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Abstract
Modeling reservoir sedimentation is particularly challenging due to the simultaneous simulation of shallow shores, tribu-
tary deltas, and deep waters. The shallow upstream parts of reservoirs, where deltaic avulsion and erosion processes occur, 
compete with the validity of modeling assumptions used to simulate the deposition of fine sediments in deep waters. We 
investigate how complex numerical models can be calibrated to accurately predict reservoir sedimentation in the presence 
of competing model simplifications and identify the importance of calibration parameters for prioritization in measurement 
campaigns. This study applies Bayesian calibration, a supervised learning technique using surrogate-assisted Bayesian 
inversion with a Gaussian Process Emulator to calibrate a two-dimensional (2d) hydro-morphodynamic model for simulat-
ing sedimentation processes in a reservoir in Albania. Four calibration parameters were fitted to obtain the statistically best 
possible simulation of bed level changes between 2016 and 2019 through two differently constraining data scenarios. One 
scenario included measurements from the entire upstream half of the reservoir. Another scenario only included measure-
ments in the geospatially valid range of the numerical model. Model accuracy parameters, Bayesian model evidence, and the 
variability of the four calibration parameters indicate that Bayesian calibration only converges toward physically meaningful 
parameter combinations when the calibration nodes are in the valid range of the numerical model. The Bayesian approach 
also allowed for a comparison of multiple parameters and found that the dry bulk density of the deposited sediments is the 
most important factor for calibration.

Keywords Bayesian calibration · Bayesian inference · Metamodel · Bayesian active learning · Calibration parameter 
importance · Reservoir sedimentation

Introduction

Artificial reservoirs are crucial infrastructure for providing 
drinking water, water for irrigation, flood protection, rec-
reation, and hydroelectric power (Zarfl et al. 2015; Schleiss 
et al. 2016; Kim et al. 2020). However, reservoirs interrupt 
the longitudinal continuity of fluvial systems (Hinderer et al. 
2013; Sun et al. 2021). For instance, low flow velocities lead 
to sediment deposition in reservoirs. The deposited sediment 

is missing in downstream reaches and reduces the active 
storage capacity of reservoirs (Kondolf 1997). To minimize 
sediment deposition and ensure sustainable reservoir opera-
tion, it is essential to quantify and accurately predict sedi-
mentation processes. State-of-the-art tools for predicting res-
ervoir sedimentation are two (2d) or three (3d) dimensional 
numerical models coupling hydrodynamics and sediment 
transport (Haun et al. 2013; Hanmaiahgari et al. 2018; Olsen 
and Hillebrand 2018; Khorrami and Banihashemi 2021).

Advances in numerical methods and computing power 
have led to remarkable improvements in the accuracy and 
speed of numerical models. Every numerical model requires 
calibration, which is a subjective and time-consuming 
process. Calibration is particularly important because the 
equations used in numerical models are based on simpli-
fied assumptions that are partly empirical. To calibrate a 
model, uncertain calibration parameters are adjusted within 
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a physically reasonable range to achieve a good agreement 
between modeled and measured data with appropriate toler-
ance (Simons et al. 2000; Oberkampf et al. 2004; Paul and 
Negahban-Azar 2018). A common approach to calibrating 
numerical models is the iterative trial-and-error adaption of 
calibration parameters. However, this method is time-con-
suming, labor-intensive, and subjectively biased because it 
does not account for uncertainty in measured data, modeling 
errors, nor equifinality (Schmelter and Stevens 2013; Mue-
hleisen and Bergerson 2016; Beckers et al. 2020). While 
Bayesian inference, a type of stochastic calibration, can 
address some limitations, it requires many iterations and is 
therefore not practical for use with computationally inten-
sive models (e.g., hydro-morphodynamic models to simulate 
reservoir sedimentation). Mohammadi et al. (2018), Beckers 
et al. (2020), and Scheurer et al. (2021) overcame this chal-
lenge using metamodels (also known as surrogate models, 
response surface, reduced model, etc.) to replicate the full 
complexity of a deterministic numerical model. These stud-
ies employed metamodel updating to reduce the total num-
ber of evaluations of the original model required to train the 
metamodel.

Modeling reservoir sedimentation requires specific 
simplifying assumptions regarding hydrodynamics and 
morphodynamics. In comparison to the simulation of riv-
ers, fluctuating water levels and outflow conditions due 
to reservoir operation, and the simultaneous simulation 
of very shallow shores and tributary deltas along with 
deep waters are particularly challenging in reservoir mod-
eling. For instance, wetting and drying of mesh nodes at 
the shoreline of a reservoir require model simplifications 
(e.g., the definition of a minimum water depth for a cell). 
In addition, channel erosion and deltaic avulsion might 
occur at the head of the reservoir. These erosion and avul-
sion processes and their exact location are hard to predict 
and result from stochastic environmental forcing (Hajek 
and Wolinsky 2012; Chadwick et al. 2019). Furthermore, 
these processes are still an open research topic (e.g., Lan-
gendoen et al. 2016) and difficult to simulate accurately, 
much less with the same model simplifications as the 
deposition of fine sediments in deeper waters. As a result 
of global model assumptions, some regions of a reservoir 
model may not be accurately represented by the numerical 
model. This is because the model is generally calibrated 
to accurately represent either fine sediment deposition in 
deep waters or delta progression and erosion processes 
at the head of the reservoir, but not both. This is why we 
are investigating in this study how complex numerical 
models for reservoir sedimentation can be calibrated in 
light of competing model simplifications. To this end, we 
test the hypothesis (i) that Bayesian calibration only con-
verges toward physically meaningful calibration param-
eter combinations when the model is well-conditioned 

(i.e., measured data are in the validity domain of model 
assumptions). The verification of this hypothesis aims to 
enrich the scientific baseline for modeling complex hydro-
morphodynamic processes in reservoirs, which inherently 
require modeling regions that may be physically invalid. 
To test this hypothesis, we adapt a Bayesian calibration 
technique that uses surrogate-assisted Bayesian inver-
sion with a metamodel in the form of a Gaussian Process 
Emulator (GPE) according to Oladyshkin et al. (2020). 
The metamodel and its updating build on Bayesian active 
learning (BAL), which we further improve through the 
cumulative consideration of measurement and metamodel 
errors. To test hypothesis (i), we introduce two spatially 
distinct measurement data scenarios for calibrating a 2d 
hydro-morphodynamic reservoir sedimentation model of 
the large Banja reservoir in Albania.

Bayesian calibration typically starts with the defini-
tion of calibration parameters and the corresponding 
physically meaningful parameter ranges (e.g., Kim and 
Park 2016; Beckers et al. 2020). Based on initial model 
tests, we selected the four most sensitive parameters in 
the form of dry-bulk density of deposited sediments �b , 
critical shear stress for erosion �cr , critical shear stress for 
deposition �d , and a diameter multiplier � that defines the 
grain size distribution. The large number of four calibra-
tion parameters presents a challenge for any calibration 
process and results in a four-dimensional parameter space 
with millions of combination options, leading to problems 
regarding maximum floating-point precision. Hence, we 
implemented optimization strategies for Bayesian calibra-
tion intending to bypass precision errors (arithmetic under-
flow) caused by the multidimensional space of possible 
calibration parameter combinations. Furthermore, these 
parameters carry a high degree of uncertainty that must be 
thoroughly considered during modeling (Schmelter et al. 
2015; Villaret et al. 2016). The grain size distribution, 
the two critical bed shear stresses for cohesive sediments, 
and the dry-bulk density can only be determined with 
great effort by field sampling. Therefore, it is important 
to identify and prioritize the most important parameters 
when planning field data collection. This insight enables 
the development of optimized measurement concepts, to 
reduce costs and workload. Hence, we investigate whether 
our modified Bayesian calibration enables the identifica-
tion of driving calibration parameters for modeling reser-
voir sedimentation even in a four-dimensional parameter 
space. By examining the importance of four potentially 
important parameters driving reservoir sedimentation, we 
test the hypothesis (ii) that at least one of the four calibra-
tion parameters plays a dominant role in the fluvial depo-
sition of suspended load in reservoirs. Therefore, we aim 
to identify the most important calibration parameter that 
should be addressed in sampling campaigns at reservoirs.
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Materials and methods

Study area

The Banja Reservoir

In this study, we numerically simulated hydro-morpho-
dynamic processes in the Banja Reservoir at the Devoll 
River in central Albania. With a length of 196 km, the 
Devoll River is the third longest river in Albania and has 
its source in the Gramos Mountains near the Greek bor-
der. The river flows northwestward and is dammed after 
approximately 160 km, forming the Banja reservoir (see 
Fig. 1). The reservoir was commissioned in 2016 and has 
a length of 14 km, a maximum water depth of 60 m close 
to the dam, and a surface area of approximately 14 km², 
leading to a storage capacity of approximately 400 mil-
lion m³. It is mainly fed by the Devoll River (89%, MQ ≈ 
33 m³  s-1), Holta River (9%), and two smaller tributaries 
(Zalli and Skebices River, 1% each). The catchment of the 
reservoir is characterized by dry and hot summers and wet 
winters, resulting in low summer, high winter, and high 
spring flows. Since snowfall is frequent in winter at high 
elevations, the flow regime is driven by precipitation and 

snowmelt. The sediment yield of the Banja catchment is 
particularly high due to high rainfall erosivity on steep 
terrains composed of loose soils (Walling and Webb 1996; 
Borrelli et al. 2020; Mouris et al. 2022).

Measurement data

The initial bathymetry was interpolated onto a numerical 
mesh from a photogrammetry-based digital elevation model 
(DEM) from 2016, before filling the reservoir. In addition, 
the reservoir bathymetry was measured in 2019 with an 
acoustic Doppler current profiler (ADCP) boat providing 
approximately 632 ×  103 bed level measurements.

The grain size distribution of the suspended sediment was 
determined based on suspended sediment measurements at 
the Devoll River upstream of the reservoir (Ardiclioglu et al. 
2011) and reservoir bed samples. The per-sample median 
diameters of the deposited sediment ranged from 5.7 to 
37.4 μm with a mean of 10.5 μm, emphasizing the cohe-
sive nature of the deposits. Upstream of the reservoir, the 
extracted granulometric curve had cohesive characteristics, 
with 98% of the volume having grain diameters smaller than 
60 μm. Neither cobble, gravel, nor coarse sand was present 
in the study area. Consequently, bedload was not considered 

Fig. 1  Location of the study area; a European context, b national context, and c the bathymetry of the Banja reservoir with indication of the cali-
bration nodes, major tributaries and turbine intake. The red calibration nodes are excluded in the VALDOME data scenario
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in the numerical model. The available measurement data for 
this study are summarized in Table 1.

Numerical full‑complexity model

General setup

In this study, we used Telemac-2D (Hervouet 2007) with 
its sediment transport and bed evolution module GAIA 
(Audouin et al. 2020) to simulate reservoir sedimentation 
processes. Telemac-2D abstracts river landscapes with 
unstructured grids. The here-used unstructured, triangular 
numerical mesh consisted of 24,241 elements and 12,600 
nodes, resulting in element sizes of approximately 40 m. We 
defined two roughness coefficients to differentiate between 
the original river course (before filling) and the newly wetted 
areas. Due to the low flow velocities, the influence of bound-
ary roughness on reservoir hydrodynamics was small and 
we applied Manning coefficients of 0.032 s  m-1/3 (original 
cobble-gravel-bed river) and 0.06 s  m-1/3 elsewhere (many 
trees and brushes were not removed before the impoundment 
of the reservoir).

Telemac-2D approximates the shallow water equations 
with a combined explicit-implicit solver to calculate the 
flow field. The hydrodynamic module passes the calculated 
hydrodynamic variables (water depth, depth-averaged flow 
velocity) and bed shear stress to the GAIA module. We set 
the numerical model parameters with the premise of maxi-
mizing computational and numeric stability while keeping 
computing time short. Therefore, we applied a finite element 
numerical scheme and treated tidal flats (or dry-wet ele-
ments) according to software recommendations to use only 
positive water depths (Hervouet et al. 2011). Furthermore, 
the method of characteristic solves the advective part of the 
hydrodynamic equations and improves stability (a result 
of preliminary model tests). The mixing length turbulence 
model serves to calculate the turbulent viscosity coefficient, 

which is similar to the k-ɛ model when the transverse shear 
stress is the main turbulence generator, as in the case of a 
reservoir, but requires 20% less computing time (Dorfmann 
and Zenz 2016).

To calculate the depth-averaged concentration C(x, y, t) 
of tracers (i.e., fine particles) in (g  L-1), the 2d advection-
diffusion-equation is solved.

where h is the water depth (m), u (m  s-1) and v (m  s-1) 
are the depth-averaged components of flow velocity, ε is 
the turbulent diffusivity of the sediment (m²  s-1), and E and 
D are the erosion and deposition fluxes (kg  m-2  s1), respec-
tively. We applied the default treatment of the diffusion term 
in Eq. (1) to increase numerical stability. In addition, we 
chose the “Edge-based N-Scheme” to solve the advective 
term because it provides mass conservative results and treats 
tidal flats. The erosion and deposition fluxes for cohesive 
sediment are calculated as follows:

where M is the Krone-Partheniades erosion constant (kg 
 m-2  s-1), �b is the bed shear stress (N  m-2), �ce is the critical 
shear stress for erosion (N  m-2), �d is the critical shear stress 
for deposition (N  m-2), and �s is the settling velocity (m 
 s-1). The settling velocity is a function of the mean sedi-
ment diameter, the ratio of the sediment and water densities, 
and the kinematic viscosity of the water. The measurement 
data (see above) had shown that the deposits predominantly 
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Table 1  Used input data for the Bayesian calibration of the Banja reservoir

Data set name Survey method Data type Purpose in this study

Digital elevation model (2016) Aerial survey Georeferenced raster Initial bathymetry
Measured bed levels (2019) Bathymetric survey Georeferenced shapefiles Target (calibration) bathymetry
Water levels and outflow Direct measurement Text files Liquid boundary conditions (numerical 

model)
Inflow discharge Calculated based on water level and 

outflow
Text files Liquid boundary conditions (numerical 

model)
Grain size distribution Sediment samples (Ardiclioglu et al. 

2011) and field survey in 2021
Text files Used to define the range for the three 

grain size fractions
Suspended sediment concentration Soil erosion and sediment transport 

model calibrated upstream of the 
reservoir (Mouris et al. 2022)

Text files Boundary conditions for numerical 
model

Sediment samples (reservoir bed) Measurement campaign Text files Verification of model assumptions
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consisted of cohesive sediment, and therefore, only sus-
pended transport was considered in this study.

After determining the erosion and deposition fluxes and 
calculating the net transport flux per element, GAIA updates 
the bed level using the Exner equation (Paola and Voller 
2005). For a detailed description of the free surface flow and 
sediment modeling algorithms used, the reader is referred 
to Hervouet (2007, 2020) and Audouin and Tassi (2020). 
The steering file for the Telemac-2D simulations is available 
at Acuna Espinoza et al. (2022).

The focus of the numerical model was on the time-effi-
cient simulation of suspended sediment transport in a large 
reservoir to ease repetitive calibration runs. Therefore, bed-
load was not considered and a coarse mesh resolution was 
used. Due to these simplifying assumptions, but also because 
of the general limitation of numerical models, it is not pos-
sible to accurately predict channel avulsion and erosion 
through previously deposited cohesive sediments (Hajek and 
Wolinsky 2012; Liang et al. 2015). Furthermore, channel 
bank failure depends on the sediment type, moisture content, 
and seepage processes (Luppi et al. 2009; Rinaldi and Nardi 
2013; Olsen and Haun 2020). Therefore, bank failure cannot 
be simulated with a numerical setup for reservoir sedimenta-
tion due to fine particle deposition. Since bank failure pro-
cesses only occur at the head of the reservoir, the bed level 
changes in this domain cannot be predicted in a physically 
correct and stable manner. Still, the above-introduced model 
setup is valid in deep-water model domains outside of the 
shallow deposition delta of the Devoll River.

Boundary conditions

For the simulation of reservoir sedimentation over three 
years, between the two surveys from August 2016 and 
August 2019, we defined the reservoir inflow Qin (m³  s-1) 
as a function of measured water levels and measured out-
flow Qout (m³  s-1) based on a routing equation. More detailed 
information can be found in SI 1.

Since the suspended sediment concentrations at the 
tributaries were not known for the simulation period, we 
implemented a previously developed indirect calculation 
method (Mouris et al. 2022). The indirect method builds 
on a calibrated soil erosion and sediment transport model 
with a monthly resolution (tons  month-1) to calculate the 
suspended sediment yield (SSY) of the catchment of the 
Banja reservoir. We divided the SSY from Mouris et al. 
(2022) at the Devoll River by the monthly inflow volume to 
prescribe suspended sediment concentrations (SSC) at the 
liquid model boundaries. Thus, SSC was constant for every 
month but varied from month to month. The mean SSC at 
the Devoll River for the calibration period was 1.36 kg  m-3 
with a maximum of 4.0 kg  m-3 in September 2017.

Calibration parameters

This study optimized four calibration parameters in the form 
of dry-bulk density of deposited sediments �b , critical shear 
stress for erosion �cr , critical shear stress for deposition �d , 
and a diameter multiplier � for settling velocities. The cali-
bration parameter values were to be adapted to yield a possi-
bly best simulation of the measured bed level changes �zmeas
between 2016 and 2019.

The dry-bulk density �b and consolidation processes of 
mud-sand mixtures strongly depend on the sand content (van 
Rijn and Barth 2019). Because more than 98% of the depos-
ited sediment in the Banja reservoir is cohesive, we defined 
�b based on reported literature values for very low (< 10%) 
sand content. We considered the dry-bulk density a quasi-
random variable with equally likely values (i.e., uniformly 
distributed) between 200 kg  m-3 and 500 kg  m-3 (van Rijn 
and Barth 2019; van Rijn 2020).

The critical shear stresses for erosion �cr and deposition �d 
control the exchange rate between suspended and deposited 
sediment. To define quasi-random, uniformly distributed 
value ranges for �cr and �d , we referred to field and labora-
tory tests with sediment mixtures with similar characteristics 
(grain size distribution, bulk density) as in the Banja reser-
voir. To this end, we tested value ranges for �cr between 0.05 
and 0.4 Pa (Kornman and Deckere 1998; Widdows et al. 
1998; Houwing 1999; Lumborg 2005; Shi et al. 2012; van 
Rijn 2020), and for �d between 0.01 and 0.1 Pa (Krone 1962; 
Lumborg 2005; Shi et al. 2012).

The deposition pattern in the reservoir also depends on the 
particle size that drives the settling velocity �s (see Eq. (2)). 
We applied the granulometric curves of suspended sediment 
upstream of the reservoir, which were subjected to consider-
able variability (i.e., uncertainty) in the model domain. Fig-
ure 2 plots the granulometric curve defined by three diameters 
representing the lower, middle, and upper third of the total vol-
ume. To account for uncertainty, we multiplied every diameter 
by a factor � that takes uniformly distributed values between 

Fig. 2  Granulometric curve with the minimum and maximum grain 
sizes defined by the �-multiplier
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0.8 and 1.7. Thus, the upper limit of grain sizes was 41 μm, 
which was larger than 95% of the sediment sample volume. 
The lower limit of 1.8 μm (2.3 μm ∙ 0.8) was based on prelimi-
nary model runs, in which we tested the smallest possible sedi-
ment particles that remain in suspension and have an almost 
negligible influence on the deposition volume. Table 2 shows 
the resulting value ranges for the four calibration parameters 
considered in this study.

Bayesian calibration

Bayesian inference

To calibrate a numerical model using Bayesian inference, we 
inferred the posterior distribution p

(
�|zmeas

)
 of the model 

calibration parameters (and hence the corresponding model 
responses) based on the measured bed levels zmeas and defined 
initial ranges for the calibration parameters. The posterior dis-
tribution p

(
�|zmeas

)
 is the result of evaluating Bayes’ theorem 

in the context of model updating:

 where p(�) is the prior probability distribution that defines 
the initial probability of the calibration parameters before 
considering new or additional evidence ( zmeas ). p

(
zmeas|�

)
 

is the so-called likelihood function and indicates how well 
the metamodel reproduces the measured data zmeas given a 
parameter combination � . p

(
�|zmeas

)
 is the posterior prob-

ability distribution (i.e., the updated probability of the cali-
bration parameters � given measured data zmeas ), which is 
expected to be narrower than p(�) (Box and Tiao 1992; Ola-
dyshkin and Nowak 2019). p

(
zmeas

)
 is a normalization factor, 

often referred to as Bayesian model evidence (BME), and is 
important when different posterior distributions are being 
compared with each other or several competing models are 
being evaluated (Mohammadi et al. 2018). Assuming that 
the deviations between the measured bed levels zmeas and 
the modeled bed levels zmod are normally distributed and 
independent, the likelihood function p

(
zmeas|�

)
 is calculated 

proportionally to the sum of squared errors �2
i
 between meas-

ured and simulated bed levels zmeas − zmod weighted by the 
total error ei , where i indicates the calibration node.

(4)p
(
�|zmeas

)
=

p
(
zmeas|�

)
∙ p(�)

p
(
zmeas

)

This study provides additional novelty by improving BAL 
because of how we implement the measurement error emeas 
and the metamodel error emeta . In particular, we calculated 
the total errors ei for each calibration node i as the sums of 
emeas,i and emeta,i according to the following descriptions.

The measurement errors emeas resulted from the interpola-
tion of the bed level measurements at the calibration nodes 
of the numerical mesh and uncertainties of field measure-
ments. We used an interpolation radius of 3 m around the 
calibration nodes to average the bed level. Thus, the number 
of measurements per calibration node varied from 1 to 35 
(8 on average). The variable amount of measurements avail-
able for averaging affected the confidence in the averaged 
values because, for instance, 15 measurements are more 
representative than two. The mean measurement error emeas 
was approximately 0.4 m (measurement precision according 
to operator) where possible sources of errors were a high 
concentration of suspended sediment near the bottom, uncer-
tainties in the water level of the reservoir, and the move-
ment of the ADCP boat due to waves. Thus, to calculate 
the measurement errors emeas,i at every node, we introduce 
Eq. (6) where si is the number of observation points within 
the 3-m radius:

where an adaptederror of 1.02 m was computed itera-
tively to ensure that the average value of emeas for the total 
number of calibration nodes was 0.4 m. Thus, for example, 
emeas,i for a calibration node where the bed level was calcu-
lated based on 26 survey points is 0.24 m, while two survey 
points resulted in an emeas,i of 0.6 m.

In addition, we accounted for a metamodel error emeta in 
the likelihood function because the metamodel is just an 
approximation of the full-complexity numerical model. We 
calculated e

meta
 through a leave-one-out cross-validation 

(LOO-CV), in which the model is repeatedly fitted on n-1 
calibration nodes. Then, we calculated the LOO-CV error 
for each calibration node and training point. The LOO-CV 
error variance per calibration node was subsequently calcu-
lated and implemented as metamodel error emeta,i . Finally, 

(5)p
(
zmeas|�

)
∝ exp(−0.5

[
�2
1

e2
1

+
�2
2

e2
2

+⋯ +
�2
n

e2
n

]
)

(6)emeas,i =
adapted error

1 + ln
(
si
)

Table 2  Calibration parameters 
and their value ranges for 
uniform distributions U(min, 
max) considered in this study

Calibration parameter Investigated range Prior assumption

Critical shear stresses for erosion �cr (Pa) 0.05 0.4 U(0.05, 0.4)
Critical shear stresses for deposition �d (Pa) 0.01 0.1 U(0.01, 0.1)
Dry-bulk density �b

(
kgm−3

)
200.0 500.0 U(200, 500)

Diameter multiplier � (-) 0.8 ∙ d 1.7 ∙ d U(0.8, 1.7)
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the total error ei included in the likelihood function is com-
posed of the calibration node-specific measurement error 
emeas,i (6) and the metamodel error emeta,i:

If the total errors ei (Eq. (7)) were significant, the influ-
ence of the difference between the measured and modeled 
bed level on the likelihood score decreased (Eq. (5)).

Metamodel construction

Equation (4) can be approximated through Monte Carlo sam-
pling, which requires thousands of numerical model evalu-
ations. However, models that simulate hydrodynamic and 
morphodynamic processes may require a long computing 
time, making it computationally impractical to perform thou-
sands of trials. To circumvent unacceptably long comput-
ing time, we employed a surrogate-assisted (referring to the 
metamodel being a surrogate for a full-complexity model, 
Oladyshkin et al. 2020) Bayesian inversion technique, which 
replaces the full-complexity numerical model with a meta-
model. In particular, a metamodel emulates the output trends 
of a complex model but requires orders of magnitude less 
computing time (Beckers et al. 2020; An et al. 2022). Here, 
we used a Gaussian process emulator (GPE) as metamodel, 
which is discussed in more detail by Rasmussen and Wil-
liams (2006). As the GPE requires the definition of a kernel, 
we used a radial basis (i.e., squared exponential covariance) 
function (RBF) kernel in this study. The RBF needs the defi-
nition of length scales and their boundaries. The resulting 
GPE metamodel can then be trained with numerical model 
responses resulting from various combinations of possible 
calibration parameter values. Thus, the GPE metamodel was 
fitted toward a multidimensional response surface where the 
number of dimensions corresponds to the number of calibra-
tion parameters. Note that the metamodel cannot generally 
replace the numerical model and only serves the purpose of 
accelerating model calibration.

Bayesian active learning through metamodel training

In this study, we used the GPE metamodel to approximate 
the prior p(�) through  106 random Monte Carlo samples. 
The quality of the surrogate-assisted Bayesian calibration 
depends on the ability of the metamodel to replicate the 
full-complexity model. The more training points used to 
train the metamodel, the better the predictions, since more 
information is provided to the metamodel with fewer gaps 
in the parameter space (i.e., fewer gaps need to be closed 
through stochastic interpolation). However, filling the 
entire parameter space with training points with a compu-
tationally expensive full-complexity model is practically 

(7)e2
i
= e2

meas,i
+ e2

meta,i

not feasible because it requires several hours to compute 
one training point (sums up to more than 500 years of 
computing time in our case). To bypass long computing 
time, we applied BAL, which identifies optimal regions in 
the parameter space for calibrating parameters as a func-
tion of metamodel responses. BAL iteratively improves the 
metamodel in those regions of the parameter space that are 
most important for Bayesian inference (Oladyshkin and 
Nowak 2019; Oladyshkin et al. 2020).

Before starting the BAL process, a prior probability dis-
tribution p(�) was assigned to every calibration parameter. 
Initially, a uniform probability distribution between two limit 
values was assumed. The next step is to compute an initial 
metamodel, using m parameter realizations and the corre-
sponding full-complexity numerical model runs to train the 
metamodel. BAL starts with iteratively updating the initial 
metamodel with new training points so that the metamodel 
predictions better represent the full-complexity model. For 
this purpose, we sampled q parameter realizations �i that 
compete to be the next training point (exploration).

The parameter realizations constitute the parameter space 
and each combination is evaluated in the metamodel to gen-
erate an output space. Here, we had n outputs, associated 
with the location of our calibration nodes. An advantage 
of Gaussian processes for generating the metamodel is that 
each prediction of the output space consists of a mean �n 
and a standard deviation �n . Therefore, one can explore the 
output space using a multivariate Gaussian distribution. 
Figure 3 shows the BAL workflow and exemplary features 
two random exploration samples (black and gray circles), 
which in our study, are not just two but  105 random explo-
ration samples forming the output space prior. To yield 
the output space posterior distribution, we considered two 
options, notably rejection sampling and Bayesian reweight-
ing. Due to the high dimensionality of the output space (142 
calibration points), the rejection rate for the first case was 
too high, and we chose Bayesian reweighting. For this pur-
pose, we renormalized each value of the prior´s likelihood 
by their total sum to generate the posterior distribution. 
Consequently, all realizations (i.e., Monte Carlo samples) 
of the prior contributed to the posterior statistics (i.e., length 
scales), proportional to their likelihood. Once the prior p(�) 
and posterior p

(
�|zmeas

)
 distributions had been generated, 

we used Eq. (8) to evaluate the so-called relative entropy 
DKL

(
p
(
�|zmeas

)
, p(�)

)
 (also referred to as Kullback–Leibler 

divergence) between both distributions (Kullback and Lei-
bler 1951; Oladyshkin et al. 2020).

where Ep(�|zmeas) is the average of the posterior sample’s 
likelihood (through the likelihood function, cf. 

(8)
DKL

(
p
(
�|zmeas

)
, p(�)

)
= −ln[BME] + Ep(�|zmeas)

(
ln
[
p
(
zmeas|�

)])
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Equation  (5)). In this context, the relative entropy 
expresses the information gain from the prior to the pos-
terior distribution.

To this end, every BAL iteration involves the calculation 
of DKL

(
p
(
�|zmeas

)
, p(�)

)
 for q samples from the parameter 

space. After evaluating DKL

(
p
(
�|zmeas

)
, p(�)

)
 , we calcu-

lated the parameter combination �max(DKL) that produced the 
maximum value of relative entropy to select the stochasti-
cally best-performing values for the calibration parameters 
in this iteration step (exploitation). We used the set of cali-
bration parameters with the highest relative entropy to re-run 
the numerical full-complexity model and prepared the next 
BAL iteration step. In particular, the results of the new full-
complexity model run serve as new training points for the 
GPE at the beginning of the next BAL iteration step. The 
BAL iterations continue until a stop criterion is reached, 
which is typically the convergence of relative entropy and 
BME (Oladyshkin et al. 2020). In this study, we addition-
ally considered the evolution of the root-mean-square error 
(RMSE) after every BAL iteration. The BAL workflow 
(Fig. 3) and creation of the initial metamodel are explained 
in detail in the supplemental material SI 2. The complete 
procedure is implemented in a Python code (Acuna Espinoza 
et al. 2022).

Selection of calibration nodes for model calibration

The numerical model of the Banja reservoir was calibrated 
toward measured bed levels at the end of the three-year sim-
ulation period from 2016 to 2019. However, we could not 
use the totality of the available 632 ×  103 bed level meas-
urements because we needed to meet two criteria. First, the 
measurements needed to comply with the computational 

mesh and we agglomerated multiple measurements into one 
at the calibration nodes of the mesh. Second, the number of 
BAL iterations depends on the number of calibration nodes, 
and a large number of nodes can result in the so-called curse 
of dimensionality (Bellman 1957), which we will discuss 
later in light of the results. For instance, if we used 3500 
measurement points, the multivariate Gaussian density for 
calculating the prior output space would have 3500 dimen-
sions of spatially explicit bed level change.

Therefore, we only used nodes located at a maximum dis-
tance of 1.5 m from a measured point for calibration, and we 
agglomerated all measurements in a 3-m radius at the result-
ing calibration nodes into one bed level value. Further, we 
did not consider measurements in the downstream section 
of the reservoir, as we are only interested in the upstream 
area, where most sediments deposit. These selection filters 
resulted in 142 calibration nodes at which we evaluated mod-
eled bed levels in the calibration process (see also Fig. 1). 
For testing the hypothesis (i) that Bayesian calibration only 
converges toward physically meaningful model parameter 
combinations when the model is well-conditioned, we intro-
duced two scenarios of measurement data available for the 
calibration process. First, we considered all 142 calibration 
nodes that define the MAXME (MAximum MEasurements) 
data scenario (black and red calibration nodes in Fig. 1). 
Second, we removed points in regions where deltaic avulsion 
and channel erosion occurred according to the observation 
from 2016 to 2019 to define a VALDOME (VAlid DOmain 
MEasurements) data scenario, where all calibration nodes 
are in the domain of validity of the numerical model. In 
particular, we removed points adjacent to dry areas (tidal 
flats) and all measurements where the model uncertainty 
from the MAXME data scenario was high, as indicated by 

Fig. 3  Flow diagram explaining 
the Bayesian active learning 
method applied in this study
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LOO-CV error greater than 5.5 m based on an expert assess-
ment. These two removal criteria essentially excluded model 
regions where avulsion and channel erosion occurred at the 
head of the reservoir, which the full-complexity model will 
not be able to simulate correctly. The application of these 
removal criteria left 109 calibration nodes that we used for 
the VALDOME scenario (black calibration nodes in Fig. 1).

Experimental procedure

Bayesian calibration stability

The proposed optimization of the Bayesian calibration 
scheme refers to the extension of the BAL framework, nota-
bly the adaptive implementation of errors in the likelihood 
function through LOO-CV, and its application to four cali-
bration parameters. With these two novel aspects of BAL, 
we investigated the robustness of Bayesian calibration 
regarding the quality of the numerical model and in light 
of equifinality. Therefore, we applied Bayesian calibration 
to the two above-introduced data scenarios (MAXME and 
VALDOME).

To prepare the BAL iterations, we ran the full-complexity 
model with 15 calibration parameter combinations to train 
the initial metamodel. 13 of the parameter combinations 
stemmed from random sampling in the parameter space, and 
the remaining two corresponded to theoretically maximum 
and minimum sedimentation (i.e., high/low �cr , low/high �d , 
low/high �b , high/low � , respectively). A minimum of one 
training point would be sufficient for the initial metamodel, 
but more initial training points for BAL can reduce the total 
time required to achieve convergence. We tracked BME, and 
RMSE to evaluate if the calibration reached convergence 
regarding uncertainty and error (see the above section on 
Bayesian active learning). However, convergence may not be 
achieved if multiple high-probability regions cause exploi-
tation to jump between very different calibration parameter 
combinations in the BAL iterations. In these cases, BAL the-
oretically bounces back and forth eternally between nearly 
equally likely combinations of calibration parameters. This 
phenomenon, known as equifinality, poses a great challenge 
for model calibration (e.g., Franks et al. 1997).

To address equifinality, we analyzed the BAL conver-
gence in the two measurement data scenarios (see above) 
with 55 iterations according to literature recommendations 
(Mohammadi et al. 2018; Beckers et al. 2020; Scheurer et al. 
2021). We verified hypothesis (i) if the VALDOME scenario 
led to more unique and physically meaningful maximum 
likelihood regions than the MAXME data scenario, and 
less significant, later, or no convergence in the MAXME 
data scenario. To this end, we investigated the evolution 
of BME, RMSE, and the variability of the four calibration 
parameters in the last five BAL iteration steps. To assess 

the ability of the metamodel to reproduce the results of the 
full-complexity model, we compared the results predicted by 
the metamodel with those predicted by the numerical model. 
We present the global model accuracy after the Bayesian 
calibration by comparing the calculated and measured bed 
level changes after running the two data scenarios.

Importance of calibration parameters

The Bayesian calibration looks for the best-fit combination 
of the four calibration parameters �cr , �d , �b , and � to inves-
tigate optimization methods for multidimensional calibra-
tion parameter spaces and find the most relevant parameters 
driving reservoir sedimentation in this numerical model. 
The four calibration parameters are known to be relevant 
for hydro-morphodynamic processes in reservoirs (Haun 
et al. 2013; Dutta and Sen 2016; Hillebrand et al. 2016). 
However, to our best knowledge, the four parameters have 
never been directly compared with each other due to the 
limited capacities of subjective trial-and-error calibration. 
The adapted Bayesian framework and the VALDOME sce-
nario enable us to perform such a comparison of the four 
calibration parameters. Thus, we aim to test hypothesis (ii) 
that at least one of the calibration parameters �cr , �d , �b , or � 
plays a governing role in the fluvial deposition of suspended 
sediments in reservoirs. To this end, we made use of a multi-
parameter plot of the posterior distributions (Eq. (5)) of the 
four calibration parameters for both data scenarios. We will 
accept hypothesis (ii) if at least one of the four calibration 
parameters has a considerably narrower posterior distribu-
tion than the other parameters. This parameter will be more 
important than the other calibration parameters because it 
has the smallest uncertainty (i.e., narrowest posterior) of the 
maximum likelihoods.

Results

Convergence speed

In the VALDOME scenario, the BME began converging 
toward a value of approximately  10–31 after the 46th BAL 
iteration, and we ran in total 55 iterations to monitor the con-
vergence trend (see Fig. 4). The BME for the MAXME sce-
nario fluctuated around a value of  10–37 during the 55 BAL 
iterations, and no clear convergence trend was observed. 
In addition, Fig. 4 also shows the evolution of the RMSE 
between the metamodel and full-complexity model results 
for every tested parameter combination used as a training 
point in BAL. The plots reveal that the RMSE is higher for 
the MAXME scenario, and more importantly, there is no 
decreasing trend for this scenario. In contrast, the evolu-
tion of the RMSE for the VALDOME scenario decreased. 
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Figure 5 shows the variability of the four calibration param-
eters in the last five BAL iterations for the VALDOME sce-
nario in black and the MAXME scenario in gray. Comparing 
the two data scenarios shows that the MAXME scenario had 
significantly higher variability and no physical convergence 
for �cr and �d . In contrast, there was hardly any variability of 
�b in both scenarios, whereas the variability in � was slightly 
higher in the VALDOME scenario. The total computing 

time for the BAL iterations per scenario was approximately 
one month (on 12 Cores using AMD Ryzen 9 5950 × 16- 
(32) @ 3.4 GHz processor), which was only possible with 
the coarse mesh resolution.

Posterior distributions and importance 
of calibration parameters

Maximum likelihoods

Table 3 shows the maximum likelihood of posterior distribu-
tions for the calibration parameters, which is the realization 
of the Monte Carlo sample with the highest likelihood and 
comparable to a deterministic best-fit solution. The maxi-
mum likelihood of �cr was 0.39 Pa, close to the upper limit 
considering all calibration nodes (MAXME). In the physi-
cally relevant-only (VALDOME) scenario, �cr was 0.25 Pa. 
The critical shear stress for deposition �d was close to the 
lower limit at 0.02 Pa and 0.01 Pa in the MAXME and VAL-
DOME scenarios, respectively. The maximum likelihood of 

Fig. 4  BME (top) and RMSE evolution including linear trend lines 
(bottom) for the 55 BAL iterations and both data scenarios

Fig. 5  Variability of the four 
calibration parameters for the 
five last BAL iterations 50–55 
and both data scenarios

Table 3  Calibrated parameters for the morphodynamic model of the 
Banja reservoir using BAL

Maximum likelihoods

Calibration Parameter Prior assumption MAXME VALDOME
�cr (Pa) U(0.05, 0.4) 0.39 0.25
�d (Pa) U(0.01, 0.1) 0.02 0.01
�b
(
kgm−3

)
U(200, 500) 416.2 403.6

� (-) U(0.8, 1.7) 0.82 0.98
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�b was close to 410 kg  m-3 in both scenarios. The diameter 
multiplier � was 0.82 in the MAXME scenario and 0.98 in 
the VALDOME scenario. A detailed analysis of the posterior 
parameter space is provided below.

Posterior parameter distributions

The posterior distributions of the calibration parameters 
indicate the uncertainty in the maximum likelihoods listed in 
Table 3. Figure 6 shows the individual posterior histograms 
for each calibration parameter after the MAXME scenario 
at the top (433 posterior samples) and after the VALDOME 
scenario at the bottom (540 posterior samples).

As a standardized measure to identify driving calibra-
tion parameters and evaluate their uncertainty, we calcu-
lated the Kullback–Leibler divergence (Kullback and Leibler 
1951), also known as relative entropy (RE), to measure the 
information gain between the initial (uniform) prior and the 
final posterior probability distribution for every calibration 
parameter. High RE characterizes a narrow distribution, 
which represents high information gain and low uncertainty 
in the maximum likelihoods.

Figure 6 shows that �b and �d have the narrowest posterior 
distribution in both calibration scenarios, which indicates 
that these parameters are the most restrictive and important 
in the calibration process. This finding is also supported by 
the high RE of 1.68 and 2.29 for �b and 2.01 and 1.77 for �d . 
That is, only values close to the maximum likelihood value 
(dashed line) led to accurate results. However, the maximum 
likelihood for �d was close to the lower limit in both data 
scenarios. The histogram for �cr differs significantly between 
the two different scenarios. For the MAXME scenario, the 
distribution peaks close to the upper limit, and the RE was 

1.23 whereas the histogram for the VALDOME scenario 
peaks at 0.25 Pa and gets wider, characterized by a lower RE 
of 0.89. The histogram of the diameter multiplier � peaks in 
both scenarios close to the lower limit of the initial range 
and the RE slightly increased from 1.23 to 1.34 for the VAL-
DOME scenario.

The meaningfulness and qualitative significance of the 
yielded maximum likelihoods can also be interpreted by 
examining data patterns and regions of high and distinguish-
able maximum likelihoods in the parameter space. For this 
purpose, Fig. 7 illustrates the likelihood of all possible cali-
bration parameter combinations of �d , �cr , � , and �b at the 
end of the VALDOME scenario. Similar plots of the results 
for the MAXME scenario can be found in SI Fig. 2. Since a 
four-dimensional parameter space cannot be plotted graphi-
cally, we created six two-dimensional plots of the possible 
combinations. The three plots on the right of Fig. 7 clearly 
show that the likelihoods for �b< 300 kg  m-3 are very small 
and quite small for �b> 450 kg  m-3 (in line with Fig. 6). 
Thus, values of �b significantly lower or higher than the max-
imum likelihood did not lead to accurate results, and the data 
pattern of �b confirms its high relative importance compared 
to the other three calibration parameters. In contrast, the 
boundary between high and low probabilities in the data 
pattern for �d was less distinct, with the highest likelihoods 
occurring for �d < 0.05 Pa. �cr had the least pronounced data 
pattern, and high probabilities occurred almost throughout 
the entire range. In addition, the data pattern for � showed 
high likelihoods over a wide range with � < 1.2.

Furthermore, there was no significant correlation 
between the calibration parameters (see SI Fig. 3), which 
indicates that the calibration parameters were well chosen 
and independent. If there were high correlations between 

Fig. 6  Posterior distributions in the parameter space, and associated relative entropy (RE) at the end of the MAXME scenario in gray (top) and 
the VALDOME scenario in light gray (bottom). The dashed vertical lines indicate the maximum likelihood values of the calibration parameters
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the calibration parameters, they would contain redundant 
information and the variation in one parameter could be 
compensated by a change of another parameter. In such 
a case, calibration would be restricted to determining the 
ratios between the parameters.

Simulated bed level changes

Figure 8 shows the cumulative bed level changes and water 
depth in the Banja reservoir after the end of the three-year 
simulation period with the calibration parameters for the 
VALDOME scenario listed in Table 3. In the region near 
the Devoll River tributary, the water became shallow and 
several channels formed. The highest deposits of more than 
4 m occurred in the upstream part of the reservoir. At low 
water levels, some of the deposited sediment in the upstream 
part of the reservoir was eroded, resulting in the formation 
of smaller channels. These channels did not occur in perma-
nently impounded regions (shown in dark blue). The sedi-
ment deposit height decreased in flow direction because of 
the decreasing flow velocity and the continuous settling of 
sediment particles. In the reservoir, the deposition heights 

in flow direction were less than 4 m after 2.4 km, less than 
1.5 m after 4.6 km, and less than 0.5 m after 8.0 km.

Model accuracy

Agreement between GPE metamodel and numerical model

Since the final calibration parameters stem from the meta-
model, we performed two analyses to evaluate the calibra-
tion quality. First, we compared the metamodel with the 
2d hydro-morphodynamic model to quantify how well the 
metamodel mimics the full-complexity model results. Sec-
ond, we compared the calibrated numerical model with the 
measurement data to evaluate the final model quality.

To evaluate the quality of the metamodel results, the 
numerical model was run with the optimal calibration 
parameter combinations shown in Table 3. The inclusion of 
all calibration nodes (MAXME) led to a Pearson’s correla-
tion r of 0.92, an RMSE of 0.87 m, and a mean absolute error 
(MAE) of 0.45 m (Fig. 9). Hence, the metamodel reproduced 
the numerical model results with good accuracy. However, 
the metamodel significantly overestimated bed level changes 
for some calibration nodes in the upstream part near the 

Fig. 7  Likelihood values along 
the six possible parameter space 
combinations at the end of the 
VALDOME scenario
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Devoll River tributary. Excluding these upstream nodes 
(VALDOME) resulted in a significantly better r of 0.98, an 
RMSE of 0.32, and an MAE of only 0.13 m. Therefore, the 
trained metamodel accurately emulated the full-complexity 
numerical model results at the end of the simulation period. 

To assess the regions of high uncertainty in the meta-
model, we calculated the LOO-CV errors for the 142 cali-
bration nodes and the 70 parameter combinations used as 
training points. We averaged the absolute values of the 
differences for each point to estimate the expected error 
between the metamodel and the full-complexity model. 
This analysis is important because a high model metamodel 
error causes decreased influence of the difference between 
the measured and modeled bed level on the likelihood 
(Eq. 5). Therefore, calibration nodes with a large LOO-CV 
error indicate high uncertainty in the metamodel and carry 

less weight in the final likelihood calculation. The LOO-CV 
mean errors for the MAXME scenario ranged from 0.04 to 
4.04 m (0.8 m on average). The highest errors occurred near 
the upstream boundary, which is also shown in SI Fig. 4. In 
contrast, the LOO-CV errors for the VALDOME were sig-
nificantly smaller and ranged from 0.03 to 1.76 m (0.35 m 
on average).

Modeled and measured agreement

To evaluate the quality of the calibrated hydro-morpho-
dynamic numerical model, we calculated Pearson’s r and 
the RMSE for both scenarios. The MAXME scenario led 
to an r of 0.70, RMSE of 1.62 m, and MAE of 1.17 m. 
The VALDOME scenario yielded a similar r of 0.66, a 
smaller RMSE of 1.04, and a smaller MAE of 0.91 m. 

Fig. 8  Cumulative bed level 
changes (left) and water depth 
(right) after the end of the simu-
lation period of the VALDOME 
scenario

Fig. 9  Scatter plot of the 
computed bed level changes 
�z from the metamodel and 
the numerical model after the 
MAXME scenario at the left 
and VALDOME scenario at the 
right. The dashed line repre-
sents the hypothetic perfect 
metamodel accuracy
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Thus, both scenarios yielded satisfactory agreement 
between the measured and modeled results according to 
global statistics indicating a good representation of the 
sedimentation patterns in the Banja reservoir (see Fig. 10). 
Still, the MAE and RSME were not negligible but signifi-
cantly lower in the VALDOME scenario. In the MAXME 
scenario, there were 11 calibration nodes with bed level 
change errors greater than 2 m compared to only three 
such nodes in the VALDOME scenario (see SI Fig. 5). 
In addition, Fig. 10 indicated that the numerical model 
tends to underestimate small measured bed level changes 
by approximately 1 m in both scenarios.

Discussion

Deposition patterns and model deviations

Figure 11 shows the results of the bed level evolution in the 
upstream part of the reservoir after three years and for two 
simulations with similar parameter combinations. The figure 
shows several channels with high topographic gradients at 
different locations. Thick sediment deposits occurred next 
to these channels, particularly at mesh nodes that were only 
temporarily wet in the simulation period. These nodes can 
be inside a channel (small sediment deposits) in one model 
run and outside the channel (thick sediment deposits) in the 
next model run. Although the physical model environment 

Fig. 10  Scatter plot of modeled 
and simulated bed level changes 
�z for the MAXME scenario at 
the left and VALDOME sce-
nario at the right. The dashed 
line represents the hypothetic 
perfect model accuracy

Fig. 11  Simulated bed level 
changes (2016–2019) in the 
upstream part of the reservoir 
for two different simulations 
with similar calibration param-
eters at the end of the simula-
tion period
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is similar, the patterns in Fig. 11a and b are very different, 
which indicates numerical instabilities that the metamodel 
attempted to emulate by drastically changing the calibration 
parameter values (see Fig. 5).

The coarse mesh used in this study (to reduce comput-
ing time) affected the accuracy of the results and numerical 
stability. In addition, the model only considered suspended 
sediment transport and was not able to reproduce shallow 
water regions experiencing channel erosion, deltaic avul-
sion, or bank failures. The simplification assumptions made 
the model physically not fully well defined for simulating 
morphological processes at the head of the reservoir. In the 
MAXME scenario, the BAL iterations attempted to over-
come mismatches between measured and modeled erosion 
channels by prominent changes in the calibration parameter 
values, indicating equifinality. As a result, the BAL itera-
tions were unstable and did not converge. This is reflected in 
the higher fluctuations of the calibration parameters (Fig. 5) 
and maximum likelihoods near the limit of the investi-
gated range for three of the four calibration parameters in 
the MAXME scenario. In addition, the BME (Fig. 4) did 
not converge because every BAL iteration tried to explore 
numerical instability in the delta region. Yet, the adapted 
Bayesian calibration worked well in the model domain 
where suspended sediment deposition could be reproduced 
and the model was stable (VALDOME). The BAL converged 
toward a solution that is confirmed by a very low RMSE of 
0.32 m and a high Pearson’s r of 0.98 between the full-com-
plexity and the metamodel. However, the RMSE of 1.04 m 
of the numerical model regarding measured data was signifi-
cantly smaller compared to the MAXME scenario but not 
negligible, which is due to the limitations of the modeling 
approach. For instance, complex three-dimensional hydro-
dynamics and stratified flow cannot be represented by a 2d 
model, which is expected to affect the deposition pattern in 
the reservoir. Also, we assumed a constant �b for the entire 
reservoir, while consolidation occurs over time and the den-
sity increases (Mehta et al. 1989; Winterwerp and Kesteren 
2004; Lo et al. 2014; Hoffmann et al. 2017). Accordingly, 
the average bulk density in a reservoir is often heterogene-
ous and varies over time, which is not reflected in our model 
assumptions. In addition, some boundary conditions were 
not measured directly, and therefore, subject to additional 
uncertainty. For example, the inflow into the reservoir was 
calculated from measured outflow, reservoir water levels, 
and hydrological model outputs. Also, the sediment yields 
of the tributaries stem from a model with monthly resolu-
tion only (Mouris et al. 2022). Considering the uncertainty 
related to these model simplifications, as well as the mean 
measurement error of approximately 0.4 m, the final model 
quality is acceptable in the VALDOME scenario. In light 
of the instability of the MAXME scenario, we verify the 
hypothesis (i) that Bayesian calibration only converges 

toward physically meaningful model parameter combina-
tions when the model is well-conditioned (i.e., measured 
data are in the validity domain of model assumptions).

Relevant calibration parameters

Since the Bayesian calibration only converges toward physi-
cally meaningful model parameter combinations when the 
calibration nodes are in the range of validity of the numeri-
cal model, we only used the VALDOME scenario to identify 
the calibration parameter importance for reservoir sedimen-
tation modeling.

Figure 6 shows that the density �b was the most restrictive 
(i.e., constraining) calibration parameter due to its narrow-
shaped posterior distribution, which was not imposed by the 
initial value ranges (Table 2). This is also evident in the clear 
data pattern of �b across the parameter space (Fig. 7), where 
high likelihoods occurred only in a very narrow range. Yet, 
many studies exclude �b from the calibration process and 
use fixed literature values or empirical equations to obtain 
a representative value (Foster and Charlesworth 1994; Ver-
straeten and Poesen 2001; Banasik et al. 2021). Our find-
ings suggest that �b should be either calibrated or directly 
measured, rather than simply derived from the literature. 
This finding is important because, for instance, models for 
calculating the sediment yield are often calibrated against 
the volume change in lakes or reservoirs. Since the volume 
of the deposited sediments is directly related to the dry-bulk 
density of the sediments, an incorrect value for �b results in 
an incorrect calculation of sediment masses. For example, 
if the sediment inflow is underestimated, the error can be 
compensated for by a lower dry-bulk density for the depos-
ited sediment. In this study, the Bayesian calibration led to a 
reasonable value of 403.6 kg  m-3 in the VALDOME scenario 
(van Rijn and Barth 2019; van Rijn 2020).

According to the posterior distribution (see Fig. 6), �d 
was the second most restrictive (i.e., constraining) param-
eter with a small maximum likelihood of 0.01 Pa. Yet, the 
maximum likelihood was located at the lower limit of the 
investigated range, which suggests that the Bayesian calibra-
tion would have tried an even smaller �d if possible. Hence, 
the posterior distribution should be interpreted carefully, as 
a broader range may result in a wider distribution. A pos-
sible explanation for why the Bayesian calibration preferred 
small values of �d is the maximization of suspended load 
trajectories. Since fine particles are kept in suspension by 
turbulence even at low flow velocities, the BAL attempted 
to compensate for the insufficient model assumptions regard-
ing 3d turbulence (mixing length model) by decreasing �d . 
Furthermore, the actual shear stresses in a large reservoir 
are very small. Thus, only very small �d values affect the 
deposition process in the numerical model, especially since 
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we disregarded measured data in the shallow delta region in 
the VALDOME scenario.

The calibrated diameter multiplier � was 0.98, which 
falls into the lower half of the initial range. � was not very 
restrictive and yielded high likelihoods for a comparatively 
wide range with � < 1.2. These small � values indicate that 
the observed particle size diameters and the corresponding 
settling velocities were rather too large and smaller particle 
sizes and settling velocities lead to better results. Gener-
ally, the grain size distribution of a suspended sediment load 
sample represents the present hydraulic conditions. There-
fore, we recommend using grain sizes in a reasonable range 
for calibration or varying the grain size distributions as a 
function of discharge. The stochastic approach led to repre-
sentative grain size ranges:  d17 = 1.89 to 2.25 μm,  d50 = 7.0 to 
8.33 μm, and  d83 = 19.76 to 23.62 μm. However, flocculation 
processes can alter the settling velocity of cohesive particles 
(Dyer and Manning 1999; Winterwerp and Kesteren 2004), 
and therefore, the actual grain sizes of individual particles 
can be even smaller.

The optimum �cr was 0.25 (VALDOME) and the cor-
responding likelihood pattern was not very pronounced and 
had little impact on the calibration process, because only the 
very upstream calibration nodes were affected by erosion 
and resuspension. In contrast to a free-flowing river, sedi-
mentation dominates in the reservoir due to the large water 
depths and low flow velocities. Thus, there were signifi-
cant differences between the two sets of calibration nodes, 
underlining that particularly the upstream delta section of 
the reservoir was controlled by �cr . Hence, the RE further 
decreased with the exclusion of the calibration nodes in the 
upstream part (VALDOME), which emphasizes the dimin-
ishing importance and higher uncertainty of �cr.

Ultimately, we verify hypothesis (ii) since the Bayesian 
calibration identified �b as the driving calibration parameter 
in the fluvial deposition of suspended sediments in reser-
voirs. In contrast, � or �cr had significantly less influence 
on the final sedimentation pattern. Parameters with narrow 
posterior distributions and high relative entropy compared 
to a uniform distribution can be interpreted as driving and 
restrictive, while parameters with wide posterior distribu-
tions can be interpreted as less important and uncertain. The 
narrow posterior distribution for �d suggests a high informa-
tion gain through BAL, with the maximum likelihood at the 
lower limit. Consequently, small �d lead to more accurate 
results, although the importance of �d cannot be objectively 
assessed.

The curse of dimensionality

The so-called curse of dimensionality (see also the methods 
section on Bayesian calibration) forced us to limit the num-
ber of calibration nodes. Even though we limited the number 

of calibration nodes, the dimensions of the response surface 
were still too high and both scenarios were subjected to the 
curse of dimensionality. This phenomenon occurred because 
of the exponential term of the likelihood function (Eq. (5)), 
which represents the (negative) weighted sum of the squared 
difference between the measured and modeled bed level 
change. The more calibration nodes we used, the larger the 
negative value of the sum becomes. In consequence, the 
exponential term became a number so close to zero that the 
precision of a computer is insufficient to express it. This 
problem, known as arithmetic underflow (e.g., Coonen 
1980), caused the likelihood function to become zero, which 
does not allow for the calculation of convergence scores and 
selection of a next training point. To solve this problem, we 
artificially increased the total error in Eq. (7) by multiplying 
it by 5. The artificial error amplification was equally applied 
to all individual errors and represented the smallest integer 
amplification factor that avoided arithmetic underflow. Since 
the amplification factor was constant, the rank of the output 
realization remained unchanged.

The curse of dimensionality also affected the number of 
Monte Carlo (MC) samples that could be drawn to approxi-
mate the posterior distribution in Eq. (5). With increasing 
dimensionality, the required computing power for a repre-
sentative sample increased exponentially. In consequence, 
the region with the highest density became more restrictive 
and the vast majority of the probability density function was 
concentrated in low-likelihood areas. To balance representa-
tiveness, the curse of dimensionality, and computing time, 
we limited the sample size to  105 MC realizations.

The curse of dimensionality also affects the generation of 
the posterior distribution through rejection sampling (Smith 
and Gelfand 1992) or the here-used Bayesian weighting 
strategy, as most of the samples were concentrated in low-
likelihood areas. Thus, the weight of nearby all samples was 
close to zero or arithmetic underflow occurred. The above-
introduced error multiplier helped to avoid these arithmetic 
underflow issues by increasing the width of the high-likeli-
hood region and enabling a representative posterior.

Conclusion

The region where the model simplifications were not 
entirely valid caused stability issues in the upstream part 
of the reservoir, where small channels with low water 
depths led to high topographic gradients and large model 
uncertainty. Hence, the inclusion of all calibration nodes 
resulted in a degradation of model accuracy, fluctuating 
Bayesian model evidence, and higher variability of the 
four calibration parameters in the last five BAL itera-
tions. In addition, the maximum likelihood values of the 
calibration parameters were located near the limit of the 
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investigated range. Consequently, Bayesian calibration 
only converged toward physically meaningful parameter 
combinations when the model was well-conditioned (i.e., 
when the measurement data are in physically representa-
tive regions of the model domain). The final model quality 
was still affected by the limitations of the 2d numerical 
model, leading to a considerable mean absolute error of 
approx. 1 m regarding the modeled deposition height.

Bayesian calibration identified the dry-bulk density as 
the driving and most important parameter to simulate the 
fluvial deposition of suspended sediments in reservoirs. 
Thus, the dry-bulk density should be prioritized in data 
collection, already before setting up a reservoir sedimen-
tation model. In contrast, the particle diameter multiplier 
and the critical shear stress for erosion had less influence 
on the deposition pattern as can be seen from the wider 
posterior distribution. The importance of the critical shear 
stress for deposition could not be objectively assessed 
because the maximum likelihood is located at the lower 
limit of the initial range. Yet, small values led to better 
results because the BAL tried to maximize suspended 
load trajectories to compensate for insufficient model 
assumptions about 3d turbulence that keeps fine particles 
in suspension.

Ultimately, this study shows that a robust Bayesian cali-
bration can also be achieved when global model simpli-
fication hypotheses cannot be applied to the entire model 
domain, requiring that the measurement data for calibra-
tion must be from model domains where the simplifying 
assumptions are valid. Furthermore, our modified BAL 
approach accounted for both measurement and metamodel 
errors, enabling a multi-parametric comparison and iden-
tification of driving calibration parameters even in four-
dimensional parameter space.
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