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Abstract Common interventions to control the spread of

cholera include improving sanitation, hygiene, and access

to safe drinking water and providing epidemic regions with

sufficient treatment kits and oral vaccines. Due to resources

limitation, these interventions should be guided by a risk

assessment of cholera-affected regions, thereby targeting

regions based on their risk level. Cholera risk assessment is

very challenging because of the lack of precise and reliable

data. This study proposes an approach for cholera risk

assessment and vaccine allocation, which consists of two

phases: (i) cholera risk assessment, where a fuzzy inference

system (FIS) is proposed to evaluate the risk level of

cholera-affected regions based on five cholera risk indica-

tors: (1) attack rate, (2) case fatality rate, (3) the number of

internally displaced persons, (4) accessibility of water,

sanitation and hygiene, and (5) accessibility of cholera

treatment; (ii) cholera vaccine allocation, where a mixed-

integer programming model is used to optimize the allo-

cation of limited vaccine doses among multiple regions

over multiple periods while considering the risk level,

population of regions, and vaccine efficacy. The model

answers the questions of where, what amounts, and when to

send vaccines during a 2-year horizon. Implementation of

the proposed approach is illustrated using a case study from

Yemen, which is currently experiencing the world’s worst

cholera outbreak according to the World Health Organi-

zation. The results reveal the usefulness of the proposed

approach in mapping the cholera risk, which in turn is used

as effective guidance for the allocation of cholera vaccine.

Keywords Cholera � Risk assessment � Vaccine
allocation � Fuzzy inference system � Mixed-integer

programming

1 Introduction

Cholera is an acute watery diarrheal disease that causes

severe dehydration, vomiting, and fever; it kills victims

rapidly if not treated [1]. The disease represents a serious

threat to public health in developing countries. According

to Médecins Sans Frontières (MSF) [2], there are about 1.3

to 4 million cholera cases with 21,000–143,000 deaths

globally per year. The World Health Organization (WHO)

attributes the spread of cholera to the lack of safe drinking

water, sanitation and hygiene (WASH), contaminated food,

and inadequate health care. The effect of cholera is more

drastic in armed conflict areas, where environmental and

health infrastructure have been destroyed or disrupted.

Moreover, armed conflicts result in the displacement of

people to camps that lack essential human services, which

in turn makes displaced people more susceptible to com-

municable diseases such as cholera [3]. Several studies

claimed that cholera is a conflict-driven disease, and its

outbreak is exacerbated by war and civil fighting. There is

a close link between the cholera outbreak and conflict-

related risk factors, such as people displacement, and

failure of WASH and healthcare systems [4, 5].
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Various interventions are used to mitigate and control a

cholera outbreak, among them are (1) rehabilitating WASH

and health infrastructure; (2) enhancing hygiene and food

safety practices; (3) strengthening epidemiological and

laboratory surveillance and data management systems for

epidemic monitoring and early detection [3]. However,

these interventions provide a medium-to-long-term solu-

tion and may be insufficient during an outbreak. Further-

more, they are challenging, costly, and time-consuming to

implement, especially in conflict-ridden or low-income

countries [6, 7]. As a short-term solution, oral cholera

vaccines (OCVs) can help control the spread of cholera and

provide an immediate relief while WASH rehabilitations

and health infrastructure investments continue [6].

However, in countries where cholera is an outbreak or

even endemic, it is not possible to vaccinate the entire pop-

ulation (throughout a country regardless of risk), where the

vaccine production capacity is limited [3]. The speed at

which cholera spreads makes allocating vaccines and

determining targeted regions a tricky decision for policy-

makers, especially when available doses of the vaccine are

limited, and many individuals need vaccination. The fore-

most questions that confront community health experts and

international volunteers fighting a cholera epidemic are how

should available doses be allocated through populations and

which regions should be targeted [8]? The vaccination

strategy should be guided by a risk assessment of cholera-

affected regions to define hotspots with high risk, which will

allow effective and fair allocations of vaccines [3, 8].

Compared with other infectious diseases, few studies

have investigated the vaccine allocation problem of cho-

lera. The problem has received limited investigation from

the cholera perspective, where the factors and parameters

that should be considered when modeling the problem may

differ from those considered with other infectious diseases.

This could be because cholera is prevalent in low-income

and conflict countries, where scientific research is often

neglected or not supported and financial resources are

limited. Studies that investigated the cholera vaccine allo-

cation problem used the attack rate as a risk indicator to

prioritize targeted regions and allocate doses [9–13].

However, according to WHO and MSF, several factors

should be considered as cholera risk indicators when

allocating the vaccine, especially in armed conflict areas,

including (1) attack rate, and (2) case fatality rate, which

are indicators for the severity of the epidemic; (3) the

number of internally displaced persons (IDPs), who are

particularly more susceptible to diarrheal diseases because

they do not have access to adequate WASH, health ser-

vices, safe food, and live in camps with precarious living

conditions; (4) accessibility of population to WASH; and

(5) accessibility of population to health care to identify and

treat cases (i.e., regions with timely access to cholera

treatment are less risky than hard-to-reach areas) [8]. Given

these factors, vaccination priority should be given to

regions with a high attack rate, great case fatality rate,

many IDPs, and poor accessibility to WASH and health

services.

Up to this point, no studies considered all the above-

mentioned cholera risk indicators to guide the allocation of

cholera vaccine. In addition, there is no systematic

approach to assess the overall cholera risk resulting from

those risk indicators. This study aims to fill this research

gap by introducing a risk assessment and optimization

model for cholera vaccine allocation. The objective is to

assess the overall risk of vaccine-targeted regions, and

optimize the allocation of vaccine doses over multiple time

periods while considering the overall risk and population of

regions, vaccine efficacy, and limitation on resources (e.g.,

vaccine quantities). Cholera risk assessment is very chal-

lenging because of the lack of precise and reliable data, and

there is a lack of studies that address the inherent impre-

cision in cholera-related data. Gaining precise data requires

real-time information on the progress of the cholera out-

break, IDPs, WASH, and healthcare system situation [8].

However, this may not be possible to achieve in conflict-

ridden or low-income countries. To overcome this chal-

lenge, this study proposes a fuzzy inference system (FIS)

model for the cholera risk assessment. FIS is a powerful

tool to deal with the uncertainty in the evaluation of criteria

[14]. FIS can nonlinearly map input variables to output

variables by providing proper functions that characterize

the relationship between input and output variables [15].

The proposed risk assessment model provides valuable

cholera risk mapping and effectively guides interventions,

including vaccination.

The remainder of this paper is organized as follows:

Sect. 2 reviews the relevant literature. Section 3 introduces

the fundamental concepts of the fuzzy inference system.

Section 4 presents the research methodology. Section 5

discusses a case study from Yemen to assess the proposed

approach. Finally, conclusions and future research appear

in Sect. 6.

2 Relevant Literature

A key operational planning problem in managing vaccine

supply chains is the allocation of limited vaccine doses

over multiple eligible regions or population subgroups.

Duijzer et al. [16] comprehensively reviewed studies on the

vaccine supply chain, including those that investigated the

vaccine allocation problem. Several operations research

techniques have been used to solve the vaccine allocation

problem including differential equation-based modeling

[17, 18], simulation modeling [19, 20], stochastic
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programming [21, 22], and mixed-integer linear program-

ming (MILP) [23, 24]. The vaccine allocation problem has

been studied for a wide range of infectious diseases such as

HIV [25], polio [26], hepatitis B [27], and tuberculosis

[28]; however, most studies focused on influenza

[17–19, 21, 22, 24, 29, 30]. Some of those studies are

reviewed below.

Patel et al. [30] integrated stochastic simulation with a

genetic algorithm to identify an optimal allocation strategy

for the influenza vaccine. Their objective was to minimize

the number of infections and deaths when the available

quantity of vaccine doses is limited. Matrajt et al. [29]

employed mathematical modeling and a genetic algorithm

to find the best allocation for the influenza vaccine to cover

multiple eligible regions. Their model aimed to minimize

the attack rate while considering the limitation of vaccine

quantities. Dalgıç et al. [17] used agent-based simulation

and differential equations-based modeling to generate

various functional policies for allocating limited influenza

vaccine doses over multiple age groups with different

incident rates. These policies were evaluated using several

metrics, such as vaccination, infection, and mortality costs.

Hovav and Tsadikovich [24] developed a MILP model for

optimizing various decisions in the influenza vaccine dis-

tribution chain, including optimal allocation of doses

among multiple population groups and the optimal number

of shipments among manufacturers, distribution centers,

and clinics. Their objective was to minimize the portion of

non-vaccinated patients and the total cost of transportation,

vaccine storage, administration, and shortages. Günay et al.

[23] developed a MILP model to find the optimal quantities

of vaccine required to maximize the percentage of refugees

vaccinated against polio based on different priority rules

such as age and population size.

Several studies have focused on the allocation problem

of the cholera vaccine. For instance, Chao et al. [10] used a

cholera transmission model, which divided the population

into susceptible, exposed, infectious, and recovered com-

partments, to assess different vaccination policies. Their

objective was to maximize the vaccine coverage rate for

areas with substantial exposure to Vibrio cholera. Troeger

et al. [12] developed a cost-effectiveness tool to evaluate

different cholera vaccine allocation policies, including (1)

age-based policy, where children were given higher pri-

ority for vaccination, (2) geographic-based policy, where

attack rate was used to prioritize regions, and (3) popula-

tion-based policy, where population subgroups with poor

access to the cholera treatment were given the higher pri-

ority. Only one factor was considered with each policy

when prioritizing targeted groups or regions. Moreover, the

study did not use an optimization approach for the allo-

cation problem. Instead, sensitivity analysis was employed

to find a reasonable solution that reduces the total cost of

the vaccination campaign. Moore and Lessler [11] devel-

oped a decision-making framework that optimally allocates

cholera vaccine doses between epidemic and endemic

areas. They used differential equation-based modeling to

formulate the dynamic transition of patients through sus-

ceptible, exposed, infected, and recovered stages of the

disease. Their goal was to maximize the number of cholera

cases that could be prevented by vaccination. Du et al. [31]

studied a location-specific resource allocation problem for

cholera outbreak interventions over multiple periods. They

formulated the problem as a non-linear optimization model

using ordinary differential equations that represent disease

transmission dynamics. Their objective was to determine

optimal intervention resource allocation decisions over

multiple periods under system dynamics and uncertain

disease transmission parameters. Yang and Wang [32] used

a susceptible-infected-recovered model to measure, ana-

lyze, and allocate limited medical resources to encounter

cholera outbreak in Yemen. Qasem et al. [13] proposed a

MILP model that allocates cholera vaccines among mul-

tiple age groups and populations. In their study, regions

with higher risk age groups and larger population were

given priority for cholera vaccine doses. Smalley et al. [9],

the most relevant work to this research, developed a MILP

model to optimize the allocation of cholera vaccine doses

over multiple age groups and regions in Bangladesh to

minimize the number of cases. They divided targeted

regions into high risk, medium risk, and low risk based on

attack rates. They concluded that allocating cholera vac-

cine doses based on the attack rate is a cost- and life-saving

strategy. They confirmed that detailed and precise

surveillance data is crucially important to determine the

risk level of targeted groups.

This research differs from Smalley et al. [9] in the fol-

lowing four aspects: (1) this study investigates the vaccine

allocation problem in armed-conflict areas; (2) five cholera

risk factors are considered to assess the overall cholera risk.

The motivation behind this is that MSF and WHO assert

that attack rate is not only the factor that should be con-

sidered when allocating cholera vaccine in armed-conflict

areas, but also other factors including case fatality rate,

number of IDPs, accessibility to WASH, and accessibility

to cholera treatment [8]. In addition, there is a lack of

studies that consider all these factors together when allo-

cating cholera vaccines; (3) this study considers data

imprecision for cholera risk factors when assessing the

overall cholera risk in armed conflict areas, where precise

data is not possible to obtain; and (4) this study is moti-

vated by a real-world problem of cholera outbreak in an

armed-conflict region in which millions of people need

vaccination while vaccine doses are limited and need to be

effectively allocated. To this end, a FIS model is proposed

to assess the overall risk of cholera-affected regions based
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on these five cholera risk indicators. A MILP model is

introduced to optimize the allocation of cholera vaccine

doses through multiple periods and regions. The risk scores

generated by the FIS model are used in the MILP model to

guide the allocation of limited cholera vaccine doses. A

case study is presented to demonstrate the applicability of

the proposed approach. The case study uses real data col-

lected from Yemen, which is facing the world’s worst

cholera outbreak. The proposed work can guide the allo-

cation of cholera vaccine and cholera risk mapping in

developing countries, where data is not completely

available.

3 Fuzzy Inference System

Fuzzy inference systems, which use fuzzy sets that were

introduced by Zadeh [33], represent imprecise or vague

knowledge. A fuzzy set is defined as a class of objects

mapped to a membership function 2 [0, 1], which defines

the membership degree of objects to the corresponding set.

Fuzzy sets represent the building block of fuzzy rules. Fuzzy

rules are defined as a set of linguistic statements that deter-

mine how the decision is made in a FIS [34]. Fuzzy rules are

used to create relationships among several qualitative factors

and establish a smooth interface between qualitative factors

involved in the rules and numerical inputs and outputs of the

fuzzy model [35]. The general form of rules is ‘‘IF x is A

THEN y is B.’’ The IF part is known as the antecedent, which

includes several preconditions, and the THEN part is called

the consequent that defines the corresponding output. A and

B are fuzzy sets that identify the linguistic input and output

variables, x and y, which belong to the input and output

spaces X and Y, respectively.

The main components of FIS, as shown in Fig. 1, are:

(1) the rule base that encompasses fuzzy if–then rules,

which formulate the problem based on knowledge of

experts, (2) the database that contains input and output

variables, their respective linguistic variables used in fuzzy

rules, and their corresponding fuzzy values, (3) the fuzzi-

fication unit that converts crisp inputs to fuzzy inputs, (4)

the fuzzy inference engine that includes rules information,

and implements rule composition, implication, and aggre-

gation to eventually generate fuzzy outputs, and (5) the

defuzzification unit that converts fuzzy output to crisp

output. These components work together to execute the

process of mapping from a given input to an output. The

following briefly explains how FIS works.

First, crisp inputs are mapped to fuzzy values using a set

of input membership functions that characterize fuzzy sets

of the antecedent part of rules (fuzzification). This deter-

mines the membership degree of inputs to each fuzzy set.

Second, using the fuzzy inference engine, the fuzzy input

values for each activated rule are combined using the t-

norm (minimum) operator for rules with the AND logic

connector, and the s-norm (maximum) operator for rules

with the OR logic connector, as shown in Eqs. (1) and (2),

respectively [34].

lA xð ÞAND lB yð Þ ¼ Min lA xð Þ; lB yð Þð Þ ð1Þ
lA xð ÞOR lB yð Þ ¼ Max lA xð Þ; lB yð Þð Þ ð2Þ

Third, for each activated rule, the fuzzy inference engine

implements the implication relation between the rule con-

sequent and the fuzzy value obtained from logic operations.

The input for the implication operation is a single fuzzy

number for the rule antecedent, while the output is a fuzzy

set. The common implication operator used is the mini-

mum (Mamdani) that is expressed in Eq. (3) [36].

lRA!B
x; yð Þ ¼ Min lA xð Þ; lB yð Þð Þ ð3Þ

Fourth, the output fuzzy number of each rule is defined

by the composition between the implication relation and a

fuzzy singleton. The max–min operator presented in

Eq. (4) is the most common fuzzy composition operator of

fuzzy relations [37].

S o R x; yð Þ ¼ MaxðMin lA x; yð Þ; lB y; zð Þð Þ ð4Þ

Then, the resulting outputs of all activated rules are

aggregated into a single fuzzy set using an aggregation

operator. The aggregation can be accomplished by different

operators, such as Max and Min. The Max operator pre-

sented in Eq. (5) is preferred when compensation between

input variables is desirable [36].

AG �ð Þ ¼ Max lR1 xð Þ; lR2 xð Þ; . . .; lRn xð Þð Þ ð5Þ

Finally, fuzzy output numbers are converted into crisp

outputs in the defuzzification unit. The most common

defuzzification method is the center of area (CoA),

expressed in Eq. (6).

CoA ¼
Pn

i¼1 CiAiPn
i¼1 Ai

ð6Þ

where n is the number of rules, Ci is the center of gravity,

and Ai is the area of each individual implication.
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Fig. 1 The main components of FIS
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FIS has been employed in a wide variety of applications

and disciplines such as multi-criteria decision-making

problems [35, 38], manufacturing systems [39], supply

chains performance [40, 41], supplier selection in supply

chains [42–44], and medical diagnosis and healthcare [45].

FIS has also been broadly used in risk assessment to

overcome the intrinsic uncertainty associated with risk

measures [46–48]. In this study, FIS is used to evaluate the

overall risk level of cholera-affected regions while con-

sidering the variations in cholera risk indicators.

4 Research Methodology

As shown in Fig. 2, the proposed research methodology

includes two phases: cholera risk assessment using Mam-

dani FIS, and cholera vaccine allocation, where a MILP

model is proposed to determine the optimal allocation of

cholera vaccines over multiple time periods and regions.

4.1 Phase I: Cholera Risk Assessment

The FIS model is used to determine overall risk scores of

cholera-affected regions based on the five cholera risk

indicators. The FIS cholera risk assessment model com-

prises three steps: (1) identifying cholera risk indicators

and collecting the relevant data, (2) constructing fuzzy if–

then rules based on experts’ knowledge, and (3) imple-

menting the fuzzy inference process.

Step 1 is to determine cholera risk indicators and collect

their respective data to assess the overall cholera

risk. According to WHO and MSF

recommendations, five cholera risk indicators

should be taken into consideration when

allocating OCVs during cholera outbreaks and

humanitarian emergencies. Table 1 shows the

indicators along with their descriptions. The

indicators are the input variables for the fuzzy

model. The illustrative case study presented in

Sect. 5 demonstrates in more detail how the data

are collected and preprocessed.

Step 2 defines the FIS model’s fuzzy rules, which are

formulated in linguistic terms as if–then

statements. Each rule has two parts: the

antecedent, which represents the inputs (cholera

risk indicators), and the consequent, which

represents the result (overall risk). Fuzzy rules

formulate the relationship between cholera risk

indicators and the overall risk. The rules are

defined based on the perception of six

epidemiological academic and medical experts

who have in-depth knowledge about cholera and

the effect of cholera risk indicators. The experts

have a clear perception of the health system

situation in the country that is considered for the

case study. The epidemiological academic experts

include a professor of epidemiology and public

Fig. 2 Proposed framework of cholera risk assessment and vaccine allocation
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health and his three graduate researchers. The

team has worked on several research projects on

public health, tropical and infectious diseases, and

medical parasitology funded by several health

organizations such as WHO. The epidemiological

medical experts include two physicians of public

health and infectious diseases at one of the largest

cholera treatment centers in the country under

study. Figure 3 shows the steps that have been

implemented to construct the fuzzy rules. First,

the linguistic terms for each input (antecedent)

variable are defined. To do so, k-means clustering

is used to cluster the data collected for the input

variables (presented in Sect. 5.1). Three clusters

have been identified for each input variables;

accordingly, three linguistic terms are defined:

‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ for AR, CFR, and

IDPs variables, and ‘‘poor,’’ ‘‘fair,’’ and ‘‘good’’

for accessibility to WASH and CT variables.

Therefore, the total potential number of rules is

35 = 243. Second, the number of linguistic terms

for the output variable and the consequent for

each potential rule are determined. Five linguistic

terms are proposed for the output variable: ‘‘very

low,’’ ‘‘low,’’ medium,’’ high,’’ and ‘‘very high.’’

The consequent of each rule is determined upon

the agreement of all experts. Then, a sensitivity

analysis is conducted to check the validity of the

proposed fuzzy rules. The experts continue

updating and editing the consequents of the

fuzzy model rules until the sensitivity analysis

results show that the fuzzy model logically

describes the relationship between the input and

output variables (Table 2 presents the final rule

base of the FIS model).

The factorial design technique was used in several

studies for sensitivity analysis [49–51]. In this

study, a full 3k factorial design is utilized to

carry out the sensitivity analysis and assess the

main and interaction effects of cholera risk

indicators on the overall risk based on fuzzy

rules of the FIS model presented in Table 2. The

FIS model has five input variables that are tested

at three levels, low, medium, and high for AR,

CFR, and IDPs, and poor, fair, and good for

accessibility to WASH, and cholera treatment

(CT). The levels of input variables are set to 0,

2.5, and 5. The total number of factor-level

combinations is 35 = 243, which are evaluated in

random order.

Figures 4 and 5 present the main and interaction

effects of the cholera risk indicators on the overall

risk, respectively. There is a proportional

relationship between the AR, CFR, and IDP

indicators, and the overall risk. On the other

hand, there is an inverse relationship between the

accessibility for the WASH indicator and the

overall risk, and the accessibility for the CT

indicator and the overall risk. It can also be noted

that the accessibility for the CT indicator has a

slightly greater effect on the overall risk than

other risk indicators. That is because the defined

fuzzy rules lead to the predominance of this risk

indicator over the other risk indicators. It could be

inferred that making CT more easily accessible

for patients and providing sufficient CT kits and

equipment should be prioritized in order to

mitigate the overall risk, where this is regarded

as the first line of defense against cholera during

outbreaks and humanitarian emergencies. This

conforms with the recommendations of

epidemiological experts and health

organizations. The interaction plot also indicates

that there are no statistically significant

interactions among input variables as the lines

are nearly parallel.

Step 3 FIS infers the overall risk from its respective risk

indicators. First, the crisp values of input

variables are converted to fuzzy sets

(fuzzification). Fuzzy sets are represented by

membership functions. In this study, according

to the experts’ perception, triangular membership

functions are used to characterize fuzzy sets of

input and output variables, which are usually used

in most fuzzy logic studies [52]. Triangular

membership functions are quite suitable for risk

assessment applications [46, 53]. Three fuzzy sets

of membership functions are used for the inputs

and five are used for the output as shown in

Fig. 6a and b, respectively. Fuzzy sets in the form

of linguistic terms and their corresponding fuzzy

values on the numeric scale 0–5 for the inputs and

output are presented in Tables 3 and 4,

respectively.

Next, the fuzzy inference engine implements rule com-

position, implication, and aggregation to generate the fuzzy

output. The fuzzy logic operators are chosen as follows:

• The minimum operator to combine the fuzzy input

values and generate the implied relationships between

the antecedents and the consequent.

A. G. Qasem et al.: A Fuzzy-Based Approach for Cholera Risk... 3371
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• The max–min operator to find the composition between

a fuzzy singleton and the implication relation for each

activated fuzzy rule.

• The maximum operator to aggregate the fuzzy outputs

of all activated rules.

• The center of area operator is used to convert the

aggregated fuzzy output to crisp output.

The relationship between the overall risk and cholera

risk indicators explained by the FIS model can be observed

through surface response plots. As shown in Fig. 7, ten

surface responses are generated, each surface shows the

overall risk as a function of the combination of two risk

indicators while the remaining three risk indicators are held

constant at 2.5. These surfaces help decision-makers

visualize and understand the effect of risk indicators on the

overall risk.

The computational procedures for the proposed FIS are

executed in MATLAB R2016b using the FIS toolbox. The

case study that illustrates how the FIS model is applied will

be discussed in Sect. 5.

4.2 Phase II: Cholera Vaccine Allocation

A MILP model is developed to determine the optimal

allocation of cholera vaccines over multiple time periods

and regions. The objective is to minimize cholera cases

over multiple periods while considering the overall risk and

population of regions, and vaccine efficacy up to 2 years. It

is assumed that vaccines are administrated biannually over

four 6-month periods. Vaccinated individuals receive a

vaccine at the beginning of the respective period, and are

not vaccinated again within the time horizon considered.

The ultimate goal is to determine the optimal number of

individuals in each region that should be vaccinated in each

period when available vaccine doses are limited. The fol-

lowing describes the optimization model.

Sets:

R Set of geographical regions.

T Set of time periods.

Parameters:

pr;t Population of region r during period t, r 2 R, t 2 T .

Rlr Base risk level of region r calculated from the fuzzy

model.

Rlr;j Risk level of vaccinated region r in the jth period

following dosing, r 2 R, which is calculated from the base

risk level and vaccine efficacy in the jth period since

dosing. As the time horizon considered is 2 years, it is

divided into four 6-month periods, j 2(1,2,3,4).
Qt Quantity of vaccine doses available at period t, t 2 T .

q Number of vaccine doses administered for one person.

Decision variables:

xr;t Number of persons newly vaccinated in region r

during period t, r 2 R, t 2T .
yr;t;i Number of persons vaccinated i periods before

period t, and they are currently in region r in period

t; r 2 R; t 2 T; i 2 0; 1; 2; 3ð Þ.

Table 1 Description of cholera risk indicators

Cholera risk indicator Description

Attack rate (AR) The total number of new cases of the disease during a specific period divided by the total population at risk

Case fatality rate (CFR) The number of deaths caused by the disease divided by the total number of persons with the disease

Number of internally displaced

persons (IDPs)

People who live in camps with precarious living conditions and who do not have access to adequate

WASH, health services, and safe food

Accessibility to WASH Indicated by the percentage of the population having access to WASH

Accessibility to cholera treatment

(CT)

Indicated by the percentage of the population having timely access to cholera treatment

Fig. 3 Steps to construct the fuzzy rules
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Model

Min
X

r2R

X

t2T
fr;t

s:t:

ð7Þ

X

r2R
q � xr;t �Qt8t 2 T ð8Þ

Xt¼current period

t¼1

xr;t � pr;t8r 2 R; t 2 T ð9Þ

yr;t;i ¼ xr;t�i: t�i� 1ð Þ and 0 if ðt � i\1Þ 8r
2 R; t 2 T ; i 2 0; 1; 2; 3ð Þ

ð10Þ

xr;t; yr;t;i 2 Zþ ð11Þ

Equation (7) presents the objective function that mini-

mizes the number of cholera cases while considering the

risk level of regions and vaccine efficacy, where fr;t

represents the risk level in region r during period t that

takes into consideration both vaccinated and unvaccinated

persons (see Eq. 12). Constraint 8 ensures that the total

administered doses do not exceed the total available doses

of vaccine. Constraint 9 guarantees that the number of

individuals who get vaccinated in a region over multiple

periods does not exceed the population of that region.

Constraint 10 calculates the number of persons vaccinated i

periods before period t. The number of vaccinated indi-

viduals must be a positive integer as restricted in constraint

11. fr;t in the objective function reflects the benefit of

vaccination at period t while considering all individuals

vaccinated up to period t. The variable fr;t is calculated as:

fr;t ¼
Xt

j¼1

1

Rlr;j

yr;t;j�1

pr;t
þ 1�

Xt

j¼1

yr;t;j�1

pr;t

 !

Rlr 8r 2 R; t

2 T

ð12Þ

Table 2 Rules for the fuzzy system

Accessibility to WASH P F G

Accessibility to CT P F G P F G P F G

AR CFR IDP

L L L M L L M L VL L VL VL

M M M L M L L M L VL

H H M M H M L M L L

M L H M M M M L M M L

M H M M H M M H M L

H H H M H M M H M L

H L H H M H M L M M L

M H H M H M M H M M

H VH H M H H M H M M

M L L H M L M M L M M L

M H M M H M M H M L

H H H M H M M H M L

M L H H M H M L H M L

M H H M H M M H M L

H VH H M H H M H M M

H L H H M H M M H M M

M VH H M H H M H M M

H VH H H H H M H H M

H L L H M M H M L M M L

M H H M H M M H M L

H VH H M H H M H M M

M L H H M H M M H M M

M VH H M H M M H M M

H VH H H VH H M H H M

H L VH H M H H M H M M

M VH H H H H M H H M

H VH VH H VH H H VH H M
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Fig. 4 Main effects of cholera risk indicators on the overall risk

Fig. 5 Interaction effects of cholera risk indicators on the overall risk
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Rlr;j is calculated as shown in Eq. (13), where VEj is

defined as the vaccine protective efficacy in the jth period

following vaccination.

Rlr;j ¼ ð1� VEjÞRlr 8r 2 R; j 2 1; 2; 3; 4ð Þ ð13Þ

As an alternative approach, instead of using the fuzzy

model to evaluate the overall cholera risk, the weighted

average method can be utilized to calculate the overall risk

score resulting from five risk indicators, where each of

these risk indicators is given a certain weight based on the

experts’ judgment. The resultant risk scores can then be

utilized in the optimization model instead of the fuzzy

scores. However, this approach does not consider the

inherent imprecision in cholera-related data from armed

conflict regions, where precise data is not possible to

obtain. Therefore, the fuzzy model is a better approach to

evaluate the overall cholera risk because it has the ability to

effectively address the uncertainty associated with risk

indicators and allows to integrate the knowledge of human

experts and qualitative, quantitative, and judgmental data

within an appropriate framework, which in turn provides

valuable cholera risk mapping that can be used as effective

guidance for the allocation of cholera vaccine.

5 Case Study

This section presents a case study to illustrate the appli-

cability of the proposed approach for cholera risk assess-

ment and vaccine allocation. The case study uses real-

world data collected from Yemen, which is experiencing

the world’s worst cholera outbreak according to WHO. An

ongoing civil war has destroyed healthcare and sanitation

systems and interrupted immunization activities. Thou-

sands of people have been internally displaced and live

without adequate food, water, housing, and sanitation.

A United Nations (UN) report stated that about 14.8 mil-

lion Yemeni have not been able to obtain suitable health-

care, and around 14.4 million people do not have access to

safe water and sanitation [4]. As a result, the cholera out-

break has reached alarming levels, affecting millions of

people and resulting in thousands of deaths. According to

the latest WHO report, 2,316,197 suspected cholera cases

have been cumulatively reported with 3910 deaths in

Yemen from October 2016 to January 2020 [54].

In addition to an improvement of WASH, immunization

with OCVs can play a significant role in controlling a

cholera outbreak. According to [2], vaccination against

cholera is implemented in three ways: (i) reactive vacci-

nation, which is carried out in response to cholera

Fig. 6 Membership functions for: (a) input variables, (b) output variable

Table 4 Linguistic variables to evaluate the consequent

Linguistic terms Fuzzy triangular number

Very low (VL) (0, 0, 1.25)

Low (L) (0, 1.25, 2.5)

Medium (M) (1.25, 2.5, 3.75)

High (H) (2.5, 3.75, 5)

Very high (VH) (3.75, 5, 5)

Table 3 Linguistic variables to evaluate the antecedents

Linguistic terms Fuzzy triangular number

Low/poor (L/P) (0, 0, 2.5)

Medium/fair (M/F) (0, 2.5, 5)

High/good (H/G) (2.5, 5, 5)
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Fig. 7 Surface response plots for the fuzzy inference system where two risk indicators are varied while all other risk indicators are held constant

at 2.5

3376 International Journal of Fuzzy Systems, Vol. 24, No. 8, November 2022

123



outbreaks, (ii) preventive vaccination, which is usually

carried out in cholera-endemic areas before cholera season,

and (iii) pre-emptive vaccination, which is carried out in

humanitarian-emergency regions, where an outbreak is

high. The case study applies the pre-emptive method

because the Yemen disaster is a humanitarian emergency.

In that situation, all age groups are equally at risk of

cholera exposure [2]. Therefore, in the case study, the

population will not be differentiated by age and all age

groups will be given the same priority for vaccination. The

challenge for carrying out a vaccination campaign in

humanitarian emergencies is the limited stock of vaccine

doses relative to the large number of individuals who need

the vaccine [2]. In such a case, healthcare organizations

recommend adopting a single-dose strategy instead of the

two-dose strategy. Though the efficacy of single-dose is

lower than that of two doses, it provides coverage and

rapidly protects as many of the at-risk population as pos-

sible, which may avert more cases and deaths when vac-

cine supplies are limited [2].

Yemen is divided into 22 governorates, each of which

has different AR, CFR, IDPs, and accessibility to WASH

and cholera treatment (CT). The objective of the case study

is to first evaluate the overall risk resulting from risk

indicators for each governorate using the proposed FIS

model, and then allocate vaccine doses among those gov-

ernorates in an effective manner using the optimization

model. The allocation process considers the overall risk

and population of each governorate, and vaccine efficacy

for single vaccine doses for up to 2 years.

5.1 Cholera Risk Assessment

First, the values of the five cholera risk indicators are

collected from health organizations that are concerned with

the humanitarian situation in Yemen. Table 5 shows the

quantitative data of risk indicators in their original units

and corresponding values, collected for the 22 gover-

norates. AR and CFR values are based on the latest

statistics reported in the Cholera Situation in Yemen

Report [54]. IDPs statistics are obtained from the report

issued by the Displacement Tracking Matrix (DTM), an

international organization that tracks and monitors dis-

placement and population mobility [55]. WASH accessi-

bility is obtained from the report issued by the Berghof

Foundation. The report provides information about access

Table 5 Raw quantitative data for cholera risk indicators collected from Yemen

Governorate AR (per 10,000) CFR (%) IDPs (Individuals) % of people having

Accessibility to WASH

% of people having

Accessibility to CT

Abyan 544.05 0.21 29,124 0.50 0.52

Aden 307.12 0.35 59,598 0.80 0.88

Al Bayda 1272.87 0.11 59,022 0.41 0.70

Al Dhale’e 824.91 0.19 33,306 0.30 0.49

Al Hudaydah 1065.71 0.11 362,292 0.62 0.71

Al Jawf 593.95 0.15 150,090 0.25 0.45

Al Maharah 113.06 0.12 9966 0.72 0.75

Al Mahwit 1610.21 0.18 41,532 0.42 0.60

The Capital 877.91 0.07 243,738 0.70 0.94

Amran 1710.53 0.13 252,246 0.40 0.69

Dhamar 1047.42 0.14 186,774 0.57 0.73

Hajjah 902.25 0.27 374,820 0.29 0.59

Ibb 593.56 0.29 216,114 0.75 0.79

Lahj 327.69 0.17 69,492 0.41 0.50

Marib 261.74 0.17 770,028 0.69 0.84

Hadramaut 31.41 0.64 20,286 0.94 0.90

Raymah 533.88 0.59 56,454 0.48 0.57

Sa’ada 582.53 0.07 170,544 0.62 0.50

Sana’a 1554.18 0.10 98,466 0.50 0.73

Shabwah 44.32 0.41 27,594 0.57 0.80

Socotra 2.02 000 4014 0.64 0.70

Taizz 457.31 0.24 411,750 0.60 0.84
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to basic services in Yemeni governorates [56]. CT acces-

sibility is extracted from the report released by the UN

Office for the Coordination of Humanitarian Affairs

(OCHA) [57]. The information about that indicator is

provided as a heat map. Experts who helped construct and

validate the fuzzy rules provided guidance in converting

the heat map information into quantitative values.

Second, to be used in the FIS model, values of all risk

indicators are standardized to the interval of 0 and 5 using

Eq. (14). Table 6 presents the values of cholera risk indi-

cators in the standardized form.

standardized value ¼ 5� current value of the indicator

maximum value of the indicator

ð14Þ

Then, the standardized values of cholera risk indicators

are fed into the FIS model. After executing fuzzy inference

operations, overall risk scores are inferred (see Table 7).

Figure 8 presents an example of the rule viewer of the FIS

model for the overall risk evaluation of one governorate.

As seen in the figure, the crisp values of antecedents, AR,

CFR, IDPs, accessibility for WASH, and accessibility for

CT are 0.958, 1.328, 0.451, 2.181, and 2.660, respectively,

which are indicated by red lines. After defuzzification, the

overall risk score inferred is 2.12. Overall risk scores are

verified by the epidemiological experts. Those experts

confirm that the FIS model provides useful cholera risk

mapping, which reflects the risk situation of governorates.

Those risk scores can effectively guide vaccination and

other interventions.

Table 6 Standardized data for cholera risk indicators

Governorate AR CFR IDPs Accessibility to WASH Accessibility to CT

Abyan 1.590 1.641 0.189 2.660 2.766

Aden 0.898 2.734 0.387 4.255 4.681

Al Bayda 3.721 0.859 0.383 2.181 3.723

Al Dhale’e 2.411 1.484 0.216 1.596 2.606

Al Hudaydah 3.115 0.859 2.352 3.298 3.777

Al Jawf 1.736 1.172 0.975 1.330 2.394

Al Maharah 0.330 0.938 0.065 3.830 3.989

Al Mahwit 4.707 1.406 0.270 2.234 3.191

The Capital 2.566 0.547 1.583 3.723 5.000

Amran 5.000 1.015 1.638 2.128 3.670

Dhamar 3.062 1.094 1.213 3.032 3.883

Hajjah 2.637 2.109 2.434 1.543 3.138

Ibb 1.735 2.266 1.403 3.989 4.202

Lahj 0.958 1.328 0.451 2.181 2.660

Marib 0.765 1.328 5.000 3.670 4.468

Hadramaut 0.092 5.000 0.132 5.000 4.787

Raymah 1.561 4.609 0.367 2.553 3.032

Sa’ada 1.703 0.547 1.107 3.298 2.660

Sana’a 4.543 0.781 0.639 2.660 3.883

Shabwah 0.129 3.203 0.179 3.032 4.255

Socotra 0.006 0.000 0.026 3.404 3.723

Taizz 1.337 1.875 2.674 3.191 4.468

Table 7 The overall risk scores from FIS

Governorate Overall risk Governorate Overall risk

Abyan 2.05 Hajjah 3.10

Aden 1.75 Ibb 1.78

Al Bayda 2.11 Lahj 2.12

Al Dhale’e 2.91 Marib 2.25

Al Hudaydah 2.02 Hadramaut 1.39

Al Jawf 2.65 Raymah 2.40

Al Maharah 1.10 Sa’ada 1.80

Al Mahwit 2.32 Sana’a 1.95

The Capital 1.85 Shabwah 1.70

Amran 2.50 Socotra 0.65

Dhamar 1.90 Taizz 2.15
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5.2 Cholera Vaccine Allocation

The MILP model is solved to optimize the allocation of

limited vaccine doses among governorates. As discussed

previously, during humanitarian emergencies as in our case

study, health organizations recommend adopting the sin-

gle-dose strategy to provide better coverage and partial

protection for a larger percentage of the affected area’s

population. The protective efficacy of a single dose of OCV

was investigated by [58]. The authors reported that the

protective efficacy of one OCV dose is 52% for individuals

younger than 15 years, and 59% for individuals aged

15 years or older, which is sustained for up to 2 years after

dosing. For this case study, because populations are not

differentiated by age, it is assumed that the vaccine has the

same efficacy for all ages, and both efficacy values are

tested for the analysis. We assumed that each vaccinated

person receives a single dose at the beginning of the

respective period, and vaccine efficacy is valid from the

beginning of the dosing period for 2-year follow-up. Vac-

cinated persons are not vaccinated again within the time

horizon. The 2-year time horizon is divided into four

6-month periods. We assume there are 5 million doses

available to be allocated to governorates at the beginning

of each 6-month period. The model answers the questions

of where, what amounts, and when to send vaccine doses

over the 2-year time horizon.

One of the main parameters used in the model is pop-

ulation size. The initial population size is obtained from the

PopulationData website that provides the most accurate

and reliable data on countries and populations. The initial

population statistics are based on the projection of the most

recent census conducted in 2004 [59]. It is assumed there is

a birth rate of 29/1000 and a death rate of 6/1000 to project

the population for the rest of the time [60]. Table 8 presents

the initial population size by governorate. Children

younger than 1 year are not considered in the analysis

because they are not eligible for vaccination.

The model is solved using the Gurobi solver. The results

are presented in Fig. 9 and Table 9. Figure 9a and b shows

the number of doses that should be allocated to each

governorate per period for the four 6-month periods when

each vaccinated person receives one dose, given a vaccine

supply of 5 million doses per period with a vaccine efficacy

of 52% or 59%. Table 9 summarizes the cumulative per-

centages of governorate populations vaccinated over time

for both vaccine efficacy values. Generally speaking, for

both vaccine efficacy values, vaccine doses are primarily

Table 8 Population of Yemeni governorates

Governorate Initial population Governorate Initial population

Abyan 658,824 Hajjah 1,887,213

Aden 1,087,653 Ibb 3,911,070

Al Bayda 835,683 Lahj 926,291

Al Dhale’e 602,613 Marib 504,696

Al Hudaydah 3,774,914 Hadramaut 1,368,085

Al Jawf 663,147 Raymah 502,505

Al Maharah 400,000 Sa’ada 987,663

Al Mahwit 732,360 Sana’a 2,279,665

The Capital 1,174,767 Shabwah 651,509

Amran 1,123,651 Socotra 259,293

Dhamar 1,697,067 Taizz 4,554,443

Fig. 8 Rule viewer of the FIS model
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allocated over governorates by order of the risk level while

considering the population size. However, at 59% efficacy,

it is noted that the number of doses, and percentages of

population vaccinated in periods that follow the first period

of dosing (i.e., the period at which a governorate starts

receiving vaccine) are lower than those when vaccine

efficacy is 52% (see Fig. 9 and Table 9). That is, higher

vaccine efficacy leads to higher priority for governorates

that have not received the vaccine. The governorates can be

clustered into five groups: (i) the first group comprises 6

governorates with risk scores greater than 2.3. This group

is given the first priority to vaccinate as many persons as

possible in period 1. Then, each following period, smaller

percentages of populations are vaccinated while consider-

ing the increase in population sizes during the time.

Governorates in that group achieve almost fully vaccinated

populations by periods 3 and 4 when the vaccine efficacy is

52%. At vaccine efficacy of 59%, the percentages of the

population vaccinated in periods that follow the first period

are less than those when the vaccine efficacy is 52%; (ii)

the second group includes 6 governorates with risk scores

between 2 and 2.3. These regions start receiving vaccine

doses in the second period. Nearly 70% of their populations

are vaccinated by period 4; (iii) the third group represents 4

governorates with risk scores between 1.8 and 2, which are

vaccinated beginning in period 3; (iv) the fourth group

represents the governorates that start vaccinating in the

fourth period. The number of doses allocated for these

regions when vaccine efficacy is 59% is higher than that

when the vaccine efficacy is 52%; (v) the last group rep-

resents only one governorate with the lowest risk score. At

Table 9 Cumulative percentage of vaccinated population by gover-

norate, given a vaccine supply of 5 million doses per period

Vaccine efficacy = 52% Vaccine efficacy = 59%

Region Period Period

1

(%)

2

(%)

3

(%)

4

(%)

1

(%)

2

(%)

3

(%)

4

(%)

Abyan 0 36 59 68 0 41 59 67

Aden 0 0 0 39 0 0 0 44

Al Bayda 0 42 61 71 0 45 61 70

Al Dhale’e 93 96 100 100 93 95 96 97

Al

Hudaydah

0 35 57 67 0 38 57 65

Al Jawf 90 95 100 100 90 91 94 95

Al Maharah 0 0 0 11 0 0 0 26

Al Mahwit 84 93 96 98 84 84 86 88

The Capital 0 0 40 58 0 0 45 57

Amran 89 95 98 100 89 90 92 95

Dhamar 0 0 42 60 0 0 46 59

Hajjah 95 98 100 100 95 96 98 98

Ibb 0 0 0 40 0 0 0 45

Lahj 0 44 62 72 0 47 61 70

Marib 0 47 65 75 0 50 65 73

Hadramaut 0 0 0 15 0 0 0 32

Raymah 85 93 98 98 85 85 87 90

Sa’ada 0 0 39 57 0 0 44 55

Sana’a 0 0 44 61 0 0 48 60

Shabwah 0 0 0 39 0 0 0 42

Socotra 0 0 0 0 0 0 0 0

Taizz 0 44 62 73 0 47 62 71

Bold values to identify the regions that should be given the first

priority to vaccinate

Fig. 9 Number of doses allocated for each governorate per period, given a vaccine supply of 5 million doses per period with a vaccine efficacy

of (a) 52%, and (b) 59%
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both efficacy values, no vaccines are allocated to this

region.

6 Conclusion

This paper presented a two-phase approach for cholera risk

assessment and the vaccine allocation problem. In the first

phase, the Mamdani FIS was used to infer the overall risk

in cholera-affected regions based on five risk indicators

recommended by health organizations to guide the cholera

vaccination process. FIS addresses the inherent imprecision

in the collected data of cholera risk indicators and maps the

nonlinear relationship between risk indicators and the

overall risk. Fuzzy inference captures human reasoning and

experts’ knowledge about the problem in the rules base that

was designed according to if–then settings. In the second

phase, a MILP model was developed to solve the vaccine

allocation problem, while considering the overall cholera

risk and population of vaccine-targeted regions, and vac-

cine efficacies up to 2 years. A case study was presented to

illustrate the expected benefits of the proposed approach,

where the proposed approach was used to tackle a real-

world health problem that health experts encountered in

Yemen. First, overall cholera risk scores of country’s

governorates were mapped using the FIS model. Then,

those risk scores were used in the optimization model to

guide the vaccine allocation process. The case study

revealed that the proposed approach can be very beneficial

for health organizations to easily identify cholera risk

levels which can be used as guidance for interventions

including vaccination.

The main benefit of the fuzzy cholera risk assessment

model is the risk map for cholera-affected regions, which

takes into consideration a set of risk indicators to evaluate

the overall risk rather than using a single risk indicator.

This helps decision-makers to comprehensively identify

the risk level of regions, and accordingly assign resources

and guide interventions, including vaccination, in an

effective manner.

The conclusions derived from the FIS model depend on

several subjective factors, including the design of the rules

base, the number of membership functions, and their cor-

responding fuzzy numbers, and the inference operators. To

assure conclusions from the FIS model are valid, six epi-

demiological academic and medical experts helped develop

the rules and formulate the model. The experts have in-

depth knowledge about cholera disease and the effect of the

cholera risk indicators and a clear perception of the health

system situation in the country that is considered for the

case study.

The limitation of this research is that the cholera risk

assessment and vaccine allocation approach is adapted only

for humanitarian emergencies (pre-emptive vaccination).

In this situation, the population is not differentiated by age,

and all age groups are given the same priority for vacci-

nation [2]. The proposed approach can be modified to

accommodate other vaccination settings (reactive and

preventive vaccinations). This may require other risk

indicators to be considered and modification of the opti-

mization model. Depending on the number of risk indica-

tors and their corresponding linguistic terms, the number of

rules can grow exponentially, which in turn will increase

the complexity of designing the rules base.

As future work, data-driven approaches such as artificial

neural networks and neuro-fuzzy models could be estab-

lished to explore the overall cholera risk. Such models

require data for training and testing, and could provide

more accurate results. Another future direction is to

examine the proposed approach for other infectious dis-

eases such as COVID-19.
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