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Abstract In this article, the prediction of COVID-19 based

on a combination of fractal theory and interval type-3 fuzzy

logic is put forward. The fractal dimension is utilized to

estimate the time series geometrical complexity level,

which in this case is applied to the COVID-19 problem.

The main aim of utilizing interval type-3 fuzzy logic is for

handling uncertainty in the decision-making occurring in

forecasting. The hybrid approach is formed by an interval

type-3 fuzzy model structured by fuzzy if then rules that

utilize as inputs the linear and non-linear values of the

dimension, and the forecasts of COVID-19 cases are the

outputs. The contribution is the new scheme based on the

fractal dimension and interval type-3 fuzzy logic, which

has not been proposed before, aimed at achieving an

accurate forecasting of complex time series, in particular

for the COVID-19 case. Publicly available data sets are

utilized to construct the interval type-3 fuzzy system for a

time series. The hybrid approach can be a helpful tool for

decision maker in fighting the pandemic, as they could use

the forecasts to decide immediate actions. The proposed

method has been compared with previous works to show

that interval type-3 fuzzy systems outperform previous

methods in prediction.

Keywords Fractal dimension � Interval type-3 fuzzy

logic � Prediction � Time series � COVID-19

1 Introduction

In this article, an interval type-3 fuzzy-fractal time series

prediction method and its application to COVID-19 fore-

casting are presented. This method combines interval type-

3 fuzzy and fractal theories to obtain a prediction of

COVID-19. The mathematical concept of the fractal

dimension [1] is utilized to measure the complexity of the

time series. In this case, the methods for dimension

approximation compute a numeric value utilizing a time

series. This value represents an approximation to the

complexity level of a time series. Based on numerical

values for the fractal dimensions of different time series,

linguistic values for the dimensions can be constructed, and

then, a set of fuzzy rules that can predict confirmed cases

and deaths for the countries based on the complexity of a

time series [2]. The fuzzy rules can be derived by applying

fuzzy clustering on the data [3]. The main goal of utilizing

type-3 fuzzy is because, theoretically speaking, type-3

should be able to outperform type-2 and type-1 fuzzy logic

in handling uncertainty in complex decision-making

problems, and the application at hand is an interesting

problem to test this hypothesis. There have been previous

works using type-2 and type-1 in prediction, and in this

work, we can perform a comparison of results. The hybrid

approach can be applied in the following fashion. First, a

set of fuzzy rules should be established for the particular

application considering the utilization of the fractal

dimension. Second, a method for approximating the

dimension should be implemented. Third, the dimensions

are utilized as system inputs to perform the forecast for the

problem at hand.

The fuzzy rules can be established with the Mamdani

reasoning method, and the centroid as defuzzification

approach [4]. However, the Sugeno fuzzy system in which
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the consequents are mathematical functions is also a viable

alternative [5]. The Sugeno fuzzy model can be built with a

neuro-fuzzy approach [6] to learn from real data the opti-

mal parameter values for the mathematical functions and

for the membership functions [7]. In this article, the

interval type-3 fuzzy-fractal method for prediction utilizing

the Mamdani approach was applied.

Recently, the very rapid propagation of COVID-19 has

been noticed, including its several waves, and spreading to

all continents in the world. In particular, in the case of

Europe, several countries, like Italy, Spain, and France,

have been hit very hard with the spread of the COVID-19

virus, having a significant number of confirmed cases and

deaths [8–13]. In the case of the American continent,

United States, Canada, and Brazil have also suffer a sig-

nificant number of cases due to the rapid spread of COVID-

19 [14–17]. In conclusion, it is very important that vigor-

ous research work should be undertaken for understanding

all facets of this problem [18–20]. There are also several

recent works on predicting and modeling COVID-19

dynamics in space and time [21–28]. In addition, it is

possible that future pandemics occur and the proposed

method could also be used. In particular, for this article, the

main focus is on the forecasting aspect of the problem,

which means utilizing clusters of similar countries and

fuzzy rules to enable achieving a good forecast.

In the existing literature of intelligent models for pre-

diction we can find supervised neural networks (NNs) [6],

ensemble NNs [28], adaptive neuro-fuzzy inference sys-

tems (ANFISs) [6], type-1 fuzzy systems (T1Fs) [4], type-2

fuzzy systems (T2FSs), and interval type-3 fuzzy systems

(IT3FSs). In this work, we are proposing a hybrid model

combining an IT3FS with a fractal dimension (FD) model

that we could name IT3FS ? FD that combines the

advantages of type-3 fuzzy models with the capabilities of

fractal theory. In Table 1, we are presenting a comparison

of the existing models with respect to the proposed

IT3FS ? FD model, where we can appreciate why the

proposal of this work has the potential to outperform the

other methods in complex problems. As can be noted from

Table 1, fuzzy methods do not require learning from

training data (as NN models do), but require knowledge

from experts. In addition, some models in the table are

hybrid, like ANFIS that combines fuzzy with NNs, and in

particular our proposal is also hybrid, combining IT3 FS

with FD. The time to develop NN-based models is longer

because they require training, which a FS model do not. An

advantage of NN models is that they have pattern recog-

nition abilities that FS models do not, but for our proposed

IT3FS ? FD model, the fractal dimension provides this

ability without requiring training. In summary, we believe

that our proposed model can be efficient (in computing

time) and accurate, due to its handling of uncertainty with

IT3FS and its use of FD for pattern recognition.

The key contribution of the article is the fuzzy-fractal

hybridization that prudently utilizes interval type-3 fuzzy

and fractal dimension for predicting the confirmed cases

and deaths. A fuzzy system is put forward as a model of the

expert knowledge on predicting time series. In comparing

with existing literature in this area, this paper is for the first

time putting forward the utilization of interval type-3 fuzzy

logic in the prediction area. Also, the combination of type-

3 with fractal theory has not been previously proposed and

can be viewed as another important proposal to modeling

complex phenomena. In addition, due to the COVID-19

situation in the world, we believe that this work will have

an important scientific impact and will, in general, benefit

the society. Of course, in the future, the proposed method

could be used in predicting other similar pandemics.

The other sections of the article are structured in a

logical fashion: Sect. 2 offers a background of fractal

concepts for the sake of readability. Section 3 puts forward

the terminology of interval type-3 fuzzy theory. Section 4

offers a detailed explanation of the interval type-3 fuzzy-

fractal approach for prediction. Section 5 summarizes the

results and offers an analysis of the achieved results.

Lastly, Sect. 6 is dedicated to the conclusions and dis-

cussing possible avenues of research.

Table 1 Comparative of methods in the literature with respect to the proposed method in this work

Method Learning required Knowledge required Type of model Time to develop Pattern recognition Accuracy

NNs Yes No Monolithic Long Yes Good

Ensemble NNs Yes No Hybrid Long Yes Excellent

ANFIS Yes No Hybrid Long Yes Excellent

T1FS No Yes Monolithic Short No Regular

T2FS No Yes Monolithic Short No Good

IT3FS No Yes Monolithic Short No Excellent

IT3FS ? FD (proposed) No Yes Hybrid Short Yes Excellent
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2 Basic Concepts of the Fractal Dimension

Recently, significant progress has been made in compre-

hending the complexity of an object through the utilization

of fractal constructs [1]. For example, time series in finance

and economics exhibit properties suggesting a fractal

structure [29, 30]. In addition, applications in medicine,

robotics, control, and others can be found in the recent

literature. The fractal dimension is defined in the following

fashion:

d ¼ lim lnN rð Þ½ �= ln 1=rð Þ½ �
r ! 0;

ð1Þ

where N(r) stands for number of boxes needed for object

coverage and r is related to box size. d defined in (1) is

approximated with box covering for r sizes and then uti-

lizing logarithmic regression for computing an estimate of

the d value (box counting algorithm). The estimation of

this dimension for an object can be done with the mathe-

matical expression:

lnN rð Þ ¼ ln b� d Inr; ð2Þ

where d stands for the dimension.

Based on the previous explanation, it is straightforward

to say that the fractal dimension provides a methodology

for object classification. The main reason is due to the fact

that the fractal dimension is related to the level of object

complexity. In particular, for a time series, which is the

subject of this paper, a classification scheme based on the

fractal dimension can be established. The explanation of

this scheme is that smoothness on the object means that the

dimension is close to one, otherwise, it is closer to two

(assuming that we are on the plane).

3 Terminology of Interval Type-3 Fuzzy Theory

A fuzzy system is utilized as a forecasting tool by building

an adequate input space partition, in such a way that

objects are discriminated by their features. In this situation,

we can begin by utilizing fuzzy clustering [3, 31, 32] to

group the data, and then after that build a fuzzy system that

will constitute a forecasting scheme for an application.

Originally fuzzy sets and logic were put forward by Lotfi

Zadeh in 1965 [33], which are now called type-1 fuzzy sets

and logic, later himself proposed the type-2 fuzzy term in

1975 to better represent the uncertainty in the real world

[4], and correspondingly has had recently many successful

applications. More recently, interval type-3 has been pro-

posed as an even better way to manage uncertainty and has

been applied in the control area outperforming type-1, and

type-2, and now we are proposing its use for the first time

in forecasting. Below some fundamental definitions of

type-3 fuzzy sets are put forward to give an idea of the

difference of this concept when compared to other types of

fuzzy sets. Basically, the most important difference is that

in interval type-3 case, the secondary function is of interval

type-2 form instead of being type-1, which is the one used

for general type-2 fuzzy sets.

Definition 1 A type-3 fuzzy set (T3 FS) [34–36], denoted

by Að3Þ, is represented by the plot of a trivariate function,

called membership function (MF) of Að3Þ, in the Cartesian

product X � 0; 1½ � � ½0; 1� in ½0; 1� where X is the universe

of the primary variable of Að3Þ, x. The MF of lAð3Þ is

denoted by lAð3Þ ðx; u; vÞ (or lAð3Þ to abbreviate) and it is

called a type-3 membership function (T3 MF) of the T3 FS.

In other words, more formally,

lAð3Þ : X � 0; 1½ � � ½0; 1� ! ½0; 1�

Að3Þ ¼ x; u xð Þ; v x; uð Þ;lAð3Þ ðx; u; vÞ
� ��

jx 2 X; u 2 U � ½0; 1�; v 2 V � ½0; 1�g;
ð3Þ

where U stands for the universe of the secondary variable,

u and V is the universe for tertiary variable v. The 3-D plot

of the IT3MF is an isosurface with volume in between the

layers of the Surface formed by all the secondary IT2MFs

lAðxÞðuÞ in green color in Fig. 1, which forms the domain

of uncertainty (DOU) of IT3 FS.

3.1 Interval Type-3 Gaussian Functions

In this case, we consider interval type-3 MFs that are

scaled Gaussian in the primary and secondary. This func-

tion can be represented as, elA x; uð Þ = ScaleGaussS-

caleGauss IT3MF, with Gaussian footprint of uncertainty

FOUðAÞ, characterized with parameters ½r;m�
(UpperParameters) for the upper membership function

UMF and for the lower membership function LMF, the

parameters k (LowerScale), l (LowerLag) to form the

DOU ¼ ½l xð Þ; lðxÞ]. The vertical cuts A xð ÞðuÞ characterize

the FOU Að Þ, and are IT2 FSs with Gaussian IT2 MFs,

lA xð Þ uð Þ with parameters ½ru;mðxÞ� for the UMF and LMF

k (LowerScale), l (LowerLag). The IT3 MF, elA x; uð Þ ¼
ScaleGaussScaleGaussIT3MF(x,{{½r;m�},k, l}) is descri-

bed with the following equations:

u xð Þ ¼ exp � 1

2

x� m

r

� �2
� �

ð4Þ

u xð Þ ¼ k � exp � 1

2

x� m

r�

� �2
� �

ð5Þ

where r� ¼ r
ffiffiffiffiffiffiffi
ln lð Þ
ln eð Þ

q
, e is the machine epsilon. Ifl ¼ 0,

thenr� ¼ r. Then, u xð Þ and u xð Þ are the upper and lower

123

184 International Journal of Fuzzy Systems, Vol. 25, No. 1, February 2023



limits of the DOU. The range,d uð Þ, and radius, ru of the

FOU are as follows:

d uð Þ ¼ u xð Þ � u xð Þ ð6Þ

ru ¼
d uð Þ
2

ffiffiffi
3

p þ e ð7Þ

The apex or core, mðxÞ, of the IT3 MF el x; uð Þ, is defined
by the expression:

mðxÞ ¼ exp � 1

2

x� m

q


 �2
" #

ð8Þ

where q ¼ ðrþ r�Þ=2. Then, the vertical cuts with IT2

MF, lA xð Þ uð Þ ¼ ½l
A xð Þ

uð Þ; lA xð Þ uð Þ�, are described by the

following equations:

lA xð Þ uð Þ ¼ exp � 1

2

u� u xð Þ
ru


 �2
" #

ð9Þ

l
A xð Þ

uð Þ ¼ k � exp � 1

2

u� u xð Þ
r�u


 �2
" #

ð10Þ

where r�u ¼ ru
ffiffiffiffiffiffiffi
ln lð Þ
ln eð Þ

q
. If l ¼ 0, then r�u ¼ ru. Then,

lA xð Þ uð Þ and l
A xð Þ

uð Þ are the UMF and LMF of the IT2 FSs

of the vertical cuts of the secondary IT2MF of the IT3 FS.

3.2 Interval Type-3 Triangular Membership

Functions

In this case, we consider an interval type-3 triangular

membership function, elA x; uð Þ = ScaleTriScaleGauss

IT3MF, with triangular FOUðAÞ, characterized with

parameters ½a1; b1; c1� (UpperParameters) for the UMF, and

for the LMF, the parameters k (LowerScale), l (LowerLag)
to form theDOU ¼ ½l xð Þ; lðxÞ]. The vertical cuts A xð ÞðuÞ

characterize theFOU Að Þ, these are IT2 FSs with Gaussian

IT2 MFs, lA xð Þ uð Þ with parameters ½ru;mðxÞ� for the UMF

and LMF k (LowerScale), l (LowerLag). The IT3 MF

elA x; uð Þ ¼ ScaleTriScaleGaussIT3MF(x,{{[a1, b1, c1]},k,
½l1; l2�}) is described with the following equations:

lðxÞ ¼

0 x\a1
x� a1
b1 � a1

a1 � x� b1
c1 � x

c1 � b1
b1\x� c1

0 x[ c1

8
>>>><

>>>>:

ð11Þ

The LMF of the DOU, lðxÞ, is defined for the values a2
and c2 where these are function of the parameters (a1, b1,

c1) of the UMF of the DOU, lðxÞ, and the elements of the

lowerLag (l) vector. In other words,

a2 ¼ b1 � ðb1 � a1Þð1� l1Þ

Fig. 1 Representation of the functions of the IT3 FS
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c2 ¼ b1 þ ðc1 � b1Þð1� l2Þ

l xð Þ ¼

0 x\a2
x� a2
b1 � a2

a2 � x� b1
c2 � x

c2 � b1
b1\x� c2

0 x[ c2

8
>>>><

>>>>:

ð12Þ

The function lðxÞ is multiplied by the k parameter to

form the LMF of the DOU, lðxÞ, described as

l xð Þ ¼ klðxÞ. Then, u xð Þ and u xð Þ are the upper and lower

limits of the DOU. The range, d uð Þ; and radius, ru of the

FOU are as follows:

d uð Þ ¼ u xð Þ � u xð Þ

ru ¼
d uð Þ
2

ffiffiffi
3

p þ e

where e is a machine epsilon number.

The core, mðxÞ, of the IT3 MF el x; uð Þ, is defined by the

equations:

m xð Þ ¼

0 x\a
x� a

b1 � a
a� x� b1

c� x

c� b1
b1\x� c

0 x[ c

:

8
>>>>>>><

>>>>>>>:

ð13Þ

where a ¼ ða1 þ a2Þ=2 and c ¼ ðc1 þ c2Þ=2. Then, the

vertical cuts with IT2 MFs, lA xð Þ uð Þ ¼ ½l
A xð Þ

uð Þ; lA xð Þ uð Þ�,

are described with the following equations:

lA xð Þ uð Þ ¼ exp � 1

2

u� mðxÞ
ru


 �2
" #

ð14Þ

l
A xð Þ

uð Þ ¼ k � exp � 1

2

x� mðxÞ
r�u


 �2
" #

ð15Þ

where r�u ¼ ru
ffiffiffiffiffiffiffi
ln lð Þ
ln eð Þ

q
,l ¼ ðl1 þ l2Þ=2. If l ¼ 0,

thenr�u ¼ ru. Then, lA xð Þ uð Þ and l
A xð Þ

uð Þ are the UMF and

LMF of the IT2 FSs of the vertical cuts of the secondary

IT2MF of the IT3 FS.

3.3 Inference and Type-Reduction

In this Work, we consider Mamdani interval type-3 fuzzy

systems. The structure of the k-th generic IF–THEN Zadeh

fuzzy rule for a Mamdani fuzzy system is the following

format:

Rk
Z : IFx1isF

k
1 and . . . and xi is F

k
i and . . . and xn is Fkn

THEN y1 is Gk
1; . . .; yj is Gk

j ; . . .; ym is Gk
m

where i = 1,…,n (number of inputs), j = 1,…,m number of

outputs), and k = 1,…, r number of rules). To begin the

approach based on Zadeh rules and Mamdani reasoning,

we should represent the antecedents of the rules as a fuzzy

relation Ak, using the Cartesian product with Interval type-

3 fuzzy sets (IT3 FS), Fki , and the implication with the

consequent of the j-the output, Gk
j ; then, the fuzzy relation

of the rule Rk
j can be expressed as

Ak ¼ Fk1 � . . .� Fkn ð16Þ

Rk
j ¼ Ak ! Gk

j ð17Þ

If Rk
j is described as a membership function of the rules,

lRk
j
x; yj
� �

, then is expressed as

lRk
j
x; yj
� �

¼ lAk!Gk
j
ðx; yjÞ ð18Þ

As a consequence, when Mamdani implication is used,

Ak ! Gk
j , with multiple antecedents Ak, and consequents

Gk
j , these are connected by the meet (u) operator, then

lAk!Gk
j
x; yj
� �

¼ lFk1�...�Fkn!Gk
j
x; yj
� �

¼ lFk1�...�Fkn
xð ÞulGk

j
ðyjÞ

lAk!Gk
j
x; yj
� �

¼ lFk1 x1ð Þu. . .ulFkn xnð ÞulGk
j
yj
� �

¼ un
i¼1lFki xið Þ

h i
ulGk

j
yj
� �

The n-dimensional input is given by the fuzzy relation

AX
0 , with MF expressed as

AX
0 xð Þ ¼ lX1

x1jx
0

1

� �
u. . .ulXn

xnjx
0

n

� �
¼ un

i¼1lXi
xijx

0

i

� �

Each fuzzy relation of Rk
j determines a fuzzy set of the

consequent of the rule Bk
j ¼ AX

0 	 Rk
j in Y such that

lBk
j
yjjx

0
� �

¼ lA
X
0 	Rk

Z
yjjx

0
� �

¼ sup
e

x2X

AX
0 xð ÞulAk!Gk

j
ðx; yjÞ

h i
; y 2 Y ð19Þ

This equation is an input–output relation between the

IT3 FS that activates the inference of one rule and the IT3

FS of the output. The composition (	) is a highly non-linear
mapping from the input vector x

0
to an IT3 FS lBk

j
yjjx

0� �

(y 2 YÞ as output vector. The reasoning is a fuzzy inference
mechanism that can be interpreted as a system that maps an

IT3 FS into an IT3 FS by using the composition.

The results of the rules are combined by using fuzzy

union (as an aggregation operation), in other words, we use
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the join (t) operator to calculate the aggregation of the

values lBk
j
yjjx

0� �
.

Bj ¼ B1
j [ . . . [ Bk

j [ . . . [ Br
j ¼

[r

k¼1
Bk

j

lBj
yjjx

0
� �

¼ lB1
j
yjjx

0
� �

t. . .tlBk
j
yjjx

0
� �

t. . .tlBr
j
yjjx

0
� �

lBj
yjjx

0
� �

¼ tr
k¼1lBk

j
yjjx

0
� �

lBj
yjjx

0
� �

¼ tr
k¼1

eU
k
x

0
� �

tlGk
j
yj
� �h i

Finally, the type-reduction is expressed as follows:

byj ¼ typeReduction yj; lBj
yjjx

0
� �� �

ð20Þ

and this provides the final result.

3.4 Time Complexity of Computing an Interval

Type-3 Fuzzy System

Type-reduction algorithms for Mamdani T2 FLSs and

IT3FLSs, based on the a-planes theory, are very efficient

for centroid type-reduction. Assume that the primary

variable x is sampled into N points and the secondary

variable u(x) into M points. Then, there are MN IT2FSs

included in an IT3 FS. For each embedded IT2FS, 2N

multiplications are needed, 4(N-1) additions, 2 divisions to

calculate the centroid, and 2(N-1) comparisons are needed

for the t norm operation. As a consequence, the complexity

of the method with exhaustive calculation is approximately

O(8MNxN). However, for the proposed strategy (with a
planes), we need N samples for x and L samples for an a
plane. Then, for each a plane, O(4 9 4NK) calculations

are needed, where K (number of iterations to approximate a

switch point) usually is less than 10. As a consequence, the

proposed strategy requires O(16NKL) calculations to

determine the centroid (reduced fuzzy set) of an IT3FLS,

which significantly reduces the complexity from expo-

nential to linear. Table 2 shows a comparison of the

computational complexity of the fuzzy models.

In summary, the general computational complexity

based on the a-planes theory for centroid type-reduction in

Mamdani IT3FLSs is approximately of O(NKL).

4 Interval Type-3 Fuzzy-Fractal Approach

In this section, the interval type-3 fuzzy-fractal approach is

presented. Let z1, z2, …, zn be any time series. Assuming

the time series clustering process provides n clusters C1,

C2, …, Cn, then a fuzzy system is expressed as indicated

below. The complexity of the clusters can be approximated

by their corresponding dimensions, linear is dim1 and non-

linear dim2, with values x1, x2, …, xn, and y1, y2,…, yn,

respectively. The dimensions provide us with different

approximations and we opted to make the forecast with

both for improving accuracy. Then, the fuzzy system for

forecasting is expressed as follows.

If dim1 is x1 and dim2 is y1 then prediction is C1.

If dim1 is x2 and dim2 is y2 then prediction is C2

� � � � � � � � � ð21Þ

If dim1 is xn and dim2 is yn then prediction is Cn.

For applying this scheme, the MFs for the fractal dimen-

sions (FDs) should be defined. The fuzzy rules of Eq. (4)

are expressed in Mamdani form, and we can use the cen-

troid as defuzzification method. For this reason, we

developed a system with an architecture of four inputs and

one output. The four linguistic input variables of the fuzzy

system are as follows: the linear FD of confirmed (LFDC),

non-linear FD of confirmed (NLFDC), linear FD of death

(LFDD), and non-linear FD of death (NLFDD) cases,

respectively. Low and high are considered for representing

the meaning of low and high values of the dimensions. The

output linguistic variable is representing the Forecast

Increment (DP) with three values representing the knowl-

edge that countries have a forecast increment with three

levels: High, Medium and Low. The process is summarized

in complete form in Fig. 2, where it is observed that two

time series are going into the fractal module, which esti-

mates the values of the dimensions. Now the dimensions

are the inputs to the prediction model and DP is the output,

which is calculated with Eq. 20 as the type-reduction of the

system output. Finally, DP is aggregated to the previous

value, which takes place in the Adder Module, to calculate

the next predicted value, which is represented as Pn?1. The

Table 2 Comparison of Computational Complexity

Mamdani fuzzy model Computational complexity

Type-1 O(N) [37]

Interval Type-2 O(NK) [38]

General Type-2 O(8NKL) [37, 39]

Interval Type-3 O(16NKL)

Fig. 2 Interval type-3 fuzzy-fractal forecasting method
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method shown in Fig. 2 can also be used with type-2 or

type-1 fuzzy logic in the same way, just changing the type-

3 fuzzy block in this figure for a block with type-2 or type-

1. The interval type-3 fuzzy-fractal method is depicted in

Fig. 3.

We have to say that although the method has been

devised and applied for COVID-19 prediction, it could also

be applied to the prediction of other complex time series

prediction in the following way: if the problem is of mul-

tiple time series, then we will need several modules similar

to the one represented in Fig. 3 and then calculate incre-

ments of P for each time series.

The architecture of the fuzzy system in Fig. 3 could be

changed to type-2 or type-1 and the same inputs and output

can be used. In addition, the same fuzzy rules can be used,

as the knowledge of experts is the same. So, in general, the

fuzzy system has the same form, independently of the type

of fuzzy logic being used, the difference resides in the

complexity of the MFs. Delta P is the output of the fuzzy

system, so the calculation of the value is done by per-

forming the fuzzy inference process with the rules based on

the input values, and finally, performing type-reduction

with Eq. 20. The algorithm of the complete method is

presented in Fig. 4.

The rules were constructed with expert knowledge and

previous data of the problem. The classification rules are

depicted in Fig. 5. The output MFs are shown in Fig. 6,

which are triangular and trapezoidal MFs. In Fig. 7, the

Fig. 3 Architecture of the type-3 fuzzy-fractal model for COVID-19 prediction

Algorithm: IT3FS+FD Prediction Method 

Given a time series: z1, z2, …zn 

Objective: Prediction of zn+1, zn+2, …zn+m for a time window of size m 

Define Parameters: Triangular MFs: a1, b1, c1, λ, ℓ. Gaussian MFs: σ, m, λ, ℓ. 

For i= 1:m 

Calculate FDs with Equation 2 

Calculate ΔPs with Equation 20  

Calculate Pn+i = Pn+i-1 + ΔP 

Calculate Prediction Error: en+i = zn+i - Pn+i 

End For 

Fig. 4 Algorithm for the proposed method
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input MFs are presented. In this part, two Gaussian MFs are

utilized for the low and high linguistic terms, respectively.

In Table 3, we show the specific parameters of the MFs,

which were found by trial and error, and could be opti-

mized with metaheuristics for achieving even better results.

Basically, Table 3 shows the centers and standard devia-

tions of the Gaussian MFs.

In Table 4, we show the specific parameters of the

output MFs, which were found by trial and error, for the

triangular MFs.

In Fig. 8, we illustrate a 3-D representation of the

interval type-3 membership function in which we can

clearly distinguish the upper and lower MFs, and also the

footprint of uncertainty (FOU).

In Fig. 9, we show a different illustration of the interval

type-3 membership function.

In Fig. 10, the surface representing the model, showing

the relation from the inputs to the output of the model, can

be found.

1. If (LFDC is low) and (NLFDC is high) and (LFDD is low) and (NLFDD is low) then (IncP is High)(1) 

2. If (LFDC is low) and (NLFDC is low) and (LFDD is low) and (NLFDD is low) then (IncP is Medium)(1) 

3. If (LFDC is low) and (NLFDC is low) and (LFDD is low) and (NLFDD is high) then (IncP is Low)(1) 

4. If (LFDC is high) and (NLFDC is low) and (LFDD is low) and (NLFDD is high) then (IncP is High)(1)  

5. If (LFDC is high) and (NLFDC is high) and (LFDD is high) and (NLFDD is high) then (IncP is High)(1) 

6. If (LFDC is low) and (NLFDC is high) and (LFDD is low) and (NLFDD is high) then (IncP is High)(1) 

Fig. 5 Fuzzy rules encapsulating the knowledge of forecasting in the interval type-3 fuzzy model

Fig. 6 Output MFs of the type-3 fuzzy forecasting Fig. 7 Input MFs for the LFDD input variable

Table 3 Parameter values for the Gaussian MFs used in the input

linguistic values (center and standard deviation)

Variable Membership function r m

Input 1 Low 0.0227 1.15

Input 1 High 0.024 1.25

Input 2 Low 0.0764 1.49

Input 2 High 0.0489 1.79

Input 3 Low 0.0211 1.16

Input 3 High 0.0137 1.24

Input 4 Low 0.0837 1.51

Input 4 High 0.0659 1.88

Table 4 Parameter values for the triangular MFs used in the output

linguistic values

Variable Membership Function a b c

Output Low 0.0 0.0 0.05

Output Medium 0.0307 0.0497 0.0659

Output High 0.0450 0.1 0.1
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5 Simulation Results

The method utilizing the interval type-3 fuzzy-fractal

approach was applied to encapsulate the knowledge

required for times series forecasting. This was also mixed

with the fractal models that estimate the complexity level,

in accordance to the COVID-19 cases.

The experiments were performed with a dataset used

from the Humanitarian Data Exchange (HDX) [8], which

includes COVID-19 data from countries, where cases have

occurred from January 22, 2020 to April 15, 2020. The

reason for using this time interval is to compare results

with previous works using type-1 fuzzy logic [40]. The

datasets that were consulted are as follows: time_series_-

covid19_confirmed_global,

Fig. 8 IT3 FS with IT3MF el x; uð Þ; where lðx; uÞ is the lower membership function (LMF) and lðx; uÞ is the upper membership function (UMF)

Fig. 9 Membership function of the IT3FS illustrating the volume that is formed in space

Fig. 10 Surface representing the non-linear interval type-3 fuzzy

model
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time_series_covid19_recovered_global, and time_series_-

covid19_deaths_global. Selected data consist of COVID-

19 confirmed, recovered, and deaths cases, respectively. In

Fig. 11, we can find a plot for Belgium, illustrating the

cases for the 22-01-2020 to 15-04-2020 period. In Fig. 12,

an analogous plot for Italy is presented.

In Fig. 13, we can find a plot of Belgium COVID-19

deaths, illustrating the data for 22-01-2020 to 15-04-2020

period. In Fig. 14, we illustrate in an analogous way the

trend for Italy.

Based on the series, we can estimate the fractal values

and these are reported in a systematic fashion in Table 5.

The increments (DP) produced by the fuzzy system are

highlighted in bold in the table.

In the next Figures, we illustrate forecasts with the interval

type-3 fuzzy-fractal approach for some countries in the study.

Fig. 11 Graph of confirmed cases for Belgium

Fig. 12 Graph of Italy confirmed cases
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The forecasts are made for 10 days ahead based on the data

utilized for building the model. Figure 15 shows the predic-

tion for Belgium, where it is noted that predicted values are

quite close to the real ones. Figure 16 reports in an analogous

fashion the prediction ofGermany confirmed cases. Figure 17

reports the confirmed cases prediction for the USA. Finally, in

Figs. 18 and 19, we show the prediction for Spain and Italy,

respectively. In almost all cases, the forecasts are near to real

values and this validates that the interval type-3 fuzzy-fractal

method performs satisfactorily in forecasting.

In Table 6, we report the forecasts for the 9 countries

utilizing the interval type-3 fuzzy-fractal model and are

illustrated in Fig. 19. The data utilized to build the model

are the COVID-19 cases from January 22 to April 15 of

2020. The forecasted values utilizing the method are for

10 days from April 16 to 25 of 2020.

In Table 7, a comparison of prediction errors for the 9

countries is presented, where it can be noticed that the

errors are low and average accuracy is of 99%, as almost

all errors are lower than 1% (with relative errors).

Fig. 13 Graph of death cases for Belgium

0 10 20 30 40 50 60 70 80 90
0
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1
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x 104

Fig. 14 Graph of Italy death cases

Table 5 Fractal dimensions and

increments provided by the

interval type-3 fuzzy system

Metric Dimensions

Belgium France Germany Iran Italy Spain Turkey UK US

LFDC 1.1860 1.1900 1.2020 1.1910 1.1940 1.1860 1.2040 1.2070 1.2040

NLFDC 1.7480 1.7440 1.6150 1.7210 1.7220 1.7750 1.6080 1.624 1.5930

LFDD 1.2080 1.1900 1.1780 1.2040 1.1890 1.1810 1.2020 1.2120 1.1870

NLFDD 1.6040 1.7880 1.7100 1.6230 1.6140 1.7890 1.5960 1.6010 1.804

AP 0.0692 0.0762 0.0498 0.0719 0.0739 0.0774 0.0501 0.0504 0.0676

Fig. 15 Prediction of Belgium COVID-19 confirmed cases

Fig. 16 Prediction of COVID-19 for Germany
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Analyzing the table, it can be highlighted that type-3 fuzzy

achieves better errors in 5 countries (Belgium, Germany,

Iran, Spain, and UK), however has type-1 fuzzy logic is

better in 3 countries (France, Italy, and Turkey). For the

case of USA, the forecasting errors are practically the

same. We have to say that these results were obtained with

a manual design of the FOU, which means that by trial and

error, the k and ‘ parameter values of the type-3 MFs were

obtained (shown in Tables 3 and 4). For this reason, there is

not a favorable result for the type-3 approach in all the

countries.

We decided to optimize the k and ‘ parameters of the

type-3 MFs to verify if better results could be obtained. If

the k and ‘ parameters are changed, then we can find the

optimal FOU for the uncertainty in a particular problem.

As an initial test, we decided to use the Firefly Algorithm,

as in [41], because it is relatively easy to use.

We have made a comparison with the prediction of type-

3 with respect to type-2 fuzzy logic, using the same fuzzy

rules, to show the advantage of the proposal. Now we

considered in this experiment 12 countries to be able to

compare with the work in [41]. In Table 8, we summarize a

comparison for the prediction errors of COVID-19 for the

same mentioned period of time for 12 countries in which

type-3 is better than type-2 in 11 of the 12 countries, which

shows that optimization helped to improve the results.

We have also previously compared the same approach

using type-2 with respect to type-1 fuzzy logic in a pre-

vious paper, showing that type-2 was better [41], so in this

way, we can conclude that type-3 fuzzy outperforms both

type-2 and type-1 in COVID-19 prediction.

Based on these results, we can say that the interval type-

3 fuzzy-fractal approach has potential in producing better

forecasts in complex time series prediction.

6 Conclusions

In this article, an interval type-3 fuzzy-fractal forecasting

approach based on measuring the complexity level of time

series was outlined. The approach amalgamates the strong

points of fractal theory and interval type-3 fuzzy logic. The

fractal dimension is utilized to estimate the complexity

level in the existing data. Interval type-3 MFs were utilized

to model the levels of uncertainty existing in forecasting,

which can be considered as a decision-making process

under uncertainty. The hybrid approach consists of an

interval type-3 model, that utilizes as inputs the dimensions

and the output is the COVID-19 forecast. The most rele-

vant contribution is the approach consisting of an appro-

priate combination of the dimension and interval type-3

fuzzy to enable a good prediction of COVID-19 cases.

Fig. 17 Prediction of United States COVID-19 confirmed cases

Fig. 18 Prediction of COVID-19 for Spain

Fig. 19 Forecast of Italy COVID-19 cases
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Publicly available data sets of 9 countries were utilized to

construct the interval type-3 fuzzy model with time series

data. The interval type-3 fuzzy-fractal model was validated

by predicting the data in 10-day window. In addition, the

approach was also compared with the previous work [40]

for the same period of time showing that forecasting errors

are lower with the utilization of interval type-3 fuzzy logic.

Future work may consist on applying the proposed

approach on similar problems [42–44], as well as

generalizing the use of fuzzy logic to general type-3 and

consider granularity concepts [45–49], which we envision

will enable a better representation of the uncertainty in the

prediction process.

Author contributions OC did propose the model, also validated the

model and simulation results. JRC developed the software for the

interval type-3 fuzzy systems and performed its validation. PM put

Table 6 Prediction of confirmed cases for 10 days utilizing the interval type-3 proposed approach (April 16 to 25 of 2020)

Belgium France Germany Iran Italy Spain Turkey UK USA

65074.2188 205362.1549 204968.496 283638.977 245394.157 269621.845 223404.811 297228.432 4036660.23

65524.5324 206085.8511 205663.339 285882.561 245756.85 271708.718 224412.143 298082.31 4104314.65

65977.9622 206812.0977 206360.538 288143.892 246120.078 273811.743 225424.017 298938.641 4173102.97

66434.5297 207540.9035 207060.1 290423.11 246483.844 275931.046 226440.454 299797.431 4243044.17

66894.2566 208272.2776 207762.034 292720.357 246848.147 278066.752 227461.474 300658.69 4314157.59

67357.1649 209006.2291 208466.347 295035.775 247212.989 280218.989 228487.098 301522.422 4386462.87

67823.2765 209742.7671 209173.048 297369.508 247578.369 282387.884 229517.346 302388.635 4459979.99

68292.6136 210481.9006 209882.144 299721.701 247944.29 284573.566 230552.24 303257.338 4534729.26

68765.1984 211223.6388 210593.645 302092.5 248310.752 286776.166 231591.8 304,128.535 4610731.32

69241.0536 211967.9909 211307.557 304482.051 248677.755 288995.813 232636.047 305002.236 4688007.18

Table 7 Summary of the comparison of forecasting errors for the 9 countries between the proposed approach with interval type-3 fuzzy logic

and type-1 fuzzy of previous work [40]

Belgium France Germany Iran Italy Spain Turkey UK USA

Type-1 0.006137 0.003819 0.003000 0.027414 0.000460 0.002775 0.000291 0.018377 0.014385

Type-3 0.002319 0.004989 0.001433 0.007399 0.003412 0.001642 0.003308 0.003488 0.014622

Table 8 Comparison of

predictions for type-3 versus

type-2 in 12 countries based on

Absolute Errors

Country Comparison

Type-2 [41] Type-3 (This paper)

Best Avg Worst Best Avg Worst

Brazil 0.0000030 0.0197 0.1420 0.0000018 0.0246 0.1060

China 0.0018400 0.0698 0.2960 0.0005200 0.0297 0.1610

France 0.0000060 0.0206 0.1940 0.0000041 0.0071 0.0606

Germany 0.0008020 0.0855 0.4110 0.0000409 0.0302 0.1010

India 0.0000001 0.0088 0.1540 3.05 9 10–7 0.0030 0.0205

Iran 0.0000112 0.0178 0.0982 7.56 9 10–7 0.0143 0.1050

Italy 7.57 9 10–6 4.54 9 10–2 2.92 9 10–1 1.24 9 10–5 1.76 9 10–2 8.32 9 10–2

Mexico 2.86 9 10–5 9.14 9 10–3 1.81 9 10–1 1.48 9 10–5 1.49 9 10–3 3.00 9 10–2

Poland 8.31 9 10–5 2.05 9 10–2 4.28 9 10–1 5.71 9 10–5 6.08 9 10–3 5.85 9 10–2

Spain 5.82 9 10–4 9.17 9 10–4 1.54 9 10–3 5.56 9 10–4 8.37 9 10–4 1.54 9 10–3

United Kingdom 2.80 9 10–5 7.07 9 10–3 1.62 9 10–1 2.69 9 10–4 1.26 9 10–2 9.98 9 10–2

USA 3.15 9 10–6 8.02 9 10–3 6.04 9 10–2 6.26 9 10–7 5.32 9 10–3 9.49 9 10–2

123

194 International Journal of Fuzzy Systems, Vol. 25, No. 1, February 2023



forward the new method and design of experiments that were per-

formed, and contributed to the simulations for the application.
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