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Abstract In this manuscript, model predictive control for

class of discrete fuzzy large-scale systems subjected to

bounded time-varying delay and disturbances is studied.

The considered method is Razumikhin for time-varying

delay large-scale systems, in which it includes a Lyapunov

function associated with the original non-augmented state

space of system dynamics in comparison with the Kra-

sovskii method. As a rule, the Razumikhin method has a

perfect potential to avoid the inherent complexity of the

Krasovskii method especially in the presence of large

delays and disturbances. The considered large-scale system

in this manuscript is decomposed into several subsystems,

each of which is represented by a fuzzy Takagi–Sugeno (T-

S) model and the interconnection between any two sub-

systems is considered. Because the main section of the

model predictive control is optimization, the hierarchical

scheme is performed for the optimization problem. Fur-

thermore, persistent disturbances are considered that robust

positive invariance and input-to-state stability under such

circumstances are studied. The linear matrix inequalities

(LMIs) method is performed for our computations. So the

closed-loop large-scale system is asymptotically stable.

Ultimately, by two examples, the effectiveness of the

proposed method is illustrated, and a comparison with

other papers is made by remarks.

Keywords Time-varying delay � Large-scale systems �
Model predictive control � Hierarchical optimization �
Input-to-state stability � Lyapunov-Razumikhin � Fuzzy

Takagi–Sugeno systems

1 Introduction

Large-scale systems have become interesting in control

engineering. Many systems become large in scope and

complex in scale since decades ago and coping with these

systems requires time and efforts since many problems are

appeared like existence of disturbances, nonlinear param-

eters and complex dynamic. Many algorithms have pro-

posed for large-scale systems since years ago [1, 2]. The

decentralized controller is an interesting approach that

scholars aimed to solve these problems [3]. In this

approach, the considered large-scale system is decomposed

into several subsystems and a controller is applied to each

subsystem separately, and the interconnections between

subsystems are considered. So the overall system is stabi-

lized by adopting this approach. In [4], a decentralized

fault-tolerant tracking control is applied to a large-scale

system with sensor and actuator faults that its problem is

decomposed into several problems. The decentralized

adaptive fuzzy controller is proposed for a class of uncer-

tain nonlinear large-scale systems considering random

sensor delays and random sensor nonlinearities in [5]. By

using a group of sensor blocks two new distributed data-
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driven optimal fault detection approaches are applied to a

large-scale system in [6].

As it was mentioned above, one of the important issues in

large-scale system is its complex dynamic. To design a

suitable controller and solve problems, it is significant to

have the exact model of the system. But it is almost impos-

sible when the system has many nonlinear parameters and

severe dynamic. In this case, scientists use some methods

like fuzzy logic or neural networks to identify the model of

the system [7, 8]. For instance, in [9], the neural network is

used to estimate the inverse dynamic of the da Vinci surgical

robot to enables estimation of the external environment

forces. In this paper, since the considered system is large-

scale, the fuzzy model of the systems is used instead of the

dynamic model. Nowadays, fuzzy systems with IF–THEN

rules have become popular and useful approach for systems

with large, complex, and nonlinear relations and several

researches have been done [10–13. Introduces a type of fuzzy

inference system well-known Takagi–Sugeno, fuzzy model,

and model complex nonlinear system to arbitrary degrees of

accuracy. On the other hand, another vital issue that is con-

sidered in this paper is time-varying delay that is unavoidable

problem. The time delay phenomena can be seen in many

real and industrial systems [14], and in many cases it causes

instability and might lead outputs to unexpected goal. Since

the time delay causes instability, attentions have been

attracted for many years. Totally, Lyapunov theory for sys-

tems with time-varying delay can be proposed into two

approaches, the Lyapunov–Krasovskii functional (LKF) and

Lyapunov-Razumikhin function (LRF) [15]. For discrete

time systems, the Krasovskii method makes use of an aug-

mentation of the state vector with all delayed states, which

yields the application of classical Lyapunov methods to an

augmented system without delay. In the Krasovskii method,

an augmentation of the state vector with all delayed states are

used, which yields the applications of classical Lyapunov

methods to an augmented system without delay. So the

computational burden in this method will be heavy, espe-

cially for large-scale systems [16]. On the contrast, the

Razumikhin method includes a Lyapunov function for the

original non-augmented system despite of the fact that it

might be a bit conservative. Thereby, Razumikhin method

has a better potential to avoid the complexity of the Kra-

sovskii method. Many studies have been done by adopting

Razumikhin method [17–19. In [16], the author proposed an

LMI-based model predictive control for fuzzy T-S system

with time-varying delay and used Razumikhin method for

the delay problem and the LMI-based method is proposed for

not interconnected system. In [20], a model predictive con-

trol strategy for nonlinear time-delay systems with unknown

time varying delay is considered instead of the traditional

constant delay. Nonlinear discrete time-delay systems are

represented by T–S fuzzy systems comprised of piecewise

linear delay difference equations in [21]. The stability of

delay coupled systems with hybrid switching diffusions

based on Razumikhin method is studied in [22] and it com-

bines Lyapunov method with graph theory for typical sys-

tems. To stabilize these systems that are involved time-

varying delay, many control systems have been applied like

adaptive, fuzzy, robust, or so. One of the most interesting

controller has been model predictive control.

Model predictive control (MPC) has attended popularity

as a reliable control approach. By properly using the system

model to predict the output response, MPC methods allow to

choose the optimal control action that minimizes a desired

cost function. In many applications, MPC has been recog-

nized as a viable alternative to many other classic schemes

based. For such applications, the advantages introduced by

MPC are the higher dynamic performance, the possibility of

performing a multivariable controller design, the inclusions

of constraints on input and output variables, and the possi-

bility of including nonlinearities in both the model and the

constraints. Although the need for an accurate model may

represent a drawback in some applications, it is remarked

how reliable model of systems are usually available for

control design [23, 24]. The gist of the model predictive

control is an optimal control sequence, which is computed by

minimizing a finite horizon cost function at each sampling

time. Studying on nonlinear robust model predictive control

for Takagi–Sugeno fuzzy systems can be seen in [25]. As

mentioned in [26, 27], invariant set theory can provide suf-

ficient conditions to make sure the recursive feasibility and

the closed-loop system stability. In [28] both online and off-

line robust fuzzy model predictive control with structured

uncertainties and persistent disturbances is studied. In [23]

robust fuzzy model predictive control with nonlinear local

models is introduced, in which, for both nonlinear and linear

states of system, separated controllers are designed. In [29],

an LMI-based MPC is proposed for a large-scale system with

disturbances and uncertainties. Obviously, it can be seen that

hierarchical-based optimization MPC for large-scale sys-

tems with time-varying delay, persistent disturbances, and

with respect to Lyapunov-Razumikhin function has not been

studied yet and several problems remain unsolved. In this

study, the considered controller is model predictive control.

Since the considered system is a large-scale, the hierarchical

scheme is applied to solve the optimization problem based on

decomposition and coordination concept [30]. On the other

hand, no research has been done regarding the MPC for fuzzy

large-scale systems with time-varying delay adopting the

Lyapunov-Razumikhin function. Therefore, the MPC is

applied to a large-scale system that its dynamic is modeled

by T-S fuzzy, and the Lyapunov-Razumikhin function is

considered for the time-varying delay problem. Besides, the

hierarchical scheme is assumed for the optimization problem

of the system.
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So the contribution of this paper can be summarized as:

• Proposing the fuzzy model predictive control for

discrete nonlinear large-scale system.

• Considering the time-varying delay and persistent

disturbances simultaneously.

• Applying hierarchical optimization to the considered

large-scale system.

• Studying Lyapunov-Razumikhin function.

• Analyzing the input-to-state stability.

• Using the fuzzy Takagi–Sugeno model of the large-

scale system.

• Inspiring the H1 performance to encounter the effec-

tiveness of disturbances.

The remainder of this paper is: in Section 2, some pre-

liminaries information about fuzzy model predictive con-

trol of Takagi–Sugeno large-scale systems with time-

varying delay and hierarchical optimization scheme are

introduced. In Section 3, robust positive invariance (RPI),

the computation of terminal constraint set for nonlinear

model-based fuzzy systems is provided. In Section 4, two

numerical examples are illustrated. Finally, the conclusion

is given in Section 5.

Notations: R;Rþ; Z; and Zþ depict sets of real numbers,

positive real numbers, integers, and positive integers,

respectively. Z ½m;n� is symbol of set of integers in the

interval m; n½ � for convenience. kxk depicts the norm of

vector xi 2 Rc: A real-valued scalar function o : Rþ ! Rþ
is an H-function o 2 Hð Þ, if it is continuous, rigidly

increasing and o 0ð Þ ¼ 0: So we can say, o 2 H1 if o 2 H
and lim

s!1
o sð Þ ¼ 1: A function b : Rþ � Rþ ! Rþ is an

HL-function b 2 HLð Þ; if for each fixed s[ 0; bð:; sÞ is a

H-function, and for each fixed r[ 0, bðr; :Þ is rigidly

decreasing and b r; sð Þ ! 0 as s ! 1.

2 Preliminaries

2.1 System Description

The following discrete-time nonlinear large-scale system is

assumed:

x k þ 1ð Þ 2 f xi kð Þ; xid kð Þ; ui kð Þ; di kð Þð Þ k 2 Zþ ð1Þ

where xi kð Þ; xid kð Þ 2 X; ui kð Þ 2 U and di kð Þ 2 D; with

X � Rn;U � Rm; and D � Rc, are system current and

delayed states, inputs, and disturbances, respectively. xid kð Þ
is defined as follows:

xid kð Þ ¼ xid k þ dðkÞð Þ; d kð Þ 2 Z �h;�1½ �: ð2Þ

where dðkÞ denotes the number of delays, h denotes the

upper bound of delay, and the minimal delay is set as 1.

Now, for time-delay systems some definitions related to the

robust positive invariance and input-to-state stability are

proposed [31]:

Definition 1 (Robust Positively Invariant (RPI) set) For

the Lyapunov-Razumikhin function conditions, consider

system 1ð Þ; a set Xis is an RPI set for the closed-loop

system corresponding to the control law, and for the d kð Þ 2
Z �h;�1½ �; if 8xi; xid 2 Xis; and 8di kð Þ 2 D; the control effort

assures that xþi 2 Xis:

Definition 2 (Input-to-state-Stability (ISS)) A discrete-

time nonlinear system x k þ 1ð Þ ¼ f ðxi kð Þ; xid kð Þ; di kð ÞÞ
where d symbolizes the disturbance vector, is input-to-state

stable (ISS) if there exists an HL-function b and a H-

function c such that for each input

d,kx kð Þk� b kxi �h;0½ �k; k
� �

þ c k di 0;k�1½ � k
� �

; where

xi �h;0½ � 2 Xhþ1 is the initial (delayed) state vector,

di 0;k�1½ � 2 Wk is the disturbance sequence, k 2 Zþ.

Definition 3 (ISS Lyapunov-Razumikhin Function [16]) A

continuous positive definite function V x kð Þð Þ is called an

ISS-Lyapunov-Razumikhin function for system x k þ 1ð Þ ¼
f xi kð Þ; xid kð Þ; di kð Þð Þ; if there exist H1�function o1; o2; and

H-function q such that:

o1 k x kð Þ kð Þ�V x kð Þð Þ� o2 k x kð Þ kð Þ ð3Þ

V x k þ 1ð Þð Þ�max V x kð Þð Þ; q k d kð Þ kð Þ
� �

ð4Þ

where V x kð Þð Þ ¼ max V xi kð Þð Þ;V xid kð Þð Þf g

Lemma 1 [32] If system x k þ 1ð Þ ¼ f ðxi kð Þ; xid kð Þ; di kð ÞÞ
admits an ISS-Lyapunov- Razumikhin function, then it is

ISS.

2.2 Time Delay Takagi–Sugeno System Description

The fuzzy Takagi–Sugeno large-scale system composed of

N subsystems with time-varying delay is:

Sli :

IFzi1 isF
l
i1 and . . .andzig isF

l
ig

THENxi kþ1ð Þ¼Al
ixi kð ÞþBl

iui kð ÞþAl
idxid kð Þþwl

idi kð Þþ
PN

j¼ 1
i 6¼ j

fijxjðkÞ

8
>><

>>:

ð5Þ

in which Al
i;B

l
i; and wl

i i¼ 1;2; . . .;N;l¼ 1;2; . . .;rið Þ are the

system matrices and disturbances of rule-l in subsystem Si:

Here, xi kð Þ 2Rc; ui kð Þ 2Rn; and di kð Þ 2Rm are state vector,

input vector, and disturbance vec-

tor.ri; f ij;zi kð Þ¼ ½zi1;zi2; . . .;zig�, and Fl
iq q¼ 1;2; . . .;gð Þ;

respectively, illustrate the number of the fuzzy rules in

subsystem Si; the interconnection between subsystem Si
and SJ ; some measurable premise variables, and the lin-

guistic fuzzy sets of the rulel. The fuzzy large-scale system

ð5Þ with time-varying delay can be shown as:
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xþi ¼ Ailxi þ Bilui þ Aidlxid þ wildi þ
XN

j ¼ 1

i 6¼ j

f ijxj; i

¼ 1; 2; . . .;N ð6Þ

Ail ¼
Pri

l¼1 l
l
i ziq
� �

Al
i; Aidl ¼

Pri
l¼1 l

l
i ziq
� �

Al
id;

Bil ¼
Pri

l¼1 l
l
i ziq
� �

Bl
i

wil ¼
Pri

l¼1 l
l
i ziq
� �

wl
i; f ijl ¼

Pri
l¼1 l

l
iðziqÞf ij

ð7Þ

and lli ziq
� �

represents the normalized membership

function.

Control law is shown as:

Cl
i :

IF zil is F
l
i1 and . . . and zig is F

l
ig

THENui kð Þ ¼ klixi kð Þ

�
ð8Þ

With the same weight notation lli ziq
� �

and respect to 8ð Þ,
the final output of the controller will be:

ui kð Þ ¼
Xri

l¼1

lliðziqÞklixiðkÞ ð9Þ

The closed-loop system with time-varying delay will be:

xi k þ 1ð Þ ¼
Xri

l¼1

Xri

m¼1

lli ziq
� �

lmi ziq
� �

Al
i þ Bl

ik
m
i

� �
xi kð Þ

�

þ Al
idxid kð Þ þ wl

idi kð ÞÞ þ
Xri

l¼1

XN

j ¼ 1

i 6¼ j

lli ziq
� �

f ijxj kð Þ

ð10Þ

2.3 Model Predictive Control

The prediction model and cost function are proposed here.

The prediction form is:

xi k þ nþ 1jkð Þ ¼ Ailxi k þ tjkð Þ þ Aidlxid k þ tjkð Þ
þ Bilui k þ tjkð Þ þ wildi k þ tjkð Þ

þ
XN

j ¼ 1

i 6¼ j

f ijlxj k þ tjkð Þ ð11Þ

and the cost function is:

J kð Þ ¼
XN

i¼1

ji kð Þ

¼
XN

i¼1

Pi Kð Þ þ
XT�1

n¼0

Pi k þ tjkð Þ þ Vit xi k þ Tjkð Þð Þ
 !

ð12Þ

where Pi k þ njkð Þ and Vit xi k þ T jkð Þð Þ are stage cost at the

predicted time instant and terminal cost, and T is the pre-

diction length. It is highly notable that Vit �ð Þ must be a

positive function [33], and the stage cost is chosen as:

P kð Þ ¼
XN

i¼1

Pi kð Þ ¼
XN

i¼1

xTi k þ tjkð ÞQxi k þ tjkð Þ
�

:þ uTi k þ tjkð ÞRui k þ tjkð Þ � sid
T
i k þ tjkð Þdi k þ tjkð ÞÞ

ð13Þ

where R and Q are real fixed matrices, and si is a positive

scalar. It is evident the cost function includes the distur-

bance, and is influenced by the H1 control [34]. Conse-

quently, the cost function cannot be optimized directly as

the disturbance is included. Instead, a min–max technique

is chosen that minimizing the worst-case cost function [35].

Furthermore, at the end of the prediction, it is mostly

required that the states enter a terminal constraint set to

attain asymptotic stability, since it is almost impossible

task to achieve the asymptotic stability to the origin, in the

presence of persistent disturbance [36]. xi k þ Tjkð Þ 2 Xis

shows the terminal constraint set. The online optimization

problem is:

min
ui kþtjkð Þ

max
di kþtjkð Þ

Ji kð Þ;

s:t:ui k þ tjkð Þ 2 Ui

di k þ tjkð Þ 2 Di

xi k þ Tjkð Þ 2 Xis

where t 2 Z ½1;T�1� and Xis shows the terminal constraint set.

Heredi 2 Di :¼ dijdTi di � ci
2

� �
, ui 2 Ui :¼

uijjuimj � uim:maxf g and ci
2 is a positive scalar, uim is the m-

th element of the inputs, m 2 Z ½1;w�.

As it was mentioned, the model predictive control is a

kind of controller which computes the input vector by

minimizing a specified cost function. In this manuscript,

the considered system is large-scale and the form of the

controller is decentralized. Thus, to avoid the uncertainty in

cost function and reach the best solution, the hierarchical

scheme is applied to the optimization problem [37].

3 Main Results

3.1 RPI Set for Fuzzy Takagi–Sugeno Large-Scale

System with Time-Varying Delay

First, the RPI property and terminal constraint set are

defined. Second, the recursive feasibility is analyzed.

Finally, the ISS will be provided. The RPI set is illustrated

by Xis; and Ki xð Þ as the corresponding control law. The

RPI set is defined as, 8xi; xid 2 Xis; the control effort

assures that xþi 2 Xis; for all allowable disturbance. For the

fuzzy Takagi–Sugeno large-scale system 3ð Þ with time-

varying delay, define Xis as:
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Xis :¼ xi; xidf g max
Xri

l¼1

lli ziq
� �

x
T

i
Pilxi

 !

;
Xri

l¼1

lli ziq
� �

x
T

id
Pilxid

 !( )

� 1i

					

( )

ð14Þ

where Pil ¼
Pri

l¼1 l
l
iðziqÞPi and 1i is a positive scalar and

the corresponding control law is

Ki xi; xidð Þ ¼
Pri

l¼1 l
l
iðziqÞklixiðkÞ.

Lemma 2 [28]: The set Xis is an RPI set if there exists a

positive scalar ki; 0\ki\1ð Þ; such that,

XN

i¼1

1

1i
xþ

T

i Pþ
ilx

þ
i � 1 � ki

1i
max xTi Pilxi; x

T
idPilxid

� �
� ki
ci2

dTi di

� 

� 0

ð15Þ

with Pþ
il ¼

Pri
l¼1 l

l
iðxþi ÞPi; for all xþi 2 Ailxi þ Aidlxid þ

Bilui þ wildi þ
PN

j ¼ 1

i 6¼ j

f ijlxj; ui 2 Ui; and di 2 Di:

Remark 1 Here, by proposing the Theorem 1, two LMIs

are solved and if they are feasible, two results are achieved.

(1) It will be proved that the considered large-scale fuzzy

system with time-varying delay is stable in the sense of

Lyapunov. (2) Controller’s gains are computed in the

restricted bound, optimally.

Theorem 1 Consider the fuzzy system 5ð Þ; if there exist

positive definite matrices Xi Xj; and Xil, positive scalar

ki 0\ki\1ð Þ such that the following matrix inequalities

are met:

Zi kTil
kil 1

� �
� 0; Ziss � u2

is;max; s 2 Z 1;m½ � ð17Þ

then the set Xis :¼ xi; xidf g max
Pri

l¼1 l
l
i

��		�

ziq
� �

xTi PilxiÞ;
Pri

l¼1 l
l
i ziq
� �

x
T

id
Pilxid


 �
g� 1i:g is a RPI set

for the fuzzy system 5ð Þ corresponding to the feedback

control law Ki xi; xidð Þ ¼
Pri

l¼1 l
l
iðziqÞklixiðkÞ: Where hi ¼

Ail þ Bilkil
� �

; Ziww is w� th diagonal element of matrix

Zi; N represents the number of subsystems, .i and .id are

fixed positive values which satisfy .i þ .id ¼ 1, Xi ¼
1iPi;Xil ¼ 1iPil;Xj ¼ 1iPj; -i ¼ 1i

ci2
; a� 2,and

i; j; l;N; a 2 Rþ:

Proof See Appendix A.

3.2 The Coordination Sub-Network

In this section the hierarchical optimization will be carried

on. For this, the Hamiltonian function is defined as:

H �ð Þ ¼
XN

i¼1

Hi �ð Þ

¼
XN

i¼1

Pi Kð Þ þ
XK�1

k¼0

xTi kð ÞQxi kð Þ þ uTi kð ÞRui kð Þ
�

(

� sid
T
i kð Þdi kð Þ þ dTi kð Þ zi kð Þ �

XN

j ¼ 1

i 6¼ j

f ijxj kð Þ

0

BBBBB@

1

CCCCCA

þ pTi k þ 1ð Þ �xi k þ 1ð Þ þ gi xi kð Þ; ui kð Þ; zi kð Þð Þð ÞÞg

ð18Þ

ð16Þ
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where gi xi kð Þ; ui kð Þ; zi kð Þð Þ ¼ Ailxi þ Aidlxid þ Bilui þ
wildi þ Cizi kð Þ and Pi Kð Þ is continuously differentiable.

Here, di; pi; and Ci are the Hamiltonian multipliers, the

co-state variables, and fixed value matrix. By the interac-

tion prediction strategy, the coordination for hierarchical

optimization is to find an approach for updating the coor-

dination values di and zi kð Þ:
oH �ð Þ
ozi kð Þ ¼ 0;

oH �ð Þ
odi kð Þ ¼ 0; i ¼ 1; . . .;N; k ¼ 0; . . .K � 1 ð19Þ

thereby,

di kð Þ ¼ � ogi xi; ui; zið Þ
ozi

pi k þ 1ð Þ ¼ �CT
i pi k þ 1ð Þ; i

¼ 1; . . .;N; k ¼ 0; . . .K � 1 ð20Þ

zi kð Þ ¼
XN

j ¼ 1

i 6¼ j

f ijxjðkÞ; i ¼ 1; . . .;N; k ¼ 0; . . .K � 1 ð21Þ

3.3 The Local Optimization Sub-Networks

In local sub-networks, exchanging the information between

the coordination and local sub-networks will make up the

hierarchical scheme as shown in Fig. 1. In this fig-

ure di ¼ ri.in the final step of hierarchical optimization, the

convergence must be checked by evaluating the overall

interaction error:

e kð Þ ¼
XN

i¼1

XK�1

k¼1

zi kð Þ �
XN

j ¼ 1

i 6¼ j

f ijxj kð Þ

8
>>>><

>>>>:

9
>>>>=

>>>>;

T

zi kð Þ �
XN

j ¼ 1

i 6¼ j

f ijxj kð Þ

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð22Þ

now, provided the desire convergence obtained, stop.

Otherwise, repeat the steps again.

3.4 The Terminal Constraint Set

The terminal constraint set Xis should satisfy two condi-

tions. First, it should be RPI set. Second, a positive definite

function (terminal cost function)Vi xð Þ should exist such

that 8xi 2 Xis;

c3ðk xi kÞ�VðxiÞ� c4ðk xi kÞ ð23Þ

XN

i¼1

V xþi
� �

� V xið Þ\�
XN

i¼1

Hi :ð Þ ð24Þ

where 13 and 14 are H1 functions, V xð Þ is given as:

V xð Þ ¼
XN

i¼1

Vi xð Þ ¼
XN

i¼1

Xri

l¼1

lliðziqÞx
T
i Pixi ð25Þ

Remark 2 In this section, by proposing the Theorem 2, the

concept of the robust positively invariant and constraint set

are achieved through solving a LMI, and it is ensured that

trajectories of the large-scale system with time-varying

delay are stable robustly.

For convenience, a table of notations is provided:

Table 1

Theorem 2 Consider the fuzzy Takagi–Sugeno system

5ð Þ; if 16ð Þ; ð17Þ and the following matrix inequality are

feasible,
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then Xis is a terminal constraint set considering the ter-

minal cost function. Where N represents the number of

subsystems,hi ¼ Ail þ Bilkil
� �

,X
T
i kð Þ ¼ 1ip

T
i kð Þ, Hi ¼ 1iR,

Xi ¼ 1iPi;Xil ¼ 1iPil;Xj ¼ 1iPj, a� 2; and

i; j; l;N; a 2 Rþ:

Proof See Appendix B.

3.5 Control Algorithm

Based on the recent results and to finalize the control

design, now, the online control algorithm is studied.

Therefore, the terminal constraint set V x kð Þð Þ; see 24ð Þ;
should satisfy the following condition,

V x kð Þð Þ ¼
XN

i¼1

Vi x kð Þð Þ

¼
XN

i¼1

Xri

l¼1

lliðziqÞx
T
i k þ dð ÞPixi k þ dð Þ� 1i; d kð Þ

2 Z �h;�1½ �:

ð27Þ

the following optimization problem is for minimizing 1i :

min 1i subject to Vi x kð Þð Þ� 1i

furthermore, a proper condition for Vi x kð Þð Þ� 1i is:

ð26Þ
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xTi k þ dð ÞPixi k þ dð Þ� ni; i ¼ 1; . . .;N ð28Þ

which is 1i � xTi k þ dð ÞPixi k þ dð Þ� 0 and equal to 1i �
xTi k þ dð Þ 1iPi

1i
xi k þ dð Þ� 0 by defining symmetrical matrix

Xi ¼ 1iPi, is guaranteed by the following LMIs,

1i xTi k þ dð Þ
xi k þ dð Þ X�1

i 1i

� �
� 0; d kð Þ 2 Z �h;�1½ �: ð29Þ

Note 1: The symmetric matrix Xi is defined as a matrix

with an achievable inversion. So, the inversion of Xi

must be considered in ð29Þ.
Note 2: Since the first Example is a mathematical

Example, the interconnection between two subsystems

are considered as mathematical matrices. But in a real

example, the interconnection between two subsystems

must be modeled while the engineer is modeling the

dynamic of the system. Interconnections in a large-scale

system are same as system matrices like Al
i and B

l
i. These

are computed when the system’s dynamic is linearized.

Remark 3 As mentioned in introductory section, an

important issue in MPC is optimization problem. The

considered system in this paper is large-scale and values of

the LMIs are computed and controlled the closed-loop

system based on the minimized value of 1i: In the previous

theorems, the bilinear matrix inequalities have been pro-

posed. Since the significant parts of this paper are gains and

minimized 1i; the values of Xi;Xil; ki;-i; and Hi are

defined until the feasible solutions for gains and minimized

value of 1i:

Coordination unit

Subsystem

1

Subsystem

2

Subsystem

N

Upper

level

Lower

level
...

1 1 1, , p u x

1, z�

, , N N Np u x

, Nz

2 2 2, , p u x2, z�

�

Fig. 1 Architectures of interactions

Algorithm  

Step 1 (Coordination optimization):  Set initial values for , and different values of , Η , and .
Step 2: Solve the following optimization problem  

min ,                                                              
16 , 17 , 26 , 29 ,

and for each subsystem, find the values of , ̅ ,

̅ , , , Η . 

Step 3: Check for the converging by the overall interaction error. 

⎩⎨
⎧

⎭⎬
⎫

⎩⎨
⎧

⎭⎬
⎫

Step 4: If desired values of coordination achieved, stop. Otherwise, Set 

̅
∑  and  

go step 2. 
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One of the significant part of the model predictive

control is recursive feasibility. In the following theorem, it

will be proven that the recursive feasibility can be achieved

and the constrained optimization problem has the solution

at any time.

Theorem 3 For the system ð5Þ, it will always be solvable
if the solution of the optimization problem can be achiev-

able at time 0, and the recursive feasibility can be

obtained.

Proof If ð30Þ is feasible at time k, then resorting to the

xi; xid 2 Xis; and according to the Theorem 1, which has

been implied that xi k þ 1ð Þ 2 Xis; then it can be concluded

that ð30Þ can be solvable at time k þ 1. Besides, the solu-

tion which achieved at the time k, is feasible at time k þ 1,

and also the optimization problem is feasible at all time.

Theorem 4 should the constrained optimization problem

is feasible at the initial time 0; system ð5Þ is ISS due to the

disturbance d.

Proof Assume the Lyapunov-Razumikhin function

, consider that it gets its maxi-

mum values at the delayed states xi k þ Dð Þ, D 2 d kð Þ; 0f g,

and d kð Þ defined in (2).

in which

, here, is an optimal value of

Pi kð Þ at time k; then it can be obtained:

ð31Þ

in which

, . where

wmax �ð Þ and wmin �ð Þ are, respectively, the maximal and

minimal eigenvalues.

In addition, 24ð Þ implies that,

where , and if

Vk xi k þ 1ð Þð Þ � V k; xið Þ\�xTi kð ÞQxi kð Þ þ sid
T
i kð Þdi kð Þ

ð33Þ

due to the 30ð Þ at time k þ 1ð Þ, it will be:

Vkþ1 xi k þ 1ð Þð Þ�Vk xi k þ 1ð Þð Þ ð34Þ

finally, it achieves that

Vk xi k þ 1ð Þð Þ � V xi kð Þð Þ\� xTi kð ÞQxi kð Þ þ uTi kð ÞRui kð Þ � sid
T
i kð Þdi kð Þ þ dTi kð Þ zi kð Þ �

XN

j ¼ 1

i 6¼ j

f ijxj kð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

þpTi k þ 1ð Þ �xi k þ 1ð Þ þ gi xi kð Þ; ui kð Þ; zi kð Þð Þð ÞÞ

ð32Þ

Table 1 Abbreviations and

notation
Notation Definition Notation Definition

Al
i;B

l
i; and wl

i
System matrices and disturbances RandQ Positive weights

Xi Xi ¼ niPi Hi 1iR

Xj Xj ¼ niPj N Number of subsystems

Pi Positive matrix a Positive scalar

fij Interconnection between subsystem c2
i

Positive scalar

1i Positive scalar variable -i
1i
c2
i

si Positive scalar .i Positive value

ki Positive scalar di Hamiltonian multiplier

X
T
i k þ 1ð Þ 1ip

T
i k þ 1ð Þ pi k þ 1ð Þ Co-state variable

e kð Þ Overall interaction error Ci Fixed value matrix
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Vkþ1 xi k þ 1ð Þð Þ � V k; xið Þ\�xTi kð ÞQxi kð Þ þ sid
T
i kð Þdi kð Þ

ð35Þ

corresponding definition ð3Þ, Lemma 1, ð31Þ, and ð35Þ, the

V xi kð Þð Þ is an ISS Lyapunov function. And the closed-loop

system is ISS due to disturbances. So, the proof is

completed.

4 Numerical Example

In this section, to prove the effectiveness of the proposed

algorithm, two examples are illustrated, the mentioned

algorithm is applied, and results with explanations are

depicted. Consider a large-scale system S composed of

three fuzzy subsystems Si; i ¼ 1; 2; 3 N ¼ 3ð Þ; as follows, in

which each state of each subsystem has two dimensions.

Let -i ¼ 0:5; Q ¼ diag 5; 5f g;Hi ¼ 5: In this example, the

delay time is considered as 1: The membership function,

l1
i ¼ cos2 xi2 kð Þð Þ, l2

i ¼ 1 � l1
i : The T-S fuzzy large-scale

model with time-varying delay is:

IF zi1 is F
l
i1 and . . . and zig is F

l
ig

THENxi kþ 1ð Þ ¼ Al
ixi kð Þ þ Bl

iui kð Þ þ Al
idxid kð Þ þ wl

idi kð Þ þ
PN

j ¼ 1
i 6¼ j

fijxjðkÞ

8
><

>:

Subsystem S1

A11 ¼ 0:55 0:05

0 0:42

� �
;A11d ¼ 0:5A11;B11 ¼ 1

0

� �
;

w11 ¼ 0:1
0

� �
; f 12 ¼ 0:08 0:05

0:05 0:05

� �
;

f 13 ¼ 0:09 0:06

0:06 0:09

� �
; k1 ¼ 0:5;X1 ¼ 0:015 0

0 0:015

� �

A12 ¼ 0:4 0

0 0:08

� �
;A12d ¼ 0:5A12;B12 ¼ 0

1

� �
;w12

¼ 0

0:1

� �
:

Subsystem S2

A21 ¼ 0:325 0

0:4 0

� �
;A21d ¼ 0:5A21;B21 ¼ 1

�1

� �
;w21

¼ �0:1
0

� �
; f 21 ¼ 0:1 0:1

0 0

� �

f 23 ¼ 0 0

0:1 0:1

� �
; k2 ¼ 0:488;X2 ¼ 0:018 0

0 0:018

� �

A22 ¼ 0:6 0:2
0:1 0

� �
;A22d ¼ 0:5A22;B22 ¼ �1

1

� �
;w22

¼ 0

�0:2

� �
:

Subsystem S3

A31 ¼ 0:2 0:4
0:2 0

� �
;A31d ¼ 0:5A31;B31 ¼ 1

1

� �
;w31

¼ �0:3
0

� �
; f 31 ¼ 0:03 0

0 0:02

� �
;

f 32 ¼ 0:1 0

0:1 0

� �
; k3 ¼ 0:487;X3 ¼ 0:027 0

0 0:027

� �

A32 ¼ 0:3 0

0 0:4

� �
;A32d ¼ 0:5A32;B32 ¼ �2

1

� �
;w32

¼ 0

�0:4

� �

where x1 kð Þ ¼ x11 kð Þ x12 kð Þ½ �T ; x2 kð Þ ¼
x21 kð Þ x22 kð Þ½ �T ; x3 kð Þ ¼ x31 kð Þ x32 kð Þ½ �T , and we

have:

Si ¼ xi k þ 1ð Þ

¼
Xri

l¼1

Xri

m¼1

lli ziq
� �

lmi ziq
� �

Al
il þ Bl

ilk
m
i

h i
xi kð Þ

þ lli ziq
� �

Al
idlxid kð Þ þ wl

ildi kð Þ

þ
Xri

l¼1

XN

j ¼ 1

i 6¼ j

lli ziq
� �

f ijxj kð Þ:
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Remark 4 As it is evident in simulation results, Fig. 2, the

trajectories of the subsystem 1, at first, the states of the two

rules went to instability due to the existence of the time-

varying delay, which is 1 s. But as they go on, the proposed

controller has learned to compute efficient gains, which

converged the states to 0. Same as Fig. 2, in Figs. 3, and 4,

it is clear that the states of the subsystems were attempting

to have overshoot and undershoot. But controllers have

successfully stabilized states as time keeps going. The

settling time in the first subsystem is before 10, but in

subsystems 2 and 3 is before 5, which means the subsystem

1 is more complex than two others.

Remark 5 According to Figs. 5, 6, and 7, it will be

noticeable that the trajectories of the input vector ui 2 Rn

are converged to 0. Therefore, there is no need to input

vector and costs will be reduced. And also by referring to

Fig. 8, after 2 or 3 iterations, the interaction error leads to

0; means that, local subsystems are fully optimized.

Finally, Figs. 9, 10, and 11, show 3 cost functions corre-

sponding to 3 subsystems and it is obvious that despite of

the fact that cost functions involve negative terms, they are

definitely positive during the time. It would be necessary to

say that the mentioned numerical example is illustrated to

show the effectiveness and usefulness of the proposed

method, and it will be definitely a practical method in real

conditions.

Remark 6 In comparison, in [23] and [28], the model

predictive control is applied to a usual system with per-

sistent disturbances and uncertainties. But a noticeable

issue is that the considered system is a usual one and the

proposed algorithm is not efficient for large-scale systems.

On the other hand, the mentioned paper has not considered

the time-varying delay that is an inevitable part in real

systems. In [21], an algorithm is proposed for typical

systems with time-varying delay. The model predictive

control is assumed for the mentioned research but as

mentioned above, it is not considered for large-scale sys-

tems. In this research, model predictive control is applied

to a fuzzy large-scale system with time-varying delay and

persistence disturbances, which the proposed algorithm

covers the weaknesses of the mentioned researches.

Example 2: A double inverted pendulum is considered

due to the [38] to show the effectiveness of the method. All

configurations and parameters are chosen same as [38], but

a 0.5 s time-varying delay is considered for the system. All

other configurations and considered assumptions are same

as the previous example.

Subsystem S1

Fig. 2 Trajectories of subsystem 1

Fig. 3 Trajectories of subsystem 2

Fig. 4 Trajectories of subsystem 3

Fig. 5 Trajectories of controller 1
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A11 ¼ A13 ¼ 1 0:005

0:0262 1

� �
;A13

¼ 1 0:005

0:0441 1

� �
;A11d ¼ 0:5A11;A12d

¼ 0:5A12;A13d ¼ 0:5A13;B11 ¼ B12 ¼ B13 ¼ 1

0

� �
;w11

¼ w12 ¼ w13 ¼ 0:1
0

� �
; g12 ¼ 0:08 0:05

0:05 0:05

� �
; k1

¼ 0:5;X1 ¼ 0:015 0

0 0:015

� �
;H1 ¼ 10½ �:

Subsystem S2

A21 ¼ A23 ¼ 1 0:005

0:0272 1

� �
;A23

¼ 1 0:005

0:0451 1

� �
;A21d ¼ 0:5A21;A22d

¼ 0:5A22;A23d ¼ 0:5A23;B21 ¼ B22 ¼ B23 ¼ 1

1

� �
;w11

¼ w22 ¼ w23 ¼ 0:1
0

� �
; g21 ¼ 0:08 0:05

0:05 0:05

� �
; k2

¼ 0:448;X2 ¼ 0:018 0

0 0:018

� �
;H2 ¼ 10½ �:

Fig. 6 Trajectories of controller 2

Fig. 7 Trajectories of controller 3

Fig. 8 Interaction error

Fig. 9 Trajectory of cost function 1

Fig. 10 Trajectory of cost function 2

Fig. 11 Trajectory of cost function 3
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xi k þ 1ð Þ ¼
Xri

l¼1

Xri

m¼1

lli ziq
� �

lmi ziq
� �

Al
il þ Bl

ilk
m
i

h i
xi kð Þ

þ lli ziq
� �

Al
idlxid kð Þ þ wl

ildi kð Þ

þ
Xri

l¼1

XN

j ¼ 1

i 6¼ j

lli ziq
� �

f ijxj kð Þ:

yiðkÞ ¼ Hixi kð Þ

Subsequently, we can obtain the feedback gains:

k11 = [-4.54 -6.06] k12 = [-6.009 -8.79]

k13 = [-15.15 -19.585].

k21 = [-5.14 -.01] k22 = [-1.049 -4.14]

k23 = [-28.255 -12.252].

Remark 7 Figure 12 shows output responses of the

closed-loop discrete-time nonlinear large-scale system with

time-varying delay. It is evident that the proposed con-

troller in this paper based on the fuzzy dynamic model not

only stabilizes the original nonlinear large-scale system but

also effectively attenuates the disturbances as expected.

And as it is clear, for the first few seconds there is no

response due to the delay that is in the nature of the system.

Remark 8 To prove the effectiveness of the proposed

method, a comparison is made due to [39]. In [39], the PI

controller is considered for a large-scale system. At first, a

control scheme using PI controllers, which are currently

used in industry, is used. although this scheme is very

simple to implement, its performance has often limitation

and tuning the P and I gains are a tedious process. Besides,

the mentioned controlled is applied to a system without

time-varying delay. Todays, many systems in industry and

academic face many delays in their natures and the pro-

posed method in [39] is not able to stabilize the system.

Remark 9 By referring to gains, a notable point in this

example is results of gains. To stabilize the system with

time-varying delay, the computed gains have little values

and this means the double inverted pendulum can be

stabilized with lower cost and this is the efficient of the

proposed approach.

5 Conclusion

Here, fuzzy model predictive control and hierarchical

optimization for a class of discrete large-scale systems with

time-varying delay and disturbance is investigated. The

considered method in this paper is Razumikhin for time-

varying delay systems, in which it includes a Lyapunov

function associated with the original non-augmented state

space of system dynamics. The Razumikhin method has the

perfect potential to avoid the inherent complexity of the

Krasovskii method especially in the presence of large

delays and disturbances. Model predictive control is

applied to the fuzzy Takagi–Sugeno large-scale system,

and the system is composed of several subsystems to

consider the decentralized scheme for controller. Many

similar methods have been done before in this area and

Razumikhin approach was applied to. But the novelty of

this paper is that this method is applied to a large-scale

system and simultaneously the optimization problem is

considered. On the other hand, by robust performance and

LMI algorithm, the stability of the results is guaranteed. In

this paper, the uncertainties and disturbances that are

always seen in systems are considered. As the assumed

system in this paper is large-scale and there are some

subsystems, the hierarchical approach is applied to the

optimization problem which divides the system into two

upper and lower orders. At the upper order, coordination,

and at the lower order, some units are established. The

exchange information between two orders, finally, leads to

the most efficient in the optimization problem. This algo-

rithm is assumed for systems with known time-varying

delay systems and in future works it can be applied to

nonlinear dynamics with unknown time-varying delay. At

least two examples are submitted to investigate the effec-

tiveness of the proposed method.

Fig. 12 Output responses of the closed-loop system

M. Sarbaz et al.: Hierarchical Optimization-Based Model Predictive Control

123



6 Appendix A

Proof Applying Schur complement, the inequality 16ð Þ
can be written as:

where

ui ¼ NHT
i XiHi þ N

ffiffiffi
a

p PN

j ¼ 1

i 6¼ j

f TijXjf ij � .i �ki þ 1ð ÞXil.

By considering Xi ¼ 1iPi;Xil ¼ 1iPil;Xj ¼ 1iPj; -i ¼ 1i
ci2

,

now, the inequality (36) is:

ui ¼ 1
1i
NHT

i PiHi þ 1
1i
N

ffiffiffi
a

p PN

j ¼ 1

i 6¼ j

f TijPjf ij �

1
1i
.i �ki þ 1ð ÞPil; now, if the inequality (37) multiplied

from both sides by dTi xTi xTid xTj � � � xTN

h i
and its

transpose, respectively,

ð37Þ

ð36Þ
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ð38Þ
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according to [40], the inequality (38) is equivalent to:

ð39Þ
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The inequality (39) can be written:

ð40Þ
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the inequality (40) is equivalent to:

1

1i
Ail þ Bilkil
� �

xi þ Aidlxid þ wildi þ
XN

j ¼ 1

i 6¼ j

f ijxj

0

BBBBB@

1

CCCCCA

T

Pþ
il Ail þ Bilkil
� �

xi þ Aidlxid þ wildi þ
XN

j ¼ 1

i 6¼ j

f ijxj

0

BBBBB@

1

CCCCCA

� ki
ci2

dTi di �
1 � ki
1i

.ix
T
i Pilxi þ .idx

T
idPilxid

� �

ð41Þ

the equation xþi ¼ Ailxi þ Aidlxid þ Bilui þ wildi þ

PN

j ¼ 1

i 6¼ j

f ijxj is results:

XN

i¼1

1

1i
xþ

T

i Pþ
ilx

þ
i � ki

ci2
dTi di �

1 � ki
1i

.ix
T
i Pilxi þ .idx

T
idPilxid

� �� 


ð42Þ

it is assumed that .i þ .id ¼ 1; so it will be easily

confirmed that .ix
T
i Pilxi þ

.idx
T
idPilxid �max xTi Pilxi; x

T
idPilxid

� �
: Substituting into

(42), thus, ð15Þ is obtained. Furthermore, the input con-

straint can be acknowledged by 17ð Þ; and the proof is

shown here:

By multiplying diag I; xif g and its transpose from both

sides of 17ð Þ :

xTi Zixi xTi k
T
il

kilxi 1

� �
� 0 ð43Þ

applying Schur complement to (43), then,

xTi Zixi � kilxi
� �T

kilxi
� �

� 0 ð44Þ

as ui ¼ kilxi; the following is got:

uið ÞT uið Þ� xTi Zixi ¼ Hi ¼ positivevalue ð45Þ

thus uTi ui �Hi. The proof is, thereby, completed.

7 Appendix B

Proof Applying schur compliment to the inequality ð36Þ:

ð46Þ
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where vi ¼ Nhi
TXihi þ N

ffiffiffi
a

p PN

j ¼ 1

i 6¼ j

f TijXjf ij � .iXilþ

1iQþ kTilHikil. The inequality (46) is equivalent to:

ð47Þ
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where Ni ¼ Nhi
TPihi þ N

ffiffiffi
a

p PN

j ¼ 1

i 6¼ j

f TijPjf ij � .iPilþ

Qþ kTilRkil.by multiplying dTi xTi xTid xTj
�

� � � xTN ITi � and its transpose from both sides of the matrix

in the inequality (47), respectively, the following inequality

is obtained:

ð48Þ
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according to [40], the inequality (48) is equivalent to:

ð49Þ
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the inequality (49) is equivalent to:

the inequality (50) can be written as:

XN

i¼1

AilþBilkil
� �

xiþAidlxidþwildiþ
XN

j¼1

i 6¼ j

f ijxj

2

666664

3

777775

T

Pþ
il AilþBilkil
� �

xiþAidlxidþwildiþ
XN

j¼1

i 6¼ j

f ijxj

2

666664

3

777775

8
>>>>><

>>>>>:

� .ix
T
i Pilxiþ.idx

T
idPilxid

� �
þxTi QxiþuTi k

T
ilRkilui�sid

T
i diþ ITi dTi kð Þzi kð ÞþpTi kþ1ð Þzi kð Þ

� �
Ii

�1

2

XN

j¼1

i 6¼ j

ITi pTi kþ1ð ÞþdTj kð Þ

 �

f ijxj�
1

2

XN

j¼1

i 6¼ j

xTj f
T
ij pTi kþ1ð ÞþdTj kð Þ

 �T

Ii� a�1ð Þ

XN

j¼1

i 6¼ j

xTj f
T
ijPif ijxjþ a�1ð Þ

XN

j¼1

i 6¼ j

xTj f
T
ijPif ijxjþxTi

ffiffiffi
a

p
AilþBilkil
� �T

Pi

XN

j¼1

i 6¼ j

f ijxj

0

BBBBB@

1

CCCCCA

�xTi
ffiffiffi
a

p
AilþBilkil
� �T

Pi

XN

j¼1

i 6¼ j

f ijxj

0

BBBBB@

1

CCCCCA
þ

ffiffiffi
a

p XN

j¼1

i 6¼ j

xTj f
T
ij

0

BBBBB@

1

CCCCCA
Pi AilþBilkil
� �

xi�
ffiffiffi
a

p XN

j¼1

i 6¼ j

xTj f
T
ij

0

BBBBB@

1

CCCCCA
Pi AilþBilkil
� �

xig\0

ð50Þ

XN

i¼1

Ail þ Bilkil
� �

xi þ Aidlxid þ wildi þ
XN

j ¼ 1

i 6¼ j

f ijxj

2

666664

3

777775

T

Pþ
il Ail þ Bilkil
� �

xi þ Aidlxid þ wildi þ
XN

j ¼ 1

i 6¼ j

f ijxj

2

666664

3

777775

8
>>>>><

>>>>>:

� .ix
T
i Pilxi þ .idx

T
idPilxid

� �
þ xTi Qxi þ uTi Rui � sid

T
i di þ dTi kð Þzi kð Þ

�
XN

j ¼ 1

i 6¼ j

dTj kð Þf ijxj þ pTi k þ 1ð Þ �xi k þ 1ð Þ þ gi xi kð Þ; ui kð Þ; zi kð Þð Þð Þg\0

ð51Þ
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if it is assumed that .i þ .id ¼ 1; it will be obvious

.ix
T
i Pilxi þ .idx

T
idPilxid �V xið Þ, therefore:where

PN

i¼1

V xþið Þ � V xið Þ\�
PN

i¼1

Hi �ð Þ: Thereby, the Proof is

completed.
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