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Abstract
Malawi, a developing country in southeast Africa, is one of the most vulnerable countries to climate change and associated 
impacts. Availability of observed data to inform our knowledge on climate change is however, a key challenge and has led 
to relatively little research in the subject. Alternative climate data products, such as the Global Climate Models (GCMs) 
phase6 of Coupled Model Intercomparison Project (CMIP6), accords the chance to bridge this knowledge gap. These products 
however, need some validation against observed data to ascertain their level of performance. This study therefore, evaluates 
the ability of nineteen CMIP6 models in simulating both annual and seasonal temperature and precipitation over Malawi 
from 1980 to 2014. Observed Model performance metrics such as bias, root mean square error (RMSE), spatial correlation 
coefficient, standard deviation and Percentage Bias (PBIAS) were employed to assess the ability of the individual models. 
Our quantitative analysis shows that most of the models could simulate both temperature and precipitation over the study 
area, with correlation coefficient values of over 0.70, RMSE values between 0.9 and 2.0 and PBIAS of ≤ 10%. The results 
are suggesting better performance of CMIP6 than those reported in previous studies over the study domain using CMIP3 
and CMIP5 model datasets. Of all the nineteen models evaluated in this study, no single model performed best compared 
to observed dataset, because the models are varying in performance from season to season. Hence, climate end users are 
advised to use simulations of temperature and precipitation over the study area from CMIP6 models with care for decision 
making on the mitigation and adaptation of climate change.
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Introduction

Previous studies have revealed that extreme climate events 
have huge negative impact on the economy and livelihoods 
of people (Niang et al. 2014). Therefore, it is of great impor-
tance to understand the spatial distribution and intensity of 
these events so that losses which are associated with the 
events can be reduced. However, observed climate data to 
support such understanding is very scarce especially in many 
developing regions (Seyama et al. 2019). Consequently, 

studies have used alternative climate data products from 
models and satellites to bridge the knowledge gap. For exam-
ple, studies done by Dunning et al. (2017), Rowell (2019) 
and Wainwright et al. (2019) utilised global models’ datasets 
to have an understanding of the past and future changes in 
climate change at global and regional levels. Koutroulis et al. 
(2016), Kumar et al. (2013, 2014), Sillmann et al. (2013) and 
Nguyen et al. (2017) used Version 5 of experiments from 
Coupled Model Intercomparison Project (CMIP5) to show 
that the models were able to mimic precipitation at global 
level. Wainwright et al. (2019) and Rowell (2019) also used 
CMIP5 datasets to prove that the models had the ability to 
reproduce precipitation at regional level. Libanda and Nko-
lola (2019), used CMIP5 datasets to show that the models 
were somehow able to reproduce precipitation over Malawi. 
Regional evaluation of models has shown that GCMs are to 
some extent good when it comes to simulating temperature 
trends, but they tend to overestimate precipitation in all sea-
sons for Southern Africa (Flato et al. 2014; Buontempo et al. 
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2015). Dong and Dong (2021) found that CMIP6 models 
were be able to better simulate the interannual variability 
of extreme precipitation events in the Asian region. Tay-
lor et al. (2023) in their study reported that CMIP6 models 
were broadly capable of mimicking temperature and pre-
cipitation over Pacific Northwest. Kim et al. (2014) have 
also reported that climate projections using GCMs represent 
changes over a large area, however, to conduct a context-
specific impact and adaptation assessments, a more detailed 
local understanding is needed. The multi-model ensemble 
mean (MME) and median of these models have proved to 
reproduce precipitation much better than individual models 
(Mehran et al. 2014; Samuels et al. 2018; Sillmann et al. 
2013; Sonkoué et al. 2019). Kalognomou et al. (2013) and 
Endris et al. (2013) also reported that an ensemble mean of 
ten models was able to simulte precipitation over southern 
and eastern Africa respectively.

Previous studies have shown that CMIP5 have the ability 
to mimic precipitation and temperature but, the challenge 
of spatial biases in the models is not fully solved (Sillmann 
et al. 2013; Yang et al. 2015; Zebaze et al. 2019). A study 
done by Taylor et al. (2012) revealed that the coarse hori-
zontal resolutions also contribute to the biases in the models. 
Even though naturally, Regional Climate Models (RCMs) 
inherit the biases of the GCMs which form their bound-
ary conditions, but Buontempo et al. (2015) in their studies 
revealed that local climate forcings and the RCM formula-
tion have a greater influence over the results and decrease 
the impact of these biases over African region. Kharin et al. 
(2013) reported that the there are some uncertainties in 
CMIP6 models which need to be addressed especially, over 
the tropical and subtropical regions. The GCM models that 
have contributed to the latest version of CMIP6 consist of 
new physical processes and high resolution compared to pre-
vious versions like CMIP5 and CMIP3 (Eyring et al. 2016). 
This therefore, is a clear indication that CMIP6 models have 
improved in as far as simulations of precipitation are con-
cerned compared to previous versions (Dunning et al. 2017). 
Akinsanola et al. (2020), Gusain et al. (2020) and Ha et al. 
(2020), have reported that the current state-of-art climate 
models are far much better than previous version of CMIP 
ensembles. This shows that there are effective improvements 
in the models in simulating large-scale patterns of climate 
variables. Even though the models are reported to be able to 
reproduce precipitation and temperature, but some models 
are overestimating or underestimating the two parameters 
over some regions globally. Therefore, it is significant to 
critically examine the skills of CMIP6 models in simulating 
temperature and precipitation over Malawi in order to find 
out if, the new models (CMIP6) have improved in capturing 
the physics controlling temperature and precipitation over 
the study domain. Gou et al. (2019) in their study reported 
that, the widespread temperature increases have great 

negative impacts on the hydrological cycle. The better per-
formance of models in simulating the relationship between 
precipitation and temperature is very vital in increasing their 
ability to predict well the effects of climate systems such as 
El Niño-Southern Oscillation (McKenna et al. 2020; Zhou 
et al. 2020; Beobide-Arsuaga et al. 2021; Yang and Huang 
2022) and decrease the model bias in temperature pattern 
(Ying et al. 2022). The main aim of this study is to examine 
the ability of CMIP6 models in reproducing temperature and 
precipitation over Malawi (a country in southeast Africa) 
from 1980 to 2014.

Data and methodology

The present study has used historical simulations of nine-
teen CMIP6 models to understand their ability to simulate 
temperature and precipitation by evaluating them against 
observation dataset. The study has utilised r1i1p1f1 mem-
bers of the models as shown in Table 1. Our choice of 
models for climatological evaluation has depended on the 
choice of observation dataset as reported by Sillmann et al. 
(2013). The temperature and precipitation model datasets 
were assessed against observation datasets from Malawi 
Department of Climate Change and Meteorological Services 
(MDCCMS). The names and location of the stations where 
the datasets were taken are shown in Fig. 1. These datasets 
have proven to be reliable for evaluating climate models as 
reported by Libanda and Nkolola (2019).

In this study, all the datasets were re-gridded to a 2.5◦ × 
2.5◦ resolution by using a technique called “bilinear inter-
polation” method. This was done with the idea of having 
datasets of common resolution because the model datasets 
are of varying resolutions as indicated in Table 1. Mmame 
et al. (2023b) revealed that bilinear interpolation is just a 
basic re-gridding method. Libanda and Nkolola (2019) and 
Ongoma et al. (2019) reported that bilinear interpolation 
technique counterbalances the differences in resolution when 
conducting comparative analyses.

The study has also assessed the ability of each model 
in simulating temperature and precipitation by calculat-
ing biases (Yazdandoost et al. 2021) using the following 
equation:

where B is the bias being calculated, M is the model data-
sets and O is the observed dataset. Take note that, one can 
calculate bias if the two datasets are of the same resolution 
and length.

The comparison of each grid point of the models and 
observation were assessed by calculating the statisti-
cal metrics. This was done with the idea of checking the 

(1)B = M − O
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Table 1  Showing a list of CMIP6 models used in this study

S/N Model name Modellig group Country Resolution (Lat × 
Lon)

Members

1 ACCESS-CM2 CSIRO-ARCSS Australia 192 × 144 r1i1p1f1
2 ACCESS-ESM1-5 CSIRO Australia 192 × 145 r1i1p1f1
3 CanESM5 National Center for Atmospheric Research Canada 128 × 64 r1i1p1f1
4 CESM2 National Center for Atmospheric Research USA 288 × 192 r1i1p1f1
5 CESM2-FV National Center for Atmospheric Research USA 144 × 96 r1i1p1f1
6 CESM2-WACCM National Center for Atmospheric Research USA 288 × 192 r1i1p1f1
7 CESM2-WACCM-FV2 National Center for Atmospheric Research USA 144 × 96 r1i1p1f1
8 FIO-ESM-2-0 The First Institute of Oceanograpy China 192 × 288 r1i1p1f1
9 INM-CM4-8 Institute of Numerical Mathematics Russia 180 × 120 r1i1p1f1
10 INM-CM5-0 Institute of Numerical Mathematics Russia 180 × 190 r1i1p1f1
11 IPSL-CM6A-LR Institute of Pierre-Simon Laplace france 144 × 143 r1i1p1f1
12 MCM-UA-1-0 Manabe Climate Model USA 96 × 80 r1i1p1f1
13 MIROC6 AORI-NIES-JAMSTER Japan 256 × 128 r1i1p1f1
14 MPI-ESM1-2-HAM Max Plank Institute for Meteorology Germany 192 × 96 r1i1p1f1
15 MPI-ESM1-2-LR Max Plank Institute for Meteorology Germany 192 × 96 r1i1p1f1
16 MRI-ESM2-0 Meteorological Research Institute Japan 360 × 320 r1i1p1f1
17 NESM3 NUIST ESM China 192 × 96 r1i1p1f1
18 NorCMPM1 The Norwegian Climate Prediction Norway 96 × 144 r1i1p1f1
19 NorESM2-LM Norwegian Climate Centre Norway 144 × 96 r1i1p1f1

spatial ability of the models in reproducing temperature 
and precipitation. The statistical metrics used in this study 
are Root-mean-square error (RMSE), correlation coeffi-
cient (CC) and standard deviation (SD). RMSE is math-
ematically defined as:

where xobsi denotes the observation data and xmodeli refers to 
the modelled data at time or place i as reported by Brigadier 
et al. (2016).

The study has also used Pearson correlation coefficient. 
This is nothing but, a value that is obtained after dividing 
the covariance of two variables by the product of their 
standard deviation (Brigadier et al. 2016). The mathemati-
cal definition of correlation coefficient is:

where CC represents the calculated correlation coefficient 
value, x is the observed dataset and y is the modelled data-
set. The values of correlation coefficient are between − 1 to 
1. In this case, 1 shows that there is a strong relationship and 
− 1 represents weak relationship between two parameters. 

(2)RMSE =

�

∑n

i=1
(xobsi − xmodeli )

2

n

(3)CC =

∑n

i=1
(xi − x̄i)(yi − ȳi)

�

∑n

i=1
(xi − x̄i)

2.
∑n

i=1
(yi − ȳi)

2

But, zero indicates no relationship between the two param-
eters under study.

These statistical metrics have been presented in Taylor 
diagrams (Taylor 2001) (annually and seasonally). Tay-
lor diagram integrates a number of evaluation metrics for 
presentation at the same time, showing accuracy of the 
model matching of the observed data in terms of stand-
ard deviation, correlation coefficient as well as root mean 
square error (Taylor 2001). The central point to Taylor 
diagram is that the correlation coefficient, standard devia-
tion and central RMSE of the observed and simulated data 
should satisfy (Taylor 2001; Yan et al. 2022) the following 
equation:

where �obs is the standard deviation of the observed data 
which is mathematically defined as:

and �model is the standard deviation of the simualted datasets 
which is mathematically defined as:

(4)RMSE2 = �
2

obs
+ �

2

model
− 2�obsCC

(5)𝜎obs =
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(6)𝜎model =
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where x̄obs and x̄ is the mean of the observed data and model 
data respectively.

For identification of the best models, PBIAS technique was 
employed (Gupta et al. 1999; Libanda and Nkolola 2019). 
Overall, PBIAS gives either positive or negative values of the 
model datasets from observed datasets. The values of PBIAS 
are presented in percentage where, low percentage denotes that 
the model is simulating accurately. The models are said to be 
overestimating if the PBIAS values are positive but negative 
values reveal that the models are underestimating in relation 
to observed dataset. The mathematical definition of PBIAS is:

where PBIAS denotes the deviation of the data being evalu-
ated presented in %. Hi represents modelled dataset and Ji 
denotes observed dataset.

(7)PBIAS =

∑n

i=1
(Hi − Ji)

∑n

i=1
Ji

× %

Study area description

Malawi (Fig. 2) is a southeast African country located 
between latitudes 9 ◦ and 18◦ , and longitudes 32◦ and 36◦ . 
It is surrounded by Tanzania to the north, Zambia to the 
west and Mozambique to the south. The topographical fea-
tures vary from place to palce due to the Great Rift Val-
ley that passes from the north to the south of the country. 
Mcsweeney et al. (2010) reported that, a lot of Malawi’s land 
mass lies between 800 and 1200 m with highest peaks of up 
to 3000 m around Mulanje mountain area. Reason (2017) in 
their study revealed that, a number of high-elevation areas 
in the country of Malawi experience relatively cool tempera-
tures. But generally, temperatures vary from 18 to 19 ◦ C in 
winter months over Malawi. According to Mcsweeney et al. 
(2010), the warmest months in this country are September 
through January when the country experiences temperatures 
of 22–27 ◦ C. Ngongondo et al. (2015) also reported the same 
range of temperature in their study over the study domain. 
Malawi’s rainfall vary in space and time due to topographi-
cal variations which cause localised precipitation activities 
around high-altitude regions (Mcsweeney et al. 2010). Apart 
from topography, other processes that generate rainfall over 
the country are influenced by the north–south movement 
of the ITCZ, its position and even the strength of the ITCZ 
(Nicholson and Dezfuli 2013). Mmame et al. (2023a) have 
also reported in their study that, seasonal fluctuations in east 
African rainfall (where Malawi is located) are influenced 
by the movement of the northern hemisphere midlatitude 
circulation and the El Nino Southern Oscillation (ENSO).

Fig. 1  Names and location of stations used in the present study

Fig. 2  Map of Africa (left panel) with red rectangle showing the geo-
graphical location of Malawi. The right panel shows the extracted 
area of interest (Map of Malawi) from map of Africa
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Results and discussion

Observed and simulated precipitation 
over Malawi—South East Africa

Figure 3 shows mean annual cycle of precipitation from 
CMIP6 models and observational (rain gauge) datasets. 
From this figure, it is clear that, all the models reported in 
this study are able to mimic rainfall over the study domain. 
The models are able to capture the dry period which starts 
in May to around end October (Jury and Gwazantini 2002; 
Kumbuyo et al. 2014; Libanda and Nkolola 2019). More 
rains are reported from December to around March. 
Results from this study are in agreement with previous 
studies reported by Kazembe (2014), Ngongondo et al. 
(2014), Libanda et al. (2017), and Libanda and Nkolola 
(2019). The ensemble mean is as well performing good 
in relation to the observed dataset (rain gauge). It should 
be noted that, temporal plots have limitation in as far as 
model evaluation is concerned because it is difficult to 
critically analyse the characteristics of each model when 
the variation of the models are very close to each other 
(Taylor 2001). In the present study, the characteristics of 
models have been critically analysed and presented in Tay-
lor diagrams (annually and seasonally).

Figure 4 shows annual spatial distribution of rainfall 
over Malawi. From this figure, it is evident that, obser-
vational dataset (rain gauge) is able to mimic the char-
acteristics of the ITCZ (Brigadier et al. 2015) whereby, 
the northern region of the country experiences a bit more 
rainfall at the beginning of the rain season thus, around 
November/December than the southern region (Brigadier 
et al. 2015). This is a clear indication that the ITCZ has 
arrived in the country from the northern region (Reason 
2017). It is interesting to observe that, as the ITCZ moves 
towards the southern region of the study area, there is 

precipitation deficiency in the northern region of the coun-
try. Ngongondo et al. (2011) and Libanda et al. (2017) also 
reported similar characteristics in their studies.

Studies done by Otieno and Anyah (2013) and Mumo 
and Yu (2020) have revealed that CMIP models have chal-
lenges in showing wet or dry biases during NDJF or MAM 
rainy seasons over some parts of east African countries like 
Malawi. Funk et al. (2008), Lyon and DeWitt (2012) and 
Liebmann et al. (2014) in their studies reported that, the 
dry biases over east African contries like Malawi are due 
to decrease in precipitation. Figure 5 shows precipitation 
bias over the study domain. It is observed that some models 
such as MPI-ESM1-2-LR and MCM-UA-1-0 are showing 
clear wet bias over the study domain. This means that, these 
models overestimated precipitation over the area compared 
to observed datasets for the study period.

Libanda and Nkolola (2019) reported that some stud-
ies on the performance of CMIP models were showing 
somehow weak correlation coefficients between modelled 
datasets and observed (rain gauge) precipitation datasets 
over some east African countries such as Malawi. The 
studies have further revealed that the weak correlation 
between observed dataset and CMIP6 model datasets may 
be associated with the type of observation datasets used 
in a study. For example, in Argentina, Pinto et al. (2018) 
reported low RMSE values between models and observa-
tion due to the type of observed datasets they employed in 
their study. Figure 6 shows the Taylor diagram for annual 
and seasonal precipitation over Malawi between observed 
data (rain gauge) and CMIP6 models from 1980 to 2014. 
Our quantitative analysis of the models for annual rainfall 
varies from model to model as shown in Fig. 6. Some 
models used in the present study have exceeded the 95% 
confidence level. This confidence level is an indication 
that the models are able to simulate the spatial variabil-
ity of precipitation over Malawi. The annual SDs ranged 
from 1.20 to 1.85 and some models like IPSL-CM6A-LR, 

Fig. 3  Time series of seasonal 
(1980–2014) mean precipita-
tion (mm/day) distribution from 
CMIP6 models datasets and 
Observed dataset (Rain gauge)
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CESM2-FV2 and NorESM2-LM are larger than 1.5, show-
ing that they greatly overestimate the spatial annual pre-
cipitation variability over the study domain. The annual 
RMSE values are ranging between 1.2 and 2.0 for the 
entire study period. The correlation coefficient values 
are ranging from 0.15 to 0.65. The correlation coefficient 
(see Fig. 6) values found in this study are somehow high 

compared to those found by other researchers such as 
Libanda and Nkolola (2019) and Ongoma et al. (2019) 
over the same study domain. A statistical metrics sum-
mary of annual and seasonal ranges of the comparative 
analysis between observed (rain gauge) precipitation data 
and CMIP6 model data is presented in Table 2

Fig. 4  Annual (1980–2014) mean precipitation (mm/day) distribution from nineteen CMIP6 models and Observation (Rain gauge) over Malawi
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Observed and simulated temperature 
over Malawi—South East Africa

Figure 7 shows seasonal time series variations of tempera-
ture from CMIP6 models over Malawi from 1980 to 2014. 
It is evident from this figure that, the models were able to 
sufficiently mimic the annual cycle of temperature over the 

study domain. Temperatures were ranging from 13.5 to ∼ 31 
◦ C. The models have been able to reproduce Malawi’s two 
main seasons properly. The first one is called cool dry season 
which starts in May to somewhere around September having 
temperatures between ∼ 13 ◦ C and 17 ◦ C. Hot wet season 
which starts from October through April with high tempera-
tures of up to ∼ 31 ◦ is the second season. These results are 
in agreement with those reported by Warnatzsch and Reay 

Fig. 5  Annual mean precipitation (mm/day) bias from CMIP6 models and observation (Rain gauge) from 1980 to 2014
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Fig. 6  Taylor diagram for annual and seasonal precipitation over 
Malawi (southeast African country) between observed dataset (Rain 
gauge) and CMIP6 model datasets from 1980 to 2014. The numbers 

on the Taylor diagram denote the models ID as shown on the legend 
and as listed in Table 1
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(2019). The ensemble mean of the models is also performing 
good in reproducing temperature over the study domain. A 
number of studies have reported that temperature is increas-
ing in recent decades, for example, Warnatzsch and Reay 
(2019) showed that temperature is increasing over Malawi. 
This study has also found similar trends, with temperatures 
as high as 31 ◦ C as it is shown in Fig. 7.

Spatially, temperature is to some extent consistent across 
the country as shown in Fig. 8. Though some models are 
indicating a bit low temperature (1–2 ◦ C difference) in rela-
tion to other models and even observation dataset. Unlike 
Warnatzsch and Reay (2019) who reported higher tempera-
tures over the southern region, this study indicates that tem-
perature is more or less the same over both southern and 
northern region of the study domain.

Figure 9 shows annual temperature bias from CMIP6 
models and observation. It is evident from this plot that, 
some models such as MIROC6, CanESM5, IPSL-CM6A-LR 
and MRI-ESM2-0 are indicating cool bias over the study 
domain. This means that these models were underestimating 
temperature over the study area. On the other hand, some 
models like CESM2-FV2, NorCMPM1, MPI-ESM1-2, 
MCM-UA-1-0 and FIO-ESM-2-0 are exhibiting warm bias. 
This is an indication that some CMIP6 models are over-
estimating temperature over Malawi. Just as observed by 

Warnatzsch and Reay (2019), the models are able to mimic 
both minimum and maximum temperatures over the study 
domain. High biases have been observed in high terrain and 
along lake Malawi. Timing as well as intensity changes in 
temperature have negative impacts on evapotranspiration.

Figure 10 is a Taylor diagram (Taylor 2001) which con-
tains the information about root-mean-square error (RMSE), 
correlation coefficient (CC) and standard deviation (SD) 
between temperature from observation dataset and simula-
tions from CMIP6 models. As shown in Fig. 10, the CCs of 
the nineteen models between the simulated and observed 
annual temperature are varying between 0.40 and 0.79. This 
shows that the observational temperature distribution over 
Malawi is reproduced very well by the models because the 
CC values are somehow high. The SD values are ranging 
from 1.20 to 1.90 and the RMSE values are between 0.90 
and 1.75. This clearly indicates that, the models are reason-
ably able to depict the spatial variability of annual tempera-
ture over our study domain, Malawi. The values of RMSE 
found in this study are in agreement with the findings of 
Sheffield et al. (2013) who also found good values of RMSE 
across Africa as compared to other regions of the world.

The seasonal quantitative analysis shows that, the CC 
values between CMIP6 models and observed temperature 
is ranging between 0.39 and 0.71 in winter season. The SD 
values are varying between 1.30 and 1.90 while the RMSE 
values are ranging from 1.20 to 1.80. This is an indication 
that the models are reasonably mimicking the spatial mean 
winter temperature over Malawi. Similarly, spring season 
also shows that the models are able to simulate temperature 
over Malawi since the CC values of the models are found 
between 0.40 to 0.70 which are strong correlation coefficient 
values as it is shown in Fig. 10. The SD values between 
modelled datasets and observed data are varying between 
1.10 and 2.00 and RMSE values are found between 0.80 
and 1.81. A statistical metrics summary of annual and sea-
sonal ranges of the comparative analysis between observed 

Table 2  A statistical metrics summary of annual and seasonal ranges 
of the comparative analysis between observation (rain gauge) precipi-
tation data and nineteen CMIP6 model data

Time/period RMSE CC SD

Annual 1.20–2.00 0.15–0.65 1.20–1.85
Winter 1.40–2.00 0.16–0.46 1.40–1.87
Spring 1.10–2.00 0.18–0.56 1.11–1.88
Summer 1.00–1.80 0.19–0.71 1.30–1.90
Autumn 1.20–2.00 0.20–0.74 1.40–1.99

Fig. 7  Time series of seasonal 
mean temperature from nineteen 
CMIP6 models and Observed 
dataset from 1980 to 2014
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temperature dataset and simulated CMIP6 model dataset has 
been shown in Table 3

For identification of best performing models, PBIAS 
technique was applied between simulated and observed 

Fig. 8  Annual (1980–2014) mean temperature (K) distribution from nineteen CMIP6 models and Observation over Malawi
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datasets. Our analysis is showing that, all the models are 
performing good in simulating precipitation over Malawi 
because they have low PBIAS values of (±) ≤ 10% (Libanda 
and Nkolola 2019) as shown in Table 4. The same is the case 
with temperature, all models are performing good since they 
have PBIAS of (±) ≤ 10% as indicated in Table 4.

Conclusion

The main aim of this study was to examine the performance 
of individual CMIP6 models in simulating temperature and 
precipitation over Malawi, a country which is found to the 
southeastern part of Africa. Our quantitative results have 

Fig. 9  Annual mean temperature ( ◦ C) bias from CMIP6 models and observation for period from 1980 to 2014
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shown that, the models analysed in this study have improved 
in reproducing temperature and precipitation over the study 

domain. The present study has reported correlation coef-
ficient values which are somehow higher than those found 

Fig. 10  Taylor diagram for annual and seasonal precipitation over Malawi (southeast African country) between observed dataset and CMIP6 
model datasets from 1980 to 2014. The numbers on the Taylor diagram denote the models ID as shown on the legend and as listed in Table 1
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in previous studies using previous versions of CMIP i.e. 
CMIP3 and CMIP5 datasets. The high correlation coeffi-
cient values indicate that, the models have greatly improved 
in simulating temperature and precipitation over the study 
domain. The study has also found that all the nineteen mod-
els evaluated are able to simulate temperature charachter-
istics over the entire country of Malawi i.e, the models are 
able to capture maximum and minimum temperatures over 
the study domain. After applying PBIAS technique, all the 
models are falling within the required range i.e. PBIAS val-
ues are found to be within (±) ≤10%

The models are also able to capture the spatial charac-
teristics of precipitation over Malawi both annually and 

seasonally. The models are capable of capturing both dry 
(May through September) and wet (December through 
April) seasons. Some of the models have been found to be 
overestimating precipitation over the study domain just like 
other studies have also previously reported. This means 
that, the problem of bias in these models has not been fully 
resolved. For precipitation, all models are as well perform-
ing good thus, they have PBIAS values within (±) ≤ 10%.

The models have shown a great ability in simulating both 
precipitation and temperature over Malawi. There are vari-
ations in the performance of the models from season to sea-
son. In general, there are some improvements in the perfor-
mance of CMIP6 in simulating temperature and precipitation 
in comparison with previous versions of CMIP (i.e. CMIP3 
and CMIP5) over the study domain. Even though the mod-
els are able to simulate the two parameters over the study 
domain, the deficiencies of the models have been extensively 
discussed under results and discussion section. It should also 
be noted that no single model in this study, has performed 
best in relation to observed dataset. Therefore, climate end 
users are strongly advised to use projections of tempera-
ture and precipitation over the study area from these CMIP6 
models with care for decision making on the mitigation and 
even adaptation of climate change.

Table 3  A statistical metrics summary of annual and seasonal metrics 
ranges of the comparative analysis between observation temperature 
data and nineteen CMIP6 model data

Time/period RMSE CC SD

Annual 0.90–1.75 0.40–0.79 1.20–1.90
Winter 1.20–1.80 0.39–0.71 1.30–1.90
Spring 0.80–1.81 0.40–0.70 1.10–2.00
Summer 1.00–1.80 0.21–0.71 1.40–1.90
Autumn 1.10–1.66 0.30–0.70 1.50–2.00

Table 4  Showing statistical 
summary of the comparative 
analysis between rainfall/
temperature observation 
datasets and CMIP6 annual 
rainfall/temperature simulation 
datasets over Malawi

Model name Mean precipitation 
(mm/day)

Mean tempera-
ture

Precipitation 
PBias (%)

Tempera-
ture PBias 
(%)

ACCESS-CM2 6.8 26.5 0.6 − 3.4
ACCESS-ESM1-5 6.7 27.1 2.1 − 5.5
CanESM5 7.0 26.0 − 2.3 − 1.5
CESM2 6.8 25.2 0.6 − 1.6
CESM2-FV 6.6 26.2 3.6 − 2.3
CESM2-WACCM 6.5 26.1 5.2 − 1.9
CESM2-WACCM-FV2 6.4 25.3 6.9 1.2
FIO-ESM-2-0 7.0 25.1 − 2.3 2.0
INM-CM4-8 7.2 25.0 − 5.0 2.4
INM-CM5-0 7.1 26.1 − 3.7 − 1.9
IPSL-CM6A-LR 7.1 26.3 − 3.7 − 2.7
MCM-UA-1-0 7.2 26.0 − 5.0 − 1.5
MIROC6 7.3 27.2 − 6.3 − 5.9
MPI-ESM1-2-HAM 6.9 24.8 − 0.9 3.2
MPI-ESM1-2-LR 6.7 24.1 2.1 6.2
MRI-ESM2-0 7.4 23.9 − 7.7 7.1
NESM3 6.8 26.4 0.6 − 3.0
NorCMPM1 6.9 25.8 − 0.9 − 0.8
NorESM2-LM 6.9 25.7 − 0.9 − 0.4
Ensemble-Mean 6.91 26.1 − 1.0 − 1.9
Observation 6.84 25.6 0 0
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