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Abstract
Long-term predictions of reservoir sedimentation require an objective consideration of the preceding catchment processes. 
In this study, we apply a complex modeling chain to predict sedimentation processes in the Banja reservoir (Albania). The 
modeling chain consists of the water balance model WaSiM, the soil erosion and sediment transport model combination 
RUSLE-SEDD, and the 3d hydro-morphodynamic reservoir model SSIIM2 to accurately represent all relevant physical 
processes. Furthermore, an ensemble of climate models is used to analyze future scenarios. Although the capabilities of 
each model enable us to obtain satisfying results, the propagation of uncertainties in the modeling chain cannot be neglected. 
Hence, approximate model parameter uncertainties are quantified with the First-Order Second-Moment (FOSM) method. 
Another source of uncertainty for long-term predictions is the spread of climate projections. Thus, we compared both sources 
of uncertainties and found that the uncertainties generated by climate projections are 408% (for runoff), 539% (for sediment 
yield), and 272% (for bed elevation in the reservoir) larger than the model parameter uncertainties. We conclude that (i) 
FOSM is a suitable method for quantifying approximate parameter uncertainties in a complex modeling chain, (ii) the model 
parameter uncertainties are smaller than the spread of climate projections, and (iii) these uncertainties are of the same order 
of magnitude as the change signal for the investigated low-emission scenario. Thus, the proposed method might support 
modelers to communicate different sources of uncertainty in complex modeling chains, including climate impact models.
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Introduction

Albania possesses adequate conditions for hydroelectricity 
production because of its location in the Balkans and its 
mountainous topography. Considering that the country’s 
power supply is, with a value of 99%, almost exclusively 
based on hydroelectric power (IEA 2022; Lehner et al. 2005; 
Statkraft 2019), the Devoll River offers great potential for 
hydropower development due to its large streamflow. How-
ever, as a result of the active erosion processes taking place 
in the catchment and the consequent transport of sediments, 
it is also considered the most turbid river that drains into the 
Mediterranean Sea (Ardıçlıoğlu et al. 2011). Constructed 

reservoirs along the river interrupt the sediment continuum, 
resulting in the deposition of sediments and progressive res-
ervoir sedimentation.

In addition, climate change may not only directly (e.g., 
change in temperature and precipitation) but also indirectly 
(e.g., change in land use) influence erosion processes in the 
catchment, resulting in higher sediment loads and amplified 
sedimentation processes in these reservoirs (e.g., Plate 1993; 
Walling and Fang 2003). Therefore, the lifetime of planned 
and constructed reservoirs and the efficiency of hydropower 
production may decrease (Mahmood 1987). These trends are 
also predicted for other areas and catchments within Europe. 
According to Wagner et al. (2017), the average annual elec-
tricity generation for the Alpine region will slightly decrease 
by the year 2050, due to the effects of climate change. Addi-
tionally, Panagos et al. (2021) stated that climate change is 
the main cause of the increase in mean soil erosion rates on 
agricultural land in Europe by the year 2050. Hence, climate 
change will have negative impacts on soil erosion, especially 
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in regions where this process can already be considered criti-
cal, such as the Devoll River basin (Li and Fang 2016).

While several studies show an expected annual increase in 
sediment yield due to future climate change scenarios (Azari 
et al. 2016; Chen et al. 2020; Li et al. 2022), others indicate 
that sediment yield could even decrease in some regions 
(Bussi et al. 2014; Hirschberg et al. 2021). These contrasting 
findings suggest that the behavior of hydrological and mor-
phological processes under the impacts of climate change 
depends not only on regional characteristics but also on the 
models involved, especially the climate models that provide 
the forcing data. As part of the DIRT-X project (https://​
dirtx-​reser​voirs​4futu​re.​eu/), the dynamics of the different 
hydrological and morphological processes in the Devoll 
catchment are identified and their response to climate change 
is quantified. Hence, a special focus is given to the reservoir 
inflow (runoff and transported sediments) and sedimenta-
tion processes within the reservoir. Since the latter relies on 
the behavior of the inflow boundaries, a modeling chain is 
required to predict the future development of all involved 
variables and finally to predict the bed level changes within 
the reservoir (target variable).

Even though several studies were carried out for differ-
ent regions worldwide to predict the erosion processes in the 
catchment and the resulting sediment yield, they all focused on 
a single model. In addition, they focused mainly on the catch-
ment and no hydro-morphological processes in the river or 
reservoir were considered. For example, Shrestha et al. (2013), 
Azari et al. (2016), Zettam et al. (2017), Santos et al. (2021) 
and Li et al. (2022) employed the Soil and Water Assessment 
Tool (SWAT) to predict the sediment yield coming from catch-
ments in Laos, Iran, Algeria, Brazil, and China, respectively. 
In the study carried out by Bronstert et al. (2014), the Water 
Availability in Semi-arid Areas with SEdiment Dynamics 
(WASA-SED) model was implemented to predict water and 
sediment fluxes in semi-arid environments. Other examples 
can be found in Nerantzaki et al. (2015) and Nunes et al. 
(2013), who also applied the SWAT model in Mediterranean 
catchments for predicting suspended sediment transport and 
erosion dynamics, respectively. Although the latter applied a 
chain of models combining SWAT with a physically based 
distributed erosion model, reservoir sedimentation processes 
were not included. Wagner et al. (2017) also focused on a mod-
eling chain applied to an Alpine catchment. However, the mod-
eling chain consists only of a hydrological and a hydropower 
model, thus the focus is not on intermediate erosion and sedi-
ment transport processes as in this study. More recently, Wild 
et al. (2021) developed a Python-based framework to simu-
late runoff, sediment, and hydropower production. Although 
several processes are considered in the model, the focus is 
on decision-making and the evaluation of possible reservoir 
configurations. Furthermore, the model has some limitations 
regarding the representation of physical processes (e.g. runoff 

generation), where it still relies on the output of other external 
models.

The novelty of our study is the development and applica-
tion of a process-based modeling chain composed of three 
different models that aim to predict the sedimentation pro-
cesses in the Banja reservoir under changing hydro-climatic 
conditions. With this modeling chain, we ensure a detailed 
representation of the physical processes leading to reservoir 
sedimentation, while exploiting the capabilities of state-of-
the-art models tailored to particular processes. Since each 
model works independently and has different input and out-
put variables (e.g., runoff or sediment yield), the subsequent 
models rely on accurate output variables to ensure the appli-
cability of the modeling chain for predicting bed elevation 
as the final target variable.

However, when more than one model is involved in pre-
dicting a target variable, superposition effects of uncertain-
ties from different sources may occur, resulting in a propa-
gation and an increase in the uncertainty of the final target 
variable. Since the selection of model parameters and their 
associated values might be challenging, e.g., due to a lack of 
measurements, it is of interest to know not only their impact 
on the final simulation results but also the confidence of 
these results (Moges et al. 2021). Other types of uncertain-
ties are related to the Global Climate Models (GCMs), to 
the downscaling techniques used for linking the large scale 
of GCMs to the regional models (Regional Climate Mod-
els, RCM), and finally to the model scale (Prudhomme and 
Davies 2009).

The significance of the aforementioned uncertainties is 
investigated and presented in this study. The question that 
arises at this point is: Are simulation results more affected 
by perturbations in the model parameters (parameter uncer-
tainty) than by the spread of climate projections (climate 
model uncertainty)? To answer this question, approximate 
uncertainties related to model parameters are calculated 
using a simplified method and compared to the spread of 
climate projections by analyzing three GCM/RCMs and the 
Representative Concentration Pathway RCP2.6. The selec-
tion of RCP2.6 is motivated by the fact that this (mitigation) 
scenario is subject to the smallest change signals amongst 
all available emission scenarios. Consequently, results from 
parameterizations with only small variations are not com-
pared to higher change signals that would result from high 
emission climate scenarios.

Materials and methods

Study area

The study area is located in the Devoll River catchment, 
upstream of the Banja reservoir in Albania, approx. 70 km 

https://dirtx-reservoirs4future.eu/
https://dirtx-reservoirs4future.eu/


3779Modeling Earth Systems and Environment (2023) 9:3777–3793	

1 3

south of the capital city Tirana. The catchment covers a sur-
face area of 3140 km2 with varying topography and alti-
tudes, ranging from 100 to 2000 m a.s.l. Figure 1a shows the 
location of the study area within Albania and the catchment 
area. In this figure, the catchment is subdivided into two sub-
catchments (Fig. 1c), which were delineated according to the 
topography and location of the gauging stations (Banja and 
Kokel). The main city located in the study area is Korça and 
is also shown in the figure.

Since Albania belongs to the Mediterranean climatic belt, 
the climate in the study area is mainly characterized by dry 
and hot summers and mild, rainy winters (Eftimi 2010). The 
mean annual temperature in Korça is 10.3 °C, with a mean 
value of 19.9 °C during summer (July) and 0.9 °C during 
winter (January) (climate-data.org 2019). The mean annual 
precipitation in the highland plain near Korça is around 
800 mm yr− 1 while the Western part receives up to 1600 mm 
yr− 1 (Almestad 2015; climate-data.org 2019; Eftimi 2010). 
However, in higher altitudes, snowfall is common during 
the winter months. Snow cover depths and days with snow 
cover vary strongly, depending on the location within the 
catchment (Mouris et al. 2022). Although the majority of the 

study area is forested (30%) and covered by scrubs and her-
baceous vegetation (25%), agriculture predominates in the 
Korça plain. Since parts of the catchment are characterized 
by barren and steep slopes, loose soil results in high erosion 
and subsequently high sediment loads entering the Devoll 
River from the catchment. Hence, reservoir sedimentation 
will be a severe challenge for existing and planned reservoirs 
along the Devoll River. The river is dammed approximately 
160 km from its source, forming the Banja reservoir located 
near the town Gramsh. The embankment dam with a clay 
core has a maximum height of 80 m (between 95 and 175 m 
a.s.l.) and was impounded in 2016, with a maximum storage 
capacity of the reservoir of approx. 400 million m3.

Data availability

Meteorological data

Within the study area, four meteorological stations are in 
operation and record daily values of precipitation, tempera-
ture, and wind speed. Measurements are available for the 
period from 09/2015 to 08/2020. Other variables, such as 

Fig. 1   a Location of the study area within Albania; b  important tributaries and outflow boundaries of the Banja reservoir; c  topography, sub-
catchments, gauging stations and location of the Banja reservoir. (adapted from the European Environment Agency (2016))
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radiation and relative humidity, are not recorded by these 
stations. Thus, the prediction of the hydrological response 
of the catchment becomes quite challenging, since a long-
term time series of all meteorological variables would be 
required. As a viable alternative, the ERA5 reanalysis data-
set is used for the hydrological simulations. This dataset 
is available with an hourly resolution on a grid of approx. 
31 × 31 km since 1959 onwards (Copernicus Climate Change 
Service 2017).

Measured data

Hourly measurements of runoff are available at the Kokel 
gauging station, covering the period from 03/2016 to 
04/2018. Furthermore, suspended sediment concentration 
measurements are available at the same gauging station. 
The runoff and the suspended sediment concentrations are 
obtained by using the acoustic backscatter signal from two 
side-looking H-ADCPs (Horizontal-Acoustic Doppler Cur-
rent Profiler; 0.6 and 1.2 MHz). The approach used to cal-
culate suspended sediment concentrations based on acoustic 
backscatter data for this study site is described in Aleixo 
et al. (2020). Nevertheless, these measurements are only 
available for water depths at the gauging station exceeding 
1 m. In the final step, the suspended sediment load is calcu-
lated by using the measured suspended sediment concentra-
tion and the associated runoff.

In addition, there are Digital Elevation Models (DEM) 
available from two bathymetric surveys of the Banja reser-
voir. The first survey was carried out in 2016, shortly before 
the impoundment of the reservoir. It was a drone survey 
of the terrain and a subsequent structure-from-motion post-
processing. The second survey was conducted in 2019, after 
3 years of operation, by moving ADCP measurements and 
was used to calibrate the reservoir model. A digital eleva-
tion model of differences (DoD) of the two surveys shows 
a general sedimentation trend, with an average deposition 
height of 2.7 m in the upstream part (> 5 km distance to the 
dam) of the reservoir.

Modeling chain

The prediction of sedimentation processes within a reser-
voir involves several preceding catchment processes, which 
need to be considered in the simulations. To tackle these 
processes in a reliable manner, hydrological, soil erosion, 
sediment transport, and hydro-morphodynamic models are 
necessary. In some cases, some of these processes can be 
simulated in a simplified way by a single model (e.g. with 
SWAT). However, limitations often arise regarding the 
representation of physical processes, and this must be con-
sidered when analyzing the results. Due to the progressive 
development of modeling tools and their specialization in 

certain processes, the use of multiple state-of-the-art models 
in a modeling chain seems to be a promising approach to 
increase the quality of simulation results. For these reasons, 
a modeling chain composed of different and independent 
models is applied in this study to benefit from several mod-
els with a specialization in particular processes.

The schematic modeling chain is depicted in Fig.  2. 
Besides the models used, the target variables (output varia-
bles) of each model are shown, which then serve as input for 
the subsequent model. For example, the target variable of the 
soil erosion and sediment transport model (RUSLE-SEDD) 
is the suspended sediment load, which serves as input for 
the hydro-morphodynamic reservoir model (SSIIM 2). The 
final target variable of the modeling chain is the bed eleva-
tion along the thalweg of the Banja reservoir. A description 
of each model is presented in the following section.

Model setups

This section summarizes the main processes included in 
the three models used in the modeling chain for the Devoll 
catchment and the Banja reservoir.

Water balance model

The hydrological processes are simulated by the Water Flow 
and Balance Simulation Model (WaSiM, Schulla 1997, 
2021). It is a physically based distributed model capable 
of representing the water cycle above and below the land 
surface. WaSiM uses physically based modeling approaches 
for the simulation of the different hydrological components 
(Schulla 2021). In this study, the Richards version 10.04.07 
is used, including the most recent snow canopy intercep-
tion sub-model (Förster et al. 2018). The model domain 
has a spatial and temporal resolution of 1 km2 and 3 h, 
respectively. The calibration period spans from 05/2016 to 
04/2018, for which measured runoff is available. A first year 
(05/2015–04/2016) is considered as a warm-up period.

Table  1 summarizes the main processes involved in 
WaSiM and the selected methods for obtaining the values 
for each of them. As the ERA5 dataset is available with a 
spatial resolution coarser than the model grid, the values are 
interpolated using the methods described in Table 1.

Soil erosion and sediment transport model

Soil loss and sediment transport are calculated at the 
catchment scale with the Revised Universal Soil Loss 
Equation (RUSLE) model (Renard 1997) in combination 
with the Sediment Delivery Distributed (SEDD) model 
(Ferro and Porto 2000). The RUSLE calculates the gross 
soil erosion in the catchment, while the SEDD model 
estimates sediment transport and delivery. The model is 
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spatially discretized into cells of 25 m x 25 m. Since this 
model combination enables the estimation of a monthly 
or annual suspended sediment load for any point in the 
river network, the sediment input to the reservoir is com-
puted. Monthly suspended sediment loads from 05/2016 
to 04/2018 are used for the calibration of the presented 
RUSLE-SEDD model.

The soil loss A [t ha− 1 yr− 1] is determined as a mul-
tiplication of six erosion risk factors (Eq. (1)), which are 
summarized in Table 2. More detailed information on the 

input datasets, applied methods, and codes can be found in 
Mouris et al. (2022).

Reservoir model

The fully 3d numerical model Sediment Simulation In 
Intakes with Multiblock Option (SSIIM 2) is used to simu-
late flow characteristics, suspended sediment transport, 

(1)A = R ⋅ K ⋅ C ⋅ L ⋅ S ⋅ P

Fig. 2   Selected modeling chain and target variables for the study case of the Devoll catchment and the Banja reservoir

Table 1   Summary of the main sub-processes and approaches selected for the WaSiM simulations

a IDW = Inverse distance weight method, EDRINT = Elevation dependent regression with internal pre-processing
b ETP = Potential evapotranspiration
c ETR = Real evapotranspiration

Sub-processes Selected method(s) Comments

Temperature, precipitation and relative 
humidity interpolation

IDW + EDRINTa Linear combination of IDW and EDRINT

Wind speed and global radiation interpolation IDW –
Evapotranspiration Penman-Monteith approach for ETPb ETRc estimated from actual soil water content 

and actual capillary pressure
Snow accumulation and snow melt Energy balance approach The fraction of snow on the total precipitation is 

given by a threshold temperature
Interception Includes a bucket canopy model Snow accumulation and melt is computed for 

both canopy and the surface below
Soil model Richards approach Model of fluxes within the unsaturated soil zone
Groundwater model Integrated conceptual approach Baseflow is generated as exfiltration from the 

groundwater system into the river surface 
system

Routing model Kinematic wave approach + single linear 
storage

Translation is determined from Manning’s for-
mula; single reservoir to account for retention
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and morphodynamic processes in the Banja reservoir 
(Olsen 2018). SSIIM 2 solves the Reynolds-averaged 
Navier–Strokes equations (RANS) in three dimensions and 
uses a finite volume method for discretization. The adap-
tive grid consists of cells with a spatial resolution of 50 x 
50 m, and up to 10 vertical cells in the deepest zones of 
the reservoir. Sediment samples demonstrate that the sedi-
ment depositions within the reservoir predominantly consist 
of cohesive sediments. Consequently, bedload transport is 
not considered in this study. Besides the initial bathymetry, 
the runoff hydrographs from the WaSiM model and sedi-
ment loads from the RUSLE-SEDD model are used as input 
data for the main tributaries. Hence, in this study, four main 
tributaries and two outflows (spillway and turbine) are con-
sidered (Fig. 1b). Due to the implicit time discretization, 
time steps up to 5400 s are used in this study and enable 
long-term (08-2016–12-2100) 3d sedimentation modeling 
in a reasonable computing time (3.5 weeks per run using 8 
cores, 3.7–4.8 GHz).

Uncertainty quantification of model parameters

Several types of uncertainties are expected in modeling, aris-
ing from the complex behavior of environmental systems, 
simplifications in models, unknown boundaries, and missing 
or inaccurate input data (Shoarinezhad et al. 2020). Some of 
these uncertainties are related to parameters used to simulate 
different processes in each model. In this study, the variation 
in the simulation results (target variables) due to perturba-
tions in selected model parameters is analyzed. The main 
objective is to achieve an approximation of the parameter’s 
uncertainties by using a simplified method, which is more 
economic in terms of computing time compared to other 
stochastic methods (e.g., Monte-Carlo simulations). Hence, 
the analysis of the variations in the target variable is per-
formed with a First-Order Second-Moment Method (FOSM) 
(Gelleszun et al. 2017). The FOSM method, which was suc-
cessfully validated by Gelleszun et al. (2017), is based on 
the variance-covariance propagation and, according to Kun-
stmann et al. (2002), the results are comparable to the ones 

obtained by applying more sophisticated methods (such as 
Monte-Carlo methods).

The covariance matrix of the selected target variable y is 
expressed by the following Eq. (2):

 where Cyy is the covariance matrix of the calculated tar-
get variable y, with size m × m ; Cxx is the empirical covari-
ance matrix of the selected parameters, with size n × n ; A 
is the Jacobian, sensitivity or functional matrix, with size 
m × n and contains the partial derivations of the model with 
respect to its parameters; m is the number of time steps and 
n is the number of parameters.

The variance of the target variable y can be obtained 
from the diagonal of the covariance matrix Cyy , according 
to Eq. (3):

 where aij are the elements of the Jacobian matrix A and cjk 
are the elements of the empirical covariance matrix of the 
parameters Cxx.

The variance-covariance propagation (Eqs. (2) and (3)) 
gives the confidence intervals of the model with respect to 
the perturbations of the selected parameters. The empirical 
covariance matrix of the parameters, Cxx , can be determined 
with the following Eq. (4):

 where Se2 is the empirical residual variance (scalar value) 
that can be obtained for the entire simulation period accord-
ing to Eq. (5):

 yobs is the observed data (of the target variable y); ysim is the 
simulated data (of the target variable y); u is the length of the 

(2)Cyy = ACxxA
T ,

(3)var(y) =

n
∑

j=1

n
∑

k=1

aijaikcjk,

(4)Cxx = Se
2
(

ATA
)−1

,

(5)Se
2 =

∑
�

yobs − ysim
�2

u − n
.

Table 2   Summary of the soil loss erosion risk factors

Risk factor Unit Description

R MJ mm (ha h yr)−1 Rainfall erosivity factor calculated from post-processed precipitation data from the water balance model 
according to Diodato and Bellocchi (2007)

K t ha MJ− 1 mm− 1 Soil erodibility factor calculated according to Wischmeier and Smith (1978)
C – Cover management factor calculated based on the land cover (European Environment Agency 2019)
L, S – Slope length and slope steepness are usually combined and represent the effect of topography on soil erosion 

according to Zhang et al. (2017)
P – Support practice factor expresses the influence of contouring on soil erosion, applied only to agricultural land
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available observed and simulated data and n is the number 
of selected parameters.

The Jacobian matrix A is calculated by numerical deriva-
tion in the optimum (central differences as an approxima-
tion of the derivatives that cannot be determined analytically 
in the case of numerical models). Then, each parameter is 
changed ± 1% from its optimum value (Hill 1998), accord-
ing to Eq. (6):

 where i is the selected parameter; y_id is the target variable 
y obtained as an approximation of the derivatives, which 
composes the Jacobian Matrix A; opt_value_i is the optimum 
value of parameter i, obtained after calibration of the model; 
y_il is the target variable y obtained with the lower value of 
parameter i ( opt_value_i – 1%) and y_iu is the target variable 
y obtained with the upper value of parameter i ( opt_value_i 
+ 1%).

The empirical variance Se2 (Eq. (5)) gives an idea of the 
parameter perturbations in relation to the chosen optimiza-
tion algorithm, which is used during the calibration of the 
model, to obtain the set of parameters that best simulate the 
target (output) variable y in each model. The empirical 
standard deviation, which has the same units as the target 
variable y, can be obtained as Se =

√

Se
2.

Finally, the approximate uncertainties of the model 
parameters can be represented with the standard deviation 
of the target variable, expressed by the root square of the 
variance (Eq. (7)):

Target variables and selected model parameters

A target variable (output) is selected for each model. Fur-
thermore, we choose a maximum of five parameters per 
model for the analysis of uncertainties to constraint comput-
ing times. Table 3 shows the target variable (output) for each 
of the models, whereas Table 4 summarizes the selected 
model parameters and their corresponding optimum values, 
which were obtained from the calibration processes for the 
single models. In addition, the lower value refers to the per-
turbation when the parameters have been decreased by -1%, 

(6)y_id =
y_il − y_iu

2 × 0.01 × opt_value_i
,

(7)std(y) =
√

var(y)

while the upper value refers to the perturbation when the 
value has been increased by + 1% from the optimum value. 
For spatially distributed parameters, such as the C factor, or 
seasonal factors, such as the R factor, the respective mean 
values are given in Table 4. In all cases, the selected model 
parameters are the most sensitive ones and have the greatest 
impact on the simulation results in each model.

A perfect agreement between observed and simulated 
bed levels in the reservoir is not to be expected since the 
WaSiM and RUSLE-SEDD models were calibrated for the 
Kokel gauging station and not for the reservoir (see Fig.1). 
Consequently, the deviations in reservoir bed elevation may 
be closely related to under- or overestimation of the runoff 
and sediment load entering the reservoir, since they were not 
measured directly at the reservoir inflow.

Workflow

In total, 11 runs were carried out with WaSiM, 17 runs with 
RUSLE-SEDD, and finally 23 runs with SSIIM 2 to capture 
the changes in the parameters. Figure 3 shows the selected 
workflow applied to the modeling chain.

Model simulations under different climate 
projections

The modeling chain is used to predict the catchment’s 
response under different future climate projections. Table 5 
summarizes the GCM and RCM model combinations used 
under different Representative Concentration Pathways 
(RCP). These datasets are provided with a spatial resolu-
tion of 0.11 degrees (EUR-11 grid, WCRP 2009) and with a 
3-hourly time step. As reference data, the ERA5 reanalysis 
dataset is used, considering a reference period from 01/1981 
to 12/2010. The bias adjustment is performed according 
to the MultI-scale bias AdjuStment (MidAS) tool, v0.2.1, 
which provides cascade adjustments in time and space, using 
a day-of-year scaling step (Berg et al. 2022).

RCPs represent climate projections under different green-
house gas concentrations that might lead to an increase in 
radiate forcing by the end of the century. For example, 
RCP2.6 is the lowest of all RCPs and expects a radiative 
forcing of 2.6 W m− 2 by 2100. Furthermore, each RCP is 
related to a global mean temperature increase compared to 
a reference period considered from 1986 to 2005. In the 

Table 3   Target variables 
(output) of each model in the 
modeling chain

Model Target variable Unit Comment

WaSiM Runoff mm 3 h− 1 Simulated runoff at Kokel
RUSLE-SEDD Suspended sediment yield tons month− 1 Simulated suspended sediment yield at Kokel
SSIIM 2 Bed elevation m a.s.l. Simulated bed elevation along the thalweg of 

the Devoll river within the reservoir
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case of RCP2.6, the global mean temperature increase is 
1.0 °C, for RCP4.5 1.8 °C, and for RCP8.5 3.7 °C (Collins 
et al. 2013).

The main objective of our study is to scrutinize whether 
the spread of the climate projections for future simulations 
is broader than the variations in simulation results as a con-
sequence of perturbations in the model parameters. In other 
words, we aim to analyze whether the uncertainties inherent 
to model parameterization are higher than uncertainties from 
climate projections. The perturbations in the model param-
eters are represented by a ± 1% change of their optimum 
value, according to the method previously described. For 
the comparison with the spread of the climate projections, 
RCP2.6 is selected. In this way, a tangible comparison (1% 
parameter variation vs. 1.0 °C increase in temperature) is 
carried out. Furthermore, we would like to highlight that in 
this case, the smallest climate change signals are generated 
and thus the results of this RCP are used for comparison 
to the parameter perturbation approach. By doing so, we 
avoid overestimating climate change signals. If the spread of 
the climate projections exceeds the approximate parameter 
uncertainties in the low emission scenario, this is also to be 
expected for the high and medium emission scenarios.

Results

The bed level changes along the upper part of the thalweg 
(> 5 km distance to the dam) of the Banja reservoir are pre-
sented, considering uncertainties in selected model param-
eters, but also different climate projections. The results of 
the climate impact simulations refer not only to the final 
target variable of the modeling chain (bed elevation along 
the thalweg of the Banja reservoir) but also to intermedi-
ate results (climate variables, monthly runoff, and sediment 
yield). Finally, a comparison between the uncertainties of 
the model parameters and the climate projections is per-
formed. Figure 4.

Uncertainty quantification of model parameters

To assess the uncertainties associated with model param-
eters and their impact on the simulation results, the final 
target variable of the modeling chain is analyzed. Figure 3 
shows the measured bed elevation along the thalweg of the 
Banja reservoir in 2016 and 2019, together with the simu-
lated bed elevation in 2019. In addition, the standard devia-
tion (dark gray shaded area) is shown, which considers the 
spreading of the simulation results from a total of 23 model 
runs, and may hence be related to the approximated uncer-
tainties of the model parameters. The figure also includes the 
standard deviation obtained only for the reservoir model and 

without considering the variations of parameters from the 
previous models (yellow shaded area), thus focusing only 
on the parameters of the reservoir model. In both cases, the 
values refer to the standard deviation, which was obtained 
after applying Eq. (7).

The average value of the standard deviation for the res-
ervoir model only (after Eq. (7)) is 0.28 m. The average 
standard deviation for the entire modeling chain, considering 
the uncertainties of all 11 parameters, is 0.64 m. Hence, it 
becomes obvious, that the largest uncertainties in the mode-
ling chain result from the reservoir model. Figure 3 indicates 
in addition that higher variations of the target variable are 
located near the head of the reservoir, where a delta forma-
tion is visible.

Model simulations under different climate 
projections

Since precipitation and temperature are important forcing 
variables for the generation of runoff, soil erosion, and the 
consequent transport of sediments into the reservoir, a spe-
cial focus is set on future changes in these variables. Fig-
ure 5a shows the decadal changes in the mean monthly pre-
cipitation regarding the reference period (1981–2010). The 
values are taken as an average value of the entire catchment 
and refer to the ensemble mean of the three GCM/RCMs and 
for RCP2.6. A positive change indicates an increase in the 
mean monthly precipitation values (green color), whereas 
a negative change indicates a decrease in the values (red 
color). Although there is no clear trend in the changes 
between the decades (y-axis), a reduction in precipitation 
during the summer months is visible (x-axis), whereas at the 
same time an increase during the winter months will occur.

Figure 5b shows the mean monthly changes in tempera-
ture, where a positive change suggests that temperature will 
increase in the future (red color) and a negative change sug-
gests a decrease (blue color). The figure makes it visible that 
the mean monthly temperature will face an increase in the 
future, reaching higher values, especially during the spring 
months (April–May).

Finally, changes in mean monthly runoff at Kokel are 
analyzed (Fig. 5c). In this figure, a positive change sug-
gests that the runoff will increase in the future (purple 
color) and a negative change suggests a decrease (brown 
color). In this case, there is a clear trend in the decreas-
ing mean monthly runoff during the spring months 
(April–May), becoming larger by the end of 2050 and 
2090. The reduction of the mean monthly runoff during 
spring is related to the rise in mean monthly tempera-
tures, which leads to an increment in the evapotranspira-
tion values and therefore less water will be available as 
runoff. Furthermore, the early melting of snow (shifted 
to late winter months) and the decrease in snow storage 
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contribute to the reduction of runoff during spring. On 
the contrary, an increase in the mean monthly runoff is 
predicted mostly for the winter months. This is also due to 
the rise in mean temperatures, leading to early snowmelt, 
less snowfall and more rainfall.

Uncertainty assessment: parameter vs. climate 
model uncertainties

In this section, the uncertainties in model parameters and 
their impacts on simulation results are compared with the 
spread of climate projections for RCP2.6. In addition to 
the final target variable (i.e. bed elevation along the thal-
weg of the reservoir), results are also shown for the output 
variables of each individual model in the chain.

Mean monthly runoff at Kokel

The diagrams on the left in Fig. 6a show the mean monthly 
runoff at Kokel obtained from the water balance model, for 
three different periods as an ensemble mean of the three 
GCM/RCMs and RCP2.6 (rows, from bottom to top): 
2011–2040, 2041–2070, and 2071–2100 and its correspond-
ing standard deviations. In addition, the mean monthly run-
off for the reference period (1981–2010, black dashed line) 

together with the mean monthly standard deviation due to 
uncertainties in model parameters (gray shaded area) are 
presented.

The hydrographs plotted on the bottom row for the period 
2011–2040 indicate that the mean monthly runoff will not 
change significantly in the near future. However, a slight 
increase is expected during winter (an increase of 9.4 mm 
for January). For the rest of the year, the values will be on 
a similar level.

When looking at the second half of the century (middle 
row, period 2041–2070), there is a clear shift in the maxi-
mum value from spring (April) to late winter (March). 
Furthermore, the peak is below the values of the refer-
ence period (a decrease of 7.2 mm is expected for April). 
Similar results are obtained for the last period (upper row, 
period: 2071–2100), where the shift in peak flow from 
April to March manifests itself and a decrease of almost 
9.0 mm is expected for the peak runoff.

Observing Fig. 6a, it is possible to conclude that the 
approximate uncertainties arising from model parameters 
in the water balance model are by far smaller (almost 5 
times) than the ones coming from the climate impact mod-
els (spread of climate projections, measured as the stand-
ard deviation of the ensemble mean). On average, these 
values rise from 3.8 mm month− 1 to 15.2 mm month− 1 

Table 4   Summary of selected model parameters for each model, including definition and units

*All sub-processes belong to the unsaturated zone model.
The optimum value refers to the value obtained from the calibration and lower and upper values refer to the ± 1% variation of the optimum value

Model Param. Definition Sub-process Unit Optimum value Lower value Upper value

Water balance model kd Recession constant 
for surface runoff

Direct runoff * h 5.0000 4.9500 5.0500

ki Recession constant 
for interflow

Interflow * h 21.6375 21.4211 21.8539

dr Drainage density for 
interflow

Interflow * m− 1 6.0642 6.0036 6.1248

kb Recession constant 
for baseflow

Baseflow * m 1.4056 1.3915 1.4197

Q0 Scaling factor for 
baseflow

Baseflow * mm h− 1 0.2186 0.2164 0.2208

Soil erosion & trans-
port model

C Cover and manage-
ment factor

Erosion - 0.007671 0.007594 0.007748

β Basin-specific 
parameter

Sediment delivery 
ratio

h− 1 0.5639 0.5583 0.5695

Rseas Seasonal factor for 
rainfall erosivity 
factor

Erosion MJ mm (ha h yr)−1 0.4860 0.4811 0.4909

Reservoir model F_26 Fraction of com-
pacted sediment in 
bed deposits

Erosion/Deposition - 0.3500 0.3465 0.3535

v
s

Settling velocity Deposition m s− 1 34.83 × 10− 6 34.48 × 10− 6 35.18 × 10− 6

actlay Active layer thick-
ness

Erosion/Deposition m 0.3000 0.2970 0.3030
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(300% rise), 18.6 mm month− 1 (389% rise), and 19.3 mm 
month− 1 (407% rise) for the first, second, and third period, 
respectively.

Mean monthly sediment yield at Kokel

The diagrams on the right in Fig. 6b show the mean monthly 
sediment yield at Kokel, obtained from the soil erosion and 
sediment transport model, for three different periods as 
an ensemble mean for the three GCM/RCMs and RCP2.6 
(rows, from bottom to top): 2011–2040, 2041–2070 and 
2071–2100 and its corresponding standard deviation. Simi-
larly to the mean monthly runoff, the black dashed line 
indicates the mean monthly sediment yield for the reference 
period (1981–2010). In addition, the mean monthly stand-
ard deviation regarding uncertainties from model parameters 
(gray shaded area) is shown in the figure.

The sediment yield behaves similarly to runoff. Conse-
quently, the maximum values are expected from February to 
April (between the end of the winter season and the begin-
ning of the spring months). In general, the mean maximum 
sediment yield will not experience great changes, except for 
the near future, where an increase of around 20,000 tons 
is expected for March, which corresponds to the predicted 
increase in runoff.

Similar to the mean monthly runoff, the values are not 
expected to change significantly during summer (low-flow 
season) because erosion is strongly correlated with precipi-
tation and thus with runoff. Furthermore, the standard devi-
ation of the sediment yield regarding perturbations in the 
model parameters (gray shaded area) is also smaller (almost 
5 times) than the spread of climate projections, given by 
the standard deviation of the ensemble mean. In this case, 
the values increase on average from approx. 13,600 tons 
month− 1 to 44,300 tons month− 1 (225% rise), 55,700 tons 
month− 1 (310% rise), and 86,900 tons month− 1 (539% rise) 
for the first, second, and third period, respectively.

Bed elevation along the thalweg of the Banja reservoir

Figure 7 shows the bed elevation along the thalweg of the 
upstream part of the Banja reservoir, simulated with the 

Fig. 3   Selected workflow applied for the modeling chain of the Banja reservoir located in the Devoll catchment (Albania). The three models, 
their parameters, perturbations and the number of model runs are shown as well

Table 5   GCMs and RCMs used in the modeling chain

GCM RCM

ICHEC-EC-EARTH SMHI-RCA4_v1a
MPI-M-MPI-ESM-LR SMHI-RCA4_v1
MOHC-HadGEM2-ES KNMI-RACMO22E_v2
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reservoir model, for three different years and for RCP2.6 as 
an ensemble mean of the three GCM/RCMs. The selected 
years are 2036, 2066, and 2100, which corresponds to 20, 
50, and 84 years after the impoundment of the reservoir, 
respectively. The bed elevation for the reference year 2016, 
right before the impoundment, is also included (black dashed 
line) together with the mean standard deviation regarding the 
perturbations in the model parameters of the entire modeling 
chain (gray shaded area).

The simulated bed levels in the near future (2036) show 
an increase in bed elevation within the reservoir, espe-
cially in the upper part. Here a clear delta formation is vis-
ible (compare Morris and Fan (1998)). For the mid-term 
period, in the year 2066, on one hand, the bed elevation 
will increase, but also a delta progression becomes visible, 
which is in accordance with literature. The highest deposi-
tions are observed at approx. 10,500 m distance from the 
dam. Although in Fig. 7 it is not possible to gain insight 
into the impact of seasonality on the evolution of the bed 
elevation, in general, a higher accumulation of sediments 
occurs during months with high runoff and higher sediment 
transport (e.g., Fan and Morris (1992)).

Finally, by the year 2100, the maximum deposition height 
will increase from approx. 10 m in 2036 up to approx. 30 m. 
There is no clear difference between the maximum bed lev-
els, but the largest increase occurs at a distance of around 
9000 m upstream of the dam, which also indicates that the 

delta migrates further into the reservoir, when comparing 
the location of the delta at the end of the mid-term period 
(10,500 m distance to the dam). Hence, the deposition 
regime moves further downstream, whereas a sediment bal-
ance between erosion and deposition is established in the 
upstream part (9000–14,000 m distance to the dam).

In the case of the bed elevation, the spread of the cli-
mate projections is determined by the maximum differ-
ence between the ensemble members, represented finally 
as an average value for all the x-locations (distance from 
the dam). Similar to the previous simulation results (mean 
monthly runoff and mean monthly sediment yield at Kokel), 
the impact on the bed elevation along the thalweg of the 
Banja reservoir (target variable) is smaller than the spread 
of climate projections due to perturbations in the model 
parameters. The average change in bed elevation (along the 
thalweg) considering uncertainties in the model parameters 
is 0.64 m, whereas the average changes due to uncertainties 
in the climate projections are 0.96 m, 2.33 m, and 2.38 m for 
the years 2013, 2066, and 2100, respectively. These values 
represent an increase of 50%, 264%, and 272% compared to 
the average change of the bed elevation due to uncertainties 
in the model parameters.

Fig. 4   Measured (solid red line for the year 2016, solid blue line for 
the year 2019) and simulated (dotted blue line for the year 2019) bed 
elevation along the thalweg of the upstream part of the Banja reser-
voir as a result of executing the entire modeling chain. The standard 

deviations for the entire model chain and the reservoir model only are 
indicated as dark gray shaded area and yellow shaded area, respec-
tively
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Discussion

A complex modeling chain composed of different individual 
models is adopted to predict the sedimentation processes 
in the Banja reservoir in this study. The main advantage of 
applying such a chain lies in the detailed and process-based 
representation of each intermediate process. The results of the 
modeling chain are satisfactory and can be used for predicting 
the sedimentation processes under future climate conditions.

Nevertheless, uncertainties cannot be neglected. In our 
study, we focus mainly on parameter uncertainties and com-
pare them to those inherent in climate models. The approxi-
mate uncertainties related to model parameters are deter-
mined by using the method developed by Gelleszun et al. 
(2017). The modeling chain includes three representative 
models that are used to study the impact of 11 sensitive 
parameters on the bed elevation changes of the Banja reser-
voir. Within this study, these 11 parameters were changed 
in the range of ± 1%, resulting in 23 model runs of the final 

Fig. 5   Decadal changes of mean 
monthly values relative to the 
reference period (1981–2010): 
a change of the mean monthly 
precipitation as an average 
for the entire catchment [mm 
month−1] ; b change of the 
mean monthly temperature as an 
average for the entire catchment 
[°C month−1]; c change of the 
mean monthly runoff at Kokel 
[mm month−1]. All values refer 
to the ensemble mean of the 
three GCM/RCMs and RCP2.6
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model. According to the mentioned study, this approximate 
method proves to be robust and efficient, thus reducing 
dramatically the computing times that other sophisticated 
methods (such as Monte-Carlo simulations) might require.

Even though the ± 1% uncertainty of selected model 
parameters proved to work well, it needs to be considered that 
the possible change is strongly parameter-dependent, which 
means that for some parameters this change may be a major 
change, whereas for others, it might be considered as only a 
minor change. Hence, future studies should focus on deter-
mining how much the model parameters can deviate from 
their optimal value, to ensure that the approximate uncertain-
ties are smaller than the spread of climate projections.

Additionally, uncertainties that might arise from climate 
model predictions are analyzed and compared to the approxi-
mate uncertainties in model parameters. In this study, the 
climate predictions are presented for RCP2.6, correspond-
ing to three different GCM/RCMs realizations. The analysis 
of the results reveals that the approximate uncertainties in 
model parameters of the water balance model is significantly 
smaller than the uncertainties coming from the different 

climate projections (Fig. 6a). The same can be concluded 
when analyzing the simulated mean monthly sediment yield 
(Fig. 6b) and the final bed elevation along the thalweg of 
the Banja reservoir (Fig. 7). The results agree with the ones 
found by Kingston et al. (2011) and Wagner et al. (2017). 
They studied different uncertainties influencing their model 
results. In both studies, the authors conclude that the uncer-
tainties arising from model parameterization are remarkably 
smaller than the ones generated by the climate projections 
for the case that the models were calibrated and validated 
with existing data in a first step.

Among all RCPs, RCP2.6 is seen as the lowest mitigation 
scenario. Although reaching RCP2.6 emission values by the 
end of the century may be technically feasible, urgent actions 
are required to achieve this. For example, reducing emissions 
rapidly during the first decades of the century and increasing 
the use of renewable energy sources, for which countries 
beyond the Organization for Economic and Co-operation 
Development (OECD) are also required to participate (van 
Vuuren et al. 2011). Thus, climate projections under RCP2.6 
may be too optimistic and the need of contemplating other 

Fig. 6   Mean monthly runoff a  and mean monthly sediment yield 
b  at Kokel station for three different periods (rows, from bottom to 
top: 2011–2040, 2041–2070, 2071–2100). The values represent the 
ensemble mean of the three GCM/RCMs and RCP2.6 (dark colored 
solid lines ± standard deviation of the ensemble mean). The black 

dashed lines indicate the mean monthly runoff and mean monthly 
sediment yield in the past (reference period, 1981–2010, also as an 
ensemble mean), whereas the gray shaded areas indicate the associ-
ated standard deviations of each model regarding perturbations in the 
model parameters
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RCPs with higher emission scenarios comes into play, 
especially the RCP8.5 scenario, since the emissions for the 
period between 2005 and 2020 are most consistent with the 
historical data (Schwalm et al. 2020).

However, RCP2.6 was chosen here from a methodologi-
cal perspective: we intend to scrutinize whether even the 
spread of results from a set of climate projections with low 
change signals exceeds typical variations in results achieved 
through perturbation in the model parameters. The climate 
change signal is defined as the absolute difference between 
the ensemble mean values obtained for the future period 

and the reference period (historical climate), respectively. 
For example, for monthly runoff in the last period of the 
twenty-first century (2071–2100), the climate signals are (for 
the ensemble mean) 3.25 mm month− 1 for RCP2.6 (i.e., the 
difference between the colored and the black dashed lines), 
whereas a value of 6.20 mm month− 1 is obtained when con-
sidering RCP8.5. This suggests that the climate signals in 
RCP2.6 are on average in the same order of magnitude as 
the approximate uncertainties related to model parameteriza-
tion, where a mean value of 3.8 mm month− 1 was obtained. 
Indeed, on a seasonal level, climate change signals can still 

Fig. 7   Bed elevation along the 
thalweg of the Banja reservoir 
[m a.s.l.] for the years 2036, 
2066, and 2100 (20, 50, and 
84 years after impoundment of 
the dam). The ensemble means 
of the three GCM/RCMs for 
RCP2.6 are shown (dark colored 
solid line), together with the 
mean value of spread between 
ensemble members (colored 
shaded areas). The black dashed 
line indicates the bed elevation 
in the past (for the year of finali-
zation of the dam construction, 
2016), together with its standard 
deviation, obtained from the 
impacts on simulation results 
due to perturbations in model 
parameters
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be higher. This is especially evident in the spring months, 
where the climate signal for runoff is almost 2.5 times 
higher. These findings show that low climate signals might 
be masked by model parameter uncertainties. On a minor 
note, the + 1 °C increase in the global mean temperature in 
RCP2.6 corresponds to ± 1% changes in model parameters 
as a mere and thus tangible comparison of numbers.

When predicting the response of a variable in the future 
(such as the bed elevation along the thalweg of the Banja 
reservoir), the use of multiple scenarios or ensembles is 
recommended, in order to cover further possibilities on 
how the climate is predicted (Collins et al. 2013). Accord-
ing to Teutschbein and Seibert (2010), complex Ensembled 
Regional Climate Models (E-RCMs) considering more than 
one RCM and a range of GCMs and RCPs are useful for 
hydrological simulations. Although our study can be classi-
fied into the mentioned group of E-RCM, considering fur-
ther GCMs and RCMs might be interesting to understand 
how the climate spread changes and influences the predic-
tion of the hydrological variables.

It is also worth mentioning that in our study, we focus 
only on the approximate uncertainties related to model 
parameters. However, other uncertainties might arise when 
applying such a modeling chain, such as the selected cali-
bration approach (e.g., manual or automatic approach), the 
errors in measured data (e.g., in runoff or sediment yield), 
or the meteorological forcing data used as input. Addition-
ally, changes in land use may contribute to alterations in the 
hydrological response of the catchment and should also be 
considered when predicting a catchment’s response in the 
future (Li and Fang 2016).

Conclusion

A complex modeling chain was set up to predict the bed 
elevation along the thalweg of the Banja reservoir in the 
Devoll River (Albania), by considering hydro-climatic 
changes, monthly runoff, and sediment yield coming from 
the catchment. Despite the challenge of using three different 
models for predicting the final target variable, we benefit 
from the main features and accuracy of three process-based 
state-of-the-art models. As each model predicts a target vari-
able, which serves as input for the subsequent model in the 
chain, the final target variable of the modeling chain depends 
strongly on the reliability of the antecedent results. To see 
how well this reliability can be ensured, model parameter 
uncertainties are studied for the entire modeling chain by 
using a simplified approach based on the FOSM Method.

These approximate parameter uncertainties (measured 
as a standard deviation) for predicting the bed elevation 
changes along the reservoir increased from 0.28 m (reser-
voir model parameters only) to 0.64 m when considering 

the uncertainties of all 11 parameters of the three models. 
Despite this increase, the values are still comparatively small 
(only 0.19% and 0.44% of the mean measured elevation bed 
in the year 2019, reprectively), and it can be concluded that 
the perturbations in the model parameters are not a signifi-
cant source of uncertainty for the final simulation results.

Furthermore, three combinations of GCM/RCMs for 
RCP2.6 were selected to study the behavior of the involved 
variables in the future (until the year 2100). The spread 
of the climate projections is compared to the approximate 
uncertainties resulting from the perturbations in the model 
parameters. The results show that the spread of climate pro-
jections by the end of the century is on average larger than 
the approximate parameter uncertainties, being 408%, 539%, 
and 272% higher for the prediction of runoff, sediment yield, 
and bed elevation, respectively. However, as demonstrated 
in the case of runoff, they are in the same order of mag-
nitude as the climate change signal inherent in the mitiga-
tion scenario RCP2.6. Nevertheless, and given that change 
signals are higher in other RCPs, the use of such a complex 
modeling chain is a valuable tool for predicting sedimenta-
tion processes in a reservoir for different climate change sce-
narios. The method described in this paper highlights how the 
parameter uncertainty for each model is quantified approxi-
mately, whilst demonstrating their robustness when compar-
ing the larger spread imposed by climate projections. This is 
in particular helpful to guide modelers and practitioners to 
communicate different sources of uncertainties in complex 
modeling chains including climate models, and to highlight 
how uncertainties compare to climate change signals.
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