, among

other specific advantages depending on the type of

framework and application [21].

Despite the advantages portrayed in the literature, deep

learning has limitations, such as the need for a sufficiently

large dataset for model training, sensitivity to hyperpa-

rameter selection, and lack of interpretability [11, 12].

Also, there is a lack of proper explanations of the internal

structure of deep model structures, which raises concern in

applications that directly and indirectly impact human life

as well for operational decisions [22, 23]. Having this

concern in mind, recent works address the interpretability

issue of DL from the following principles of ‘‘eXplainable

Artificial Intelligence’’ (XAI) systems [24]: the existence

of an appropriate explanation for each decision made; each

explanation must be meaningful to the user; the process

must accurately consider what happens in the system;

identify the situations in which the system may or may not

function properly (knowledge limits).

Fuzzy logic systems (FLS), composed of IF-THEN rules

with linguistic terms mimicking human thought [25], is one

of the research areas that contemplates the XAI principles.

FLS has a wide range of approaches to nonlinear systems,

primarily in terms of interpretability, whether related to the

complexity and semantics of fuzzy rules, notation
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readability, coverage of input data space (operation

regions), and so on [26, 27]. Moral et al. [28] show the

main benefits of adopting FLS for the development of

explainable methodologies, with a discussion of funda-

mental concepts and definitions associated with XAI and

FLS to how to design increasingly interpretable models.

Therefore, DL techniques can be complemented with FLS,

developing deep fuzzy systems (DFS) and then providing

an easy-to-understand and easy-to-implement interface to

efficiently address the main drawbacks of DL and FLS,

thus ensuring good accuracy and good interpretability. The

surveys of [29] and [30] investigated some recent trends in

DFS models and real-world applications (e.g., time series

forecasting, natural language processing, traffic control,

and automatic control). However, despite the benefit of

adopting FLS principles to DL systems, no comprehensive

survey or review has been conducted focusing exclusively

on deep fuzzy for regression problems.

This paper surveys and discusses the state-of-the-art on

deep fuzzy techniques developed to deal with a diverse

range of regression applications. Initially, Sect. 2 presents

fundamental concepts about FLS and XAI. Then, an

overview of DL techniques commonly used for regression

will be presented in Sect. 3, namely Convolutional Neural

Networks, Deep Belief Networks, Multilayer Autoen-

coders, and Recurrent Neural Networks. Next, Sect. 4

shows the literature on deep fuzzy systems in two ways:

(i) standard deep fuzzy systems, based on fundamental

FLS; and (ii) hybrid deep fuzzy systems, with the combi-

nation of FLS and the conventional deep models discussed

in Sect. 3. Finally, Sect. 5 presents general discussions

based on the state-of-the-art surveyed.

2 Background

2.1 Fuzzy Logic Systems

Developed initially by Lotfi A. Zadeh [31], FLS are rule-

based systems composed mainly of an antecedent part,

characterized by an ‘‘IF’’ statement, and a consequent part,

characterized by a ‘‘THEN’’ statement, allowing the

transformation of a human knowledge base into mathe-

matical formulations, thus introducing the concept of lin-

guistic terms related to the membership degree.

The basic configuration of a fuzzy logic system, shown

in Fig. 1, depends on an interface that transforms the real

input variables into fuzzy sets (fuzzifier), which are inter-

preted by a fuzzy inference model to perform an input–

output mapping based on fuzzy rules. Thus, the mapped

fuzzy outputs go through an interface that transforms them

into real output variables (defuzzifier) [32, 33].

Some well-known fuzzy systems are Mamdani fuzzy

systems [34], Takagi-Sugeno (T-S) fuzzy systems [35], and

Angelov-Yager’s (AnYa) fuzzy rule-based systems using

data clouds [36]. Among these, the T-S fuzzy models stand

out for their ability to decompose nonlinear systems into a

set of linear local models smoothly connected by fuzzy

membership functions [37]. T-S fuzzy models are universal

approximators capable of approximating any continuous

nonlinear system, that can be described by the following

fuzzy rules [38]:

Ri : IF x1ðkÞ is Fi
1 and . . . and xpðkÞ is Fi

p

THEN yiðkÞ ¼ f iðx1ðkÞ; . . .; xpðkÞÞ;
ð1Þ

where Ri (i ¼ 1; . . .;N) represents the i-th fuzzy rule, N is

the number of rules, x1ðkÞ; . . .; xpðkÞ are the input variables

of the T-S fuzzy system, Fi
j are the linguistic terms char-

acterized by fuzzy membership functions li
Fi
j
, and

f ðx1ðkÞ; . . .; xpðkÞÞ represents the function model of the

system of the i-th fuzzy rule [39].

2.2 Explainable Artificial Intelligence

Although the explainable artificial intelligence (XAI)

concept is often associated with a homonymous program

formulated by a group of researchers from the Defense

Advanced Research Projects Agency (DARPA) [40], the

principles related to explainability gained strength from the

1970 s onwards. The earliest works presented rule-based

structures and decision trees with human-oriented expla-

nations, such as the MYCIN system proposed in [41]

developed for infectious disease therapy consultation, the

tutoring program GUIDON proposed in [42] based on

natural language studies, among numerous other systems

[43–46]. Although many authors commonly use the terms

‘‘explainability’’ and ‘‘interpretability’’ as synonyms,

Rudin [47] discusses the problem of using purely

explainable methods to only provide explanations from the

results obtained in black-box models (post hoc analysis),

demystifying the importance of developing inherently

interpretable methodologies with causality relationships

that are understandable to human users.

Fig. 1 Basic configuration of fuzzy logic systems
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3 Deep Regression Overview

Deep neural networks (DNN) have emerged due to their

architecture with multiple levels of representation and their

remarkable performance in a variety of tasks [48]. This

section presents the DL techniques commonly employed in

regression problems to provide a better understanding and

context for the literature review of deep fuzzy regression

performed in Sect. 4.

3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs or ConvNets) are

feedforward neural networks with a grid-like topology that

are used for applications such as time-series data process-

ing in 1-D grids and image data processing in 2-D pixel

grids [49]. Figure 2 presents a CNN architecture for pro-

cessing time-series data in 1-D grids.

The ‘‘neocognitron’’ model proposed in [50] is fre-

quently referred to as the inspiration model for what is

currently known about CNNs. First proposed in [51], the

neocognitron aimed to represent simple and complex cells

from the visual cortex of animals which present a mecha-

nism capable of detecting light in receptive fields [52].

CNNs use a math operation on two functions called

‘‘convolution’’, with the first function referred to as input,

the second function as kernel, and the convolution’s output

as the feature map [49]. Outputs from the convolution layer

go through a pooling layer (downsampling), which per-

forms an overall statistic of the adjacent outputs by

reducing the size of the data and associated parameters via

weight sharing [11, 53]. After the data is processed along

with the layers that alternate between convolution and

pooling, the final feature maps go through a fully con-

nected (dense) layer to extract high-level features. For

regression problems, the extracted features can be com-

bined in a prediction mechanism with an activation func-

tion or a supervised learning model (e.g., support vector

regression) to estimate the final output [54, 55].

CNNs in the context of regression have been explored in

several domains, for example, traffic flow forecasting of

real road networks [56, 57], prediction of natural envi-

ronmental factors using data from meteorological institutes

[58–61], industrial process optimization [62–64], electric

load forecasting [65–69], and chemical process analysis

[70, 71]. Despite showing good performance with the

extraction of spatially organized features, essentially for

pre-processing, CNN’s performance depends on a large

amount of data and the correct choice of hyperparameters,

being computationally intensive [21, 72].

3.2 Deep Belief Networks

Deep Belief Networks (DBNs) are probabilistic generative

models proposed by Hinton et al. [73], which have a

hierarchical structure as illustrated in Fig. 3.

The DBNs are composed of multiple layers of latent

variables (hidden units) of binary values, organized into

multiple learning modules called restricted Boltzmann

machines (RBMs).

Each RBM comprises a layer of visible units for data

representation and a layer of hidden units for feature rep-

resentation, learned by capturing higher-order correlations

from the data. The two RBM layers, with no connections

within layers, are connected by a matrix of symmetrically

weighted connections, with a total of L weight matrices

W ¼ fw1;w2; . . .;wLg, considering a DBN of L hidden

layers. All units in each layer have a bidirectional con-

nection with all units in neighboring layers, except for the

last two layers, L and output, that have a unidirectional

connection [49]. In the DBN architecture of Fig. 3, the

layer of visible units in the first RBM represents the input

variables x and the subsequent layers represent hidden

units h, progressing hierarchically until reaching the esti-

mated output, with the output weights wout.

Recent DBN literature for regression has primarily

addressed industrial problems in the context of process

monitoring [74–79], soft sensing [80, 81], and prognostics

[82, 83]. Also, DBNs were applied in time series fore-

casting problems such as traffic flow [84, 85], environ-

mental prediction [86, 87], and stock price [88], as well as

modeling benchmark systems [89, 90]. Studies with DBNs

have difficulties in explaining the effect of hidden units on

the dynamics of the system, leading to interpretability

issues. As Fig. 3 shows, a DBN needs to undergo unsu-

pervised and supervised learning, whose training process

Fig. 2 Convolutional neural network, with 1-D architecture
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becomes slower with increasing DBN structure. In this

way, the DBN becomes sensitive to noisy inputs by not

correctly readjusting its low-level parameters [91].

3.3 Multilayer Autoencoders

Autoencoders (AEs) are feedforward neural networks used

for dimensionality reduction and representation learning,

whose training is aimed at mimicking inputs to outputs

[49]. A historical overview of deep learning in [92] pre-

sented some early works of AEs in the literature, such as

the work in [93] that proposes unsupervised architectures to

reconstruct the inputs through internal representations.

Another early work was published in [94], where the

authors explore the effect of hidden units in simple two-

layer associative networks, in which they want to map

input patterns to a set of output patterns. As presented in

Fig. 4, a single AE essentially has a structure composed of

a layer with input variables x, a layer with hidden units h

(which performs an encoding used to represent the input),

and an output layer with the reconstructed inputs repre-

sented with a ‘‘hat’’ symbol (e.g., x̂). These layers are

interconnected by an encoder function (between input and

hidden) and by a function decoder (between hidden and

output) [49]. As an evident constraint, the number of

neurons in the input layer must be the same number of

neurons in the output layer, setting AE to unsupervised pre-

training or feature extraction [95].

A viable alternative to deal with increasingly complex

data is to increase the number of hidden layers in standard

AEs, enabling the development of deep network architec-

tures. A well-known configuration of multilayer autoen-

coders found in the literature is stacked autoencoder (SAE).

As illustrated in Fig. 4, an SAE is developed from the

grouping of L AEs, where the hidden layers of the

autoencoders are stacked hierarchically, performing an

unsupervised layerwise learning algorithm. Thus, the

reconstruction of inputs after the L-th hidden layer can be

disregarded to address regression problems. As for CNNs,

a prediction mechanism or a supervised learning model can

be included after the L-th hidden layer to estimate the

system output. Related parameters, such as weights W ¼
fw1;w2; . . .;wLg between layers, are fine-tuned by a

supervised method (e.g., backpropagation algorithm) [96].

Recent studies using AEs within a deep architecture for

regression have considered soft sensing applications for

quality variable prediction [97–101]. Other cases of

applications in industrial processes include CNC turning

machines [102, 103], end-point quality prediction

[104, 105], and prognostics [106–109]. Other works were

developed for time-series forecasting applications, such as

natural environmental factors [110–112], electricity load

forecasting [113], and tourism demand [114]. Some of the

limitations of multilayer autoencoders include the sensi-

tivity to errors or loss of information from the first layer,

impairing learning as it progresses through the hidden

layers. Thus, the nature of encoding and decoding by

hidden layers can cause a loss of interpretability and an

increase in computational cost [21].

3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are artificial neural

networks with an internal state that allow the use of feed-

back signals between neurons [115]. One of the early

works that culminated in the popularization of RNNs was

proposed in [116], with the development of content-ad-

dressable memory systems called Hopfield networks whose

dynamics have a Lyapunov function (or energy function) to

direct to a local minimum of ‘‘energy’’ associated with the

Fig. 3 Deep belief networks architecture

Fig. 4 Modified stacked autoencoder architecture for regression
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system states [117]. Another early work, published in

[118], presented a new learning procedure, backpropaga-

tion, which adjusts the weights of connections of recurrent

networks with ‘‘internal hidden units’’. Due to the presence

of an ‘‘internal memory’’, RNNs are often used to process

data in the time domain (sequential information), with

weight sharing through hidden states [119]. Figure 5 shows

the architecture of an RNN, whose hidden states h repre-

sent the ‘‘internal memory’’ of the system, and as the inputs

are sequentially observed, the corresponding outputs are

estimated. The weights W in, Wh and Wout are auxiliary

parameters that are shared across time [120]. The states are

updated at every temporal instant until completing all the

input sequences of length K [121, 122]. The RNN learning

process depends on a ‘‘backpropagation through time’’

algorithm, which is a gradient-based technique that updates

parameters recursively starting from the last temporal

instant and going backward in time [123].

In deep learning, there are many variations of standard

RNNs, such as Long Short-Term Memory networks

(LSTMs), Gated Recurrent Units (GRUs), and Echo State

Network (ESNs) [49]. Some of these variations were pro-

posed to cope with some limitations present in standard

RNNs, such as exploding and vanishing gradients (insta-

bility in networks caused by a large variation in model

parameters), overfitting, and difficulty to store low-level

features in long data sequences [124]. In this document,

only LSTMs and ESNs employed for regression problems

will be discussed.

3.4.1 Long Short-Term Memory

Long Short-Term Memory networks (LSTMs) were ini-

tially developed in [125] to overcome the issues of RNNs

associated with vanishing/exploding gradients. These

issues can occur during the training of long temporal

sequences with the backpropagation through time algo-

rithm. In this sense, during successive operations in com-

pound functions with the weight matrices, gradients can

exponentially reach very low values close to zero

(vanishing) or very high values (exploding) [49]. Figure 6

illustrates the architecture of an LSTM.

LSTMs introduced ‘‘gates’’, nonlinear elements that

control memory cells using sigmoidal functions r, hyper-

bolic tangent functions, current observation xðkÞ and hid-

den units hðk � 1Þ from the previous time instant [122].

Each of these memory cells has input, output and forget

gates (i, o and f , respectively), that protect the information

from perturbations caused by irrelevant inputs and irrele-

vant memory contents [72]. The information stored in the

cells represents the states sðkÞ obtained from the data

processed in the time domain. Despite having the same

inputs and outputs as a standard RNN, an LSTM cell has an

internal recurrence (self-loop) to propagate the information

flow through a long sequence and, therefore, more

parameters to be adjusted [49].

Due to the ability to process data sequentially and

ensure long-term dependencies, LSTMs are primarily used

for time-series forecasting in traffic flow [126, 127] and

natural environment factors [128–133]. LSTM method-

ologies have also been applied in the industrial context for

soft-sensing with attention mechanism [134, 135] and key

quality prediction [136, 137], process monitoring

[138, 139], and prognostics [140–142]. Other applications

of LSTMs include electric load forecasting [143, 144].

LSTMs in regression problems, despite the feasibility, can

suffer from vanishing gradient from the saturation of cell

states, which must be reset occasionally. In addition, there

is a computational cost issue in the application of LSTMs

as they require a high memory bandwidth to perform the

associated functions in complex systems [145].

3.4.2 Echo state network

Echo State Networks (ESNs) are variations of RNNs that

were developed in [146] and share the basic ideas of

reservoir computing of Liquid State Machines from [147].

The term ‘‘reservoir computing’’ stands for a homonymous

Fig. 5 Recurrent neural network architecture

σ σ σ

Fig. 6 The long short-term memory cell
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research stream that introduced the concept of a dynamic

reservoir, in place of the hidden layer, with many sparsely

connected neurons [148]. In addition, this reservoir must

have a stability condition known as ‘‘echo state property’’,

which allows for a gradual reduction in the effect of pre-

vious states and inputs on future states over time [149].

Figure 7 illustrates the architecture of an ESN.

An ESN induces nonlinear response signals from the

input signals xðkÞ, whose resulting state hðkÞ echoes the

input information, estimating a desired output signal yðkÞ
[146]. In addition to the input weight W in and output

weight Wout that are present in a standard RNN, the ESN

features the reservoir weights Wr and, optionally, the

output-to-reservoir feedback weights Wback. The funda-

mental idea for the functioning of an ESN is to adjust only

Wout during training, while the rest are randomly assigned

and fixed before learning [150].

Recent applications of ESNs are time-series forecasting

in chaotic systems [151–155], wind power systems

[156–160], solar energy systems [161–164], and bench-

mark systems [165–167]. Other applications include

chemical processes [168, 169], soft sensing [170], electri-

cal/power systems [171–173], and the prognosis of turbo-

fan engines [174, 175]. The recent literature shows that

random connectivity within the dynamic reservoir of an

ESN can lead to interpretability issues. Furthermore, ESN

hyperparameters, such as the number of units in the

reservoir and input scaling, are limited to a short operating

space that ensures maximum model performance [176].

4 Deep Fuzzy Regression

Deep fuzzy systems (DFSs) are models built on top of DL

structures with fuzzy logic systems (FLSs). DFS aims to

overcome the lack of interpretability of DL systems and the

limitations of FLS when dealing with high-dimensional

data. DFS is often referred to in the literature as an

explainable model due to the incorporation of fuzzy logic

into its core. From the definition from [177], an explainable

AI (XAI) system should provide capabilities accessible to

human understanding, reflecting positively on the health of

the system’s processes and being able to operate even in

unforeseen situations. Although DFS is promoted as an

XAI system by definition, this is not the case, as evidenced

by works in the literature. This section surveys recent

applications of DFS for regression, with the main focus on

its structure and if it adheres to the XAI principles.

4.1 Survey on Deep Fuzzy Systems

This survey will follow two stages to review the DFS for

regression applications. First, the DFS will be categorized

according to its structure. Secondly, the models will be

categorized according to whether they follow the XAI

principles. The structures of deep fuzzy models can be

represented in several forms, such as those illustrated in

Fig. 8. Here, deep fuzzy structures are summarized into

two categories: (i) Standard DFS and (ii) Hybrid DFS. A

model belongs to the first category when the blocks of

fuzzy systems are stacked in series, in parallel, or hierar-

chically (see Fig. 8a). Also, there are cases where the

architecture of such systems resembles neural network

architecture, such as the dense DNN architecture (see

Fig. 8d). The second category includes hybrid method-

ologies, where conventional DL models are combined with

FLS. The combination of DL and FLS is commonly in an

ensemble form (see Fig. 8b,c) or mixed form (see Fig. 8d).

Aside from the deep fuzzy structures, the discussed

works will be investigated whether they are in synergy with

the XAI principles. If so, these works will be classified

following the categories defined in [22]: understanding and

scope of the explainability. In terms of understanding, the

models will be classified as (i) transparent or (ii) opaque.

Transparent models are those in which the decisions, pre-

dictions, or inner functioning are perceptible or are visible;

they are considered opaque otherwise. The scope is related

to accessing the model’s interpretability through post hoc

explanations, classified as (i) local, (ii) global, and (iii)

visual. Local explanations facilitate comprehension of

small regions of interest in the input space for a given

decision/prediction. Global explanations when such desired

understanding considers the entire sample space. Visual

explanations are required when visual interfaces are needed

to demonstrate the influence of features on decisions.

The following sections will discuss the methods con-

taining DFS for regression problems. Section 4.1.1 will

discuss Standard DFS, while Sect. 4.1.2 will discuss

Hybrid DFS.

Fig. 7 The echo state network
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4.1.1 Standard Deep Fuzzy Systems

The methods discussed in this section have a DFS structure

and were used in any regression problem domain while

adhering to the Standard DFS structure. They are discussed

in order of structural similarity, with structurally similar

methods following each other.

In [178], a model called Randomly Locally Optimized

Deep Fuzzy System (RLODFS) is proposed. It is composed

of a hierarchical structure of a bottom-up layer-by-layer

type with FLS, similar to a fully connected DNN; the

structure of RLODFS is shown in Fig. 9. In RLODFS, the

input variables are divided into several fuzzy subsystems,

allowing the decrease of the size of the fuzzy rule’s ante-

cedent, thus reducing the learning complexity when com-

pared to learning with all input variables at once. The

structure of RLODFS shows several groupings with shar-

ing of input variables performed randomly for the fuzzy

subsystems of level 1, whose outputs are used as inputs of

the fuzzy subsystems of the subsequent levels until

reaching the last level fuzzy system (used to estimate the

model output). The training of each fuzzy subsystem was

followed by the Wang-Mendel algorithm [179], which

performs the construction of fuzzy rules from a small-scale

observation set (data pairs) with input–output mapping.

Finally, a random local loop optimization strategy is per-

formed to remove feature combinations and corresponding

subsystems with low correlation to achieve fast conver-

gence [178]. The performance of RLODFS on the predic-

tion of 12 real-world datasets from the UCI repository1 was

compared with other methods such as DBN, LSTM, and

generalized regression neural network (GRNN). From the

authors’ perspective, RLODFS has good interpretability

due to its structure, clear physical meaning of its parame-

ters, and the ease of locating fuzzy rules that may fail for

future optimizations. However, there is a lack of trans-

parency in using input sharing strategies, which increases

the method complexity. Furthermore, the selection of the

number of features per fuzzy subsystem needs to be

Fig. 8 Examples of deep fuzzy system frameworks: a multiple FLSs organized hierarchically; b sequential ensemble models; c parallel

ensemble models; and d fuzzy neural network fully integrated into a deep architecture or mixed with parts of a conventional deep model

1 http://archive.ics.uci.edu/ml
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carefully done, whose manual/arbitrary choice may not

reflect the real needs of the case study under analysis.

The study in [180] proposes a stacked structure com-

posed of double-input rule modules and interval type-2

fuzzy models, abbreviated as IT2DIRM-DFM. The pro-

posed model is illustrated in Fig. 10, where four layers are

presented: the input layer, which deals directly with the

original input data, grouped two-by-two in each rule

module; the stacked layer, where the signals coming from

the input layer become the inputs of the first layer, whose

output becomes the input of the second layer, and so on;

the dimension reduction layer, where the width of the

IT2DIRM-DFM is hierarchically reduced until it becomes

two; and the output layer, where the latest IT2DIRM-DFM

model produces the final forecasting results. Still, the

authors discuss the interpretability of the model showing

layered learning and fuzzy rules composed of only two

variables in the antecedent, partitioned into interval type-

2 second-order rule partitions. The resulting model was

evaluated in two real-world applications, using subway

passenger data from Buenos Aires, Argentina, and traffic

flow data from California Highway System. The results

allowed to verify the interpretability from consistent

readability of which partitions and bounds of the inputs are

used in each fired rule from each rule module. However,

the proposed method is only interpretable locally in each

rule module and not globally, whose structure does not

reflect the depth or number of layers needed to address the

experiments. Furthermore, it is not clear the motivations

for considering a function, denoted as f, in each layer

related to the worst-performing module (this is shown at

the bottom of Fig. 10).

Another work that explores double-input rule modules

within a stacked deep fuzzy model (in a hierarchical way)

was proposed in [181] using datasets related to photo-

voltaic power plants from Belgium and China. The authors

investigate the interpretability of the resulting model,

called DIRM-DFM, with conclusions similar to [180],

mainly regarding the composition of fuzzy rules. However,

in DIRM-DFM, they promote more transparency and

simplicity. Some other studies deal with interval type-2

fuzzy models for deep learning in regression problems. In

[182], a novel dynamic fractional-order deep learned type-

2 FLS was proposed and constructed using singular value

decomposition and uncertainty bounds type-reduction. The

resulting model was implemented with two chaotic

benchmark system simulations, a simulation for the pre-

diction of the glucose level of type-1 diabetes patients, and

a dataset of a heat transfer system with an experimental

setup. In addition to determining the limit values of the

input data (upper and lower singular values), the authors

used stability criteria of fractional-order systems, allowing

to reduce the necessary number of fuzzy rules and reduce

the complexity of nonlinear systems. An evolving recurrent

interval type-2 intuitionistic fuzzy neural network (FNN)

was proposed in [183], and it was evaluated using regres-

sion datasets from the KEEL repository,2 Mackey–Glass

time series, and a simulated second-order time-varying

system. Intuitionistic evaluation, fire strength of member-

ship degree and strategies for adding and removing fuzzy

rules were considered to improve uncertainty modeling.

Both studies in [182] and [183] did not present an analysis

of the interpretability of their models.

Methods that use multiple neuro-fuzzy systems in a deep

hierarchical structure were proposed in [184] and [185].

The work in [184] proposed a deep model that cascades

multiple neuro-fuzzy systems modified as multivariable

generalized additive models, with application in real eco-

logical time series, the Darwin sea level pressure. The

resulting model manages to locally detail the mechanisms

of each neuro-fuzzy system in each layer. However, it

presents incomplete discussions and results regarding the

increase in the network depth and the influence of the

inputs and partial outputs of the layers on the final pre-

diction. In [185], a hybrid cascade neuro-fuzzy network

Fig. 9 The structure of RLODFS based on grouping and input

sharing, adapted from [178]

2 https://sci2s.ugr.es/keel/datasets.php
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was proposed, which is composed of multiple extended

neo-fuzzy neurons with adaptive training designated for

online non-stationary data stream handling. Each layer has

a generalization node that performs a weighted linear

combination to obtain an optimal output signal. The

experimental results in electrical loads prediction, using

Southern Ukraine’s data from 2012, show the authors’

search for better accuracy, although at the cost of

increasing membership functions to cover the input space

and increasing adjusted parameters (weights).

The work in [186] proposed a deep learning recurrent

type-3 fuzzy system applied for modeling renewable

energies (i.e., power generation of a 660kW wind turbine

and solar radiation generated by sunlight simulator). The

proposed methodology showed good performance com-

pared to other methods, such as multilayer perceptron,

type-1 FLS, type-2 FLS, and interval type-3 FLS, despite

the lack of a more elaborate discussion of the presented

results. Furthermore, transparency is not guaranteed

regarding the modeling steps and the influence of various

parameters optimized during learning. The authors in [187]

proposed a self-organizing FNN with incremental deep pre-

training, abbreviated as IDPT-SOFNN, to promote efficient

feature extraction and dynamic adaptation in the structure

according to error-reduction rate. IDPT-SOFNN was

implemented for the prediction of Mackey–Glass time

series, total phosphorus concentration in wastewater treat-

ment plant, and air pollutant concentration. In [188], a deep

fuzzy cognitive map was proposed for multivariable time-

series forecasting applications, such as air quality indexes,

traffic speed of six road segments in China, and two

benchmark datasets from the UCI repository, the electric

power consumption and the temperature of a monitor

system. The analysis of the model’s interpretability was

based on nonlinear and nonmonotonic influences of

unknown exogenous factors. The work in [189] proposed a

deep FNN composed of an input layer, four hidden layers

(membership functions, T-norm operation, linear regres-

sion, and aggregation), and an output layer, designed

exclusively for intra- and inter-fractional variational pre-

diction for multiple patients’ breathing motion.

Table 1 summarizes the literature on Standard DFS.

They are categorized according to the application domain

and regarding its interpretability categories. The survey

shows that the application domain is vast, with applications

in the domain of industrial systems, power systems, traffic

systems, and multivariable benchmark systems.

Table 1 shows that only four out of eleven works discuss

interpretability, despite most of their proposed methods

being transparent. Also, not all methods provide post hoc

Fig. 10 The structure of the double-input rule modules stacked deep interval type-2 fuzzy model (IT2DIRM-DFM), adapted from [180]
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explanations, and of these, the local scope is more frequent.

The Standard DFS architecture is easy to implement, with

flexibility in the construction of fuzzy rules, having a

similar structure to feedforward neural networks. However,

these methods may suffer from loss of interpretability

when using a non-intuitive hierarchical structure, the lack

of investigation of interconnections between the variables

involved, and the limitation of fuzzy rules that can disturb

the estimation by not covering all operating regions (cov-

erage of input data space) [190].

4.1.2 Hybrid Deep Fuzzy Systems

The Hybrid DFSs are discussed in this section. The

selection and order of works follow the same principles

used for Standard DFS. The common DL architectures

used in combination with fuzzy systems are the Deep

Belief Networks, Autoencoders, Long Short-Term Memory

networks, and Echo State Networks.

In [191], it is proposed a sparse Deep Belief Network

(SDBN) with FNN for nonlinear system modeling

(benchmark) and total phosphorus prediction in wastewater

treatment plant. The SDBN is considered for unsupervised

learning and pre-training to perform fast weight-initial-

ization and improve modeling robustness. The FNN is used

as supervised learning to reduce layer-by-layer complexity.

As shown in Fig. 11, the structure of the DBN resembles

the structure shown in Fig. 3, except for considering

additional constraints (sparsity) used to penalize fluctua-

tions of values along the hidden neurons. The proposed

method performed better compared to other similar meth-

ods, such as transfer learning-based growing DBN [192],

DBN-based echo-state network [164], and self-organizing

cascade neural network [193]. However, the authors

noticed various fluctuations in the assignment of hyperpa-

rameters, which can compromise the stability of the pro-

posed model, making it necessary to dynamically and

robustly improve its structure to these fluctuations. In terms

Table 1 State-of-the-art on methods with standard deep fuzzy

systems for regression problems. XAI: explainable artificial intelli-

gence; Disc.: discussion by the authors (Yes/No); Und.: how

understandable is the model, whether it is transparent (T) or opaque

(O); Scope: in post hoc scope, if the model promotes local

explanations (L), global explanations (G) or visual explanations (V)

Reference Approach Application Domain XAI

Disc. Und. Scope

[178] Hierarchical Randomly Locally

Optimized Deep Fuzzy System with

input sharing

Prediction of 12 real-world datasets from the UCI repository Yes T L

[180] Double-input rule modules stacked deep

interval type-2 fuzzy model

Time-series forecasting using subway passenger data and traffic

flow data

Yes T L

[181] Double-input-rule-modules stacked deep

fuzzy model

Prediction of short-term photovoltaic power generation Yes T L,G

[182] Dynamic fractional-order deep learned

type-2 fuzzy logic system

Prediction of two chaotic benchmark systems, glucose level of

type-1 diabetes patients, and dataset of a heat transfer system

No O –

[183] Evolving recurrent interval type-2

intuitionistic FNN

Time-series forecasting using KEEL datasets, Mackey–Glass

time series, and a simulated second-order time-varying

system

No T –

[184] Deep Stacking Convex Neuro-Fuzzy

System

Real ecological time-series forecasting (Darwin sea level

pressure)

No T L

[185] Hybrid cascade neuro-fuzzy

scheme (ensemble of extended neo-

fuzzy neurons)

Time-series forecasting (electrical loads) No T –

[186] Deep learned recurrent type-3 fuzzy

system

Renewable energy modeling (power generation of a 660kW

wind turbine and solar radiation generated by sunlight

simulator)

No O –

[187] Self-Organizing Deep FNN Prediction of Mackey–Glass time series, total phosphorus

concentration in wastewater treatment plant, and air pollutant

concentration

No T V

[188] Deep Fuzzy cognition map model (with an

alternate function gradient descent

algorithm)

Multivariate time-series forecasting applications (air quality

indexes, traffic speed, UCI datasets)

Yes T V

[189] Fuzzy Deep Learning architecture (with

four hidden layers)

Intra- and Inter-fractional variation prediction of Lung Tumors No T L,V
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of interpretability, the proposed model guarantees a mod-

erate number of membership functions and rules, allowing

good consistency and readability of what happens within

the FNN structure. The same cannot be said for the DBN

structure, which is not intuitive in sparse representation to

decide which features are more valuable than others.

The authors in [194] proposed a novel robust deep

neural network (RDNN) for regression problems involving

nonlinear systems, with the implementation of three

strategies: a fuzzy denoising autoencoder (FDA) as a base-

building unit for RDNN, improving the ability to represent

uncertainties; a compact parameter strategy (CPS),

designed to reconstruct the parameters of the FDA,

reducing unnecessary learning parameters; and an adaptive

backpropagation (ABP) algorithm to update RDNN

parameters with fast convergence. As shown in Fig. 11,

FDA has an input layer, a fuzzy layer (built by Gaussian

membership functions), and an output layer, which can be

divided into an encoder (‘‘input’’ to ‘‘fuzzy’’) and a decoder

(‘‘fuzzy’’ to ‘‘output’’). Furthermore, at each FDA, due to

the nature of this autoencoder, the data is partially

corrupted by noises (represented with a ‘‘tilde’’ symbol)

and is reconstructed using CPS (represented with a ‘‘hat’’

symbol) with associated parameters (e.g., encoder/decoder

weights and biases) are adjusted via ABP. The resulting

model was evaluated through four prediction examples: air

quality from the UCI repository, wind speed from National

Renewable Energy Laboratory, housing price from the

KEEL repository, and water quality from a wastewater

treatment plant in Beijing, China. Regarding the inter-

pretability of the proposed model, there was no appropriate

discussion by the authors, as they focused mainly on model

performance/accuracy in the presence of uncertainties. In

addition to a fuzzy rule base not being defined, the number

of fuzzy neurons in each FDA is manually initialized and

adapts through redundancies during the reconstruction of

parameters via CPS. Finally, the architecture of the pro-

posed model is not intuitive based on the mechanisms

related to the representation ability of each FDA, which

would be crucial to determine the influence of input vari-

ables and learning parameters on the outputs.

Fig. 11 Examples of FLS application with conventional deep models: a with deep belief networks, adapted from [191]; and b with denoising

autoencoders, adapted from [194]
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Some hybrid methods using FLS and conventional deep

models have been applied in the literature for traffic flow

prediction. In [195], the authors developed an algorithm

based on Dolphin Echolocation optimization [196], where

the input features are fuzzified into membership functions

to obtain chronological data, whose integration goes into

the weight update process of the proposed algorithm con-

verging to a globally optimal solution with a Deep Belief

Network. The method in [195] was evaluated using data-

sets of traffic-major roads in Great Britain and PEMS-SF

(San Francisco bay area freeways). The study in [197]

combined fuzzy information granulation and a deep neural

network to represent the temporal-spatial correlation of

mass traffic data and be able to adapt to noisy data.

A Stacked Autoencoder is used to obtain the prediction

results based on processed granules that have a good

capacity for interpretation, which have not been discussed

by the authors. The method in [197] was evaluated using

traffic flow data archived for the Portland–Vancouver

Metropolitan region.

Other methods were implemented for energy forecast-

ing, with the usual application of LSTM networks. A novel

fuzzy seasonal LSTM was proposed in [198], where a

fuzzy seasonality index [199] and a decomposition method

were employed to solve the seasonal time-series problem in

a monthly wind power output dataset from the National

Development Council in Taiwan. In [200], the authors used

an LSTM network with rough set theory [201] and interval

type-2 fuzzy sets for short-term wind speed forecasting

(dataset from Bandar-Abbas City, Iran), with the aid of

mutual information approach for efficient variable input

selection. A novel ultra-short-term photovoltaic power

forecasting method was proposed in [202], where a T-S

fuzzy model comprises a fuzzy c-means clustering algo-

rithm and DBNs, with evaluation tests using a 433 kW

photovoltaic matrix database. The studies in [198, 200] and

[202] did not discuss the interpretability of their models,

which have a structure with an ensemble characteristic

whose fuzzy part has an affinity for good coverage of the

input space and good capture of data uncertainty.

Table 2 State-of-the-art on hybrid methods using fuzzy logic systems

and conventional deep models for regression problems. XAI:

explainable artificial intelligence; Disc.: discussion by the authors

(Yes/No); Und.: how understandable is the model, whether it is

transparent (T) or opaque (O); Scope: in post hoc scope, if the model

promotes local explanations (L), global explanations (G) or visual

explanations (V)

Reference Approach Application Domain XAI

Disc. Und. Scope

[191] Sparse Deep Belief Network with FNN Nonlinear system modeling (benchmark) and total

phosphorus prediction in wastewater treatment plant

No T –

[194] Fuzzy denoising autoencoder with a compact

parameter strategy and an adaptive

backpropagation algorithm

Air quality, wind speed, housing price, and water quality

from a wastewater treatment plant

No O –

[195] Chronological Dolphin Echolocation-Fuzzy

and Deep Belief Network

Traffic flow prediction in intelligent transportation system

(traffic-major roads and PEMS-SF)

No O –

[197] Fuzzy information granulation with Stacked

Autoencoder

Traffic flow prediction No T –

[198] Fuzzy seasonal long short-term memory

network

Seasonal time-series forecasting in a monthly wind power

output dataset

No O –

[200] Long Short-Term Memory model hybridized

with rough and fuzzy set theory

Short-term wind speed forecasting No O –

[202] T-S fuzzy model with fuzzy c-means and

Deep Belief Network

Photovoltaic power forecasting (with a 433 kW

photovoltaic matrix database)

No T –

[203] Deep Type-2 Fuzzy Logic System, trained as

Stacked Autoencoder

Benchmark system prediction and binary classification Yes T G,V

[204] Differential Evolution based Fuzzy Echo

State Network

Time-series forecasting (Mackey-Glass, NARMA time

series with chaotic behavior, and Lorenz attractor)

No O –

[205] T-S fuzzy model with Echo State Network Benchmark system prediction (approximation of a nonlinear

function, Henon chaotic system, and dynamic system

with and without noise signal)

No T –

[206] Fuzzy Cognitive Maps with Sparse

Autoencoders

Time-series forecasting (ten datasets, including sunspots,

Mackey-Glass, S&P 500 index, and Dow-Jones index)

No T –

[207] Fuzzy rule reduction with Stacked Sparse

Autoencoders

Time-series prediction (Mackey-Glass) and classification

(Iris dataset)

No O –
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The work in [203] proposed a deep type-2 FLS (D2FLS)

architecture with greedy layer-wise training for high-di-

mensional input data. The D2FLS model was applied to

two regression datasets (prediction of the performance of

British Telecom’s work area and health insurance pre-

mium) and two binary classification datasets (Santander

Customer Transaction prediction and British Telecom’s

customer service). The authors showed how to extract

interpretable explanations related to the contribution of

fuzzy rules to the final prediction developed for a two-layer

D2FLS. However, the authors opted for a large number of

fuzzy rules (100, in this case) that impair interpretability by

increasing the complexity of the model. The authors in

[204] proposed an ensemble model composed of an Echo

State Network (ESN), a T-S fuzzy model, and differential

evolution for time-series forecasting problems: Mackey-

Glass time series, nonlinear auto-regressive moving aver-

age (NARMA) time series, and Lorenz attractor. The dif-

ferential evolution method, used to optimize the weight

coefficients of the model, managed to reduce the number of

fuzzy rules. The interpretability of the model can be

impaired due to the structure with an ensemble character-

istic, which does not provide enough transparency for

learning. A method based on the T-S fuzzy model and ESN

was developed in [205] and tested with three benchmark

examples: approximation of a nonlinear function, predic-

tion of Henon chaotic system, and identification of a

dynamic system with and without noise signal. The authors

chose to balance model complexity and performance based

on the parameters involved for learning (e.g., number of

fuzzy rules and reservoir size), which resulted in better

results in comparison with other methods (e.g., traditional

ESN and hybrid fuzzy ESN), despite the lack of discussion

on interpretability.

In [206], a framework based on a sparse autoencoder

(SpAE) and a high-order fuzzy cognitive map (HFCM) is

proposed for time-series forecasting problems (e.g., sun-

spots, Mackey-Glass, S&P 500 stock index and Dow-Jones

industrial index). SpAE is used to extract features from the

original data, and these features are via HFCM. Another

study that uses SpAE with FLS was proposed in [207] and

implemented in Mackey-Glass time series and Iris dataset

(classification). The proposed method uses a method to

reduce fuzzy rules by reducing the data dimensionality

with SpAE. Both studies in [206] and [207] do not consider

addressing the interpretability of the proposed models,

which present good directions in data partitioning and

construction of fuzzy rules but are not intuitive in feature

extraction with sparse representation.

Table 2 summarizes the works presented in this section,

in addition to evaluating them within the context of

explainable artificial intelligence (XAI) systems.

Only two works discuss the interpretability in Hybrid

DFS, half of the discussed works are opaque, and only one

presents post hoc explanations. This fact occurs since the

combination with DNN brings a new layer of black-box to

the system. However, the Hybrid DFS methods categorized

as transparent show that the fuzzy component can promote

good interpretability with efficient input–output mappings

and the construction of rules to cover the universe of dis-

course for a given system. Inherently inter-

pretable methodologies are difficult to achieve only with an

ensemble of multiple methods, as seen in recent studies, in

addition to the challenges of reducing the time complexity

of systems, which is slightly mitigated by the reduction of

fuzzy rules [208].

5 Conclusion

This study surveyed the literature on deep fuzzy systems

(DFSs) for regression applications with an emphasis on

interpretability. For the survey, the DFSs were categorized

as (i) Standard DFS and (ii) Hybrid DFS. Regarding the

interpretability, each method was categorized as to whether

it is transparent or not and whether it has post hoc expla-

nations (under the definition of [22]). Standard DFSs have

been shown to promote more interpretability of their

models when compared to Hybrid DFSs, according to the

survey. Indeed, Standard DFSs are based on fundamental

fuzzy logic systems, which are inherently interpretable,

whereas Hybrid DFSs include conventional deep learning

(DL) methods, which lack flexibility in promoting inter-

pretability. In terms of applications, DFS can be flexible in

its implementation either by simulation or in real-time

systems, whose most recurrent applications involve time-

series forecastings, such as traffic flow and energy mod-

eling (e.g., photovoltaic and wind). Furthermore, the DFS

is frequently referred to as interpretable by default, but

only 5 of the 23 works surveyed here actually addressed

this issue. The remaining works had a common goal: to

improve prediction accuracy using their proposed methods.

However, this survey presented the potential of using

Standard DFS as a base for developing accurate models

while promoting interpretability since hybrid models are

not straightforward.
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C.: Novelty detection for iterative learning of MIMO fuzzy

systems. In: 2021 IEEE 19th International Conference on

Industrial Informatics (INDIN), pp. 1–7 (2021). https://doi.org/

10.1109/INDIN45523.2021.9557354

40. Hall, P., Gill, N.: An introduction to machine learning inter-

pretability. O’Reilly Media, Incorporated (2019)

41. Shortliffe, E.H., Axline, S.G., Buchanan, B.G., Merigan, T.C.,

Cohen, S.N.: An artificial intelligence program to advise

physicians regarding antimicrobial therapy. Comput. Biomed.

Res. 6(6), 544–560 (1973). https://doi.org/10.1016/0010-

4809(73)90029-3

42. Clancey, W.J.: Tutoring rules for guiding a case method dia-

logue. Int. J. Man-Mach. Stud. 11(1), 25–49 (1979). https://doi.

org/10.1016/S0020-7373(79)80004-8

43. Weiss, S.M., Kulikowski, C.A., Amarel, S., Safir, A.: A model-

based method for computer-aided medical decision-making.

Artif. Intell. 11(1), 145–172 (1978). https://doi.org/10.1016/

0004-3702(78)90015-2

44. Suwa, M., Scott, A.C., Shortliffe, E.H.: An approach to verify-

ing completeness and consistency in a rule-based expert system.

Ai Mag. 3(4), 16–16 (1982). https://doi.org/10.1609/aimag.v3i4.

377

45. Swartout, W.R.: XPLAIN: a system for creating and explaining

expert consulting programs. Artif. Intell. 21(3), 285–325 (1983).

https://doi.org/10.1016/S0004-3702(83)80014-9

46. Swartout, W. R.: Explaining and justifying expert consulting

programs. In: Reggia, J.A., Tuhrim, S. (eds) Computer-assisted

medical decision making, pp. 254–271 (1985). https://doi.org/

10.1007/978-1-4612-5108-8_15

47. Rudin, C.: Stop explaining black box machine learning models

for high stakes decisions and use interpretable models instead.

Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/

s42256-019-0048-x

48. Bengio, Y., Courville, A., Vincent, P.: Representation learning:

a review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/

TPAMI.2013.50

49. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep

learning. MIT press, Cambridge (2016)

50. Fukushima, K.: Neocognitron: a self organizing neural network

model for a mechanism of pattern recognition unaffected by

shift in position. Biol. Cybern. 36(4), 193–202 (1980). https://

doi.org/10.1007/bf00344251

51. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional

architecture of monkey striate cortex. J. Physiol. 195(1),

215–243 (1968). https://doi.org/10.1113/jphysiol.1968.

sp008455

52. Gu, J., et al.: Recent advances in convolutional neural networks.

Pattern Recognit. 77, 354–377 (2018). https://doi.org/10.1016/j.

patcog.2017.10.013

53. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of con-

volutional neural networks: analysis, applications, and pro-

spects. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://

doi.org/10.1109/TNNLS.2021.3084827

54. Ketkar, N.: Convolutional neural networks. In: Deep Learning

with Python: A Hands-on Introduction 63–78 (2017). https://doi.

org/10.1007/978-1-4842-2766-4_5

55. Mallat, S.: Understanding deep convolutional networks. Philos.

Trans. Royal Soc.: Mathemat. Phys. Eng. Sci. 374(2065),

20150203 (2016). https://doi.org/10.1098/rsta.2015.0203

56. Wu, S.: Spatiotemporal dynamic forecasting and analysis of

regional traffic flow in urban road networks using deep learning

convolutional neural network. IEEE Trans. Intell. Trans. Syst.

23(2), 1607–1615 (2022). https://doi.org/10.1109/TITS.2021.

3098461

57. Zhang, Y., Zhou, Y., Lu, H., Fujita, H.: Traffic network flow

prediction using parallel training for deep convolutional neural

networks on spark cloud. IEEE Trans. Ind. Informatics 16(12),

7369–7380 (2020). https://doi.org/10.1109/TII.2020.2976053

58. Mukhtar, M., et al.: Development and comparison of two novel

hybrid neural network models for hourly solar radiation pre-

diction. Appl. Sci. (2022). https://doi.org/10.3390/app12031435

59. Heo, J., Song, K., Han, S., Lee, D.-E.: Multi-channel convolu-

tional neural network for integration of meteorological and

geographical features in solar power forecasting. Appl. Energy

295, 117083 (2021). https://doi.org/10.1016/j.apenergy.2021.

117083

60. Liu, T., et al.: Enhancing wind turbine power forecast via con-

volutional neural network. Electronics (2021). https://doi.org/10.

3390/electronics10030261

61. Wan, R., Mei, S., Wang, J., Liu, M., Yang, F.: Multivariate

temporal convolutional network: a deep neural networks

approach for multivariate time series forecasting. Electronics

(2019). https://doi.org/10.3390/electronics8080876

62. Gao, Z., et al.: Multitask-based temporal-channelwise CNN for

parameter prediction of two-phase flows. IEEE Trans. Ind.

Informatics 17(9), 6329–6336 (2021). https://doi.org/10.1109/

TII.2020.2978944

63. Fan, W., Zhang, Z.: A CNN-SVR hybrid prediction model for

wastewater index measurement. In: 2020 2nd International

Conference on Advances in Computer Technology, Information

Science and Communications (CTISC), pp. 90–94 (2020).

https://doi.org/10.1109/CTISC49998.2020.00022

64. Yuan, X., et al.: Soft sensor model for dynamic processes based

on multichannel convolutional neural network. Chemometr.

Intell. Lab. Syst. 203, 104050 (2020). https://doi.org/10.1016/j.

chemolab.2020.104050

123

J. S. S. Júnior et al.: Survey on Deep Fuzzy Systems... 2583

https://doi.org/10.1109/TFUZZ.2021.3062899
https://doi.org/10.1016/s0019-9958(65)90241-x
https://doi.org/10.1016/j.compind.2010.11.001
https://doi.org/10.1016/j.compind.2010.11.001
https://doi.org/10.1016/S0020-7373(75)80002-2
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/EAIS.2011.5945926
https://doi.org/10.1109/EAIS.2011.5945926
https://doi.org/10.1109/TIE.2015.2504351
https://doi.org/10.1109/TIE.2015.2504351
https://doi.org/10.1109/ICSMC.1997.638158
https://doi.org/10.1109/INDIN45523.2021.9557354
https://doi.org/10.1109/INDIN45523.2021.9557354
https://doi.org/10.1016/0010-4809(73)90029-3
https://doi.org/10.1016/0010-4809(73)90029-3
https://doi.org/10.1016/S0020-7373(79)80004-8
https://doi.org/10.1016/S0020-7373(79)80004-8
https://doi.org/10.1016/0004-3702(78)90015-2
https://doi.org/10.1016/0004-3702(78)90015-2
https://doi.org/10.1609/aimag.v3i4.377
https://doi.org/10.1609/aimag.v3i4.377
https://doi.org/10.1016/S0004-3702(83)80014-9
https://doi.org/10.1007/978-1-4612-5108-8_15
https://doi.org/10.1007/978-1-4612-5108-8_15
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://doi.org/10.1113/jphysiol.1968.sp008455
https://doi.org/10.1113/jphysiol.1968.sp008455
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1007/978-1-4842-2766-4_5
https://doi.org/10.1007/978-1-4842-2766-4_5
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1109/TITS.2021.3098461
https://doi.org/10.1109/TITS.2021.3098461
https://doi.org/10.1109/TII.2020.2976053
https://doi.org/10.3390/app12031435
https://doi.org/10.1016/j.apenergy.2021.117083
https://doi.org/10.1016/j.apenergy.2021.117083
https://doi.org/10.3390/electronics10030261
https://doi.org/10.3390/electronics10030261
https://doi.org/10.3390/electronics8080876
https://doi.org/10.1109/TII.2020.2978944
https://doi.org/10.1109/TII.2020.2978944
https://doi.org/10.1109/CTISC49998.2020.00022
https://doi.org/10.1016/j.chemolab.2020.104050
https://doi.org/10.1016/j.chemolab.2020.104050


65. Jalali, S.M.J., et al.: A novel evolutionary-based deep convo-

lutional neural network model for intelligent load forecasting.

IEEE Trans. Ind. Informatics 17(12), 8243–8253 (2021). https://

doi.org/10.1109/TII.2021.3065718

66. Eskandari, H., Imani, M., Moghaddam, M.P.: Convolutional and

recurrent neural network based model for short-term load fore-

casting. Electr. Power Syst. Res. 195, 107173 (2021). https://doi.

org/10.1016/j.epsr.2021.107173

67. Zahid, M., et al.: Electricity price and load forecasting using

enhanced convolutional neural network and enhanced support

vector regression in smart grids. Electronics (2019). https://doi.

org/10.3390/electronics8020122

68. Koprinska, I., Wu, D., Wang, Z.: Convolutional neural networks

for energy time series forecasting. In: 2018 International Joint

Conference on Neural Networks (IJCNN), pp. 1–8 (2018).

https://doi.org/10.1109/IJCNN.2018.8489399

69. Tian, C., Ma, J., Zhang, C., Zhan, P.: A deep neural network

model for short-term load forecast based on long short-term

memory network and convolutional neural network. Energies

(2018). https://doi.org/10.3390/en11123493

70. Gao, P., Zhang, J., Sun, Y., Yu, J.: Accurate predictions of

aqueous solubility of drug molecules via the multilevel graph

convolutional network (MGCN) and SchNet architectures. Phys.

Chem. Chem. Phys. 22(41), 23766–23772 (2020). https://doi.

org/10.1039/D0CP03596C

71. Wu, K., Wei, G.-W.: Comparison of multi-task convolutional

neural network (MT-CNN) and a few other methods for toxicity

prediction. arXiv Preprint (2017). https://doi.org/10.48550/

arxiv.1703.10951

72. Witten, I. H., Frank, E., Hall, M. A., Pal, C. J.: Chapter 10 -

Deep learning. In: Witten, I. H., Frank, E., Hall, M. A., Pal, C. J.

(eds) Data Mining (Fourth Edition), pp. 417–466. Morgan

Kaufmann (2017). https://doi.org/10.1016/B978-0-12-804291-5.

00010-6

73. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algo-

rithm for deep belief nets. Neural Comput. 18(7), 1527–1554

(2006). https://doi.org/10.1162/neco.2006.18.7.1527

74. Wang, Y., et al.: An ensemble deep belief network model based

on random subspace for NOx concentration prediction. ACS

Omega 6(11), 7655–7668 (2021). https://doi.org/10.1021/

acsomega.0c06317

75. Hao, X., et al.: Prediction of nitrogen oxide emission concen-

tration in cement production process: a method of deep belief

network with clustering and time series. Environ. Sci. Pollut

Res. 28(24), 31689–31703 (2021). https://doi.org/10.1007/

s11356-021-12834-9

76. Yuan, X., Gu, Y., Wang, Y.: Supervised deep belief network for

quality prediction in industrial processes. IEEE Trans. Instrum.

Meas. 70, 1–11 (2021). https://doi.org/10.1109/TIM.2020.

3035464

77. Yuan, X., et al.: FeO content prediction for an industrial sin-

tering process based on supervised deep belief network. IFAC-

PapersOnLine 53(2), 11883–11888 (2020). https://doi.org/10.

1016/j.ifacol.2020.12.703

78. Hao, X., et al.: Energy consumption prediction in cement cal-

cination process: a method of deep belief network with sliding

window. Energy 207, 118256 (2020). https://doi.org/10.1016/j.

energy.2020.118256

79. Zhu, S.-B., Li, Z.-L., Zhang, S.-M., Zhang, H.-F.: Deep belief

network-based internal valve leakage rate prediction approach.

Measurement 133, 182–192 (2019). https://doi.org/10.1016/j.

measurement.2018.10.020

80. Wang, G., Jia, Q.-S., Zhou, M., Bi, J., Qiao, J.: Soft-sensing of

Wastewater Treatment Process via Deep Belief Network with

Event-triggered Learning. Neurocomputing 436, 103–113

(2021). https://doi.org/10.1016/j.neucom.2020.12.108

81. Lian, P., Liu, H., Wang, X., Guo, R.: Soft sensor based on DBN-

IPSO-SVR approach for rotor thermal deformation prediction of

rotary air-preheater. Measurement 165, 108109 (2020). https://

doi.org/10.1016/j.measurement.2020.108109

82. Tian, W., Liu, Z., Li, L., Zhang, S., Li, C.: Identification of

abnormal conditions in high-dimensional chemical process

based on feature selection and deep learning. Chin. J. Chem.

Eng. 28(7), 1875–1883 (2020). https://doi.org/10.1016/j.cjche.

2020.05.003

83. Shao, H., Jiang, H., Li, X., Liang, T.: Rolling bearing fault

detection using continuous deep belief network with locally

linear embedding. Comput. Ind. 96, 27–39 (2018). https://doi.

org/10.1016/j.compind.2018.01.005

84. Xu, H., Jiang, C.: Deep belief network-based support vector

regression method for traffic flow forecasting. Neural Comput.

Appl. 32(7), 2027–2036 (2019). https://doi.org/10.1007/s00521-

019-04339-x

85. Jia, Y., Wu, J., Du, Y.: Traffic speed prediction using deep

learning method. In: 2016 IEEE 19th International Conference

on Intelligent Transportation Systems (ITSC), pp. 1217–1222

(2016). https://doi.org/10.1109/ITSC.2016.7795712

86. Tian, J., Liu, Y., Zheng, W., Yin, L.: Smog prediction based on

the deep belief - BP neural network model (DBN-BP). Urban

Climate 41, 101078 (2022). https://doi.org/10.1016/j.uclim.

2021.101078

87. Xie, T., Zhang, G., Liu, H., Liu, F., Du, P.: A hybrid forecasting

method for solar output power based on variational mode

decomposition, deep belief networks and auto-regressive mov-

ing average. Appl. Sci. (2018). https://doi.org/10.3390/

app8101901

88. Li, X., Yang, L., Xue, F., Zhou, H.: Time series prediction of

stock price using deep belief networks with intrinsic plasticity.

In: 2017 29th Chinese Control And Decision Conference

(CCDC), pp. 1237–1242 (2017). https://doi.org/10.1109/CCDC.

2017.7978707

89. Qiao, J., Wang, G., Li, W., Li, X.: A deep belief network with

PLSR for nonlinear system modeling. Neural Netw. 104, 68–79

(2018). https://doi.org/10.1016/j.neunet.2017.10.006

90. Qiu, X., Zhang, L., Ren, Y., Suganthan, P. N., Amaratunga, G.:

Ensemble deep learning for regression and time series fore-

casting. In: 2014 IEEE Symposium on Computational Intelli-

gence in Ensemble Learning (CIEL), pp. 1–6 (2014). https://doi.

org/10.1109/CIEL.2014.7015739

91. Salakhutdinov, R., Larochelle, H. (ed.): Efficient learning of

deep Boltzmann machines. (ed.) In: Proceedings of the Thir-

teenth International Conference on Artificial Intelligence and

Statistics, pp. 693–700 (2010)

92. Schmidhuber, J.: Deep learning in neural networks: an over-

view. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.

neunet.2014.09.003

93. Ballard, D. H. (ed.): Modular learning in neural networks. (ed.)

In: Proceedings of the Sixth National Conference on Artificial

Intelligence - Volume 1, Vol. 647, pp. 279–284 (1987)

94. Rumelhart, D. E., Hinton, G. E., Williams, R. J.: Learning

Internal Representations by Error Propagation. Technical report,

California Univ., San Diego, La Jolla. Inst. for Cognitive Sci-

ence (1985). https://doi.org/10.21236/ada164453

95. Baldi, P. (ed.): Autoencoders, Unsupervised Learning, and Deep

Architectures. (ed.) In: Proceedings of ICML Workshop on

Unsupervised and Transfer Learning, Vol. 27, pp. 37–49 (2012)

96. Liu, G., Bao, H., Han, B.: A stacked autoencoder-based deep

neural network for achieving gearbox fault diagnosis. Mathe-

mati. Problems Engi. 2018, 1–10 (2018). https://doi.org/10.

1155/2018/5105709

97. Sun, Q., Ge, Z.: Deep learning for industrial KPI prediction:

when ensemble learning meets semi-supervised data. IEEE

123

2584 International Journal of Fuzzy Systems, Vol. 25, No. 7, October 2023

https://doi.org/10.1109/TII.2021.3065718
https://doi.org/10.1109/TII.2021.3065718
https://doi.org/10.1016/j.epsr.2021.107173
https://doi.org/10.1016/j.epsr.2021.107173
https://doi.org/10.3390/electronics8020122
https://doi.org/10.3390/electronics8020122
https://doi.org/10.1109/IJCNN.2018.8489399
https://doi.org/10.3390/en11123493
https://doi.org/10.1039/D0CP03596C
https://doi.org/10.1039/D0CP03596C
https://doi.org/10.48550/arxiv.1703.10951
https://doi.org/10.48550/arxiv.1703.10951
https://doi.org/10.1016/B978-0-12-804291-5.00010-6
https://doi.org/10.1016/B978-0-12-804291-5.00010-6
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1021/acsomega.0c06317
https://doi.org/10.1021/acsomega.0c06317
https://doi.org/10.1007/s11356-021-12834-9
https://doi.org/10.1007/s11356-021-12834-9
https://doi.org/10.1109/TIM.2020.3035464
https://doi.org/10.1109/TIM.2020.3035464
https://doi.org/10.1016/j.ifacol.2020.12.703
https://doi.org/10.1016/j.ifacol.2020.12.703
https://doi.org/10.1016/j.energy.2020.118256
https://doi.org/10.1016/j.energy.2020.118256
https://doi.org/10.1016/j.measurement.2018.10.020
https://doi.org/10.1016/j.measurement.2018.10.020
https://doi.org/10.1016/j.neucom.2020.12.108
https://doi.org/10.1016/j.measurement.2020.108109
https://doi.org/10.1016/j.measurement.2020.108109
https://doi.org/10.1016/j.cjche.2020.05.003
https://doi.org/10.1016/j.cjche.2020.05.003
https://doi.org/10.1016/j.compind.2018.01.005
https://doi.org/10.1016/j.compind.2018.01.005
https://doi.org/10.1007/s00521-019-04339-x
https://doi.org/10.1007/s00521-019-04339-x
https://doi.org/10.1109/ITSC.2016.7795712
https://doi.org/10.1016/j.uclim.2021.101078
https://doi.org/10.1016/j.uclim.2021.101078
https://doi.org/10.3390/app8101901
https://doi.org/10.3390/app8101901
https://doi.org/10.1109/CCDC.2017.7978707
https://doi.org/10.1109/CCDC.2017.7978707
https://doi.org/10.1016/j.neunet.2017.10.006
https://doi.org/10.1109/CIEL.2014.7015739
https://doi.org/10.1109/CIEL.2014.7015739
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.21236/ada164453
https://doi.org/10.1155/2018/5105709
https://doi.org/10.1155/2018/5105709


Trans. Ind. Informatics 17(1), 260–269 (2021). https://doi.org/

10.1109/TII.2020.2969709

98. Sun, Q., Ge, Z.: Gated stacked target-related autoencoder: a

novel deep feature extraction and layerwise ensemble method

for industrial soft sensor application. IEEE Trans. Cybern.

(2020). https://doi.org/10.1109/TCYB.2020.3010331

99. Liu, C., Wang, Y., Wang, K., Yuan, X.: Deep learning with

nonlocal and local structure preserving stacked autoencoder for

soft sensor in industrial processes. Eng. Appl. Artif. Intell. 104,

104341 (2021). https://doi.org/10.1016/j.engappai.2021.104341

100. Yuan, X., Ou, C., Wang, Y., Yang, C., Gui, W.: A novel semi-

supervised pre-training strategy for deep networks and its

application for quality variable prediction in industrial pro-

cesses. Chem. Eng. Sci. 217, 115509 (2020). https://doi.org/10.

1016/j.ces.2020.115509

101. Wang, Y., Liu, C., Yuan, X.: Stacked locality preserving

autoencoder for feature extraction and its application for

industrial process data modeling. Chemometr. Intell. Lab. Sys.

203, 104086 (2020). https://doi.org/10.1016/j.chemolab.2020.

104086

102. Shi, C., et al.: Using multiple-feature-spaces-based deep learn-

ing for tool condition monitoring in ultraprecision manufactur-

ing. IEEE Trans. Ind0 Electron. 66(5), 3794–3803 (2019).

https://doi.org/10.1109/TIE.2018.2856193

103. Bose, T., Majumdar, A., Chattopadhyay, T.: Machine load

estimation via stacked autoencoder regression. In: 2018 IEEE

International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pp. 2126–2130 (2018). https://doi.org/10.

1109/ICASSP.2018.8461576

104. Zhang, X., Zou, Y., Li, S.: Enhancing incremental deep learning

for FCCU end-point quality prediction. Information Sci. 530,

95–107 (2020). https://doi.org/10.1016/j.ins.2020.04.013

105. Liu, C., Tang, L., Liu, J.: A stacked autoencoder with sparse

Bayesian regression for end-point prediction problems in steel-

making process. IEEE Trans. Autom. Sci. Eng. 17(2), 550–561

(2020). https://doi.org/10.1109/TASE.2019.2935314

106. Wang, X., Liu, H.: Soft sensor based on stacked auto-encoder

deep neural network for air preheater rotor deformation pre-

diction. Adv. Eng. Informatics 36, 112–119 (2018). https://doi.

org/10.1016/j.aei.2018.03.003

107. Wei, M., Ye, M., Wang, Q., Twajamahoro, J.P.: Remaining

useful life prediction of lithium-ion batteries based on stacked

autoencoder and gaussian mixture regression. J. Energy Storage

47, 103558 (2022). https://doi.org/10.1016/j.est.2021.103558

108. Li, Z., Li, J., Wang, Y., Wang, K.: A deep learning approach for

anomaly detection based on SAE and LSTM in mechanical

equipment. Int. J. Adv. Manuf. Technol. 103(1–4), 499–510

(2019). https://doi.org/10.1007/s00170-019-03557-w

109. Ren, L., Sun, Y., Cui, J., Zhang, L.: Bearing remaining useful

life prediction based on deep autoencoder and deep neural net-

works. J. Manuf. Syst. 48, 71–77 (2018). https://doi.org/10.

1016/j.jmsy.2018.04.008

110. Jin, X.-B., Gong, W.-T., Kong, J.-L., Bai, Y.-T., Su, T.-L.:

PFVAE: a planar flow-based variational auto-encoder prediction

model for time series data. Mathematics (2022). https://doi.org/

10.3390/math10040610

111. Xiao, X., et al.: SSAE-MLP: stacked sparse autoencoders-based

multi-layer perceptron for main bearing temperature prediction

of large-scale wind turbines. Concurr. Comput.: Practice Exp.

(2021). https://doi.org/10.1002/cpe.6315

112. Jiao, R., Huang, X., Ma, X., Han, L., Tian, W.: A model com-

bining stacked auto encoder and back propagation algorithm for

short-term wind power forecasting. IEEE Access 6,

17851–17858 (2018). https://doi.org/10.1109/ACCESS.2018.

2818108

113. Li, M., Xie, X., Zhang, D.: Improved deep learning model based

on self-paced learning for multiscale short-term electricity load

forecasting. Sustainability (2022). https://doi.org/10.3390/

su14010188
114. Lv, S.-X., Peng, L., Wang, L.: Stacked autoencoder with echo-

state regression for tourism demand forecasting using search

query data. Appl. Soft Comput. 73, 119–133 (2018). https://doi.

org/10.1016/j.asoc.2018.08.024

115. Grossberg, S.: Recurrent neural networks. Scholarpedia 8(2),

1888 (2013). https://doi.org/10.4249/scholarpedia.1888

116. Hopfield, J.J.: Neural networks and physical systems with

emergent collective computational abilities. Proc. Nat. Acad.

Sci. 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.

2554

117. Hopfield, J.J.: Hopfield network. Scholarpedia 2(5), 1977

(2007). https://doi.org/10.4249/scholarpedia.1977

118. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning repre-

sentations by back-propagating errors. Nature 323(6088),

533–536 (1986). https://doi.org/10.1038/323533a0

119. Zhang, S., Bamakan, S.M.H., Qu, Q., Li, S.: Learning for per-

sonalized medicine: a comprehensive review from a deep

learning perspective. IEEE Rev. Biomed. Eng. 12, 194–208

(2019). https://doi.org/10.1109/RBME.2018.2864254

120. Albertini, F., Pra, P. D.: Recurrent neural networks: identifica-

tion and other system theoretic properties. In: Neural Network

Systems Techniques and Applications, Vol. 3 pp. 1–49 (1998).

https://doi.org/10.1016/s1874-5946(98)80003-5

121. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to Con-

struct Deep Recurrent Neural Networks. arXiv preprint arXiv:

1312.6026 (2013). https://doi.org/10.48550/ARXIV.1312.6026

122. Theodoridis, S.: Chapter 18 - Neural networks and deep learn-

ing. In: Machine learning (Second Edition) pp. 901–1038

(2020). https://doi.org/10.1016/B978-0-12-818803-3.00030-1

123. Werbos, P.: Backpropagation through time: what it does and

how to do it. Proc. IEEE 78(10), 1550–1560 (1990). https://doi.

org/10.1109/5.58337

124. Lalapura, V.S., Amudha, J., Satheesh, H.S.: Recurrent neural

networks for edge intelligence: a survey. ACM Comput. Surv.

54(4), 1–38 (2021). https://doi.org/10.1145/3448974

125. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory.

Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.

1162/neco.1997.9.8.1735

126. Lu, S., Zhang, Q., Chen, G., Seng, D.: A combined method for

short-term traffic flow prediction based on recurrent neural

network. Alexandria Eng. J. 60(1), 87–94 (2021). https://doi.org/

10.1016/j.aej.2020.06.008

127. Yang, B., Sun, S., Li, J., Lin, X., Tian, Y.: Traffic flow pre-

diction using LSTM with feature enhancement. Neurocomput-

ing 332, 320–327 (2019). https://doi.org/10.1016/j.neucom.

2018.12.016

128. Roy, D.K., et al.: Daily prediction and multi-step forward

forecasting of reference evapotranspiration using LSTM and Bi-

LSTM models. Agronomy (2022). https://doi.org/10.3390/

agronomy12030594

129. Kumari, P., Toshniwal, D.: Long short term memory-convolu-

tional neural network based deep hybrid approach for solar

irradiance forecasting. Appl. Energy 295, 117061 (2021).

https://doi.org/10.1016/j.apenergy.2021.117061

130. Altan, A., Karasu, S., Zio, E.: A new hybrid model for wind

speed forecasting combining long short-term memory neural

network, decomposition methods and grey wolf optimizer. Appl.

Soft Comput. 100, 106996 (2021). https://doi.org/10.1016/j.

asoc.2020.106996

131. Ma, J., et al.: Air quality prediction at new stations using spa-

tially transferred bi-directional long short-term memory

123

J. S. S. Júnior et al.: Survey on Deep Fuzzy Systems... 2585

https://doi.org/10.1109/TII.2020.2969709
https://doi.org/10.1109/TII.2020.2969709
https://doi.org/10.1109/TCYB.2020.3010331
https://doi.org/10.1016/j.engappai.2021.104341
https://doi.org/10.1016/j.ces.2020.115509
https://doi.org/10.1016/j.ces.2020.115509
https://doi.org/10.1016/j.chemolab.2020.104086
https://doi.org/10.1016/j.chemolab.2020.104086
https://doi.org/10.1109/TIE.2018.2856193
https://doi.org/10.1109/ICASSP.2018.8461576
https://doi.org/10.1109/ICASSP.2018.8461576
https://doi.org/10.1016/j.ins.2020.04.013
https://doi.org/10.1109/TASE.2019.2935314
https://doi.org/10.1016/j.aei.2018.03.003
https://doi.org/10.1016/j.aei.2018.03.003
https://doi.org/10.1016/j.est.2021.103558
https://doi.org/10.1007/s00170-019-03557-w
https://doi.org/10.1016/j.jmsy.2018.04.008
https://doi.org/10.1016/j.jmsy.2018.04.008
https://doi.org/10.3390/math10040610
https://doi.org/10.3390/math10040610
https://doi.org/10.1002/cpe.6315
https://doi.org/10.1109/ACCESS.2018.2818108
https://doi.org/10.1109/ACCESS.2018.2818108
https://doi.org/10.3390/su14010188
https://doi.org/10.3390/su14010188
https://doi.org/10.1016/j.asoc.2018.08.024
https://doi.org/10.1016/j.asoc.2018.08.024
https://doi.org/10.4249/scholarpedia.1888
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.4249/scholarpedia.1977
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/RBME.2018.2864254
https://doi.org/10.1016/s1874-5946(98)80003-5
http://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1312.6026
https://doi.org/10.48550/ARXIV.1312.6026
https://doi.org/10.1016/B978-0-12-818803-3.00030-1
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1145/3448974
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.aej.2020.06.008
https://doi.org/10.1016/j.aej.2020.06.008
https://doi.org/10.1016/j.neucom.2018.12.016
https://doi.org/10.1016/j.neucom.2018.12.016
https://doi.org/10.3390/agronomy12030594
https://doi.org/10.3390/agronomy12030594
https://doi.org/10.1016/j.apenergy.2021.117061
https://doi.org/10.1016/j.asoc.2020.106996
https://doi.org/10.1016/j.asoc.2020.106996


network. Sci. Total Environ. 705, 135771 (2020). https://doi.org/

10.1016/j.scitotenv.2019.135771

132. Shen, Z., Zhang, Y., Lu, J., Xu, J., Xiao, G.: A novel time series

forecasting model with deep learning. Neurocomputing 396,

302–313 (2020). https://doi.org/10.1016/j.neucom.2018.12.084

133. Zhang, Q., Wang, H., Dong, J., Zhong, G., Sun, X.: Prediction of

sea surface temperature using long short-term memory. IEEE

Geosci. Remote Sens. Lett. 14(10), 1745–1749 (2017). https://

doi.org/10.1109/LGRS.2017.2733548

134. Zhu, X., Hao, K., Xie, R., Huang, B.: Soft sensor based on

extreme gradient boosting and bidirectional converted gates

long short-term memory self-attention network. Neurocomput-

ing 434, 126–136 (2021). https://doi.org/10.1016/j.neucom.

2020.12.028

135. Yuan, X., Li, L., Shardt, Y.A.W., Wang, Y., Yang, C.: Deep

learning with spatiotemporal attention-based lstm for industrial

soft sensor model development. IEEE Trans. Ind. Electron.

68(5), 4404–4414 (2021). https://doi.org/10.1109/TIE.2020.

2984443

136. Yuan, X., Li, L., Wang, Y.: Nonlinear dynamic soft sensor

modeling with supervised long short-term memory network.

IEEE Trans. Ind. Informatics 16(5), 3168–3176 (2020). https://

doi.org/10.1109/TII.2019.2902129

137. Salles, R., Mendes, J., Araújo, R., Melo, C., Moura, P.: Pre-
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