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Abstract The core contribution of this study is to develop
a novel generalized idea of q-rung orthopair probabilis-
tic hesitant fuzzy rough set (q-ROPHFRS) which is hybrid
structure of the q-rung orthopair fuzzy set, probabilistic hes-
itant fuzzy set, and rough set. The q-ROPHFRS covers the
positive and negative membership grades in the form of
probabilistic hesitant fuzzy rough information to address the
uncertainties in real-world decision-making problems. This
paper proposes a list of novel q-rung orthopair probabilistic
hesitant fuzzy rough averaging/geometric aggregation oper-
ators to handle the uncertainty effectively and reliably to
aggregate the uncertain information under q-ROPHFRSs.
Several interesting elementary properties have been investi-
gated. Furthermore, a novel multi-attribute decision-making
approach based on the proposed aggregation information is
presented. Finally, a numerical application regarding select-
ing a medical oxygen supplier to the hospital is presented to
illustrate the consistency of the developed decision-making
technique. The comparison of the proposed technique with
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1 Introduction

Multi-criteria decision making (MCDM) is a systematic
approach to solve real-world problems that leads to the
best solution after a comprehensive review of the available
choices. The MCDM approaches have grown in popularity,
and they are commonly used in a broad range of fields,
including medical sciences, architecture, economics, and
many other branches of science and technology. TheMCDM
approach has recently become more challenging due to the
prevalence of complexity and ambiguity in collected infor-
mation, making it difficult for decision-makers to make
the right decisions. Conventional MCDM strategies were
rendered ineffective in the presence of such uncertain and
ambiguous results. Zadeh [1] explored a solution to such
problems by establishing the foundations of fuzzy set (FS)
theory, in which each element is characterized by a member-
ship degree ranging between 0 to 1. Atanassov [2] extended
the ideaofFS into intuitionistic fuzzy set (IFS) by introducing
a nonmembership degree (��(x)) to themembership degree
(ηF (x)) of FS, with the restriction that η�(x)+��(x) ≤ 1.

Yager [3] introduced the Pythagorean fuzzy (PF) set the-
ory, which relaxes the previously mentioned IFS condition to
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(
η�(x)

)2+(��(x)
)2 ≤ 1. The PF expressions are undoubt-

edly raising the interest of many researchers, especially in
terms of their application to decision making (DM). For
example, Huang et al. [4] described a PF MULTIMOORA
approach that utilizes a novel distance measure and a score
function. They used this approach to evaluate disk produc-
tions and energy projects. Akram et al. [5] investigated risk
assessment in failure modes and effects analysis (FMEA)
using a hybrid TOPSIS and ELECTRE I framework with
PF information. Zhang and Xu [6] established the TOPSIS
approach in a Pythagorean fuzzy environment and employed
it to assess the efficiency of private airline services. For more
detail decision making study, we refer to [7–14].

In our universe, hesitancy is a natural phenomenon.
Identifying one of the better alternatives with the same char-
acteristics in real life is difficult. Due to the uncertainty and
hesitancy of the results, experts are having difficulty in mak-
ing decisions. To tackle hesitancy, Torra and Narukawa [15]
developed the concept of hesitant fuzzy set (HFS), which
allows an element to be a set of multiple possible values. The
HFS can be used to solve a variety of DM problems. Khan et
al. [16] introduced the concept of PythagoreanHFS (PyHFS).
They established an evaluation method and identified oper-
ators for data aggregation. Xu and Zhou [17] identified a
novel concept of probabilistic HF sets (PHFSs). Yager [18]
established a new idea called “q-rung orthopair fuzzy sets”
(q-ROFSs), in which the qth power of membership and non-
membership is restricted to 1, i.e.,

(
η�(x)

)q + (��(x)
)q ≤

1, and demonstrated that the q-ROFS are more general than
IFS and PFS. The q-ROFSs provide a broader range of
fuzzy information and are more versatile and appropriate
approach to deal with unpredictable situations. Yager and
Alajlan [19] explored the fundamental properties of these
q-ROFSs and discussed that how they can be used in infor-
mation representation. Subsequently, the authors in [20] put
forward the notation of q-rung orthopair HF set (q-ROHFS)
and discussed the operational laws which exist for any two
q-ROHFSs. Wang et al. [21] investigated the Heronian mean
operators in MADM in a q-ROHFS framework. They also
proposed the Hamacher norm based aggregation operators
(AOp) under dual hesitant q-ROFSs and discussed their use-
fulness in DM problems. Wang et al., [22] established the
AOp based on Muirhead mean under dual hesitant q-rung
orthopair fuzzy information. Yang [23]measured the entropy
for HF information using the Hausdorff metric and the struc-
ture of HF TOPSIS. The TOPSIS is a useful information
analysis tool developed by Hwang and Yoon [24]. It investi-
gates the appropriate approach in terms of relative closeness
based on their distances from the positive ideal solution (PIS)
and the negative ideal solution (NIS), ensuring that the short-
est distance from PIS and the farthest distance from NIS are
satisfied. This analysis method effectively eliminates deci-

sion information uncertainty while maintaining the validity
and precision of decision making by simply measuring the
distance between PIS and NIS and ranking them accord-
ingly [25]. TOPSIS method is straightforward and simple to
understand and analyze as compared to ELECTRE method,
VIKOR method, and other conventional methods, so it has
been extensively studied and implemented by researchers.

In recent years, several authors have presented TOP-
SIS in various fuzzy information, (see [26,27] for more
information). Boran et al. [28] used TOPSIS to identify
the best supplier by using IF information. Chen et al. [29]
suggested the TOPSIS technique based on interval-valued
fuzzy information and addressed the experimental results.
Li [30] proposed a TOPSIS-based nonlinear-programming
technique for MADM with interval-valued IFs in order to
deal with uncertainty in real-world decision making prob-
lems. The TOPSIS model for DM problems in an interval-
valued IF information was introduced by Park et al. [31].
The Dombi-based aggregation operators for PF information
were formulated in [9]. Barukab et al. [32] proposed the
extended fuzzy TOPSISmethod for spherical fuzzy informa-
tion, which is based on the entropy measure. However, there
are many research findings in applying the fuzzy TOPSIS
method to solve MADM problems, the decision information
used by these approaches is too old and restricted to manage
increasingly challenging decision environments.

Pawlak [33] is pioneer who studied the dominant concept
of rough sets theory. The classical set theorywhich dealswith
inconsistent and imprecise information is extended by rough
set theory. In recent decades, research on the rough set has
progressed significantly, both in terms of theoretical imple-
mentations and theory itself. In recent decades, research has
demonstrated TOPSIS technique in a number of rough sets
information. Khan et al. [34] implemented a rough set strat-
egy and the TOPSIS method for selection of sites for food
distribution. The concept of rough sets has been extended by
several researchers around the globe in different directions.
Using the fuzzy relation rather than the crisp binary rela-
tion, Dubois et al. [35] initiated the notion of fuzzy rough
sets. The hybrid structure of IFSs and rough sets, intuition-
istic fuzzy rough (IFR) sets introduced by Cornelis et al.,
[36]. By utilizing IFR approximations, Zhou and Wu [37]
established a novel decision making technique under IFR
environment to address their constrictive and axiomatic anal-
ysis in detail. Zhan et al. [38] presented theDMmethodology
under intuitionistic fuzzy rough environment and explored
their applications in real word problems. Chinram et al. [39]
established the algebraic norm based AOPs based on EDAS
technique under IFR information and discussed their appli-
cations in MAGDM.

The q-rung orthopair probabilistic hesitant fuzzy rough
sets, a hybrid intelligent structure of rough sets, and q-
ROPHFS is an advanced classification strategy that has
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attracted researchers to address ambiguous and incomplete
data. From the analysis, it is concluded that in decision-
making, AOp play a significant role in aggregating the
collective data from different sources to a single value. In
accordance with the best available knowledge to date, the
development of AOp with the hybridization of q-ROPHFS
with a rough set is not observed in the q-ROF setting. As a
result, the current q-ROPHF rough structure is inspired, and
we define a list of algebraic aggregation operators depending
on rough data, such as q -rung orthopair probabilistic hesitant
fuzzy weighted averaging, order weighted averaging, hybrid
weighted averaging, weighted geometric, ordered weighted
geometric and hybrid weighted geometric aggregation oper-
ators, under the algebraic t-norm and t-conorm.

The rest of the manuscript is organized as follows: Sec-
tion 2 briefly retrospect some basic concepts of q-ROFSs,
HFSs and rough set theory.Anovel notionof q-rungorthopair
hesitant fuzzy sets, q-rung orthopair probabilistic hesitant
fuzzy sets and a list of algebraic q-rung orthopair prob-
abilistic hesitant fuzzy aggregation operators to aggregate
the uncertain information in decision-making are presented
in Section 3. Section 4 is devoted to a decision-making
methodology based on the developed aggregation operators
and presents the numerical illustration to find out the best
oxygen supplier to hospital. Section 5 presents the validity
and reliability test to check the supremacy of the devel-
oped methodology and establishes the q-ROHFR-TOPSIS
methodology to validate the proposed aggregation operators
based multi attribute decision making methodology. Sec-
tion 6 concludes the manuscript.

2 Fundamental Concepts

In this section, we sort out the elementary terminologies i.e.,
q-rung orthopair probabilistic hesitant fuzzy rough set (q-
ROPHFRS).

Definition 1 [39] Let £ be the universal set and∝∈ I FS(£×
£) be a IF relation. Then

(1) ∝ is reflexive ifμ∝(�, �) = 1 and ν∝(�, �) = 0,∀� ∈ £;
(2) ∝ is symmetric if ∀(�, a) ∈ £×£, μ∝(�, a) = μ∝(a, �)

and ν∝(�, a) = ν∝(a, �);
(3) ∝ is transitive if ∀(�, b) ∈ £ × £,

μ∝(�, b) =
∨

a∈£
[μ∝(�, a) ∧ μ∝(a, b)] ;

and

ν∝(�, b) =
∧

a∈£
[ν∝(�, a) ∧ ν∝(a, b)] .

Definition 2 [40] Let £ be the universal set then any subset
∝∈ q−ROPHFS(£×£) is said to be a q-rung probabilistic
hesitant fuzzy relation. The pair (£,∝) is called q-ROPHF
approximation space. If for any κ ⊆ q − ROPHFS(£),
then the upper and lower approximations of κ with respect to
q-ROPHF approximation space (£,∝) are two q-ROPHFSs,
which are denoted by ∝(κ) and ∝(κ) and defined as:

∝(κ) =
{〈

�, ηh∝(κ)
(�)/ðh∝(κ)

, �h∝(κ)
(�)/∂h∝(κ)

〉
|� ∈ £

}
;

∝(κ) =
{〈

�, ηh∝(κ)
(�)/ðh∝(κ)

, �h∝(κ)
(�)/∂h∝(κ)

〉
|� ∈ £

}
;

where

ηh∝(κ)
(�)/ðh�

=
∨

k∈£

[
ηh∝(�, k)

∨
ηhκ (k)

]
/
∨

k∈£[
ðh∝(�, c)

∨
ðhκ (k)

] ;
�h∝(κ)

(�) =
∧

k∈£

[
�h∝(�, k)

∧
�hκ (k)

]
/
∧

k∈£[
∂h∝(�, c)

∧
∂hκ (k)

] ;
ηh∝(κ)

(�) =
∧

k∈£

[
ηh∝(�, k)

∧
ηhκ (k)

]
/
∧

k∈£[
ðh∝(�, k)

∧
ðhκ (k)

] ;
�h∝(κ)

(�) =
∨

k∈£

[
�h∝(�, k)

∨
�hκ (k)

]
/
∨

k∈£[
∂h∝(�, c)

∨
∂hκ (k)

] ;

such that 0 ≤
(
max(ηh∝(κ)

(�))
)q +

(
min(�h∝(κ)

(�))
)q ≤

1 and 0 ≤
(
min(ηh∝(κ)

(�)
)q +

(
max(�h∝(κ)

(�))
)q ≤ 1.

As
(
∝(κ),∝(κ)

)
are q − ROPHFSs, so ∝(κ),∝(κ) :

q − ROPHFS(£) → q − RFS(£) are upper and lower
approximation operators. The pair

∝ (κ) =
(
∝(κ),∝(κ)

)

=
⎧
⎨

⎩

〈
�,
(
ηh∝(κ)

(�)/ðh∝(κ)
, �h∝(κ)

(�)/∂h∝(κ)

)
,

(
ηh∝(κ)

(�)/ðh∝(κ)
, �h∝(κ)

(�)/∂h∝(κ)

)
〉

|� ∈ κ

⎫
⎬

⎭

will be called q-rung orthopair hesitent fuzzy rough set.

For simplicity ∝ (κ) =
{〈

�,
(
ηh∝(κ)

(�)//ðh∝(κ)
, �h∝(κ)

(�)/∂h∝(κ)

)
,
(
ηh∝(κ)

(�)//ðh∝(κ)
, �h∝(κ)

(�)/∂h∝(κ)

)〉
|� ∈ κ

}

is represented as ∝ (κ) =
(
(ξ/ð, η/∂), (η/ð, �/∂)

)
and is

known as q-ROPHFRV.

Definition 3 Let ∝ (κ1) = (∝(κ1),∝(κ1)) and ∝ (κ2) =
(∝(κ2),∝(κ2)) be two q-ROPHFRSs. Then

(1) ∝ (κ1)∪ ∝ (κ2) = {(∝(κ1) ∪ ∝(κ2)), (∝(κ1) ∪ ∝(κ2))}
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(2) ∝ (κ1)∩ ∝ (κ2) = {(∝(κ1)∩∝(κ2)), (∝(κ1)∩∝(κ2))}.

Definition 4 The score function for q-ROPHFRV ∝ (κ) =
(∝(κ),∝(κ)) = ((ξ/ð, η/∂), (η/ð, �/∂)) is given as:

	(∝ (κ)) = 1

4

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

2 + 1
MF

∑

μhi ∈ηh∝(κ)
,ði∈ðh∝(κ)

{
μhi × ði

}
+

1
NF

∑

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

{
μhi × ðhi

}
−

1
MF

∑

νhi ∈�h∝(κ)
,∂ i∈∂h∝(κ)

(νhi × ∂hi )−

1
MF

∑

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(νhi × ∂hi )

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

,

The accuracy function for q-ROPHFRV ∝ (κ) = (∝(κ),

∝(κ)) = ((ξ/ð, η/∂), (η/ð, �/∂)) is given as:

AC ∝ (κ) = 1

4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
MF

∑

μhi ∈ηh∝(κ)
,ði∈ðh∝(κ)

(μhi × ði )+

1
MF

∑

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(μhi × ðhi )+

1
MF

∑

νhi ∈�h∝(κ)
,∂ i∈∂h∝(κ)

(νhi × ∂hi )+

1
MF

∑

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(νhi × ∂hi )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where MF and NF represent the number of elements in ηhg
and �hg respectively.

Definition 5 Suppose ∝ (κ1) = (∝(κ1),∝(κ1)) and ∝
(κ2) = (∝(κ2),∝(κ2)) are two q-ROPHFRVs. Then

(1) If 	(∝ (κ1)) > 	(∝ (κ2)), then ∝ (κ1) >∝ (κ2),

(2) If 	(∝ (κ1)) ≺ 	(∝ (κ2)), then ∝ (κ1) ≺∝ (κ2),

(3) If 	(∝ (κ1)) = 	(∝ (κ2)), then

(a) If AC ∝ (κ1) > AC ∝ (κ2) then ∝ (κ1) >∝ (κ2),

(b) If AC ∝ (κ1) ≺ AC ∝ (κ2) then ∝ (κ1) ≺∝ (κ2),

(c) If AC ∝ (κ1) = AC ∝ (κ2) then ∝ (κ1) =∝ (κ2).

3 q-Rung Orthopair Probabilistic Hesitant Fuzzy
Rough Aggregation Operators

Herein,we initiate a new idea of q-ROPHF rough aggregation
operators by embedding the notions of rough sets and q-

ROPHF aggregation operators to get aggregation concepts
of q-ROPHFRWA, q-ROPHFROWA and q-ROPHFRHWA
operators. Some fundamental properties of these notions are
discussed.

3.1 q-Rung Orthopair Probabilistic Hesitant Fuzzy
Rough Weighted Averaging Operator

Definition 6 Consider the collection∝ (κi ) = (∝(κi ),∝(κi ))

(i = 1, 2, 3, 4, ..., n) of q-ROPHFRVs with weight vec-
tor w = (w1, w2, ..., wn)

T such that ⊕n
i=1wi = 1 and

0 ≤ wi ≤ 1 and probabilistic terms ðhi and ∂i such that
⊕n

i=1ðhi = 1 and ⊕n
i=1∂i = 1. The q-ROPHFRWA operator

is determined as

q − ROPHFRW A (∝ (κ1),∝ (κ2), ...,∝ (κn))

=
(
⊕n

i=1wi∝(κi ),⊕n
i=1wi∝(κi )

)
.

Theorem 1 Let∝ (κi ) = (∝(κi ),∝(κi )) (i = 1, 2, 3, 4, ...,
n) be the collection of q-ROPHFRVs with weight vector
w = (w1, w2, ..., wn)

T . Then the q-ROPHFRWA operator
is defined as;

q − ROPHFRW A (∝ (κ1), ∝ (κ2), ..., ∝ (κn))

=
(
⊕n

i=1wi∝(κi ), ⊕n
i=1wi∝(κi )

)

=

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

⎛

⎜⎜⎜
⎜⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi∈ðh∝(κ)

(
q

√(
1 − n⊗

i=1

(
1 −

(
μhi

)q)wi
)

/
n⊗

i=1
ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
n⊗

i=1

(
νhi

)wi

/
n⊗

i=1
∂hi

)

⎞

⎟⎟⎟
⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
q

√(
1 − n⊗

i=1

(
1 − (

μhi

)q )wi

)
/

n⊗
i=1

ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
n⊗

i=1

(
νhi
)wi

/
n⊗

i=1
∂hi

)

⎞

⎟⎟⎟
⎟⎟⎟
⎠

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

Proof Utilizing mathematical induction to establish the
proof. Using the operational law, it follows that

∝ (κ1)⊕ ∝ (κ2) =
[
∝(κ1) ⊕ ∝(κ2),∝(κ1) ⊕ ∝(κ2)

]

and

γ ∝ (κ1) =
(
γ∝(κ1), γ∝(κ1)

)

If n = 2, then
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q − ROPHFRW A (∝ (κ1), ∝ (κ2)) =
(
⊕2

i=1wi∝(κi ), ⊕2
i=1wi∝(κi )

)

=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

⎛

⎜⎜
⎜⎜⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
q

√(
1 − 2⊗

i=1

(
1 −

(
μhi

)q)wi
)

/
2⊗

i=1
ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈ðh∝(κ)

(
2⊗

i=1

(
νhi

)wi

/
2⊗

i=1
∂hi

)

⎞

⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
q

√(
1 − 2⊗

i=1

(
1 − (

μhi

)q )wi

)
/

2⊗
i=1

ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
2⊗

i=1

(
νhi
)wi

/
2⊗

i=1
∂hi

)

⎞

⎟⎟⎟
⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

Hence the result is true for n = 2. Let it is true for n = k,
that is,

q − ROPHFRW A (∝ (κ1), ∝ (κ2), ... ∝ (κk ))

=
(
⊕k

i=1wi∝(κi ), ⊕k
i=1wi∝(κi )

)

=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
q

√(
1 − k⊗

i=1

(
1 −

(
μhi

)q)wi
)

/
k⊗

i=1
ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
k⊗

i=1

(
νhi

)wi

/
k⊗

i=1
∂hi

)

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
q

√(
1 − k⊗

i=1

(
1 − (

μhi

)q )wi

)
/

k⊗
i=1

ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
k⊗

i=1

(
νhi
)wi

/
k⊗

i=1
∂hi

)

⎞

⎟⎟⎟⎟⎟
⎟
⎠

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

Now, we have to show that it is true for n = k + 1, we
have

q − ROPHFRW A (∝ (κ1), ∝ (κ2), ... ∝ (κk+1))

=
( (⊕k

i=1wi∝ (κi ) ⊕ wk+1∝(κk+1)
)
,(

⊕k
i=1wi∝ (κi ) ⊕ wk+1∝(κk+1)

)
)

=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
q

√(
1 − k+1⊗

i=1

(
1 −

(
μhi

)q)wi
)

/
k+1⊗
i=1

ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
k+1⊗
i=1

(
νhi

)wi

/
k+1⊗
i=1

∂hi

)

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
q

√(
1 − k+1⊗

i=1

(
1 − (

μhi

)q )wi

)
/
k+1⊗
i=1

ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
k+1⊗
i=1

(
νhi
)wi

/
k+1⊗
i=1

∂hi

)

⎞

⎟⎟⎟⎟⎟
⎟
⎠

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Thus the required result is true for n = k + 1. Hence, the
result is true for all n ≥ 1.

From the above analysis∝(κ) and∝(κ) are q-ROPHFRVs.
So,⊕k

i=1wi∝ (κi ) and⊕k
i=1wi∝ (κi ) are also q-ROPHFRVs.

Therefore, q-ROPHFRWA (∝ (κ1),∝ (κ2), ... ∝ (κn)) is a
q-ROPHFRVunder q-ROPHFapproximation space (£,∝).��

Definition 7 Consider the collection∝ (κi )=(∝(κi ),∝(κi ))

(i = 1, 2, 3, 4, ..., n) of q-ROPHFRVs with weight vector
w = (w1, w2, ..., wn)

T such that ⊕n
i=1wi = 1 and 0 ≤

wi ≤ 1. Also a probabilistic terms ðhi and ∂hi such that

⊕n
i=1ðhi = 1 and ⊕n

i=1∂hi = 1 with the property that 0 ≤
ðhi , ∂hi ≤ 1. The q-ROHFROWA operator is determined as:

q − ROHFROW A (∝ (κ1), ∝ (κ2), ..., ∝ (κn))

=
(
⊕n

i=1wi∝(κi ), ⊕n
i=1wi∝�i (κi )

)
.

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

⎛

⎜⎜
⎜⎜⎜
⎝

⋃

μhi ∈ηh∝(κ)
,ðhi

∈ðh∝(κ)

(
q

√(
1 − k+1⊗

i=1

(
1 −

(
μhi

)q)wi
)

/
k+1⊗
i=1

ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
k+1⊗
i=1

(
νhi

)wi

/
k+1⊗
i=1

∂hi

)

⎞

⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜
⎝

⋃

μhi ∈�h∝(κ)
,ðhi ∈∂h∝(κ)

(
q

√(
1 − k+1⊗

i=1

(
1 − (

μhi

)q )wi

)
/
k+1⊗
i=1

ðhi

)

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

(
k+1⊗
i=1

(
νhi
)wi

/
k+1⊗
i=1

∂hi

)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

Theorem 2 Let∝ (κi ) = (∝(κi ),∝(κi )) (i = 1, 2, 3, ..., n)

be the collection of q-ROPHFRVs with weights vector w =
(w1, w2, ..., wn)

T . Then q-ROHFROWA operator is defined
as

q − ROHFROW A (∝ (κ1), ∝ (κ2), ...,∝ (κn))

=
(
⊕n

i=1wi∝(κi ), ⊕n
i=1wi∝�i (κi )

)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

⎛

⎜⎜⎜⎜⎜⎜
⎝

⋃

μh�i
∈ηh∝(κ)

,ðh�i
∈ðh∝(κ)

(
q

√(
1 − n⊗

i=1

(
1 −

(
μh

�i

)q)wi )
/

n⊗
i=1

ðh�i

)

,

⋃

νh�i
∈�h∝(κ)

,∂h�i
∈∂h∝(κ)

n⊗
i=1

(
νh�i

)wi

/
n⊗

i=1
∂h�i

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎝

⋃

μh�i
∈�h∝(κ)

,ðh�i
∈ðh∝(κ)

(
q

√(
1 − n⊗

i=1

(
1 −

(
μh

�i

)q)wi
)

/
n⊗

i=1
ðh�i

)

,

⋃

νh�i
∈�h∝(κ)

,∂h�i
∈∂h∝(κ)

n⊗
i=1

(
νh�i

)wi

/
n⊗

i=1
∂h�i

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where ∝� (κi ) = (∝(κi ),∝�i (κi )) depicts the superior
value of permutation from the collection of q-ROPHFRVs.

Proof The proof is similar to the proof of Theorem 1. ��

3.2 q-Rung Orthopair Probabilistic Hesitant Fuzzy
Rough Geometric Aggregation Operator

In this section,we discuss q-ROPHFRgeometric aggregation
operator by employing the idea of rough sets into q-ROPHF
geometric operators. The important characteristics of the
developed operators are illustrated.

Definition 8 Let∝ (κi ) = (∝(κi ),∝(κi )) (i = 1, 2, 3, 4, ...,
n) be the collection of q-ROPHFRVswithweight vectorw =
(w1, w2, ..., wn)

T such that ⊕n
i=1wi = 1 and 0 ≤ wi ≤ 1

and probabilistic terms ðhi and ∂i such that⊕n
i=1ðhi = 1 and

⊕n
i=1∂i = 1. Then q-ROPHFRWGA operator is determined

as:

q − ROPHFRWG (∝ (κ1),∝ (κ2), ...,∝ (κn))

=
(
⊕n

i=1

(
∝(κi )

)wi ,⊕n
i=1

(
∝(κi )

)wi
)

.
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Based on the aforementioned definition the aggregated
result for q-ROPHFRWGA operator is presented in the fol-
lowing theorem.

Theorem 3 Let∝ (κi ) = (∝(κi ),∝(κi )) (i = 1, 2, 3, ..., n)

be the collection of q-ROPHFRVs with weight vector w =
(w1, w2, ..., wn)

T such that ⊕n
i=1wi = 1 and 0 ≤ wi ≤ 1.

Then q-ROPHFRWG operator is described as:

q − ROPHFRWG (∝ (κ1),∝ (κ2), ...,∝ (κn))

=
(
⊕n

i=1

(∝(κi )
)wi ,⊕n

i=1

(
∝(κi )

)wi
)

=

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⋃

μhi ∈ηh∝(κ)
,ðhi ∈ðh∝(κ)

(
n⊗

i=1

(
μhi

)wi
/

n⊗
i=1

ðhi

)

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

q

√
1 − n⊗

i=1

(
1 −

(
νhi

)q)wi
/

n⊗
i=1

∂hi

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⋃

μhi ∈�h∝(κ)
,ðhi ∈ðh∝(κ)

n⊗
i=1

(
μhi

)wi
/

n⊗
i=1

ðhi

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

q

√
1 − n⊗

i=1

(
1 − (

νh i

)q )wi
/

n⊗
i=1

∂hi

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎠

.

Proof The proof is similar to the proof of Theorem 1. ��
Definition 9 Let∝ (κi ) = (∝(κi ),∝(κi )) (i = 1, 2, 3, ..., n)

be the collection of q-ROPHFRVs with weight vector w =
(w1, w2, ..., wn)

T such that ⊕n
i=1wi = 1 and 0 ≤ wi ≤ 1

and probabilistic terms ðhi and ∂i such that⊕n
i=1ðhi = 1 and

⊕n
i=1∂i = 1.Then q-ROPHFROWGoperator is described as:

q − ROPHFROWG (∝ (κ1),∝ (κ2), ...,∝ (κn))

=
(
⊕n

i=1

(
∝�(κi )

)wi ,⊕n
i=1

(
∝�(κi )

)wi
)

.

Theorem 4 Let∝ (κi ) = (∝(κi ),∝(κi )) (i = 1, 2, 3, ..., n)

be the collection of q-ROPHFRVs with weight vector’ w =
(w1, w2, ..., wn)

T such that ⊕n
i=1wi = 1 and 0 ≤ wi ≤ 1

and probabilistic termsðhi and ∂i such that⊕n
i=1ðhi = 1 and

⊕n
i=1∂i = 1. Then q-ROPHFROWG operator is a mapping

defined as:

q − ROPHFROWG (∝ (κ1),∝ (κ2), ..., ∝ (κn))

=
(
⊕n

i=1

(∝�(κi )
)wi ,⊕n

i=1

(
∝�(κi )

)wi
)

=

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⋃

μh�i
∈ηh∝(κ)

,ðh�i
∈ðh∝(κ)

n⊗
i=1

(
μh�i

)wi
/

n⊗
i=1

ðh�i
,

⋃

νh�i
∈�h∝(κ)

,∂h�i
∈∂h∝(κ)

q

√
1 − n⊗

i=1

(
1 −

(
νh�i

)q)wi
/

n⊗
i=1

∂h�i

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⋃

μh�i
∈�h∝(κ)

,ðh�i
∈ðh∝(κ)

n⊗
i=1

(
μh�i

)wi

/
n⊗

i=1
ðh�i

,

⋃

νhi ∈�h∝(κ)
,∂hi ∈∂h∝(κ)

q

√
1 − n⊗

i=1

(
1 −

(
νh�i

)q)wi
/

n⊗
i=1

∂h�i

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

,

where ∝� (κi ) = (∝(κi ),∝�i (κi )) depicts the superior
value of permutation from the collection of q-ROPHFRVs.

Proof The proof is similar to the proof of Theorem 1. ��
All the proposed aggregation operators satisfy the follow-

ing properties, which are as follows:

Theorem 5 Consider the collection∝ (κi ) = (∝(κi ),∝(κi ))

(i = 1, 2, 3, 4, ..., n) of q-ROPHFRVs with weight vector
w = (w1, w2, ..., wn)

T such that ⊕n
i=1wi = 1 and 0 ≤

wi ≤ 1. Also a probabilistic terms ðhi and ∂i such that
⊕n

i=1ðhi = 1 and ⊕n
i=1∂hi = 1 with the property that 0 ≤

ðhi , ∂hi ≤ 1. Then q-ROPHFRW/G operator satisfy the fol-
lowing properties:

(1) Idempotency: If∝ (κi ) = F(κ) for
(
i = 1, 2, 3, 4, ..., n

)
,

where F(κ) =
(
F(κ),F(κ)

)
=

(
(bh(x)/ðh(x),

dh(x)/∂h(x)), (bh(x)/ðh(x), dh(x)/∂h(x))
)
, then

q−ROPHFRW A/G (∝ (κ1),∝ (κ2), ...,∝ (κn)) = F(κ).

(2)Boundedness:Let (∝ (κ))− =
(
min
i

∝ (κi ) ,max
i

∝(κi )

)

and (∝ (κ))+ =
(
max
i

∝ (κi ) ,min
i

∝(κi )

)
. Then

(∝ (κ))− ≤ q − ROPHFRW A/G
(

∝ (κ1),∝ (κ2), ...,

∝ (κn)
)

≤ (∝ (κ))+ .

(3) Monotonicity: Suppose F(κ) = (
F(κi ),F(κi )

)
(i =

i, 2, ..., n) is another collection of q-ROPHFRVs such that
F(κi ) ≤ ∝ (κi ) and F(κi ) ≤ ∝(κi ). Then

q − ROPHFRW A/G (F(κ1),F(κ2), ...,F(κn))

≤ q − ROPHFRW A/G (∝ (κ1),∝ (κ2), ...,∝ (κn)) .

(4) Shiftinvariance: Consider another q-ROPHFRV F(κ) =
(
F(κ),F(κ)

) =
(
(bh(x)/ðh(x), dh(x)/∂h(x)), (bh(x)/ðh(x),

dh(x)/∂h(x))
)
. Then

q − ROPHFRW A/G
(

∝ (κ1) ⊕ F(κ),∝ (κ2) ⊕ F(κ)

, ...,∝ (κn) ⊕ F(κ)
)

= q

−ROPHFRW A/G
(

∝ (κ1),∝ (κ2), ...,

∝ (κn)
)

⊕ F(κ).

(5) Homogeneity: For any real number γ > 0;

q − ROPHFRW A/G (γ ∝ (κ1), γ ∝ (κ2), ..., γ ∝ (κn))

= γ · q − ROPHFRW A/G (∝ (κ1),∝ (κ2), ...,∝ (κn)) .
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(6) Commutativity: Suppose ∝′
(κi ) =

(
∝ (κi ) ,∝′

(κi )
)

and ∝ (κi ) = (∝(κi ),∝(κi )), (i = 1, 2, 3, 4, ..., n) is a
collection of q-ROPHFRVs. Then

q − ROPHFRW A/G (∝ (κ1),∝ (κ2), ...,∝ (κn))

= q − ROPHFRW A/G
(
∝′

(κ1),∝
′
(κ2), ...,∝

′
(κn)

)
.

Proof The proof is straightforward and similar to the proof
of Theorem 1. ��

4 Multi-attribute Decision Making Methodology

Here, we develope an algorithm for addressing uncertainty
in MAGDM under q-ROHFR information. Consider a DM
problem with a set {�1, �2, ..., �n} of n alternatives and a
set of n attributes {c1, c2, ...., cn} with (w1, w2, ..., wn)

T the
weights, that is, wi ∈ [0, 1], ⊕n

i=1wi = 1. Also a prob-
abilistic terms ðhi and ∂hi such that ⊕n

i=1ðhi = 1 and
⊕n

i=1∂hi = 1 with the property that 0 ≤ ðhi , ∂hi ≤ 1. To
test the reliability of kth alternative �i under the the attribute

ci , let
{
D̊1, D̊2, ..., D̊ĵ

}
be a set of decision makers (DMs)

and (ρ1, ρ2, ..., ρn)
T be DMs weights such that ρi ∈ [0, 1],

⊕n
i=1ρi = 1. The expert evalution matrix is described as:

M =
[(

∝(κ
ĵ
i j ),∝(κ

ĵ
i j )
)]

m×n

such that 0 ≤
(
max(ηh∝(κ)

(�))
)q +

(
min(�h∝(κ)

(�))
)q ≤ 1

and 0 ≤
(
min(ηh∝(κ)

(�)
)q+

(
max(�h∝(κ)

(�))
)q ≤ 1 are the

q-ROPHF rough values. The main steps for MAGDM are as
follows:
Step 1 Construct the experts evaluation matrix as

(E)ĵ =

⎡

⎢
⎢⎢
⎢
⎢⎢⎢
⎢
⎢
⎣

(
∝(κ

ĵ

11), ∝(κ
ĵ

11)
) (

∝(κ
ĵ

12), ∝(κ
ĵ

12)
)

· · ·
(
∝(κ

ĵ

1 j ),∝(κ
ĵ

1 j )
)

(
∝(κ

ĵ

21), ∝(κ
ĵ

21)
) (

∝(κ
ĵ

22), ∝(κ
ĵ

22)
)

· · ·
(
∝(κ

ĵ

2 j ),∝(κ
ĵ

2 j )
)

(
∝(κ

ĵ

31), ∝(κ
ĵ

31)
) (

∝(κ
ĵ

32), ∝(κ
ĵ

32)
)

· · ·
(
∝(κ

ĵ

3 j ),∝(κ
ĵ

3 j )
)

.

.

.
.
.
.

. . .
.
.
.(

∝(κ
ĵ

i1), ∝(κ
ĵ

i1)
) (

∝(κ
ĵ

i2), ∝(κ
ĵ

i2)
)

· · ·
(
∝(κ

ĵ

i j ),∝(κ
ĵ

i j )
)

⎤

⎥
⎥⎥
⎥
⎥⎥⎥
⎥
⎥
⎦

where ĵ shows the number of expert.
Step 2 Evaluate the normalized experts matices (N )ĵ , as

(N )ĵ =
⎧
⎨

⎩

∝ (κi j ) =
(
∝
(
κi j
)
, ∝
(
κi j
))

if For benefit
(
∝ (κi j )

)c =
((

∝
(
κi j
))c

,
(
∝
(
κi j
))c)

if For cost

Step 3 Compute the collected q-rung orthopair hesitant
fuzzy rough information of decision makers using the q-
ROPHFRWA aggregation operators.

Step 4 Evaluate the aggregated q-ROPHFRVs for each
considered alternative with respect to the given list of
criteria/attributes by utilizing the proposed aggregation infor-
mation.
Step 5 Find the ranking of alternatives based on score func-
tion.
Step 6 Rank all the alternative scores in descending order.
The alternative having larger value will be superior/best.

4.1 Numerical Example

To validate our established operators, we consider a numeri-
cal MCGDM example of selecting the best medical oxygen
supplier (Fig. 1).

Case Study (Medical Oxygen Supplier)
In the ongoing battle against Coronavirus, oxygen ther-

apy is an effective treatment choice for patients exhibiting
virus symptoms. Nowadays, having access to oxygen is a
matter of life and death. The world can and must do more to
improve access to medical oxygen. COVID-19 was declared
a pandemic by the World Health Organization (WHO) a
year ago. There is currently no effective antiviral treatment
for COVID-19. However, the public health sector has since
made substantial strides, such as the successful advancement
of COVID-19 testing, and vaccines, which is a collec-
tive achievement that should be appreciated. Additionally,
COVID-19 vaccine doses have been distributed to more than
50 low- and middle-income countries (LMICs) and terri-
tories so far, with intentions for a larger distribution in the
future. Despite these advancements, too many societies con-
tinue to suffer one critical component: proper oxygen access.
Oxygen is an important treatment for COVID-19 patients
who are unable to breathe, but oxygen availability remains
a challenge in low- and middle-income countries due to a
bundle of interconnected issues. During this pandemic situa-
tion, access to medical oxygen could be the matter of life and
death. Oxygen therapy can save millions of lives. Approxi-
mately 15% of all COVID-19 patients need oxygen support.
Every day, an estimated half a million people in LMICs need
1 million cylinders of oxygen. However, health-care services
are unable to control the supply. On a regular basis, countries
around the world including India, Brazil, Jordan, Nigeria,
Pakistan, South Africa, Zimbabwe, and others report oxygen
shortages. So far, oxygen should be identified as a critical util-
ity, comparable to electricity or water. The global community
has an opportunity to introduce structural solutions that will
save lives now and increase long-term oxygen access. It will
necessitate a comprehensive set of alternatives, ranging from
resolving market inefficiencies that impact supply short-
ages to creating supportive policy environments and offering
advanced training for health workers. Recognizing the cen-
tral importance of oxygen as a treatment for COVID-19,
the World Health Organization declared that oxygen therapy
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Fig. 1 Algorithmic steps

will be added to the therapeutics component of its Access
to COVID-19 Tools (ACT) accelerator. Along with this step,
WHO established the COVID-19 Oxygen Emergency Task-
force, which brings together key players, including path, to
assess need, increase funding, promote increased supply, and
raise public awareness.

The supply of oxygen has been a major issue and the
shortage of oxygen has been a significant factor to increase
exponentially in COVID-19 deaths in numerous hospitals.
To overwhelmed on the aforementioned challenge to tackle
an acute shortage of medical oxygen, supplier evaluation and
selection is oneof themost important components of an effec-
tive supply. Themain objective of this research are to identify
the criteria for selecting propermedical oxygen suppliers and
to demonstrate strategies for choosing the best medical oxy-
gen supplier.

Suppose a hospital wants to purchase a significant quan-
tity of medical oxygen. They invite a panel of experts to
analyze a number of suppliers. Let {�1, �2, �3, �4} be the
set of supplier and {c1, c2, c3, c4} be the selection criteria
defined by the supplier evaluation team established in the
hospital’s purchasing department be Product Volume (c1),
Delivery Time ( c2), Supply Variety (c3), and Geographical
Location (c4). To determine the best supplier of medical oxy-

gen based on the list of criteria c1, c2, c3, and c4, the hospital’s
purchasingdepartment invites a groupof industry profession-
als to examine the four evaluation criteria. Because of the
uncertainty, the DMs’ selection information is presented as
q- ROPHFR information. The weight vector for criteria is
w = (0.13, 0.27, 0.29, 0.31)T . To solve theMCDMproblem
using the developedmethodology for evaluating alternatives,
the following calculations are performed:

Step 1 The informations of professional expert is given in
Table 1(a)-1(d) in the form of q-ROPHFRS.

Step 2 The expert information are benefit type. So in
this case, we do not need to normalize the q-
ROPHFRVs.

Step 3 In this problem, only one expert is consider for
collection of uncertain information. So, we do not
need to find the collected information.

Step 4 Aggregation information of the alternative under
the given list of attributes are evaluted using pro-
posed aggregation operators are as follows:

Case-1: Aggregation information using weighted averag-
ing operator is shown in Table 2.

Case-2: Aggregation informationusingq-ROHFRWGoper-
ator presented in Table 3.
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Table 1 Expert information
c1 c2

(a)

�1

⎛

⎜⎜
⎝

(
(0.1/0.3, 0.2/0.5, 0.5/0.2) ,

(0.3/0.6, 0.4/0.4)

)
,

(
(0.8/1) ,

(0.4/0.5, 0.6/0.5)

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

(
(0.5/0.4, 0.7/0.6) ,

(0.5/0.7, 0.6/0.3)

)
,

(
(0.5/0.3, 0.4/0.7) ,

(0.7/0.3, 0.9/0.7)

)

⎞

⎟⎟
⎠

�2

⎛

⎜
⎜
⎝

(
(0.6/0.7, 0.6/0.3) ,

(0.7/0.5, 0.9/0.5)

)
,

(
(0.3/0.2, 0.5/0.8) ,

(0.6/1)

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
(0.2/0.2, 0.4/0.1, 0.5/0.7) ,

(0.5/1.0)

)
,

(
(0.6/0.3, 0.7/0.7) ,

(0.3/1)

)

⎞

⎟
⎟
⎠

(b)

�3

⎛

⎜⎜
⎝

(
(0.4/0.3, 0.5/0.6, 0.6/0.1) ,

(0.6/0.1, 0.7/0.9)

)
,

(
(0.9/1) ,

(0.5/1)

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

(
(0.1/1.0) ,

(0.5/0.5, 0.6/0.5)

)
,

(
(0.4/0.3, 0.6/0.4, 0.7/0.3) ,

(0.5/0.2, 0.7/0.8)

)

⎞

⎟⎟
⎠

�4

⎛

⎜
⎜
⎝

(
(0.4/1) ,

(0.5/0.5, 0.6/0.5)

)
,

(
(0.3/0.7, 0.4/0.3) ,

(0.8/1)

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
(0.4/0.4, 0.5/0.6) ,

(0.4/1)

)
,

(
(0.1/0.6, 0.2/0.4) ,

(0.2/0.2, 0.3/0.8)

)

⎞

⎟
⎟
⎠

c3 c4

(c)

�1

⎛

⎜
⎜
⎝

(
(0.4/1) ,

(0.3/0.2, 0.7/0.8)

)
,

(
(0.5/1) ,

(0.9/1)

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
(0.6/1) ,

(0.7/1)

)
,

(
(0.6/0.4, 0.8/0.2, 0.9/0.4) ,

(0.7/0.7, 0.9/0.3)

)

⎞

⎟
⎟
⎠

�2

⎛

⎜⎜
⎝

(
(0.8/1) ,

(0.4/0.6, 0.5/0.2, 0.7/0.2)

)
,

(
(0.2/0.6, 0.5/0.4) ,

(0.4/0.3, 0.5/0.7)

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

(
(0.8/1) ,

(0.5/1)

)
,

(
(0.7/1.0) ,

(0.1/0.5, 0.3/0.3, 0.4/0.2)

)

⎞

⎟⎟
⎠

(d)

�3

⎛

⎜
⎜
⎝

(
(0.3/1) ,

(0.7/0.6, 0.8/0.4)

)
,

(
(0.7/0.6, 0.8/0.4) ,

(0.1/0.7, 0.4/0.2, 0.7/0.1)

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
(0.3/0.2, 0.6/0.8) ,

(0.8/1)

)
,

(
(0.7/1) ,

(0.3/1)

)

⎞

⎟
⎟
⎠

�4

⎛

⎜⎜
⎝

(
(0.3/1) ,

(0.7/0.7, 0.8/0.3)

)
,

(
(0.7/1) ,

(0.6/1)

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

(
(0.6/0.2, 0.7/0.4, 0.9/0.4) ,

(0.3/0.3, 0.4/0.7)

)
,

(
(0.2/0.2, 0.7/0.8) ,

(0.7/0.4, 0.8/0.2, 0.9/0.4)

)

⎞

⎟⎟
⎠

Step 5 Score values of all alternatives under developed
aggregation operators presented in Table 4.

Step 6 Rank the alternatives �k(k = 1, 2, 3, 4) is enclosed
in Table 5:

From the above computational process, we concluded that
alternative �2 is the finest alternative among others, and there-
fore it is highly recommended.

5 Comparison Analysis

5.1 TOPSIS Methodology Based on q-Rung Orthopair
Probabilistic Hesitant Fuzzy Rough information

Hwang and Yoon (1981) proposed the TOPSIS technique for
Ideal Solution (TOPSIS),which allows policymakers to com-
pare the Ideal positive solution and Ideal negative solution.
TOPSIS is based on the assumption that the best alternative
would be the closest to the ideal and the furthest away from
the perfect negative solution [6,41]. The main parts of the
method are as follows:
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Table 2 Aggregated
information using
q-ROPHFRWA

(a)

�1

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

⎛

⎝
{0.4968/0.12, 0.5728/0.18, 0.4979/0.2, 0.5735/0.3, 0.5163/0.08, 0.5866/0.12} ,{

0.4478/0.084, 0.5725/0.336, 0.4704/0.036, 0.6014/0.144,
0.4649/0.056, 0.5944/0.224, 0.4883/0.024, 0.6243/0.096

}
⎞

⎠ ,

⎛

⎝
{0.6001/0.12, 0.6863/0.06, 0.7583/0.12, 0.5865/0.28, 0.6774/0.14, 0.7523/0.28} ,{

0.7001/0.105, 0.7568/0.045, 0.7492/0.245, 0.8100/0.105,
0.7380/0.105, 0.7978/0.045, 0.7898/0.245, 0.8538/0.105

}
⎞

⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

�2

⎛

⎜
⎜⎜
⎜
⎝

( {0.7188/0.14, 0.7251/0.07, 0.7321/0.49, 0.7188/0.06, 0.7251/0.03, 0.7321/0.21} ,

{0.4896/0.03, 0.5224/0.1, 0.5759/0.1, 0.5059/0.3, 0.5397/0.1, 0.5950/0.1}
)

,
⎛

⎝

{
0.5675/0.036, 0.5962/0.024, 0.6044/0.084, 0.6288/0.056,
0.5788/0.144, 0.6062/0.096, 0.6140/0.336, 0.6374/0.224

}
,

{0.2539/0.15, 0.3569/0.09, 0.3901/0.06, 0.2708/0.35, 0.3807/0.21, 0.4162/0.21}

⎞

⎠

⎞

⎟
⎟⎟
⎟
⎠

(b)

�3

⎛

⎜
⎜⎜
⎜
⎝

⎛

⎝
{0.2923/0.6, 0.4450/0.24, 0.3223/0.12, 0.4580/0.48, 0.3613/0.02, 0.4775/0.08} ,{

0.6530/0.03, 0.6788/0.02, 0.6860/0.03, 0.7130/0.02,
0.6662/0.27, 0.6925/0.18, 0.6998/0.27, 0.7275/0.18

}
⎞

⎠ ,

( {0.7086/0.18, 0.7423/0.12, 0.7280/0.24, 0.7586/0.18, 0.7456/0.12, 0.7735/0.12} ,

{0.2676/0.14, 0.4381/0.04, 0.4705/0.02, 0.2931/0.56, 0.4381/0.16, 0.5153/0.08}
)

⎞

⎟
⎟⎟
⎟
⎠

�4

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

⎛

⎝
{0.4703/0.08, 0.5334/0.16, 0.7083/0.16, 0.4935/0.12, 0.5508/0.24, 0.7160/0.24} ,{

0.4430/0.105, 0.4843/0.245, 0.4605/0.045, 0.5035/0.105,
0.4536/0.105, 0.4959/0.245, 0.4715/0.045, 0.5155/0.105

}
⎞

⎠ ,

⎛

⎝

{
0.4936/0.084, 0.6089/0.336, 0.4959/0.056, 0.6102/0.224,
0.4996/0.036, 0.6124/0.144, 0.5018/0.024, 0.6137/0.144

}
,

{0.4857/0.08, 0.5062/0.04, 0.5250/0.08, 0.5418/0.32, 0.5647/0.16, 0.5857/0.32}

⎞

⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

Let κ = {�1, �2, �3, ..., �m} be the set of alternatives and
C = {c1, c2, c3, ..., cn} be a set of criteria. The decision
matrix of the expert is presented as:

M =
[
∝(κ

ĵ
i j ),∝(κ

ĵ
i j )
]

m×n

where ∝(κi j ) =
〈
�, ηh∝(κ)

(�)/ðh∝(κ)
, �h∝(κ)

(�)/∂h∝(κ)

〉
and

∝(κ) =
〈
�, ηh∝(κ)

(�)/ðh∝(κ)
, �h∝(κ)

(�)/∂h∝(κ)

〉
such that

0 ≤
(
max(ηh∝(κ)

(�))
)q +

(
min(�h∝(κ)

(�))
)q ≤ 1 and

0 ≤
(
min(ηh∝(κ)

(�)
)q +

(
max(�h∝(κ)

(�))
)q ≤ 1 are the

q-ROHF rough values. Also ðhi ∈ [0, 1], ⊕s
i=1ðhi = 1 and

∂i ∈ [0, 1], ⊕s
i=1∂i = 1 (s is a positive number represents

the number of elements contained in q-ROPHFRS).

Step 1 First, we collect information from decision makers
in the form of q-ROPHFRNs.

Step 2 Evaluate the normalized experts matrix (N )ĵ , as

(N )ĵ =
⎧
⎨

⎩

∝ (κi j ) =
(
∝
(
κi j
)
,∝
(
κi j
))

if For benefit
(
∝ (κi j )

)c =
((

∝
(
κi j
))c

,
(
∝
(
κi j
))c)

if For cost

Step 3 Based on the score value, we determine the posi-
tive ideal solution and the negative ideal solution.
Herein, the positive ideal solutions and negative
ideal solution are denoted as I+ = (

�+
1 ,�+

2 ,�+
3 ,

...,�+
n

)
and I− = (

�−
1 ,�−

2 ,�−
3 , ...,�−

n

)
respec-

tively. For positive ideal solution I+, it can be
computed by the formulla:

I+ = (
�+

1 ,�+
2 ,�+

3 , ...,�+
n

) =
(
max
i

score(�i1),

max
i

score�i2,max
i

score�i3, ...,max
i

score�in .
)

Likewise, the negative ideal solution calculated by
the formula as follows:

I− = (
�−

1 ,�−
2 ,�−

3 , ...,�−
n

) =
(
min
i

score�i1,

min
i

score�i2,min
i

score�i3, ...,min
i

score�in .
)

Afterward, find the geometric distance between all
the alternatives and positive ideal I+ as follows:

d(αi j , I
+)

= 1

8

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

⎛

⎜⎜
⎝

1
#h

∑#h
s=1

∣∣
∣
∣
(
μ
i j (s)

× ðεi j (s)

)2−
(
μ+
i

× ð
+
εi (s)

)2∣∣
∣
∣

+
∣
∣∣
∣
(
μi j (s) × ð

+
εi(s)

)2−
(
μ+
i(s) × ð

+
εi (s)

)2∣∣∣
∣

⎞

⎟⎟
⎠

+

⎛

⎜⎜
⎝

1
#g

∑#g
s=1

∣
∣∣
∣
(
νi j (s)× ∂εi j (s)

)2−
(
ν+
i(s)× ∂+

εi (s)

)2∣∣∣
∣

+
∣
∣
∣∣
(
νh i j × ∂

+
εi (s)

)2 −
(
νh

+
i

× ∂
+
εi (s)

)2∣∣
∣∣

⎞

⎟⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

,

where i = 1, 2, 3, ..., n, and j = 1, 2, 3, ...,m.

Analogously, the geometric distance between all the
alternatives and negative ideal I− as follows:
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Table 3 Aggregated
information using q
-ROPHFRWG

(a)

�1

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

⎛

⎝
{0.4023/0.12, 0.4406/0.18, 0.4402/0.2, 0.4821/0.3, 0.4959/0.08, 0.5431/0.12} ,{

0.5461/0.084, 0.6324/0.336, 0.5722/0.036, 0.6501/0.144,
0.5508/0.056, 0.6356/0.224, 0.5763/0.024, 0.6530/0.096

}
⎞

⎠ ,

⎛

⎝
{0.5624/0.12, 0.6149/0.06, 0.6377/0.12, 0.5295/0.28, 0.5789/0.14, 0.6004/0.28} ,{

0.7763/0.105, 0.8414/0.045, 0.8345/0.245, 0.8801/0.105,
0.7830/0.105, 0.8457/0.045, 0.8390/0.245, 0.8832/0.105

}
⎞

⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

�2

⎛

⎜
⎜⎜
⎜
⎝

( {0.5300/0.14, 0.6391/0.07, 0.6788/0.49, 0.5300/0.06, 0.6391/0.03, 0.6788/0.21} ,

{0.5197/0.03, 0.5395/0.1, 0.6075/0.1, 0.6161/0.3, 0.6288/0.1, 0.6758/0.1}
)

,
⎛

⎝

{
0.4182/0.036, 0.5455/0.024, 0.4360/0.084, 0.5687/0.056,
0.4469/0.144, 0.5830/0.096, 0.4659/0.336, 0.6077/0.224

}
,

{0.3845/0.15, 0.4011/0.09, 0.4230/0.06, 0.4219/0.35, 0.4355/0.21, 0.4540/0.21}

⎞

⎠

⎞

⎟
⎟⎟
⎟
⎠

(b)

�3

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝

{
0.2315/0.6, 0.2870/0.24, 0.2383/0.12,
0.2954/0.48, 0.2440/0.02, 0.3025/0.08

}
,

{
0.6963/0.03, 0.7321/0.02, 0.7094/0.03, 0.7430/0.02,
0.7065/0.27, 0.7406/0.18, 0.7189/0.27, 0.7510/0.18

}

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

{
0.6218/0.18, 0.6464/0.12, 0.6938/0.24,
0.7212/0.18, 0.7232/0.12, 0.7518/0.12

}
,

{
0.3921/0.14, 0.5272/0.04, 0.5516/0.02,
0.5069/0.56, 0.5272/0.16, 0.6125/0.08

}

⎞

⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

�4

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

⎛

⎝
{0.4173/0.08, 0.4377/0.16, 0.4732/0.16, 0.4432/0.12, 0.4649/0.24, 0.5025/0.24}{

0.5343/0.105, 0.5459/0.245, 0.6060/0.045, 0.6143/0.105,
0.5480/0.105, 0.5589/0.245, 0.6159/0.045, 0.6238/0.105

}
,

⎞

⎠ ,

⎛

⎝

{
0.2514/0.084, 0.3708/0.336, 0.3032/0.056, 0.4471/0.224,
0.2610/0.036, 0.3849/0.144, 0.3147/0.024, 0.4641/0.144

}
,

{0.6353/0.08, 0.6853/0.04, 0.7576/0.08, 0.6385/0.32, 0.6878/0.16, 0.7593/0.32}

⎞

⎠

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

Table 4 Score values

Operators 	(�1) 	 (�2) 	 (�3) 	 (�4)

q-ROPHFRWA 0.5090 0.5184 0.5182 0.5062

q-ROPHFRWG 0.4979 0.5053 0.5009 0.4851

Table 5 Ranking of the alternatives

Operators Score Best Alternative

q-ROPHFRWA 	(�2) > 	 (�3) > 	 (�1) > 	 (�4) �2

q-ROPHFRWG 	(�2) > 	 (�3) > 	 (�1) > 	 (�4) �2

d(αi j , I
−)

= 1

8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝

1
#h

∑#h
s=1

∣∣∣∣
(
μ
i j (s)

× ðεi j (s)

)2−
(
μ−
i(s)

× ð
−
εi(s)

)2∣∣∣∣

+
∣∣∣∣
(
μi j (s) × ðεi j (s)

)2 −
(
μ−
i(s) × ð

−
εi(s)

)2∣∣∣∣

⎞

⎟⎟
⎠

+

⎛

⎜⎜
⎝

1
#g

∑#g
s=1

∣∣∣∣
(
νi j (s)× ∂εi j (s)

)2−
(
ν−
i(s)× ∂−

εi(s)

)2∣∣∣∣

+
∣∣∣∣
(
νh i j × ∂εi j (s)

)2 −
(
νh

−
i

× ∂
−
εi (s)

)2∣∣∣∣

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where i = 1, 2, 3, ....n, and j = 1, 2, 3, ....m.

Step 4 The relative closeness indices for all DMe of the
alternatives are calculated as follows:

Table 6 Score value of Table 1(a) -1(b)

c1 c2 c3 c4

�1 0.6142 0.4600 0.4225 0.4433

�2 0.3825 0.4196 0.6412 0.7317

�3 0.5538 0.4213 0.5567 0.4675

�4 0.3725 0.4400 0.5087 0.5254

RC(αi j ) = d(αi j , I+)

d(αi j , I−) + d(αi j , I+)

Step 5 The ranking orders of alternatives can be determined
and choose the most desirable alternative having
minimum distance.

5.2 Numerical Example

A numerical example relevant to “selection of oxygen sup-
plier” is given below to demonstrate the validity of our
approach:

Step 1 The decision maker information in the form of q-
ROPHFRNs is given in Table 1(a)-1(b).

Step 2 The given information is benefit type, therefore, no
need to normalize.
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Table 7 Ideal solutions
Criteria I+ I−

c1

⎛

⎜⎜
⎝

(
(0.1/0.3, 0.2/0.5, 0.5/0.2) ,

(0.3/0.6, 0.4/0.4)

)
,

(
(0.8/1) ,

(0.4/0.5, 0.6/0.5)

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

(
(0.4/1) ,

(0.5/0.5, 0.6/0.5)

)
,

(
(0.3/0.7, 0.4/0.3) ,

(0.8/1)

)

⎞

⎟⎟
⎠

c2

⎛

⎜
⎜
⎝

(
(0.5/0.4, 0.7/0.6) ,

(0.5/0.7, 0.6/0.3)

)
,

(
(0.5/0.3, 0.4/0.7) ,

(0.7/0.3, 0.9/0.7)

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
(0.2/0.2, 0.4/0.1, 0.5/0.7) ,

(0.5/1.0)

)
,

(
(0.6/0.3, 0.7/0.7) ,

(0.3/1)

)

⎞

⎟
⎟
⎠

c3

⎛

⎜⎜
⎝

(
(0.8/1) ,

(0.4/0.6, 0.5/0.2, 0.7/0.2)

)
,

(
(0.2/0.6, 0.5/0.4) ,

(0.4/0.3, 0.5/0.7)

)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

(
(0.4/1) ,

(0.3/0.2, 0.7/0.8)

)
,

(
(0.5/1) ,

(0.9/1)

)

⎞

⎟⎟
⎠

c4

⎛

⎜
⎜
⎝

(
(0.8/1) ,

(0.5/1)

)
,

(
(0.7/1.0) ,

(0.1/0.5, 0.3/0.3, 0.4/0.2)

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
(0.6/1) ,

(0.7/1)

)
,

(
(0.6/0.4, 0.8/0.2, 0.9/0.4) ,

(0.7/0.7, 0.9/0.3)

)

⎞

⎟
⎟
⎠

Step 3 Positive and negative ideal solution are computed in
Table 7, as follows

Compute the distance measure of positive ideal solution
(PIS) and negative ideal solution (NIS)

0.3799 0.2158 0.4174 0.4971

and

0.4038 0.4301 0.5054 0.2434

Step 4 The relative closeness indices for all DMe of the
alternatives are calculated as follows:

0.4848 0.3341 0.4523 0.6713

Step 5 From ranking of alternative it could be seen that �2
has theminimum distance. Hence �2 is the best alter-
native.

6 Conclusion

To provide greater freedom for decision makers in MAGDM
problems by qualitatively describing the evaluation values,
the concept of q-ROPHFRShas been developed under q-rung
orthopair fuzzy set, hesitant fuzzy set, and rough set environ-
ment. In comparison to classical fuzzy models, a q-ROPHFR
model has the capability to solve real world problems with
ambiguity, imprecision, and incompleteness. We introduced
the concept of q-ROPHFRWA and q-ROPHFRWG aggrega-
tion operators which is an effective and flexible operator to
address MCGDM problems with uncertainty. Moreover, an
example of supplier selection for medical oxygen to hospi-
tals is presented to demonstrate the validity and efficacy of

the technique. Comparison analysis has been conducted, in
the final ranking and optimal decision making of the medical
oxygen supplier by the proposed techniques with q-ROHFR
Topsis method and the superiorities have been illustrated.

It is observed that in terms of potential future works that
are good enough to justify, some essential topics still remain.
In the future, our research will be extended to: (1) q-rung
orthopair probabilistic hesitant fuzzy roughorderedweighted
averaging operator; (2) q-rung orthopair probabilistic hes-
itant fuzzy rough hybrid weighted averaging operator; (3)
q-rung orthopair probabilistic hesitant fuzzy rough ordered
weighted geometric operator; (4) q-rung orthopair prob-
abilistic hesitant fuzzy rough hybrid weighted geometric
operator.
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