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Abstract
Globally, the COVID-19 pandemic is a top-level public health concern. This paper attempts to identify the COVID-19 pan-
demic in Qom and Mazandaran provinces, Iran using spatial analysis approaches. This study was based on secondary data 
of confirmed cases and deaths from February 3, 2020, to late October 2021, in two Qom and Mazandaran provinces from 
hospitals and the website of the National Institute of Health. In this paper, three geographical models in ArcGIS 10.8.1 were 
utilized to analyze and evaluate COVID-19, including geographic weight regression (GWR), ordinary least squares (OLS), 
and spatial autocorrelation (Moran I). The results from this study indicate that the rate of scattering of confirmed cases for 
Qom province for the period was 44.25%, while the rate of dispersal of the deaths was 4.34%. Based on the GWR and OLS 
model, Moran’s statistics demonstrated that confirmed cases, deaths, and recovered followed a clustering pattern during the 
study period. Moran’s Z-score for all three indicators of confirmed cases, deaths, and recovered was confirmed to be greater 
than 2.5 (95% confidence level) for both GWR and OLS models. The spatial distribution of indicators of confirmed cases, 
deaths, and recovered based on the GWR model has been more scattered in the northwestern and southwestern cities of 
Qom province. Whereas the spatial distribution of the recoveries of the COVID-19 pandemic in Qom province was 61.7%, 
the central regions of this province had the highest spread of recoveries. The spatial spread of the COVID-19 pandemic 
from February 3, 2020, to October 2021 in Mazandaran province was 35.57%, of which 2.61% died, according to informa-
tion published by the COVID-19 pandemic headquarters. Most confirmed cases and deaths are scattered in the north of this 
province. The ordinary least squares model results showed that the spatial dispersion of recovered people from the COVID-
19 pandemic is more significant in the central and southern regions of Mazandaran province. The Z-score for the deaths 
Index is more significant than 14.314. The results obtained from this study and the information published by the National 
Headquarters for the fight against the COVID-19 pandemic showed that tourism and pilgrimages are possible factors for the 
spatial distribution of the COVID-19 pandemic in Qom and Mazandaran provinces. The spatial information obtained from 
these modeling approaches could provide general insights to authorities and researchers for further targeted investigations 
and policies in similar circumcises.

Keywords COVID-19 · Geographically weighted regression · Least squares model · Spatial autocorrelation · Qom · 
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Introduction

Coronavirus (SARS-COV-2)-related viral pneumonia with 
an unidentified agent was reported in Wuhan, China, toward 
the end of December 2019 (Comito and Pizzuti 2022). As 

a result of the virus’ rapid global spread and border cross-
ings, 196 countries were afflicted on March 25, 2020. (Lu 
et al. 2020). The virus is an organ of the coronavirus family 
of the order Nidovirales and is a giant single-stranded RNA 
virus (Wang et al. 2010). The United Nations has explained 
COVID-19 as a leading social, human, and economic catas-
trophe that affects even developed countries; continuing the 
outbreak of this pandemic will cause problems for the global 
health community system, which will result in a population 
crisis of the world (Mollalo et al. 2020; Wu et al. 2020). 
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The outbreak and intensity of an infectious disease epidemic 
significantly depend on the “infectious power of the disease” 
(Bailey and Gatrell 2015; Kandwal et al. 2009). In order to 
assess the risk of COVID-19 and identify areas that are now 
at high risk, all necessary information should be immedi-
ately available.

More than 185 countries being affected shows how 
quickly the coronavirus is spreading, necessitating cutting-
edge technologies to evaluate the danger in particular areas. 
The spatial investigation of this pandemic virus can signifi-
cantly benefit from using geographic information systems 
(GIS) (Zhou et al. 2020). One of the primary uses of epi-
demiology is to make it easier to identify areas and groups 
of people in danger and to offer the best medical and social 
options for reducing risk factors in such areas (Zhou et al. 
2020). For 150 years, medical professionals have used maps 
for spatial disease analysis (WHO 2020). Anatomical epi-
demiology’s study of the regional distribution of infection 
and mortality includes geographic epidemiology (Gatto 
et al. 2020). Data visualization and representation as geo-
graphic maps are the first stage of analyzing geographical 
data (Kandwal et al. 2009). For years, GIS has extensively 
been modeling different diseases, businesses, the environ-
ment, and natural resources (WHO 2011). The administra-
tors of this industry must be proficient in GIS because of the 
healthcare service centers’ extensive geographic reach and 
high activity levels. GIS’s geospatial analysis capabilities 
directly benefit modeling diseases’ spatial distribution and 
their relationships with environmental characteristics and the 
healthcare system. Currently, GIS technology is thought to 
be crucial in infectious disease study and control (Kistemann 
et al. 2015).

Understanding the Spatiotemporal dynamics of the prime 
wave of the diseases and analyzing the results of inhibitory 
measures have received much attention in the inquiry since 
Covid-19 was first reported in January 2020. In epidemiol-
ogy, standard analytical and numerical models were used. 
For instance, Leung et al. (2020) assessed the COVID-19 
immediate reproduction number and confirmed case-fatality 
danger in central Chinese urban and provinces, which used 
a Sensitive-Infectious-Recovered (SIR) model to assess the 
potential effects of measures following the prime wave of 
infection. Fanelli and Piazza’s (2020) SIR was employed to 
undertake a comparative analysis in China, Italy, and France. 
Both Danon et al. (2020) and Peixoto et al. (2020) used pop-
ulation models to dissect and forecast the illness extension 
among England and Wales, as well as the Brazilian states 
of So Paulo and Rio de Janeiro in the meantime, spatial sta-
tistical models were used to analyze the illness space-time 
dynamics. Guliyev (2020), for instance, used a spatial panel 
data model to study the subject of transmission dissemina-
tion in China, discovering spatial effects such as the dispen-
sation of confirmed fatalities and recovery. To dissection 

and forecast the space-time dispersion of the illness in Italy, 
Giuliani et al. (2020) made an endemic–epidemic multivari-
ate time-series mixed-effects GLM for regional counts of 
COVID-19 confirmed.

Rahnama and Bazargan (2020) used descriptive-analyti-
cal techniques and spatial distribution modeling to investi-
gate the spatiotemporal patterns of the COVID-19 epidemic 
in Iran. Their research findings revealed that the most critical 
geographic parameter for the COVID-19 distribution in Iran 
is the distance between and the vicinity of the provinces 
affected by the disease, which follows the pattern of the spa-
tial distribution of adaptation. The regional distribution of 
COVID-19 and its fluctuation throughout the United States 
were modeled by Abolfazl et al. in 2020. They investigated 
the virus’s spread using GWR and multi-geographically 
weighted regression (MGWR). According to the findings 
of their study, GWR performs reasonably well in the spatial 
analysis of COVID-19 prevalence compared to the MGWR 
model. Pourghasemi et al. (2020) examined the COVID-
19 outbreak risk indicators to pinpoint areas in Iran’s Fars 
region that were highly vulnerable to infection and gauge 
infection patterns there.

For this reason, a GIS-based machine learning system 
was used to evaluate the danger of a coronavirus outbreak in 
the province of Fars. Coronavirus infection impacts tourism 
and pilgrimage provinces such as Mazandaran and Qom. 
Qom is a pilgrimage province with many places of pilgrim-
age. In contrast, Mazandaran province has tourist attractions 
that cause heavy human traffic, contributing to a higher rate 
of spread in urban areas. It has been shown that citizens 
migrate to these provinces from different parts of Iran, which 
has caused the spread of the disease to dense urban areas in 
Iran (Patel et al. 2019). Jia et al. (2021) presented a dynamic 
model to describe coronavirus transmission by analyzing 
the relationship between virus spread and air quality condi-
tions. They concluded that the air quality index is the most 
important climatic factor in virus diffusion.

Ibrahim (2020) looked at the volume and density of the 
risk of coronavirus pollution in Makkah, Saudi Arabia, using 
the GWR model. According to the findings of this study, 
the correlation between coronavirus pollution size and pol-
lution density was positive, with a coefficient of 0.96. The 
relationship between the spatial dispersion of COVID-19 
and population migration was investigated using a Bayesian 
spatiotemporal model during the early stage of the outbreak 
in Wuhan, China (Chen et al. 2020). Their investigation 
revealed that the Bayesian spatiotemporal model could be 
beneficial for rapid warning distribution and preventing the 
future dispersion of the virus.

Geographically weighted regression (GWR), ordinary 
least squares (OLS), and spatial autocorrelation (Moran’s) 
modeling methods are some of the most widely used in 
various fields of research. The spatial distribution of the 
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 PM2.5 was modeled using GWR in china’s cities, and the 
findings of this research revealed the proper functionality 
of this modeling approach (Gu et al. 2021). The GWR and 
OLS were employed in central java, Indonesia, to evaluate 
the impact of the human development index and popula-
tion size on poverty. This study’s outcomes reported good 
performance of these models (Mahara and Fauzan 2021). 
The OLS and GWR methods are used to assess the influ-
ences of geographical parameters on forming land surface 
temperature (Kashki et  al. 2021). The results from this 
research exposed feasible functionalities of this modeling 
approach’s spatial distribution of land surface temperature. 
Explanatory of Urban Expansion was assessed in Kolkata 
city using the geographically weighted regression (GWR) 
technique; the outputs of this study exposed the practical 
applicability of GWR in urban planning and management 
(Mondal et al. 2015). In order to investigate the effects of 
urbanization and landscape patents, habitat quality (Zhu 
et al. 2020) employed OLS and GWR models. According 
to the results of this study, rapid urbanization has a signifi-
cant and negative influence on habitat quality within the 
study area. Jiao et al. (2021) used GWR and OLS models to 
research the disparities in COVID-19 infections’ temporally 
varying demographics and economic conditions, and their 
findings indicated the significance of the demographic and 
economic disparities. El Deeb (2021) used spatial autocorre-
lation (Moran’s I) to determine the dynamic and mean center 
for the COVID-19 pandemic in Lebanon. The results of this 
investigation revealed the adoptable functionality of spatial 
autocorrelation in disease modeling. To evaluate the spa-
tial distribution and relationship neighboring the regions in 
terms of the COVID-19 outbreak, Amaliah et al. (2021) used 
Moran’s I Index. Considering the results of this research, a 
spatial autocorrelation of the confirmed cases is detected.

Following the rapid outbreak of COVID-19, public places 
and events, including schools and universities, movie theat-
ers, concerts, theater shows, and national sports leagues, 
were closed, and office hours were decreased. Body tem-
perature screening stations began operating at the entrance 
of different places. The “Stay at Home” campaign was 
implemented nationwide, asking people not to leave their 
homes to break the coronavirus transmission chain between 
the country’s provinces and reduce social mobilization. Con-
sequently, after a while, the government implemented the 
“social distancing” plan with increased active cases. Follow-
ing the implementation of social distancing, the confirmed 
cases and mortality of coronavirus in the provinces of Qom 
and Mazandaran decreased. Today, the study of the distri-
bution and pandemic diseases using modeling techniques 
is globally considered essential to discover the sources and 
conditions causing the spread of the disease in any geo-
graphical location. Since 1993, the World Health Organi-
zation (WHO) has initiated applying GIS and modeling 

approaches to create disease maps. This paper intends to 
compare the&nbsp;spatiotemporal distribution of COVID-
19 pandemic outbreaks utilizing the GWR model and the 
outcomes with the OLS model from February 24, 2020, to 
late October 2021, in Mazandaran and Qom provinces in 
Iran. This study aims to investigate the spatiotemporal dis-
tribution of COVID-19 based on three indicators (confirmed 
cases, deaths, and recovered) utilizing GWR and least-
square models in Qom and Mazandaran provinces of Iran, 
from February 3, 2020, to late October 2021. Spatial auto-
correlation (Global Moran’s I) was used to analyze the three 
indicators (confirmed cases, deaths, and recovered cases).

Area of   study

The study area comprises two provinces of Iran (Qom and 
Mazandaran). Qom province is situated between the lati-
tudes of 34° 9″ and 35° 15″ N and between the longitudes of 
50° 6″ and 51° 58″ E, sharing borders with Tehran Province 
to the north, Semnan Province to the east, Isfahan Province 
to the south and Markazi Province to the west. It has an 
area of 11,238  km2 in the central corridor of Iran and has a 
population of 1.06 million (Fig. 1). Mazandaran province is 
located in northern Iran along the coast of the Caspian Sea, 
between the latitudes of 35° 45′ 49′′, 36° 57′ 42″ N, and 
longitudes 50° 21′ 5″, 54° 7′ 55″ of E. Mazandaran province 
shares borders with Tehran and Qazvin in the south, Semnan 
to the southeast, Gilan to the west, Golestan province to the 
east and with Caspian Sea to the North (Fig. 1). According to 
the 2016 census, Mazandaran has a population of 3,283,577 
(Statistical yearbook of Mazandaran Province, 2016).

Materials and methods

This study is based on secondary data, precisely informa-
tion on confirmed deaths retrieved from hospitals and the 
National Institute of Health website for the provinces of 
Qom and Mazandaran between March 2, 2019, and Novem-
ber 30, 2021. The ALOS PALSAR digital terrain model 
(DTM) was acquired from (https:// search. asf. alaska. edu). To 
assess the impact of elevation on the COVID-19 pandemic 
outbreak. The monthly average data for two chosen Iranian 
provinces were divided into three indicators using the Excel 
program (Tables 1 and 2).

Following that, in the ArcGIS 10.8.1 environment, sta-
tistical models of GWR, OLS, and spatial autocorrelation 
(Moran I) were employed to examine the spatiotemporal 
distribution of three indicators: confirmed cases, deaths, 
and recovered. Three indicators, confirmed cases, deaths, 
and recovered, were added to the research area’s shapefile to 
implement the GWR and OLS models. The ArcGIS 10.8.1 

https://search.asf.alaska.edu
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spatial modeling module was used to develop the GWR and 
OLS statistical models. The shapefile of the research areas 
was chosen as the input for these models, and three indi-
cators of confirmed cases, deaths, and recovered causes, 
were introduced to the GWR and OLS models. The spatial 
data for three indicators, confirmed cases, deaths, recovered 
cases, and a digital elevation model of the provinces of Qom 
and Mazandaran, are provided in (Fig. 2).

The three indicators were interpolated using the inverse 
distance weighting (IDW) approach to apply the GWR and 
OLS models. The interpolated COVID-19 pandemic indica-
tors and digital elevation models were converted into feature 
polygons to suit the model implementation. An intersection 
overlay was employed to overlay the elevation maps and 
create polygons. An intersection overlay was employed to 
overlay the elevation maps and created polygons. Higher 

Fig. 1  Location of the study area. Provinces of Iran (A), Mazandaran province (B), and Qom province (C)

Table 1  Monthly average of COVID-19 pandemic indicators in 
Mazandaran province by percentage

Months Confirmed cases Recovered Deaths

March 24.43 25.56 1.46
April 25.43 38.06 2.56
May 39.34 41.08 1.73
June 17.24 37.67 1.64
July 35.45 75.67 3.53
August 45.45 71.96 2.08
September 37.61 88.16 2.04
October 35.65 80.16 4.77

Table 2  Monthly average of COVID-19 pandemic indicators in Qom 
province by percentage

Months Confirmed cases Recovered Deaths

March 35.16 25.13 4.09
April 46.13 25.25 2.01
May 48.13 21.04 1.86
June 26.41 13.04 1.36
July 46.13 21.26 2.07
August 38.03 22.03 3.04
September 66.03 38.23 3.66
October 45.73 45.83 12.66
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elevation areas received higher values after the weights were 
added to the attribute tables.

Geographically weighted regression (GWR model)

Brunsdon et al. (1996) introduced the concept of geo-
graphically weighted regression (GWR) to the geography 
literature to investigate the possibility of correlations in 
a regression model being spatially variable, or what is 
known as parametric nonstationarity. GWR is based on 
the locally weighted regression method, established in 
statistics for curve-fitting and smoothing applications. 
The novel aspect of GWR uses a subset of data close to 
the model calibration point in geographic space instead 
of variable space. GWR is based on the non-parametric 
locally weighted regression approach created in statistics 
for curve-fitting and smoothing applications, where local 
regression parameters are calculated using subsets of data 
close to a model estimation point in variable space (Gilbert 
and Chakraborty 2010). The novel aspect of GWR uses 
a subset of data close to the model calibration point in 
geographic space instead of variable space (Fotheringham 
et al. 2002; Wang et al. 2010). GWR has been proposed 
as a technique to perform inference on spatially changing 
connections to extend the initial focus on prediction to 

confirmatory analysis, while the emphasis in conventional 
locally weighted regression in statistics has been on curve-
fitting, that is, estimating or predicting the response vari-
able (Páez and Wheeler 2009).

Although the model calibration sites are not limited 
to observation locations, any observation location in the 
dataset may have a regression model fitted using GWR. 
The weights that indicate the geographical dependency 
between observations are calculated using the inter-point 
distances, which are obtained from the spatial coordinates 
of the data points—either individual data points or areal 
centroids—and then entered into a kernel function. Geo-
graphically weighted regression forms separate equations 
with the participation of independent and dependent vari-
ables placed inside a “distance” bar of each phenomenon 
and also allows parameter values to change continuously 
in geographic space. Equation 1 shows the GWR model 
(Hu et al. 2012):

 where βik and xik are the factors and observed values of the 
independent variable k (k = 1,…,p) for observation i; εi is the 
error term for observation i.

(1)Yi = �i0 +
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Fig. 2  Spatial data points for three indicators and digital elevation model, a Mazandaran province, b Qom province
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Ordinary least squares (OLS)

One of the most famous regression analysis techniques 
involving identifying mechanisms operating within the real 
estate market is the ordinary least squares (OLS) approach 
(Hutcheson et  al.  2019). The relationship between the 
dependent and independent variables can be defined by a 
simple straight line for which the values of y (price) are 
estimated by the values of x, according to the essential theo-
retical assumptions of the primary linear modeling method 
known as OLS (attributes). The predicted model must have 
the smallest possible sum of squares of estimated parameter 
errors (Deilami et al. 2016; Li et al. 2017). The fundamental 
issue with standard statistical analysis techniques, such as 
the OLS methodology, is that they typically seek to define 
common correlations between the variables being studied 
across diverse contexts (Cao et al. 2019). Through Eq. 2, the 
global regression model can be demonstrated:

where Y is the dependent variable, β0 is the model’s inter-
cept, Xj corresponds to the jth explanatory variable of the 
model (j = 1 to p), and ε is the random error.

Inverse distance weighting (IDW)

Inverse distance weight (IDW), a popular interpolation tech-
nique, considers that each input point has a local influence 
that decreases as the distance increases. The points physi-
cally closer to the processing cell are given more weight than 
those farther away. The output value of each location can be 
calculated for an analysis using IDW using either a predeter-
mined number of points or all points inside a predetermined 
radius. This method’s application is predicated on the idea 
that a variable’s influence reduces as it is moved away from 
the spot where it was sampled (Gong et al. 2014).

The IDW technique is a moving average interpolator typi-
cally used with highly variable data. It is feasible to go back 
to the data collection location and record a new value for 
some data types that are statistically distinct from the origi-
nal reading but falls within the region’s overall trend. The 
interpolated surface is less than the maximum local value 
and more than the local minimum value, as determined by 
a moving average estimation method (Rocha et al. 2018). 
Through the use of Eq. 3, the inverse distance weighting 
algorithm is determined:

(2)Y = �
0
+

p
∑

j=1

�jxj + �

(3)Z
0
=

∑N

i=1
zid

−n
i

∑N

i=1
d−n
i

 where Z
0
 is the variable estimation value, zi is the sample 

value at point i , d
iis

 the distance of the sample point to the 
estimated point, and n is the coefficient that determines the 
weight based on the distance (Childs 2004).

Spatial autocorrelation (Global Moran’s I)

The qualities and locations of the spatial features are 
addressed in the assessment of spatial autocorrelation, which 
considers the correlation of a variable concerning its spatial 
location (Goodchild 1986). A typical test statistic for spatial 
autocorrelation is Moran’s I. When the values are distributed 
randomly in space, solid spatial autocorrelation occurs even 
though there should not be any correlation between the val-
ues. The correlation between the same values and variables 
in several locations is indicated by spatial autocorrelation 
(Global Moran’s I analysis) (Lee 2011).

Moran’s I value will range between 1 and 1. A larger 
positive Moran’s I suggest that values in nearby places tend 
to cluster, whereas a lower negative Moran’s I suggests that 
high and low values are interspersed. There is no geographic 
autocorrelation when Moran’s I is close to zero, indicating 
that the data are dispersed randomly (Overmars et al. 2003; 
Getis 2007). Equation 4 calculates it for n observations on a 
variable at locations I and j:

 where N is the numeral of spatial one indicator by i and j; x 
is the variable of the connector; x is the mean of x; wij is the 
spatial weights matrix, and W is the sum of all.

Results

Twenty-eight confirmed cases of COVID-19 pandemic were 
announced on February 24, 2020, in four Provinces of Iran 
(Tehran, Isfahan, Markazi, and Alborz), and the confirmed 
cases for Qom and Mazandaran were 56.25% and 32.58% 
of total cases, respectively. The number of confirmed cases, 
recovered, and death increased from February 24, 2020, to 
October 2021. After Tehran, the highest number of con-
firmed cases infected with the COVID-19 pandemic are in 
Mazandaran and Qom provinces. The trend of the COVID-
19 pandemic for these two Provinces (confirmed cases, 
recovered, and deaths) is presented in Figs. 4 and 5. The 
rate of confirmed cases for Qom province between February 
24, 2020, and late October 2021 was 44.25%. While the rate 
of deaths in this province was 4.34%, the maximum spatial 
distribution of death cases was shown in the northwestern 
parts of this province.

(4)I =
N

W

∑

i

∑

j wij(xi −
−
x)(xj −

−
x)

∑

i(xi −
−
x)2
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Spatiotemporal outbreak of COVID‑19 pandemic 
in Qom province, the GWR model

Due to pilgrimage and tourism trips to Qom province, the 
first case was confirmed. After February 24, 2020, the 
spread of the COVID-19 pandemic increased and reached 
more than 1000 confirmed cases in a day. Investigations 
from the GWR model showed that the spatial distribution of 
COVID − 19 is spreading in surrounding provinces increas-
ingly via Qom, Tehran, Mazandaran, and Markazi Provinces. 
Consequently, the percentage of confirmed cases in Qom 
province is 44.25%. Most of the affected population was 
distributed in the southern parts of Qom province, including 
Nofel Loshato, Qom, and Salafchegan. Due to pilgrimage 
and tourism trips to Qom province, the death rate reached 
4.08%. By the GWR model, most of the death cases were 
distributed in the northwestern and southern parts of Jafar-
abad, Khalajastan, and Loshato. From February 24, 2020, to 
late October 2021, the rate of recovered cases was 61.07%, 
and based on the GWR model, most of these cases are scat-
tered in the central parts of Qom province. According to 
the OLS model, this province’s death cases are mainly dis-
persed in the southwest and southern regions, the south-
east, and small portions of the northwest and northeast. The 
OLS model’s findings indicate that most recovered cases 
are dispersed throughout this province’s northern and north-
western regions and southern cities such as Nofel Loshato, 
Salafchegan, and Jafarabad. Observance of health proto-
cols, quarantine, and the closing of pilgrimage and tour-
ism centers by the country’s Health and Medical Education 
Organization can be the main reason for increased recovered 
cases. The spatiotemporal distribution of (confirmed cases, 
recovered, and deaths) in Qom province utilizing GWR and 
OLS models are presented in Fig. 6. Using the GWR model 
as a visual technique can reveal interesting patterns in geo-
graphic data. The spatial distribution of confirmed cases, 
deaths, and recovered patients in Qom province (explanatory 
variable) shows a strong relationship between the indicators 
in some provinces. The coefficient of determination ( R2 ), 
which expresses how accurate and good the model is, is one 
of the important parameters. This parameter is closer to 1 
than other important parameters. It means that the explana-
tory variable can explain the changes well. This investiga-
tion exposed feasible functionalities of the GWR model in 
modeling the spatiotemporal distribution of the COVID-19 
pandemic; according to this modeling technic, the spatial 
scattering of the indicators is well estimated in Qom prov-
ince. Table 3 presents the results obtained from the GWR 
model.

In Qom province, the rate of confirmed cases and deaths 
are inversely related to elevation; with the increase in alti-
tude, a considerable reduction of these two indicators can be 
seen. However, the rate of recovered cases in the elevated 

area of this province increased significantly. Qom city, 
which has the lowest elevation across the Qom province 
(726 m), had an upward trend of deaths and confirmed cases 
in the whole province, while the cities of Nofel, Loshato, 
Salafchegan, Khalajistan, and Jafarabad, with a maximum 
elevation of 3200 m, exposed the lowest dispersion rate 
across the province. The results of the GWR model show 
that between February 24, 2020, and October 20, 2021, a 
Moran’s I coefficient of 0.008821, a Z-Score of 2.230280, 
an expectation index value of − 0.001136, and a P value of 
0.025729 were obtained. The pattern of spatial distribution 
(confirmed cases, recovered and death) is based on clustered 
spatial autocorrelation of (Moran’s I), in Qom province and 
implies the high quantity of confirmed cases, deaths, and 
recovered, corresponding to the GWR model, confirmed 
cases, recovered, and deaths are dispersed in the southern, 
northwestern, and central parts of the province. However, 
the result of the spatial distribution of the COVID-19 pan-
demic obtained by employing the OLS model proved the 
(Moran’s I) with a coefficient of 0.014834, an expectation 
index of 0.000871, Z-score of 3.675040 and a P value of 
0.000238. Accordingly, its spatial distribution pattern is 
dispersed in clusters throughout the Qom province. The 
northern and northwestern regions of Qom are where these 
three COVID-19 pandemic indicators are dispersed. Spatial 
distribution (confirmed cases, recovered, and deaths) based 
on spatial autocorrelation model utilizing GWR and OLS 
models are presented in Fig. 7.

Spatiotemporal outbreak of COVID‑19 pandemic 
in Mazandaran province, the OLS model

Mazandaran province is considered another province in 
Iran struggling with the COVID-19 pandemic and experi-
encing a rapid outbreak. Being the destination for the tour-
ists of neighboring provinces is the main reason to intensify 
the COVID-19 pandemic outburst in this province. Fig-
ure 7 illustrates the spatiotemporal dispersion of COVID-19 
pandemics in Mazandaran province applying GWR and OLS 
models from February 24, 2020, to October 2021.

GWR model showed that the spatial disperse of the 
COVID-19 pandemic from the provinces of Tehran, Qom, 
Gilan, Markazi, Mazandaran, and Isfahan to the adjacent 
regions initiated a rapid outbreak on February 24, 2020. Fur-
ther spatial spread of the COVID-19 pandemic was revealed 
in northern, central, and northwestern regions, and the low-
est incidence of the dissemination is visible in the eastern 
and southeastern regions of the country.

According to the outputs of the GWR model distribu-
tion of confirmed cases in Mazandaran province on Febru-
ary 24, 2020, was observed regularly in Ramsar, Nowshera, 
the southern parts of Sari, and parts of northern Babol cit-
ies. The GWR model revealed the impact of tourist trips 
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on the geographical dispersion of confirmed cases and the 
increased number of deaths in Mazandaran province. The 
death cases were spatially distributed mainly in the south 
and northern parts of Mazandaran province, including cit-
ies (Ramsar, Tonekabon, Kelardasht, Chalous, Noor, and 
Amol). The number of deaths in this province for Febru-
ary 24, 2020, to October 2021 reached 61.2%. As a result 
of the national COVID-19 pandemic headquarters policies, 
for instance, the implementation of screening, increasing 
the capacity of hospitals, providing accurate information 
about the spatial distribution of COVID-19 pandemic in 
Mazandaran province, and offering assistance to reduce the 
number of death cases, and increased recovered cases to 
57.34% in north, south, and northeast parts of Mazandaran.

The rate of the spatial distribution of (confirmed cases, 
recovered and deaths) cases obtained by the OLS model 
from February 24, 2020, to October 21, 2021, is highly dif-
ferent from the results achieved by employing the GWR 
model. The result acquired utilizing the OLS model exposed 
confirmed cases further distributed in the central parts of 
Mazandaran. This dispersion caused a high number of death 
cases in the central parts of this province. The OLS model 
output indicated that, from February 24, 2020, to October 
21, 2021, the cases were habitually scattered in the cen-
tral parts and a small portion of the southern parts of the 
province. Using sanitizer and masks is considered the main 
factor of increment in the spatial distribution of recovered 
cases and potentially reduced the number of death cases in 
these parts of the province. Based on the OLS model, the 
spatial distribution of the COVID-19 pandemic needs to 
be better estimated. It shows that the OLS model cannot 
explain the COVID-19 pandemic spatial distribution epi-
demic in Mazandaran province. The R2 rate for confirmed 
cases recovered and death is 0.72%. The outputs of the 
GWR model for the spatial distribution of the COVID-19 
pandemic in Mazandaran are presented in Table 4 (Fig. 8). 

In Table 4, residual of squares, the difference between the 
observed value and predicted value of the Y were acquired 
using the geographically weighted regression model. Rela-
tive performance measurement indicates the gamut to which 
the use of a statistical model causes loss of information. 
The threshold is the square root of the sum of the residual 
squares calculated for the residues. Standard deviation and 
low values are preferred. Coefficient of determination, how 
independent variables explain the viability of dependent var-
iables. The adjusted coefficient of determination presents the 
measurement of the model’s predictive accuracy in Table 4.

In this paper, the digital elevation model (DEM) is used 
to determine the effects of elevation on the spatial distribu-
tion of the COVID-19 pandemic within the specified study 
area. In Mazandaran Province, Chalous, Savadkooh, Ram-
sar, Sari, and Neka have a maximum altitude of 5599 m, 
and the density of the two indicators (confirmed cases and 

deaths) were low. The rate of recovered cases was more sig-
nificant than in the cities with lower elevations. The results 
show that from February 24, 2020, to late October 2021, the 
spatiotemporal autocorrelation of the COVID-19 pandemic 
based on spatial autocorrelation, with a (Moran’s I) coeffi-
cient of 0.482419, an expected index value of − 0.001653, a 
Z-score of 106.107828, and the P value was 0%. According t 
this pattern, the spatial distribution of indicators (confirmed 
cases, deaths, and recovered) achieved by employing GWR 
in Mazandaran province are random. Based on the GWR 
model, these dispersions are primarily dispersed in this 
province’s eastern and southeastern parts. While the spatial 
autocorrelation attained using the OLS model exposed a 
(Moran’s I) coefficient equal to 0.215666, an expected index 
value of −  0.001770, a value of Z-score equal to 14.314292 
and a P value equal to 0%. Corresponding to this model, the 
spatial dispersion of the patterns is a cluster-based distribu-
tion, which is observed primarily in the focus and southern 
parts of this province. The spatial distribution of (confirmed, 
death, and recovered) cases of the COVID-19 pandemic 
according to spatial autocorrelation patterns utilizing GWR 
and OLS is demonstrated in Fig. 9.

Discussion

Overall, our research results show the exponential growth 
of mortality in the central regions of Qom and Mazandaran 
and the quick dispersion of this virus compared to other 
regions. Other studies have also been performed about 
two widespread diseases and COVID-19, and the bulk 
showed an affirmative relationship between patients with 
COVID-19 and other diseases, such as blood pressure, dia-
betes, and cardiovascular diseases (Guan et al. 2020; Li 
et al. 2020). An analysis of COVID-19 and the number of 
deaths using modeling tools was shown in prior research to 
involve a wide range of socioeconomic and environmental 
parameters (Smith and Mennis 2020). In addition, Giuliani 
et al. (2020) also modeled the spatiotemporal dynamics of 
outbreaks and mortality due to COVID-19 at the provin-
cial level in Italy. The local pandemic was more diverse 
than it was in Italy. Although it had a solid northward 
bias, it was slowly making its way into the southern prov-
inces. The spatial distribution of the COVID-19 pandemic 
with the GWR model revealed the highest rate of deaths 
in the northwestern and southern parts of Jafarabad and 
Khalajistan cities and the city of Nofel Loshato during 
February 24, 2020, to late October 2021. During these 
8 months, Qom province’s recovery rate reached 61.6%. 
Most of these cases were observed in the central parts 
of this province based on the GWR model (Fig. 3). The 
results are similar to the results of research conducted 
by (Xu et  al. 2022) to evaluate influencing factors of 
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self-reported COVID-19 dispersion using GWR and OLS 
models in Wuhan, China. Xu et al. (2022) stated the fea-
sible functionalities of OLS and GWR models in the spa-
tiotemporal modeling of pandemic disease. However, the 
OLS model exposed a different spatial distribution of the 
COVID-19 pandemic. In addition, the results of research 

conducted in order to study the propagation of the virus, 
Abolfazl et al. (2020) used GWR and multi-geographical 
weighted regression (MGWR) to predict the prevalence 
of (COVID-19) geographically as well as its variability 
across the United States. Compared to the MGWR model, 
findings of this study showed that GWR performed rela-
tively well in the spatial analysis of COVID-19 prevalence. 

Input data

Data quality assessment 

IDW Reclassify Raster to 
polygon

Intersect

Modeling

GWR OLS Moran’s

Compare the results

Digital Elevation 
model 

Confirmed 
cases Deaths Recovered 

Spatiotemporal modeling of the COVID-19 pandemic outbreak 

Fig. 3  Workflow of the methodology

Fig. 4  Average of three indicators of the COVID-19 pandemic in 
Qom province

Fig. 5  Average three indicators of the COVID-19 pandemic in 
Mazandaran province
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According to the OLS model, confirmed cases in Qom 
province are generally scattered in Khalajistan, the south-
east of Nofel Loshato, and parts of the south of Salaf-
chegan cities. Considering the results of the OLS model, 

confirmed cases are dispersed in central and southern parts 
of Mazandaran province. As a result of the spatial dis-
persion, the central regions exposed the most significant 
number of death cases. As a result, this condition led to 
the National COVID-19 pandemic Headquarters policies, 
such as implementing the screening plan and increasing 
the capacities of the hospitals.

Regarding the outputs of the GWR model, after imple-
menting these policies, the rate of deaths and confirmed 
cases were mitigated and recovered evidence increased 
significantly by 57.34% in the north, south, and northeast 
regions of Mazandaran province. Peak et al. (2020) dem-
onstrated the impacts of quarantine on the rate of COVID-
19 dispersion and deaths.

Fig. 6  Spatiotemporal distribution of COVID-19 pandemic utilizing GWR (a, b, c) and OLS (d, e, f) model

Table 3  The GWR model for indicators (confirmed cases, recovered, 
and death) in Qom province

Records Parameters Amount of 
parameters

1 The residual of least squares 34.15
2 Relative performance measurement 0.81
3 Threshold 15.76
4 R

2 70.41
5 R

2  (adjusted) 50.40
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Fig. 7  Spatial distribution of (confirmed cases, deaths, and recovered) cases obtained using a GWR and b OLS model

Fig. 8  Spatiotemporal distribution of COVID-19 pandemic utilizing GWR (a, b, c) and OLS (d, e, f) model
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Conclusion

The prevalence of the COVID-19 pandemic has come 
to be a clinical threat all over the world. According to 
the results of this research, the models (GWR, OLS, and 
Moran’s I) used in this study exposed adequate capabilities 
to investigate the spatiotemporal variation of pandemic 
disease and quantify the influences of explanatory fac-
tors. According to the outputs of GWR, the spatial dis-
tribution of the COVID-19 pandemic in Qom province is 
very well estimated. It shows that the GWR model could 
explain the pandemic of COVID-19 spatial distribution 
in Qom province confirmed cases, recovered, and death 
rate R2 = 70.41%. Moreover, outputs of the GWR model 
for Mazandaran province revealed that the confirmed 
cases in this province are generally witnessed in Ramsar, 
Nowshahr, and the southern parts of Sari, the northern 
region of Babol influenced by tourists’ trips and trans-
portation. Based on the GWR model, the highest spatial 

distribution of deaths, with a percentage of 2.61%, is 
observed in the northwestern and southern parts (Ram-
sar, Tonekabon, Kelardasht, Chalous, Noor, and Amol) in 
Mazandaran province.

Moreover, the outputs of the OLS model exhibited that 
the death cases in Qom province mainly depressed in the 
southwestern and southern parts and part of the southeast 
and a small region of the northwest and northeast, and the 
recovered cases are observed in northern, northwestern, and 
eastern areas. Based on the OLS model, the spatial distribu-
tion of the COVID-19 pandemic is not well estimated com-
pared to GWR. It shows that the OLS model has not been 
able to explain the COVID-19 pandemic spatial distribution 
epidemic in Mazandaran province. According to the out-
comes of this model, the R2 for confirmed cases recovered 
and death is 0.72%. The findings of the GWR model dem-
onstrate that the COVID-19 pandemic’s spatial-temporal 
autocorrelation was based on spatial autocorrelation, with a 
Moran’s I coefficient of 0.482419, an expected index value 
of − 0.001653, a Z-score of 106.107828, and a P value of 
0%.

While the spatial autocorrelation attained using the 
OLS model in Mazandaran province exposed a (Moran’s 
I) coefficient equal to 0.215666, an expected index value of 
− 0.001770, a value of Z-score equal to 14.314292 and a P 
value equal to 0%.

The results of this paper in Mazandaran and Qom Prov-
inces indicated that the indicators of confirmed cases and 
deaths are inversely related to the altitude, and the rate of 
recovered cases has a direct relationship with the elevation.

Based on Moran’s autocorrelation pattern, the results of 
the GWR model confirmed that a coefficient of 0.008821 

Table 4  Results obtained from the GWR model for indicators (con-
firmed cases, deaths, and recovered) in Mazandaran province

Records Parameters Amount of 
parameters

1 The residual of least squares 51.25
2 Relative performance measurement 66.96
3 Threshold 59.15
4 R

2 0.72
5 R

2  (adjusted) 71.69

Fig. 9  Spatial distribution of (confirmed, deaths, and recovered) cases obtained using a GWR and b OLS model
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for (Moran’s I), 2.230280 for Z-Score, the value of the 
expectation index being − 0.001136 and the P value equal 
to 0.025729% are acquired, while the result of the spatial 
distribution of the COVID-19 epidemic obtained using the 
OLS model showed a coefficient (Moran’s I) of 0.014834, 
an expectation index of 0.000871, a Z-score of 3.675040 
and a P value of 0.000% for Qom province. Wearing masks 
and using sanitizers are considered the most critical factors 
in reducing deaths. A significant increase in recovered cases 
decreases the number of deaths and increases the rate of 
recovered cases in Mazandaran.
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