Skip to main content

Advertisement

Log in

Adaptive Optimized Fuzzy Control of Uncertain Strict-Feedback Systems with Preset Tracking Accuracy

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper addresses the adaptive optimized fuzzy control for the uncertain nonlinear systems with preset tracking accuracy. Compared with the existing optimized backstepping control, this paper uses two \(C^n\)-class functions to construct the target controllers and the tracking error can converge to a pre-given range. Furthermore, the cost functions are re-developed in this paper, and the optimized performance indicator functions for each sub-system are explored to evaluate the control performance for the controlled system. Thus, the virtual optimized controllers and the actual optimized controller are constructed via the backstepping technique. It is demonstrated that each signal in the closed-loop system is semi-globally uniformly ultimately bounded. Finally, a comparative experiment of the numerical simulation further shows that the control strategy in this paper can effectively reduce control consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    MATH  Google Scholar 

  2. Liu, D., Wang, D., Wang, F.-Y., Li, H., Yang, X.: Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems. IEEE Trans. Cybern. 44(12), 2834–2847 (2014)

    Google Scholar 

  3. Wang, D., Li, C., Liu, D., Mu, C.: Data-based robust optimal control of continuous-time affine nonlinear systems with matched uncertainties. Inf. Sci. 366, 121–133 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Werbos, P.J.: Approximate dynamic programming for real-time control and neural modeling. Handb. Intell. Control Neural Fuzzy Adap. Approach. 15, 493–525 (1992)

    Google Scholar 

  5. Abu-Khalaf, M., Lewis, F.L.: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica 41(5), 779–791 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Cheng, T., Lewis, F.L., Abu-Khalaf, M.: A neural network solution for fixed-final time optimal control of nonlinear systems. Automatica 43(3), 482–490 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Zhang, H., Jiang, H., Luo, Y., Xiao, G.: Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Trans. Industr. Electron. 64(5), 4091–4100 (2016)

    Google Scholar 

  8. Lv, Y., Ren, X.: Approximate nash solutions for multiplayer mixed-zero-sum game with reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 49(12), 2739–2750 (2018)

    Google Scholar 

  9. Sun, J., Liu, C.: Backstepping-based adaptive predictive optimal control of nonlinear systems with application to missile-target engagement. ISA Trans. 83, 42–52 (2018)

    Google Scholar 

  10. Modares, H., Lewis, F.L., Jiang, Z.-P.: \(\text{ H}_{\infty }\) tracking control of completely unknown continuous-time systems via off-policy reinforcement learning. IEEE Trans. Neural Netw. Learning Syst. 26(10), 2550–2562 (2015)

    MathSciNet  Google Scholar 

  11. Wen, Y., Si, J., Brandt, A., Gao, X., Huang, H.H.: Online reinforcement learning control for the personalization of a robotic knee prosthesis. IEEE Trans. Cybern. 50(6), 2346–2356 (2019)

    Google Scholar 

  12. Yang, Y., Modares, H., Wunsch, D.C., Yin, Y.: Leader-follower output synchronization of linear heterogeneous systems with active leader using reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2139–2153 (2018)

    MathSciNet  Google Scholar 

  13. He, S., Fang, H., Zhang, M., Liu, F., Ding, Z.: Adaptive optimal control for a class of nonlinear systems: The online policy iteration approach. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 549–558 (2020)

    MathSciNet  Google Scholar 

  14. Bian, T., Jiang, Z.-P.: Reinforcement learning and adaptive optimal control for continuous-time nonlinear systems: A value iteration approach. IEEE Trans. Neural Netw. Learn. Syst. 33(7), 2781–2790 (2022)

    MathSciNet  Google Scholar 

  15. Chen, Q., Shi, H., Sun, M.: Echo state network-based backstepping adaptive iterative learning control for strict-feedback systems: an error-tracking approach. IEEE Trans. Cybern. 50(7), 3009–3022 (2019)

    Google Scholar 

  16. Song, S., Zhang, B., Song, X., Zhang, Z.: Neuro-fuzzy-based adaptive dynamic surface control for fractional-order nonlinear strict-feedback systems with input constraint. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3575–3586 (2019)

    Google Scholar 

  17. Wang, W., Tong, S.: Adaptive fuzzy containment control of nonlinear strict-feedback systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(10), 2024–2038 (2019)

    Google Scholar 

  18. Peng, J., Dubay, R.: Adaptive fuzzy backstepping control for a class of uncertain nonlinear strict-feedback systems based on dynamic surface control approach. Expert Syst. Appl. 120, 239–252 (2019)

    Google Scholar 

  19. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Google Scholar 

  20. Jia, F., Wang, X., Zhou, X.: Robust adaptive prescribed performance control for a class of nonlinear pure-feedback systems. Int. J. Robust Nonlinear Control 29(12), 3971–3987 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Wang, M., Zou, Y., Yang, C.: System transformation-based neural control for full-state-constrained pure-feedback systems via disturbance observer. IEEE Trans. Cybern. 52(3), 1479–1489 (2022)

    Google Scholar 

  22. Jia, F., Yan, X., Wang, X., Lu, J., Li, Y.: Robust adaptive prescribed performance dynamic surface control for uncertain nonlinear pure-feedback systems. J. Franklin Inst. 357(5), 2752–2772 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, T.-P., Wen, H., Zhu, Q.: Adaptive fuzzy control of nonlinear systems in pure feedback form based on input-to-state stability. IEEE Trans. Fuzzy Syst. 18(1), 80–93 (2009)

    Google Scholar 

  24. Wu, J., Wu, Z.-G., Li, J., Wang, G., Zhao, H., Chen, W.: Practical adaptive fuzzy control of nonlinear pure-feedback systems with quantized nonlinearity input. IEEE Trans. Syst. Man Cybern. Syst. 49(3), 638–648 (2018)

    Google Scholar 

  25. Yang, C., Ge, S.S., Xiang, C., Chai, T., Lee, T.H.: Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans. Neural Netw. 19(11), 1873–1886 (2008)

    Google Scholar 

  26. Liu, Y.-J., Tong, S.-C., Wang, D., Li, T.-S., Chen, C.L.P.: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans. Neural Netw. 22(8), 1328–1334 (2011)

    Google Scholar 

  27. Xu, B., Shi, Z., Yang, C.: Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer. Nonlinear Dyn. 80(1), 341–351 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Liu, Y.-J., Chen, C.P., Wen, G.-X., Tong, S.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Google Scholar 

  29. Liu, Y.-J., Tong, S., Chen, C.P.: Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 21(2), 275–288 (2012)

    Google Scholar 

  30. Li, W., Yao, X., Krstic, M.: Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty. Automatica 120, 109112 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Wang, J., Liu, Z., Zhang, Y., Chen, C.P.: Neural adaptive event-triggered control for nonlinear uncertain stochastic systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3300–3312 (2019)

    MathSciNet  Google Scholar 

  32. Wang, H., Liu, K., Liu, X., Chen, B., Lin, C.: Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Cybern. 45(9), 1977–1987 (2014)

    Google Scholar 

  33. Fang, L., Ding, S., Park, J.H., Ma, L.: Adaptive fuzzy output-feedback control design for a class of p-norm stochastic nonlinear systems with output constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 68(6), 2626–2638 (2021)

    MathSciNet  Google Scholar 

  34. Zhou, Q., Shi, P., Liu, H., Xu, S.: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 42(6), 1608–1619 (2012)

    Google Scholar 

  35. Li, Y., Tong, S.: Fuzzy adaptive control design strategy of nonlinear switched large-scale systems. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2209–2218 (2017)

    Google Scholar 

  36. Karimi, B., Menhaj, M.B.: Non-affine nonlinear adaptive control of decentralized large-scale systems using neural networks. Inf. Sci. 180(17), 3335–3347 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Yoo, S.J., Park, J.B.: Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans. Syst. Man Cybern. Cybern. Syst. 39(5), 1316–1323 (2009)

    Google Scholar 

  38. Liu, Y., Liu, X., Jing, Y., Wang, H., Li, X.: Annular domain finite-time connective control for large-scale systems with expanding construction. IEEE Trans. Syst. Man Cybern. Syst. 51(10), 6159–6169 (2021)

    Google Scholar 

  39. Karimi, B., Menhaj, M.B., Karimi-Ghartemani, M., Saboori, I.: Decentralized adaptive control of large-scale affine and nonaffine nonlinear systems. IEEE Trans. Instrum. Meas. 58(8), 2459–2467 (2009)

    Google Scholar 

  40. Wu, Y., Xie, X.-J.: Adaptive fuzzy control for high-order nonlinear time-delay systems with full-state constraints and input saturation. IEEE Trans. Fuzzy Syst. 28(8), 1652–1663 (2019)

    Google Scholar 

  41. Zhang, W., Su, H.: Fuzzy adaptive control of nonlinear mimo systems with unknown dead zone outputs. J. Franklin Inst. 355(13), 5690–5720 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Liu, Y.-J., Gong, M., Liu, L., Tong, S., Chen, C.P.: Fuzzy observer constraint based on adaptive control for uncertain nonlinear MIMO systems with time-varying state constraints. IEEE Trans. Cybern. 51(3), 1380–1389 (2019)

    Google Scholar 

  43. Gao, S., Dong, H., Ning, B., Sun, X.: Neural adaptive control for uncertain MIMO systems with constrained input via intercepted adaptation and single learning parameter approach. Nonlinear Dyn. 82(3), 1109–1126 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Sachan, K., Padhi, R.: Output-constrained robust adaptive control for uncertain nonlinear MIMO systems with unknown control directions. IEEE Control Syst. Lett. 3(4), 823–828 (2019)

    MathSciNet  Google Scholar 

  45. Bresch-Pietri, D., Chauvin, J., Petit, N.: Adaptive control scheme for uncertain time-delay systems. Automatica 48(8), 1536–1552 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Zhou, J.: Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica 44(7), 1790–1799 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Chen, B., Liu, X., Liu, K., Lin, C.: Adaptive control for nonlinear MIMO time-delay systems based on fuzzy approximation. Inf. Sci. 222, 576–592 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, Z., Xu, B., Tan, C., Ge, S.S.: Adaptive control of uncertain nonlinear time-delay systems with external disturbance. IEEE Trans. Syst. Man Cybern. Syst. 52(2), 1288–1295 (2022)

    Google Scholar 

  49. Hashemi, M., Ghaisari, J., Askari, J.: Adaptive control for a class of mimo nonlinear time delay systems against time varying actuator failures. ISA Trans. 57, 23–42 (2015)

    MATH  Google Scholar 

  50. Xie, X., Wei, C., Gu, Z., Shi, K.: Relaxed resilient fuzzy stabilization of discrete-time takagicsugeno systems via a higher order time-variant balanced matrix method. IEEE Trans. Fuzzy Syst. 30(11), 5044–5050 (2022)

    Google Scholar 

  51. Xie, X., Bu, C., Peng, C.: Multi-instant gain-scheduling stabilization of discrete-time Takagicsugeno fuzzy systems based on a time-variant balanced matrix approach. IEEE Trans. Fuzzy Syst. 30(7), 2777–2782 (2022)

    Google Scholar 

  52. Xie, X., Wan, L., Gu, Z., Yue, D., Sun, J.: Enhanced resilient fuzzy stabilization of discrete-time takagicsugeno systems based on augmented time-variant matrix approach. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3179048

    Article  Google Scholar 

  53. Wu, J., Li, J.: Adaptive fuzzy control for perturbed strict-feedback nonlinear systems with predefined tracking accuracy. Nonlinear Dyn. 83(3), 1185–1197 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Chen, W., Ge, S.S., Wu, J., Gong, M.: Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1842–1854 (2014)

    MathSciNet  Google Scholar 

  55. Wen, G., Ge, S.S., Tu, F.: Optimized backstepping for tracking control of strict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3850–3862 (2018)

    MathSciNet  Google Scholar 

  56. Wen, G., Chen, C.P., Ge, S.S.: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions. IEEE Trans. Cybern. 51(9), 4567–4580 (2020)

    Google Scholar 

  57. Zhang, J., Li, K., Li, Y.: Output-feedback based simplified optimized Backstepping control for strict-feedback systems with input and state constraints. IEEE/CAA J. Autom. Sin. 8(6), 1119–1132 (2021)

    MathSciNet  Google Scholar 

  58. Li, Y., Fan, Y., Li, K., Liu, W., Tong, S.: Adaptive optimized Backstepping control-based RL algorithm for stochastic nonlinear systems with state constraints and its application. IEEE Trans. Cybern. 52(10), 10542–10555 (2022)

    Google Scholar 

  59. Li, Y., Zhang, J., Liu, W., Tong, S.: Observer-based adaptive optimized control for stochastic nonlinear systems with input and state constraints. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 7791–7805 (2022)

    MathSciNet  Google Scholar 

  60. Zhang, J., Li, Y.: Observer-based adaptive optimized control for stochastic nonlinear systems with state constraints. In: The International Conference on Applied Nonlinear Dynamics, Vibration and Control, pp. 184–198 (2021). Springer, Berlin

  61. Li, Y., Liu, Y., Tong, S.: Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints. IEEE Trans. Neural Netw. Learn. Syst. 33(7), 3131–3145 (2022)

    MathSciNet  Google Scholar 

  62. Wen, G., Li, B., Niu, B.: Optimized Backstepping control using reinforcement learning of observer-critic-actor architecture based on fuzzy system for a class of nonlinear strict-feedback systems. IEEE Trans. Fuzzy Syst. 30(10), 4322–4335 (2022)

    Google Scholar 

  63. Wen, G., Xu, L., Li, B.: Optimized Backstepping tracking control using reinforcement learning for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3105176

    Article  Google Scholar 

  64. Liu, Y., Zhu, Q., Wen, G.: Adaptive tracking control for perturbed strict-feedback nonlinear systems based on optimized Backstepping technique. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 853–865 (2022)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 61603003; in part by the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China, under Grant ICT2022B39; in part by the Program for Academic Top Notch Talents of University Disciplines under Grant gxbjZD21; in part by the Anhui University Scientific Research Project-Outstanding Youth Project under Grant 2022AH020067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, W. & Li, J. Adaptive Optimized Fuzzy Control of Uncertain Strict-Feedback Systems with Preset Tracking Accuracy. Int. J. Fuzzy Syst. 25, 2699–2711 (2023). https://doi.org/10.1007/s40815-023-01518-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01518-w

Keywords

Navigation