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Abstract
Consistent drought modelling under plausible shared socioeconomic–representative concentration pathways (SSP–RCPs) are 
crucial for effectively managing future drought risk in agricultural environments. The Western Cape (WC) is one of South 
Africa’s main agro-based provinces and faces a mounting threat of water insecurity due to recurrent drought. The objec-
tive of this study was to predict meteorological drought hazard for 2021–2050 based on three CMIP6 scenarios: SSP5–8.5, 
SSP2–4.5 and SSP1–2.6. Precipitation simulations generated by the sixth version of Model for Interdisciplinary Research 
on Climate (MIROC6) under the SSP5–8.5, SSP2–4.5 and SSP1–2.6 scenarios were used from fifteen stations across the 
six AEZs of the WC province. The Standardised Precipitation Index (SPI) was computed at 12-month timescales. Trend 
analysis of precipitation datasets and the SPI-values were done at p < 0.05 using the Mann–Kendall (M–K) test. The find-
ings revealed negative precipitation trends of − 7.6 mm/year in Ceres, while positive trends of 0.3 mm/year were observed 
in Malmesbury. These findings indicate an improvement from − 7.8 and − 6.4 mm/year in the same regions, respectively, 
compared to historical trends observed between 1980 and 2020. The results suggest that in 2042 and 2044, Bredasdorp will 
experience − 2 < SPI < − 1.5 under the SSP2–4.5 scenarios, while Matroosberg in 2038 under the SSP5–8.5 will experience 
SPI > − 2. The findings of this study will assist in the development of proactive planning and implementation of drought 
mitigation strategies and policies aimed at reducing water insecurity in AEZs.
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Introduction

Drought is one of the deadliest natural hazards that funda-
mentally occurs in all regions of the world (Hao et al. 2018). 
Drought occurs when the amount of water in soils, streams, 
reservoirs, and aquifers is inadequate to meet society's and 
the environment's needs (Vicente-Serrano et al. 2022). Ger-
gis and Henley (2017) argued that drought is characterised 
by periods of deficient precipitation and, if it continues over 
extended periods, leads to severe social, environmental and 
economic impacts in affected regions. Gidey et al. (2018) 
argued that the impacts of drought are evident through 

chronic water shortages and ultimately slowing down agri-
cultural production. Vicente-Serrano et al. (2022) noted that 
the global economic losses from drought incidence between 
2000 and 2015 were reported to be over $600 billion United 
States dollars (USD). This global trend towards more severe 
drought conditions has mainly been more severe in develop-
ing countries in sub-Saharan Africa that rely heavily on rain-
fed agriculture due to their low adaptive capacities (Okunola 
et al. 2023). For instance, Engelbrecht and Monteiro (2021) 
argued that the greatest threat to sustainable development in 
South Africa in the near term (2021–2040) is one or more 
extreme droughts occurring. Recurrent droughts are particu-
larly concerning, considering that most of South Africa's 
agricultural production regions rely on rainfed agriculture 
to meet the rising global demand for food (Mugejo et al. 
2022). One region that has been tremendously affected by 
the impacts of drought in South Africa is the Western Cape 
Province (Calverley and Walther 2022). The Western Cape 
Province was hardest hit by the worst inter-annual drought 
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since 1904 between 2015 and 2017, which resulted in 
unprecedented water shortages that led authorities to suggest 
the implementation of 'Day Zero' where household water-use 
would be temporarily suspended (Ndebele et al. 2020).

Numerous scholars, such as Lange et  al. (2020) and 
Tapiador et al. (2020), have suggested that monitoring and 
evaluating future characteristics of hydroclimatic variabil-
ity together with shared socioeconomic pathways–repre-
sentative concentration pathways (RCP–SSPs) is vital for 
modelling future drought characteristics and their impacts 
on water security. However, recent advancements in cli-
mate projections and drought prediction have remained 
sophisticated and largely limited (Hao et al. 2018), partly 
due to uncertainties in climate data simulations (Basak 
et al. 2022). Poornima and Pushpalatha (2019) argued that 
the only scientifically acceptable technique for modelling 
future drought characteristics has been through the use of 
Global Climate Model (GCM) projections developed under 
the Coupled Model Intercomparison Projects (CMIP). The 
Intergovernmental Panel on Climate Change Sixth Assess-
ment Report (IPCC, AR6) recently unveiled the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) to inves-
tigate and compare climate projections made from coupled 
ocean–atmosphere–cryosphere–land GCMs (Meehl et al. 
2000). The CMIP6 framework couples plausible future rep-
resentative concentration pathways (RCPs) with alternative 
shared socioeconomic pathways (SSPs) in order to research 
climate change impacts, adaptation, and mitigation (Eyring 
et al. 2019). Rogelj et al. (2012) noted that the CMIP6 
framework applies a combination of four plausible climate 
change scenarios, namely SSP1–2.6, SSP2–4.5, SSP3–7.0 
and SSP5–8.5 to monitor future drought characteristics.

O’Neill et al. (2017) suggested that plausible climate 
change scenarios constitute an essential component of cli-
mate change impact as they aid researchers and decision-
makers in understanding the consequences of near- and 
long-term climate changes. The SSP1–2.6 model describes 
the low extreme limit of the range of projected scenarios 
and apprises the RCP2.6 scenario (Tebaldi et al. 2021). The 
SSP2–4.5 model describes the intermediate portion of the 
range of projected scenarios and revises the RCP4.5 sce-
nario (Peng et al. 2023). The SP3–7.0 scenario is in the 
upper–middle part of the full range of scenarios. It was 
newly introduced after the RCP scenarios, closing the gap 
between RCP6.0 and RCP8.5 (Tan and Duan 2017). The 
SSP5–8.5 model characterises the high extreme limit of the 
range of projected scenarios (Zelinka et al. 2020). Mirgol 
et al. (2021) argued that climate change alternative scenar-
ios, together with GCMs, enable water resource managers 
to predict the impacts of drought in the face of future global 
climate uncertainties. Vicente-Serrano et al. (2022) noted 
that the SSP–RCP climate change scenarios from CMIP6 
permit for risk impact assessment of potential mitigation and 

adaptation strategies in natural resources climate manage-
ment and societal transformation consistently.

Although GCM simulations underpinned by the CMIP6 
framework present an excellent methodology to model the 
climate change impacts, it is widely accepted that GCM 
output has a very coarse resolution compared to that at 
which anthropological activities in a region of interest occur 
(Zelinka et al. 2020). Gupta et al. (2020) argued that GCM 
simulated datasets have a coarse spatial resolution (usually 
500 kms grid cell), which is more significant than neces-
sary for use in the more regional and local-based basins 
that require up to a minimum of 20-kilometres (km) grid 
cells. Scholars such as Huo-Po et al. (2013) and Tebaldi 
et al. (2021) have suggested that GCM simulations require 
downscaling to obtain output that can be used at regional 
and local scales. Downscaling bridges the gap between 
global yet coarse predictions and practical needs such as 
precipitation projection for hydrologic operations in local 
basins under climate change (Tapiador et al. 2020). Mir-
gol et al. (2021) highlighted that downscaling procedures 
have evolved to be an effective way of linking GCM simula-
tions (frequently atmospheric circulation data) to local scale 
surface variables (such as precipitation). Christensen et al. 
(2007) reported that two types of downscaling techniques 
are available: dynamic downscaling (DD) and statistical 
downscaling (SD).

Spinoni et al. (2020) noted that DD involves the use of 
high-resolution regional climate model (RCM) simulations 
to extrapolate the impacts of large-scale climate processes 
to regions or local scales of interest. The resolution in most 
RCMs ranges from 20 to 60 km (Stefanidis et al. 2020). Due 
to its high computing cost, DD has minimal application in 
impact studies and is only helpful for local scale simula-
tions (Burke et al. 2006). Salvi et al. (2011) argued that DD 
is complicated and demands the same computing power as 
GCM simulations. Rashid et al. (2017) noted that DD is dif-
ficult to execute accurately and is primarily used to process 
GCM projection to better resolution RCM output. On the 
other hand, SD techniques are more efficient than DD tech-
niques and are widely used due to their structural simplic-
ity (Iizumi et al. 2011). One of the many benefits of using 
SD techniques is that compared to the DD technique, they 
require less computations and may be applied to downscale 
many GCM climate simulations (Sachindra et al. 2014). 
Fowler et al. (2007) noted that SD techniques offer local-
scale climate information from GCM climate projections. 
Broadly, SD approaches can be further categorised into three 
classes: transfer function method (Ding et al. 2019), weather 
typing (Richardson 1981) and weather pattern schemes (Qin 
et al. 2021). The Bias Correction (BC) underpinned by the 
transfer function method has been primarily adopted and 
widely applied in climate change studies for downscaling 
purposes (Salvi et al. 2011).
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Zhang et al. (2021) noted that in order to predict drought 
characteristics credibly, a suitable drought index should be 
selected. While numerous drought monitoring indices are 
applied for drought characterisation, contradictory findings 
on their characteristics have been published, partly due to 
embedded constraints in the numerous drought monitoring 
indices (Um et al. 2022). The use of these indices is location-
specific due to the dynamic and evolutionary characteristics 
of drought environments. Amongst these numerous drought 
monitoring indices, the most widely used ones include the 
Palmer Drought Severity Index (PDSI) (Palmer 1965), Soil 
Moisture Index (SMI) (Wetherald and Manabe 2002), and 
the Standardised Precipitation Index (SPI) (McKee et al. 
1993). For example, the PDSI is extensively applied in North 
America and quantifies the cumulative spatio-temporal devi-
ation of moisture supply across space and time. It applies the 
Thornwaite's method of estimating potential evapotranspira-
tion. However, the PDSI has restricted precision due to PET 
estimation's existential complexity and uncertainty, mostly 
in extreme climate conditions and mountainous regions. On 
the other hand, the SMI was developed to evaluate the quan-
tity of water accessible by crops in the soil. The SMI index 
needs an assortment of climate data such as precipitation, 
temperature, potential evapotranspiration, and plant data 
such as vegetation type, leaf area, and management prac-
tices. The SPI is based on a probabilistic methodology that 
uses precipitation as the only input and has been widely 
adopted in recent decades as the drought index of choice 
over other indices due to its ability to be computed at mul-
tiple timescales (1-, 3-, 6-, 12-, 18-, and 24-month’s) and 
capacity to differentiate between agricultural, meteorological 
and hydrological drought types (Hayes et al. 2011).

To this end, various scholars such as Kelley et  al. 
(2015), Ndebele et al. (2020), and Engelbrecht and Mon-
teiro (2021) concur that the pervasive and costly nature of 
drought remains the single greatest threat to water resources 
and agricultural production particularly in drought-prone 
regions such as the WC province of South Africa that rely 
on rainfed agriculture. Whilst several studies have inves-
tigated the probable impacts of climate change-induced 
drought on water resources, their investigations have been 
aimed at the catchment level (Kusangaya et al. 2014). For 
example, research conducted by Li et al. (2015) revealed 
that the impact of climate change in humid tropical zones of 
southern Africa caused some changes in the spatio-temporal 
distribution of observed precipitation. However, the study 
applied large-scale hydrological models that were under-
pinned by an RCM to examine the influence of climate 
change on hydrological elements such as evapotranspira-
tion (ET) and surface runoff until 2029. Similarly, Graham 
et al. (2022) investigated the hydrological feedback to future 
climate change over the Thukela River Basin, South Africa. 
Their study revealed that future temperatures were predicted 

to increase in all scenarios, while there was no agreement 
on the impacts on water availability. The above study under-
scored the necessity for supplementary, reliable drought 
modelling studies in South Africa that seek to understand 
the future characteristics of drought better to manage the 
associated risk. More recently, using multi-model regional 
climate simulations from the Co-ordinated Regional Cli-
mate Downscaling Experiment (CORDEX), Abiodun et al. 
(2019) investigated the probable effects of climate change on 
droughts over four major basins in southern Africa. While 
the investigation looked into drought throughout southern 
Africa, it did not investigate climate change scenarios using 
the CMIP6 framework and was not localised in the Western 
Cape region in particular. Moreover, decisions on DEWS 
are usually undertaken at the provincial level, so there is an 
exigent requirement for new research at the provincial scale 
(Kusangaya et al. 2014).

Despite the WC province's high-water vulnerability to 
drought impacts, only a limited number of climate pro-
jections studies have been made for the region (Engelbre-
cht et al. 2013; Abiodun et al. 2019). Hence, this primary 
purpose of the study was to examine the potential impacts 
of meteorological drought on water resource availability 
in the WC province, an area especially vulnerable to cli-
mate change. The specific objectives of this study are to 
(i) downscale the three climate change scenario (SSP5–8.5, 
SSP2–4.5 and SSP1–2.6) datasets projected from the sixth 
version of Model for Interdisciplinary Research on Cli-
mate (MIROC6), (ii) evaluate the spatio-temporal charac-
teristics of meteorological drought in the near-term period 
(2021–2050) under three projected scenarios (SSP5–8.5, 
SSP2–4.5 and SSP1–2.6) in the Western Cape Province 
of South Africa, and (iii) investigate the precipitation vari-
ability, projected drought duration, intensity, frequency, 
and spatial coverage of drought occurrences. This study has 
application in mitigating climate change impacts on future 
drought risk over South African river basins.

Materials and methods

Study area

The Western Cape (WC) Province in South Africa is found 
at the most southern tip of South Africa (Fig. 1). The prov-
ince shares borders with the Eastern and Northern Capes, 
the Atlantic Ocean to the west, and the Indian Ocean to 
the south. The province experiences mild, wet winters and 
warm, dry summers due to its temperate Mediterranean 
climate. The average summer temperatures vary between 
15 and 27 °C, and the average winter temperatures vary 
between 5 and 22 °C (Hurry and Van Heerden 1982; Tyson 
1986; Kruger 2004). With only about 350 mm of mean 
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annual precipitation (MAP), the WC province is one of 
the driest provinces in South Africa, receiving far less 
than the ~ 500 mm average for the entire country (Dennis 
and Dennis 2012). The austral winter months (between 
May and September) receive the majority of annual rain-
fall, which is usually brought on by extratropical cyclones 
and cold fronts, as well as sporadic westerly disturbances 
including cut-off lows. However, the distribution of rain-
fall is very varied, ranging from semi-arid regions to 
comparatively moist regions on the windward slopes of 
mountains (Blamey et al. 2017).The present study focuses 
on the six of South Africa’s AEZs, that include subtropical 
warm/arid (STWA), subtropical cool arid (STCA), sub-
tropical warm semi-arid (STWSA), subtropical cool/semi-
arid (STCSA), subtropical warm subhumid (STWSH) 
and subtropical cool subhumid (STCSH). The AEZs are 
categorised based on the duration of the cropping season 
(Mugido and Shackleton 2017). Arid regions have a crop-
ping season that last for 2 months; semi-arid regions have 
length of farming season ranging between 2 and 3 months; 
warm sub-humid regions have a cropping season of 3 to 4 

months while cool sub-humid zones have a cropping sea-
son of 4 to 5 months (Muimba-Kankolongo 2018).

Data acquisition

Table 1 illustrates the selected meteorological stations used 
to acquire the daily observed, reanalysis and future precipita-
tion datasets. Two forms of datasets were employed in the 
study: observational data and model simulations. Observed 
precipitation data (1980–2020), were gathered from the 
University of East Anglia’s Climate Research Unit gridded 
Time Series (CRU TS Version 4.07) https://​www.​cru.​uea.​ac.​
uk/​cru/​data/​hrg database using Google Earth engine inter-
face, while future precipitation datasets (2021–2050) under 
SSP5–8.5, SSP2–4.5 and SSP1–2.6 climate scenarios were 
generated by https://​esgf-​node.​llnl.​gov/​search/​cmip6/ using 
the sixth version of Model for Interdisciplinary Research on 
Climate, (MIROC6). CRU TS Version 4.07 datasets have 
0.5° by 0.5° resolution and are available across all regions 
except Antarctica (Harris et al. 2020). The spatial resolution 
of the precipitation data generated by the MIROC6 model is 

Fig. 1   Location of the study area (Adapted from Ngwenya et al. 2024)

https://www.cru.uea.ac.uk/cru/data/hrg
https://www.cru.uea.ac.uk/cru/data/hrg
https://esgf-node.llnl.gov/search/cmip6/
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0.11° in latitude and longitude (12.5 km × 12.5 km). Since 
historical data had missing values and there was large dis-
tances between gauging stations reanalysis data played a key 
part in solving these challenges (Gidey et al. 2018). Addi-
tional precipitation data were also obtained from the South 
Africa Weather Service from the period 1980–2020. These 
datasets were employed as a standard for forecasting the 
likelihood of drought occurrence in the study area.

Data processing and analysis

There exists uncertainty in analysing coarse resolution GCM 
outputs to catchment based finer scale resolution. As such 
there is a requirement to downscale GCM output for prac-
tical needs such as precipitation projection for hydrologic 
operations in local basins under climate change. Downscal-
ing of MIROC6 output was conducted to provide finer reso-
lution precipitation datasets and evaluate the output with 
reanalysis data. The software package Climate Change for 
Water Modeling (CMhyd) software obtained from https://​
swat.​tamu.​edu/​softw​are/​cmhyd was used for bias correction 
and statistical downscaling. Before processing and analysis 
was performed on the historical, reanalysis data and down-
scaled climatic data, it was crucial to verify homogeneity 
and to perform data quality checks. To verify the homogene-
ity of climatic data, gross error checking, and temporal and 
spatial coherency tests were carried out. The accuracy of 
MIROC6 simulation to predict future precipitation data was 
evaluated using historical datasets to ensure their suitability 

before they were applied for calculating SPI indices. The 
percentage accuracy of the projected precipitation data was 
validated by comparing simulated reanalysis MIROC6 cli-
mate model data with historical CRU TS Version 4.07 pre-
cipitation data for the years 1980–2010. Results were evalu-
ated in terms of mean absolute error (MAE), coefficient of 
determination (R2), mean absolute percent error (MAPE) 
using the Eqs. (1–4) shown below:

where Ai is the observed precipitation at timescale i, Fi is 
the projected precipitation at timescale i, Fi is the mean 
projected precipitation during the study period, and n is 
the total number of the observed data. The NSE illustrates 
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Table 1   Location of stations in the Western Cape Province

MG Murraysburg, BW Beaufort West, MM Malmesbury, HM Hermanus, CR Ceres, BD Bredasdorp, LG Leew Gamka, LS Ladismith, SB Still 
Bay, OD Oudtshoorn, SW Swellendam, PK Piketberg, MB Matroosberg, CW Clan William, MB Matroosberg, PA Prince Albert

Station Location Mean annual precipi-
tation (MAP)

Temperature Altitude (m) AEZ

Longitude (E) Latitude (N) Minimum tem-
perature (°C)

Maximum tem-
perature (°C)

MG 23.8 − 32.0 310.6 2.0 29 1185 STCA​
BW 22.6 − 32.4 252.2 3.0 30 849 STCSA
MM 18.7 − 33.5 638.1 6.0 32 203
HM 19.3 − 34.4 700.5 8.0 28 27 STCSH
CR 19.3 − 33.4 716.3 6.0 31 457
BD 20.1 − 34.5 446.2 7.0 25 84
LG 21.9 − 32.8 133.1 3.0 32 555 STWA​
LS 21.3 − 33.5 364.7 5.0 31 544
CW 18.9 − 32.2 310.1 8.0 33 96
PK 18.8 − 32.9 388.1 6.0 32 203
SW 20.4 − 34.0 509.9 7.0 29 128 STWSA
SB 21.4 − 34.4 435.1 7.0 26 36
OD 22.2 − 33.6 470.9 6.0 28 319
MB 19.7 − 33.4 311 4.0 29 2249 STWSH
PA 22.0 − 33.2 354.3 4.0 29 633

https://swat.tamu.edu/software/cmhyd
https://swat.tamu.edu/software/cmhyd
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the percentage accuracy of the modeled data. Both R2 and 
MAPE are measures of best line of fit, while MAD illus-
trates the global climate model’s ability to correctly pre-
dict the future climate with respect to recorded data. It is 
assumed that the GCM simulation are correct when R2 and 
NSE evaluations are close to unit value, and when there is a 
lower MAPE value (Das et al. 2019). A detailed explanation 
of techniques applied in the data analysis of the simulated 
precipitation data is in the sections below.

Precipitation variability

Variability in precipitation data is represented by regular 
fluctuations that take place at several repeated frequencies 
(Das et al. 2019). The variability component in precipitation 
data has a direct effect on the onset, duration and cessation 
of rainfall which affects the spatial and temporal characteris-
tics of droughts (Gidey et al. 2018a). As such before assess-
ing the characteristics of meteorological drought trends it 
was critical to assess the annual variability of precipitation 
data. Assessing both the yearly and seasonal rainfall vari-
ability across the agroecological zones in the present study 
provided good insight on how to deal with the frequency of 
droughts. Precipitation variability was assessed through the 
determination of coefficient of variability using the formula 
given by Eq. (5).

where σ = standard deviation and ẋ = average rainfall 
between 1991 and 2020.

Trend analysis

A trend is the embedded and established monotonic ele-
ment in climate data that may be a shifting pattern across 
the study period (Ndebele et al. 2020). Different techniques 
are employed to analyze trends in climate data, and these 
include slope-based tests such as the squares linear regres-
sion methods and Theil Sen’s slope (Sonali and Nagesh 
Kumar 2013) and rank-based tests such as the Mann–Ken-
dall (M–K) test (Mann 1945); and Spearman rank correla-
tion (Das et al. 2019). The use of the Mann–Kendall test is 
widely recommended by the WMO, mainly because climate 
time series data does not necessarily follow a normal distri-
bution. The Mann–Kendall test also has little sensitivity to 
sudden incoherence and breaks in data (Alhaji et al. 2018). 
As such the Mann–Kendall test was used to precipitation and 
SPI data points xi that were ranked from i = 1, 2 …n − 1 and 
xj , which were ranked from j = i + 1, 2 …n. All data points xi 
were taken as a reference point and assessed against all the 
data points (Eq. 3–6) xj, so that:

(5)% Coefficient of Variation (CV) =
𝜎

ẋ
∗ 100

The M–K test parameter was calculated by:

The variation parameter was calculated by:

where ti is the measure of ties in the data series i. The test 
statistic was calculated by:

where Zs > 0 signifies a rising trend, whereas Zs < 0 signi-
fies declining trend. Trend analyses are carried out at the 
particular significance level, α. In the present study, α = 0.05 
was employed. At, α = 0.05, the null hypothesis of no trend 
was excluded if |Zs|> 1.96 (Mann 1945).

Standardized Precipitation Index (SPI)

The SPI drought index is widely regarded by the WMO as 
a universal drought index (McKee et al. 1993). It is capable 
of assessing the characteristics of both dry and wet environ-
ments and its computation demands only historical precipi-
tation records. On different time scales, the SPI provides a 
good overview of water excess or moisture deficiency in 
the soil (Basak et al. 2022). Since long-term precipitation 
data does not follow a normal distribution curve and as 
such requires adjusting it to a standard normal distribution. 
The SPI values are derived across 1-, 3-, 6-, 12-, 18-, and 
24-month timescale. The SPI-1 has the capability to depict 
soil moisture and crop stress levels, SPI-3 depicts short term 
and medium-term moisture condition; SPI-6 represents 
changes in streamflow and reservoir level, SPI-9 depicts the 
precipitation patterns over a medium scale while the SPI-
12 is useful for changes in surface runoff and groundwater 
levels (Mishra and Nagarajan 2011). Svoboda et al. (2012) 
recommended the use of 1-, 3- and 6-month timescales to 
characterize meteorological and agricultural droughts, and 
an SPI-12 or more for assessing changes in surfaces runoff 
(Nam et al. 2017). In the same vein, Vishwakarma et al. 
(2020) agrees with Svoboda et al. (2012) and recommends 
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that use of SPI index value at 3-, 6- and 12-month timescales 
is appropriate for depicting changes to precipitation patterns 
over a medium scale and streamflow, reservoir levels and 
even ground water levels at longer time scale in any catch-
ment. The derivation of SPI values across 1-, 3-, 6-, 12-, 
18-, and 24-month timescale involves using a Gamma Prob-
ability distribution function to derive the relative frequency 
distribution of observed averaged rainfall across the chosen 
time scale. The Gamma Probability Distribution function 
then transforms raw precipitation data into a standardized 
normal distribution function (Buttafuoco et al. 2018). The 
SPI index values were then attained by changing the cumu-
lative probability of precipitation data into the standardized 
normal distribution using Eqs. (10)–(12) below:

where α = shape parameter, β = scale factor, x = amount of 
rainfall and Γ(�) = gamma function. The SPI was then cal-
culated using the cumulative probability function as follows:

where G(x) = cumulative probability of the observed rainfall. 
The Gamma function is indefinite for x = 0. In this study, the 
cumulative probability function was analyzed as follows:

where p = probability of zero.
Therefore, to determine future drought events, the SPI 

developed was applied in analyzing projected precipita-
tion datasets generated using the MIROC6 model under the 
SSP5–8.5, SSP2–4.5 and SSP1–2.6 climate change scenar-
ios. The temporal features of meteorological drought were 
assessed through the derivation of SPI value, calculated at 
12-month timescale using R. The calculated SPI values typi-
cally range from − 2.00 (very dry) to + 2.00 (wet). A SPI < 0 
value indicated periods of drought stress, while a SPI > 0 
indicated wet conditions. Depending on the magnitude of 
the SPI index value, the degree of severity of the drought 
was determined according to the classification criteria shown 
in Table 2.

Analysis of drought duration, magnitude, intensity, 
and frequency

Analysing the drought magnitude, intensity and frequency 
requires stochastic approaches, however to date no stand-
ard methodology exists has been proposed to accurately 
determine drought duration. (Sirdas and Sen 2003). Once 
drought magnitude, intensity and frequency are objectively 

(10)g(x) =
1

((𝛽𝛼)(Γ(𝛼))
x
(𝛼−1)

e
−

x

𝛽 for x > 0

(11)G(x) =

x

∫
0

g(x)dx =
1

((��)(Γ(�))

x

∫
0

x(�−1)e
−

x

� dx

(12)F(x) = p + (1 − p)G(x).

determined, it is achievable to effectively manage future 
drought risk in vulnerable areas. Drought magnitude, inten-
sity and frequency was quantitatively analyzed based on 
SPI-12 values. However, in this study drought duration was 
articulated as the number of consecutive drought days or 
periods. The length of the drought episode (m) was defined 
as equal to the number of years between drought onset (i) 
and end year (e). The drought duration was determined 
based on the number of successive drought events. The 
magnitude of future drought episodes was calculated using 
Eq. (13) as follows:

where M = drought magnitude, m = drought months, 
Drought Index = SPI value in ith time scale.

Mishra and Nagarajan (2011) defined drought intensity 
as the ratio of the drought magnitude to its duration. The 
intensity of future drought in the near term (2021–2050) was 
calculated using Eq. (14) as follows:

where Ie = intensity, M = drought magnitude, m = drought 
duration.

The drought frequency occurrence was related to other 
aspects, such as drought magnitude and intensity. The fre-
quency of drought was calculated using Eq. (15) as follows:

where ns is the total drought events and Ns is number of 
years for the study period, which in this research study was 
30 years.

Results

Validation

Table 3 lists the evaluation metrics that were used when 
validating the simulated precipitation datasets; the mean 

(13)M =

m∑
i=1

(Drought Index)i

(14)Ie =
M

m

(15)Fe =
ns

Ns

∗ 100

Table 2   Standardised Precipitation Index (SPI) (McKee et al. 1993)

SPI interval Classification Acronym

0 < SPI ≤ 2 Above normal condition ANC
− 1 < SPI ≤ 0 Mild drought MiD
− 1.5 < SPI ≤ − 1 Moderate drought MoD
− 2 < SPI ≤ − 1.5 Severe drought SD
SPI ≤ − 2.0 Extreme drought ED
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absolute deviation (MAD), coefficient of determination (R2), 
mean absolute percent error (MAPE) and Nash–Sutcliffe 
efficiency (NSE) model. The results of validation metrics of 
near-term precipitation data (2021–2050) with the reanalysis 
precipitation data (1991–2010) in the agroecological zones 
of the study area gave a good insight on the accuracy of the 
projected precipitation data with the observed data (Table 3). 
The results indicate that the lowest MAD of 22.6 mm was 
observed in Leew Gamka located in the STCSA, while the 
highest MAD was observed in Hermanus at 134.3 mm. 
Stations in the sub-humid zones had higher MAD values 
compared to stations in the arid zones. Results from Table 3 
illustrate that MAPE values ranged from 15.8% in Beaufort 
West located in the STCSA to 21.50% in Prince Albert found 
in STWSH. The coefficient of determination results indicates 
a minimum value 0.83 at Beaufort West located in STCSA 
while 0.89 was recorded in STWSA (Still Bay) (Table 3). 
The NSE model of the projected precipitation measured in 
the study period (2021–2050) was illustrated to be greater 
than seventy percent (70%), with greatest value recorded at 
Beaufort West while Prince Albert recorded the lowest value 
at 78.5% (Table 3).

Annual precipitation trends

Table 4 illustrates the calculated values of the MAP, CV, 
and precipitation trends between 2021 and 2050 under the 
SSP5–8.5, SSP2–4.5, and SSP1–2.6 climate change scenar-
ios. The results of long-term annual precipitation variability 
in the agroecological zones of Western Cape Province pro-
vided a good understanding on how to cope with recurrent 

droughts. The results from Table 4 reveal that under the 
SSP5–8.5 climate scenario the mean annual precipita-
tion is predicted to be between 98 mm in Leew Gamka in 
STCSA and 314 mm in Malmesbury found in STCSH. The 
results from Table 4 reveal that under the SSP2–4.5 climate 
scenario the mean annual precipitation is predicted to be 
between 250 mm in Beaufort West in STWA and 252 mm in 
Murraysburg found in STCA. The results from Table 4 also 
reveal that under the SSP1–2.6 climate scenario the mean 
annual precipitation is predicted to be between 224 mm in 
Leew Gamka in STWA and 311 mm in Murraysburg found 
in STCA Table 4. Overall, the results indicate that STCSA 
recorded the lowest mean annual precipitation under the 
three climate change scenarios (Table 4).

The results from Table 4 reveal that under the SSP5–8.5 
climate scenario the coefficient of variability is predicted 
to be between 58% in Swellendam in STWSA and 32% in 
Hermanus found in STCSH. The results from Table 4 reveal 
that under the SSP2–4.5 climate scenario the coefficient of 
variability is predicted to be between 35% in Murraysburg in 
STCA and 48% in Bredasdorp found in STCSH. The results 
from Table 4 reveal that under the SSP1–2.6 climate sce-
nario the coefficient of variability is predicted to be between 
40% in Ceres in STCSH and 47% in Hermanus found in 
STCSH. Overall, the results from Table 4 indicate that Leew 
Gamka recorded the lowest mean annual precipitation under 
the three climate change scenarios. The results illustrate 
that under the SSP5–8.5 the precipitation trends across all 
AEZs were predicted to be statistically significant negative 
trends (Table 4). Maximum statistically negative trends of 
− 7.6 mm/year were recorded at Ceres in STCSH while 

Table 3   Validation metrics of 
projected precipitation

MG Murraysburg, BW Beaufort West, MM Malmesbury, HM Hermanus, CR Ceres, BD Bredasdorp, LG 
Leew Gamka, LS Ladismith, SB Still Bay, OD Oudtshoorn, SW Swellendam, PK Piketberg, MB Matroos-
berg, CW Clan William, MB Matroosberg, PA Prince Albert

Station Mean absolute devia-
tion (MAD) (mm)

Coefficient of 
determination (R2)

Mean absolute per-
cent error (MAPE)

NSE model AEZ

MG 59.6 0.87 19.18 80.83 STCA​
BW 39.7 0.83 15.75 84.25 STCSA
MM 108.3 0.86 16.97 83.03 STCSH
HM 134.3 0.87 19.18 80.83
CR 116.1 0.88 16.22 83.79
BD 124.0 0.88 16.58 83.42
LG 22.6 0.87 16.97 83.03 STWA​
LS 71.1 0.86 19.49 80.51
CW 51.4 0.88 16.56 83.44 STWSA
PK 62.9 0.86 16.22 83.79
SW 99.4 0.87 19.50 80.50
SB 84.8 0.89 19.49 80.51
OD 94.1 0.87 19.99 80.01
MB 111.8 0.87 16.66 83.34 STWSH
PA 132.1 0.86 21.50 78.50
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minimum values of − 2.9 mm/year were observed in Beau-
fort West in STCSA (Table 4). These findings from Table 4 
indicate a steady improvement from − 7.8 mm/year under 
the observation period 1980–2020 and a worsening trend in 
Beaufort West in STCSA from − 1.0 mm/year also under the 
observational period (1980–2020). The results from Table 4 
illustrate that under the SSP2–4.5 climate change scenario 
the precipitation trends were predicted to be both negative 
and positive trends across the AEZs (Table 4). Maximum 
statistically significant negative trends of − 2.2 mm/year 
were observed at Prince Albert in STWSH while statisti-
cally insignificant trends of 1.9 mm/year were observed in 
Malmesbury in STCSH. These findings from Table 4 indi-
cate a progressive improvement from − 3.4 and − 6.4 mm/
year in the same regions respectively under the historical 
trends observed between 1980 and 2020 (Table 4). Under 
the SSP1–2.6 scenario the result indicate that the precipita-
tion trends were predicted to be both negative and positive 
trends (Table 4). Maximum statistically insignificant nega-
tive trends of − 1.2 mm/year were recorded at Matroosberg 
in STWSH while maximum positive trends of 0.3 mm/year 
were observed in Still Bay in STWSA and Malmesbury in 
STCSH (Table 3). Overall, the findings from Table 4 indi-
cate a progressive improvement across the climate change 
scenarios with SSP5–8.5 indicating statistically significantly 
negative trends while both the SSP2–4.5 and SSP1–2.6 indi-
cated mostly positive insignificant precipitation trends in the 
near term (2021–2050).

Future meteorological droughts prediction based 
on SPI‑12

The results of drought prediction where based on Figs. 2, 
3 and 4 illustrate the temporal variation of future meteoro-
logical drought events derived through the SPI-12 across all 
the AEZs. Values of SPI < 0 across the study area indicated 
drought periods at various severity levels, while SPI > 0 indi-
cated wet periods according to the McKee et al. (1993) cat-
egorization method. The results were analysed across each 
climate scenario for each AEZ.

Drought prediction based on SSP5‑8.5

In the STWSA zone under the SSP5-8.5 climate scenario, 
the results suggest that throughout the study period drought 
episodes were predicted, in Oudtshoorn with the most severe 
drought occurring in 2021, 2025–2028 and 2041 (Fig. 2). 
The results indicate that Piketberg is anticipated to observe 
longer duration droughts in the years 2029 to 2033; 2037, 
2040, 2042 and 2047 being the only years were normal to 
above normal conditions were experienced (Fig. 2). Clan 
William and Still Bay were predicted to experience less 
drought incidences compared to other station in STWSA, 

with Still Bay projected to experience mild drought only 
four times across the study period (Fig. 2). In the STCSH 
zone, the results indicate that Ceres experienced sustained 
drought periods throughout the study period, with the most 
extreme drought incident taking place in 2022 and 2044 
(Fig. 3). Similarly, Hermanus is projected to suffer from 
longer drought periods, starting off as mild drought in the 
years 2026 to 2038, 2039 to 2040 and 2045 to 2050, while 
the years 2024 and 2025 are projected to be wet (Fig. 3). 
Malmesbury and Bredasdorp largely experienced wet con-
ditions during the study period with Malmesbury only 
experiencing mild drought conditions in 2024, 2039 and 
2042, while Bredasdorp is anticipated to observe moderate 
drought in 2025 (Fig. 3). In the STCSA the results indicate 
that Beaufort West will observe drought thought the study 
period (Fig. 3). The results indicate that in the STCA, Mur-
raysburg experienced predominantly normal to wet condi-
tions, while during the years 2025, 2027, 2038, 2042, 2044 
there was mild drought (Fig. 4). In STWA the results project 
predominantly drought conditions in Ladismith with only 
the years 2025–2026, 2037, 2042 and 2042–2045 predicted 
to be wet (Fig. 4). In STWSH, sustained drought periods are 
expected in Murraysburg while in Prince Albert, multi-year 
drought periods are projected particularly between 2027 and 
2037 (Fig. 4).

Drought prediction based on SSP2‑4.5

In the STWSA zone under the SSP2-4.5 climate scenario, 
the findings indicate that throughout the study period 
drought episodes were projected in Oudtshoorn with the 
most severe drought occurring in 2041 as well as in 2045 
(Fig. 2). The findings from Fig. 2 indicate that next region 
to be severely affected by drought is Piketberg. The results 
indicate that Piketberg will also undergo severe in 2043, 
while Clan William and Still Bay were projected to expe-
rience predominantly wet conditions (Fig. 2). The results 
indicate that Still Bay will have droughts only during the 
years 2034, 2040–2041 and 2046. In the STCSH, the results 
indicate that Ceres experienced sustained drought periods 
with wet conditions in 2030–2031, 2041, 2043 and 2050 
(Fig. 2). Hermanus is projected to experience more frequent 
drought conditions, however the drought episodes appear to 
be less compared to the ones anticipated under the SSP5-
8.5 climate scenario (Fig. 3). Malmesbury is also expected 
to experience largely wet conditions similar to the results 
obtained under climate scenario SSP5-8.5 (Fig. 3). Bred-
asdorp experienced more drought events compared to the 
SSP5-8.5 climate scenario. In the STCSA zone the results 
indicate that Beaufort West will observe drought thought 
the study period (Fig. 3). In the STCA, Murraysburg experi-
enced predominantly normal to wet conditions, particularly 
between the years 2021–2028, 2033–2037 2045 to 2047 
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(Fig. 4). In STWA the results project predominantly wet 
conditions in Ladismith with moderate drought conditions 
expected in 2025, 2040 and 2042 (Fig. 4). In STWSH zone 
sustained drought periods are expected in Matroosberg, with 
only wet conditions expected in 2028, 2040–2041 and 2046 
while in Prince Albert, there is going to be more frequent 
drought periods with a mild drought after every two years 
(Fig. 4).

Drought prediction based on SSP1‑2.6

In the STWSA zone under the SSP1-2.6 climate scenario 
the results suggest that throughout the study period drought 
episodes were predicted, in Oudtshoorn with the most 

severe drought occurring between 2033 and 2034 (Fig. 2). 
The results indicate that Piketberg is anticipated to observe 
longer duration droughts the years 2024 to 2032; 2037 to 
2041 and between 2042 and 2049 (Fig. 2). The years 2024, 
2033–2034, 2037 and 2050 are anticipated to be wet years 
in Piketberg (Fig. 2). In Clan William it is predicted that 
less severe drought incidences, will take place compared 
to climate scenarios SSP5–8.5 and SSP2–4.5 (Fig. 2). Still 
Bay is projected to experience wet conditions across the 
study period (Fig. 2). In the STCSH zone, the results indi-
cate that Ceres experienced sustained severe drought periods 
throughout the study period (Fig. 3). Similarly, Hermanus 
is predicted to suffer from longer drought periods starting 
from the year 2021 to 2033, 2036 to 2042 and 2044 to 2049 

Fig. 2   Temporal variation of 
future meteorological drought 
events
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while the years 2034 to 2035, 2037 and 2050 are years that 
are expected to be wet (Fig. 3). Malmesbury and Bredasdorp 
largely experienced wet condition during the study period 
with Bredasdorp only recording mild drought conditions in 
2036, 2042 and 2050 (Fig. 3). In the STCSA the results 
indicate that Beaufort West will observe drought thought 
the study period (Fig. 3). The results indicate that in the 
STCA zone, Murraysburg experienced predominantly wet 
conditions, particularly between the years 2021 to 2033and 
2045–2049, while in the years 2034, 2036, 2040 and 2050 
severe drought conditions were anticipated (Fig. 4). In the 
STWA zone the results project predominantly wet condi-
tions in Ladismith with 8 drought incidences throughout 
the 30 year study period, while Leew Gamka is expected 

to undergo mild to severe drought conditions with the year 
2032–2033, 2036 and 2050 expected to be wet years (Fig. 4). 
In the STWSH zone sustained drought periods are expected 
in Matroosberg while in Prince Albert, multi-year drought 
periods are projected particularly between 2025 and 2032 
and 2045 to 2048 (Fig. 4).

Future drought magnitude, intensity, and frequency

Table 5 gives the findings of the magnitude (M), intensity 
(I) and frequency (F) of the meteorological drought cal-
culated over the study period (2021–2050). The magni-
tude, intensity and frequency of future drought calculated 
using the SPI-12 based on projected values of precipitation 

Fig. 3   Temporal variation of 
future meteorological drought 
events
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from MIROC6 was particularly crucial in the assessment 
of projected water availability in streams in the various 
AEZs. The results from Table 5 illustrate that in areas 
around STCA maximum drought magnitude and fre-
quency of 10.1 mm and 1 mm/year were predicted under 
the SSP2–4.5 climate change scenario while the greatest 
drought frequency was also predicted to be 33% (Table 5). 
The results indicate that in STCSA the SSP1–2.6 was the 
worst with a drought magnitude of 28.5 mm while the 
drought intensity and frequency were expected to be max-
imum at 1.0 mm/year and 100% respectively (Table 5). 
In the STCSH regions, Ceres district was predicted to 
have the greatest drought magnitude and intensity of 
24.6 mm and 0.85 mm/year under the SSP1–2.6 climate 

change scenario while the greatest drought frequency was 
expected under the SSP2–4.5 climate change scenario at 
100% (Table 5). The results from Table 5 illustrate that 
in the STWA regions the greatest drought magnitude was 
predicted to be in Leew Gamka at 19.6 mm, with a maxi-
mum intensity of 0.9 mm/year under the SSP5–8.5 climate 
scenario while the greatest frequency was expected in 
under the SSP1–2.6 climate scenario. The results indicated 
that under STWSA regions Oudtshoorn recorded the great-
est drought magnitude of 22.4 mm under the SSP1–2.6 
climate scenario with a frequency of 100% (Table 5). The 
drought intensity was expected to be greatest in Piketberg 
under the SSP5–8.5 climate scenario. Meanwhile in the 
STWSH regions Matroosberg had the greatest drought 

Fig. 4   Temporal variation of 
future meteorological drought 
events
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magnitude, intensity, and frequency at 24.9 mm, 1.0 mm/
year and 100% respectively (Table 5). Overall, the results 
indicate that across all the AEZs of the Western Cape, the 
most severe drought and ultimately greatest water avail-
ability challenges were predicted in Beaufort West under 
the SSP1–2.6 climate scenario with a drought magnitude 
of 28.5 mm while the drought intensity and frequency 

were expected to be 1.0 mm/year and 100% respectively 
(Table 5).

Drought ranking

Tables 6 and 7 present the characteristics of five high-
ranked droughts in the AEZs based on maximum drought 
magnitude (Mmax) and maximum drought intensity (Imax) 

Table 5   Predicted drought 
magnitude, intensity, and 
frequency

MG Murraysburg, BW Beaufort West, MM Malmesbury, HM Hermanus, CR Ceres, BD Bredasdorp, LG 
Leew Gamka, LS Ladismith, SB Still Bay, OD Oudtshoorn, SW Swellendam, PK Piketberg, MB Matroos-
berg, CW Clan William, MB Matroosberg, PA Prince Albert

Station SSP5–8.5 SSP2–4.5 SSP1–2.6 AEZ

M (mm) I F (%) M (mm) I (mm) F (%) M (mm) I (mm) F (%)

MG 3.33 0.7 20 10.1 1.0 33 3.6 0.7 17 STCA​
BW 27.5 0.9 100 26.6 0.9 100 28.5 1.0 100 STCSA
MM 0.8 0.3 10 0.8 0.2 0.2 0.0 0.0 0 STCSH
HM 15.5 0.6 80 12.6 0.6 67 17.7 0.7 80
CR 22.4 0.7 100 19.6 0.8 83.3 24.6 1.0 97
BD 2.5 0.5 17 10.2 1.0 30 1.0 0.3 10
LG 19.6 0.9 77 12.9 0.6 70 17.9 0.7 87 STWA​
LS 4.4 0.4 37 6.7 0.5 46 3.7 0.3 43
CW 8.3 0.6 46 5.3 0.4 46 5.8 0.4 47 STWSA
PK 15.6 0.8 77 12.2 0.6 0.7 17.4 0.7 80
SW 3.3 0.3 40 4.1 0.3 50 2.9 0.2 50
SB 0.7 0.2 16 0.8 0.2 17 0.0 0.0 0.0
OD 20.4 0.7 100 20.4 0.1 100 22.4 0.7 100
MB 23.2 0.9 86 24.2 0.9 83 24.9 1.0 100 STWSH
PA 14.4 0.7 70 11.2 0.7 53 14.2 0.6 80

Table 6   Drought ranking by 
magnitude

Ranking Mag-
nitude 
(mm)

AEZ (Station) Scenario Most extreme drought period Between 2021 and 
2050

Start date End date Duration (days)

1 28.5 STCSA (BW) SSP1–2.6 11 August 2023 22 March 2025 620
2 27.5 STCSA (BW) SSP5–8.5 15 June 2044 30 August 2045 441
2 26.6 STCSA (BW) SSP2–4.5 21 April 2026 13 May 2027 387
4 24.9 STWSH (MB) SSP1–2.6 03 July 2036 10 April 2037 281
5 24.6 STCSH (CR) SSP1–2.6 29 June 2028 11 May 2029 317

Table 7   Drought ranking by 
intensity

Ranking Intensity 
(mm/year)

AEZ (Station) Scenario Most intense drought period Between 2021 and 
2050

Start date End date Duration

1 1.0 STCSA (BW) SSP1–2.6 11 August 2023 22 March 2025 620
2 1.0 STCSH (BD) SSP2–4.5 21 April 2030 13 May 2031 388
3 1.0 STCSH (CR) SSP1–2.6 29 June 2028 11 May 2029 317
4 1.0 STWSH (MB) SSP1–2.6 03 July 2036 10 April 2037 281
5 1.0 STCA (MG) SSP2–4.5 17 September 2039 30 June 2040 287
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respectively across the study period (2021–2050). The 
results from Table 6 indicate that the top three greatest 
drought magnitudes will take place in the STCSA (BW). 
The results indicate that the greatest drought magnitude of 
28.5 mm will occur under SSP1–2.6 climate change sce-
nario. Similarly, in the STWSH and STCSH regions the 
fourth (24.9 mm) and fifth (24.6 mm) ranked drought mag-
nitudes in Matroosberg and Ceres are occurring under the 
SSP1–2.6 climate scenario (Table 6). For drought events 
classified by their magnitude, there appears to be a logical 
positive correlation between the magnitude and frequency 
of drought for all events. The greatest future drought mag-
nitude (Mmax = 28.6 mm) is projected to elongate for as 
long as 620 days and the lowest magnitude future drought 
(Mmin = 24.6 mm) in the top five ranked drought lasted only 
for 317 days as presented in (Table 6).

Meanwhile the results from Table 7 illustrated the charac-
teristics of the top five drought events based on the intensity 
of the drought event calculated across the near 2021–2050 
together with the duration of the most intense drought 
between 2021 and 2050. The results from Table 7 indicate 
that the top five ranked intense droughts are predicted to 
occur at 1.0 mm/year. Results from Table 7 indicate that 60% 
of these most intense drought events are expected to occur 
under the SSP1–2.6 climate scenario. The most affected 
regions are STCSH (BD and CR), STCA (MG), STWSH 
(MB) and STCSA (BW). The duration of the most intense 
drought event is expected to be 558 days in STCSA in Beau-
fort West while the least intense drought will have a duration 
of 638 days in STWSH (MB) (Table 7). Importantly Table 7 
this event far exceeds the threshold of a severe drought for 
which the SPI-12 value is less than − 1.5.

Discussion

The overarching objective of this study was to assess the spa-
tio-temporal characteristics of future meteorological drought 
in the near term (2021–2050) on the agroecological zones 
of the Western Cape Province in South Africa under the 
SSP5–8.5, SSP2–4.5 and SSP1–2.6 climate scenarios. The 
study sought to augment studies carried out by other scholars 
such as Orimoloye et al. (2019); Otto et al. (2018); Ziervogel 
(2019); Ziervogel et al. (2022) by examining the seasonality 
of the projected precipitation trends as well as understanding 
the perceptions of the communities on the future drought 
incidence. The drought magnitude, intensity frequency and 
drought ranking based on the magnitude and intensity was 
investigated in the near term (2021–2050) under the three 
climate change scenarios. The results of trend analysis of 
projected precipitation indicated a progressive improve-
ment across the SSP5–8.5, SSP2–4.5 and SSP1–2.6 cli-
mate change scenarios. The results obtained under the 

SSP5–8.5 indicated statistically significantly negative trends 
while both the SSP2–4.5 and SSP1–2.6 indicated mostly 
positive insignificant precipitation trends in the near term 
(2021–2050). The negative trends in projected precipitation 
under the SSP5–8.5 indicated protracted drought across all 
the AEZs of the Western Cape Province. These results are 
in parity with those reported by Engelbrecht and Monteiro 
(2021), that suggested that not only will there be universal 
decreases in precipitation over southern Africa under the 
SSP5–8.5 climate change regime but recurrent droughts are 
also predicted to take place. Similarly, both negative and 
positive in SSP2–4.5 and SSP1–2.6 climate scenarios were 
expected to ease off the drought periods across the study 
period. These findings implied that in the near term, agricul-
tural production in the agroecological zones was expected to 
substantially decline particularly in areas that relied mostly 
on rainfed agriculture. These findings were also in agree-
ment with studies by Thomson et al. (2011) who reported 
on the RCP4.5 as a stabilization pathway to climate change. 
The study noted that the probable source of negative trends 
in precipitation could be climate change and anthropogenic 
activities such as increased population growth and urbanisa-
tion as suggested by scholars such as Park et al. (2015) who 
have under taken similar studies in Korea.

Based on the SPI-12 results regions in STWSH (MB), 
STCSA (BW) and STWSA (OD) were predicted to have 
sustained drought period throughout the near term across 
the climate change scenarios. This implied that these AEZs 
were expected to have chronic water shortages as will be evi-
denced through reduced stream-flows. The greatest drought 
magnitude was predicted to happen in the STCSA (BW) 
under the SSP1–2.6 climate change scenario. This projection 
was almost similar with the projection suggested by Botai 
et al. (2017) who used historical observed station data and 
reported that in the near term the Western Cape was expected 
to experience more severe drought incidences unless strict 
climate change mitigation strategies were implemented. 
The AEZs that were found close to coastal regions of South 
Africa revealed mostly positive SPI values, although future 
drought episodes appeared to become milder, particularly 
in the western coast as a consequence of changes in land-
use and land cover patterns. This finding was in contrast 
with other findings from previous studies by scholars such 
as Otto et al. (2018) and thus necessitates further focused 
investigation. Based on analysis of the results of the SPI-12 
a maximum intensity of 0.5–1.0 mm/year was deducted for 
most agroecological zones. This finding concurred with the 
projected increase in drought intensity previously found by 
Orimoloye et al. (2019) using geospatial datasets. Another 
important outcome of this study was the numerical predict-
ability of drought in the Western Cape using the SPI within 
the framework of global climate model (MIROC6) under the 
three climate change scenarios used in the present study. The 
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results from this study also indicated that community mem-
bers within the agroecological zones were not fully aware of 
when future drought episodes will occur, and this affected 
their adaptive capacity to the impacts of projected frequent, 
severe, and intense drought events. These results were in 
parity with studies undertaken by Baudoin et al. (2017), 
which suggested that early warning signals were generally 
not reliable. Conclusively, future drought characterisation 
in the WC province of South Africa provided suitable refer-
ence information for judicious monitoring and prediction of 
drought incidence based on a suitable index (e.g., SPI-12) 
and household survey. A blend of drought evaluation indica-
tors was useful to assess the relative impacts of drought in 
different AEZs of future drought incidence, support proac-
tive agricultural planning to reduce the influences of recur-
rent drought on sustainable livelihoods.

Conclusion

Climate change and anthropogenic activities have consider-
ably aggravated the prospects of sustained future drought 
incidence, however, there still remains little awareness on 
this phenomenon from communities in countries in the 
global south. This study serves as a prelude to possibilities 
of more detailed analyses to come. Although the best read-
ily available regional projections of climate change were 
used here, it was admittedly an incomplete comparison. The 
drought prediction findings from this reveal that this trend 
will significantly affect water availability and consequently 
affect agricultural production in agro-ecological regions. 
Trend analysis results from previous research revealed a 
projected decline in precipitation received across all the 
climate change scenarios as well as in drought incidence 
across all AEZs. This motivated us to focus on precipitation 
as the single most important variable from which to predict 
the effects of human induced climate change on water avail-
ability and agricultural production in the Western Cape. The 
negative trend in annual precipitation revealed by the study 
in the agroe-cological zones means less available water for 
crops amplifying the gap between water supply and demand 
in crop production for farmers. The impact of drought in the 
agro-ecological zones will increase the water stress and con-
sequently water related conflicts from farmers withdrawing 
water from the same reservoirs because of competition for 
the same resource. Conclusively, while the Western Cape 
Province averted ‘Day Zero’, at the cost of agricultural pro-
duction the predicted drought incidence in this study, the 
dependence on domestic and agricultural water supply from 
rain-fed reservoirs coupled with population growth, provides 
a need to review the current water governance frameworks to 
adapt to changing risks. Possible solutions include expand-
ing existing domestic water sources through desalination and 

groundwater abstraction along with nature-based solution 
that ensure natural groundwater recharge. Furthermore, this 
study proposes for more research that seeks to gain more 
insight on the role of not only precipitation but also tempera-
ture on future drought prediction and the associated impacts 
on water availability and agricultural production.

The limitations of the study were that that projections 
used were not wholly consistent with historical observed 
data and in terms of periods and boundary forcing. A more 
consistent set of projections was not available, which is a 
common state for climate science in the developing world. 
The most extensive sets of consistently produced climate 
projections currently existing have been made for Europe. 
However, an initiative is underway to provide an extensive 
quality-controlled dataset of future regional climate projec-
tions for other regions around the globe—the Coordinated 
Regional Climate Downscaling Experiment organised under 
the World Climate Research Programme (WCRP). Africa 
is a priority region within CORDEX. With a more exten-
sive and consistent set of future climate projections, more 
detailed analyses can be performed for assessing impacts on 
hydrology and water resources, including improved meth-
ods to prioritise or weigh results within the ensemble of 
outcomes.
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