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Abstract
Land cover change has posed significant concerns to biodiversity and climate change in Bangladesh and globally. Despite 
the country’s designation of forest regions as protected areas to conserve their valuable resources, deforestation and forest 
conversion remained unabated. Fashiakhali Wildlife Sanctuary (FKWS), a protected area in the Chittagong Hill Tracts, and 
its surrounding forested impact area have experienced considerable changes over the years, yet are deficient in extensive 
assessment. This study evaluated the land use land cover (LULC) changes in the FKWS impact area over almost 3 decades 
(1994–2021) using multispectral remotely sensed data. The Landsat images of 1994, 2001, 2010, and 2021 were classified 
using a maximum likelihood algorithm and analyzed for change detection. The comparative potential of vegetation indices, 
including Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI), in forest cover 
assessment, and the relationship between Land Surface Temperature (LST) and NDVI was also assessed. A significant for-
est cover loss of around 1117.17 ha (16%) was recorded in the FKWS impact area between 1994 and 2021, with the hugest 
proportion of 867.78 ha (12.24%) deforested in the first period (1994–2001). Agricultural land also declined by 593.73 ha 
(8.37%) within the entire period, despite its initial increase of 392.04 ha (5.53%) between 2001 and 2010, being the primary 
driver of earlier deforestation. However, in the recent decade (2010–2021), settlement expansion of 963.90 ha (13.59%) due 
to massive human migration in the area contributed to the most remarkable overall land cover change of 1731.51 ha (24.42%). 
Furthermore, NDVI provided a better and more accurate forest cover assessment than SAVI and was recommended to aid in 
the quick evaluation and monitoring of the future impacts of agriculture, settlement, and other sorts of land use on the forest 
cover. In tandem with the widely acknowledged issue of increased temperature due to climate change, an absolute negative 
correlation was found between the NDVI and LST, confirming the negative impact of climate change on forest loss in the 
FKWS impact area.

Keywords Land use land cover (LULC) · Landsat · Normalized difference vegetation index (NDVI) · Soil adjusted 
vegetation index (SAVI) · Land surface temperature (LST)

Introduction

The alarming rate of deforestation and its repercussions have 
raised concerns on a global scale (Caravaggio 2020; Hite 
and Seitz 2021). The illicit harvesting of natural forests, as 
well as the expansion of agricultural and development pro-
jects into previously forested areas, is the leading cause of 
forest loss (Chakravarty et al. 2012; Islam and Sato 2012; 
Hishe et al. 2021; Oluwajuwon et al. 2021). According to 
Lambin et al. (2001), the primary causes and reasons driving 
global and regional land cover changes are tropical deforest-
ation, grassland alteration, agricultural intensification, and 
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urbanization. In particular, deforestation and forest degrada-
tion are more prevalent in developing countries due to less 
per capita land and poor adaptability (Iftekhar and Hoque 
2005; Fagan et al. 2020).

Bangladesh is a small developing nation with a vast pop-
ulation size that was around 147 million as of mid-2007 
and is predicted to be 222 million by 2050 (Streatfield et al. 
2008; Farid et al. 2011), which has led to an increase in the 
threat to the country’s forests (Mukul 2016; Hasnat et al. 
2018; Singh et al. 2020). Accelerated population explosion 
has long drawn attention to the country’s existing land use 
patterns (Biswas and Choudhury 2007; Reddy et al. 2016). 
Bangladesh’s forest acreage has declined since the 1870s and 
now only covers approximately 2.33 million ha or less than 
16% of the country’s total land (Mukul et al. 2016; Nesha 
et al. 2021). Bangladesh’s forests have been rapidly deplet-
ing for years, and the situation worsens daily. They might 
disappear shortly due to ongoing deforestation if sustainable 
forest management strategies are not implemented (Salam 
et al. 1999; Sunderland et al. 2011). The primary causes of 
forest degradation in Bangladesh are encroachment, illegal 
logging, increased fuelwood demand, conversion of forest 
land to settlements, agricultural expansion, and unregulated 
industrialization (Iftekhar and Hoque 2005; Rahman 2015; 
Reza and Hasan 2019; Mahmood et al. 2021). The govern-
ment of Bangladesh has designated several forest regions as 
protected areas at various times to conserve valuable for-
est resources (Chowdhury and Koike 2010; Rahman and 
Islam 2021). Bangladesh has declared 49 protected areas, 
which span several broad categories, including national 
parks, wildlife sanctuaries, marine protected areas, vulture 
safe zones, safari parks, special biodiversity conservation 
areas, aviary parks, eco-parks, and botanical gardens (Rah-
man et al. 2016a, 2017). Protected areas are vital because 
they enhance carbon sequestration, maintain stable weather 
patterns, provide natural habitats for flora and wildlife, and 
prevent species extinction (Stolton and Dudley 2015; Xu 
et al. 2017).

The Fashiakhali Wildlife Sanctuary (FKWS), located 
within Fashiakhali Forest Reserve, is a protected area in 
the Chittagong Hill Tracts, Bangladesh and was declared a 
wildlife sanctuary in 2007 (Das et al. 2018). The Fashiakhali 
Forest Reserve has an undulating topography with numerous 
hills of varying heights that are covered with bushy vegeta-
tion, low valleys, waterbodies, and marshes in addition to 
natural and plantation forests (Uddin et al. 2011). Most of 
the forest covers in the FKWS are tropical wet, evergreen/
semi-evergreen, and deciduous forests, which provide habi-
tats for high biodiversity (Billah et al. 2021). However, over 
time, people of the 30 villages that encircle the sanctuary 
have harmed this important ecosystem through the con-
version of forested areas and rendered it more vulnerable 
to climate change (BFD 2015). In general, hill forests in 

Bangladesh, which comprise 43% of the nation’s total for-
est acreage, have been heavily degraded and destroyed due 
to shifting cultivation, excessive illicit logging, encroach-
ment, settlement, and rapid urbanization (Rahman et al. 
2012; Ahammad and Stacey 2016; Hossain et al. 2020). 
The FKWS, like other forest ecosystems in Bangladesh, has 
lost tree populations, resulting in the demise of significant 
flora and fauna species (Das et al. 2018). Even if protected 
area principles, like those of wildlife sanctuaries, serve as 
the cornerstones of all regional biodiversity conservation 
initiatives, effective management and the proper execution 
of laws are mostly lacking in protected areas (Masum and 
Hasan 2020; Ullah et al. 2022a). As a result, the biodiversity 
in these crucial conservation areas continues to be impaired 
by the aspects of increasing land cover change.

The land cover describes the physical and environmental 
characteristics of the land surface area, including the pres-
ence of water, crops, forests, constructions, etc. (Turner 
1994), while the human intention related to these charac-
teristics is referred to as land use (Nendel et al. 2018). The 
land use data are required for evaluating land cover changes 
in a geographic site. The quantitative analysis of the land use 
patterns is required to obtain a greater understanding of land 
cover changes and aid decision-makers in setting program 
goals and adopting suitable strategies while remaining con-
sistent with other disciplines of sustainability (Verburg and 
Chen 2000; Diouf and Lambin 2001; Lambin et al. 2001). 
Assessment of land cover change is a fundamental technique 
for evaluating changes in vegetation at different spatial and 
temporal dimensions. Empirical studies have shown that 
anthropogenic deforestation can impact the ecosystem in 
several ways, including destroying species’ habitats, causing 
desertification and soil erosion, upsetting the water cycle, 
and increasing environmental risks due to forest fragmenta-
tion (Islam and Weil 2000; Romijn et al. 2015; Reza and 
Hasan 2019). The potential of forest biomass to store carbon 
is further impacted by changes in forest cover, which also 
affects the local climate by altering the diurnal tempera-
ture variation and raises the risks of global climate change 
(Newell and Stavins 2000; Sangermano et al. 2012). The 
primary objectives of research on global forest and environ-
mental change are to catalog, monitor, and model the effects 
of changes on the forest environment, associated ecosys-
tems, and forest properties at various scales. This procedure, 
known as change detection, relates to changes in land use 
land cover (LULC) (Reid et al. 2000; Abd El-Kawy et al. 
2011). Changes in land cover, both naturally occurring and 
caused by human activities, have an impact on global and 
regional climate because of their interactions with terrestrial 
ecosystems, biodiversity, and landscape ecology (Houghton 
1994; Reid et al. 2000). So, it follows that for environmen-
tal planning, conservation activities, comprehending the 
effects on the terrestrial ecosystem, and attaining sustainable 
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development, monitoring and modeling of LULC is impera-
tive (Redowan et al. 2014; Rawat and Kumar 2015). Further-
more, effective forest management requires evaluation and 
monitoring of forest land cover changes. Poorly vegetated 
or bare ground areas express concern about the forest (Park 
et al. 2017; Oluwajuwon et al. 2021). Meanwhile, in Bangla-
desh, the forestry sector places less emphasis on monitoring 
and determining the extent of land cover than on the ecologi-
cal inventory of conventional forest plots. LULC assessment 
can be challenging for a vast forest ecosystem like FKWS, 
where satellite images allow for forecasting and more accu-
rate results with less expenditure.

Remote sensing is a fundamental approach for studying 
spatial and temporal changes in LULC (Pastor-Guzman et al. 
2018; Islam et al. 2018; Mamnun and Hossen 2020). Using 
medium to high-resolution satellite imageries in remote 
sensing and GIS applications, dynamic changes in the sur-
face of the planet can periodically and easily be detected 
(Mallupattu and Reddy 2013; Rawat and Kumar 2015; Islam 
et al. 2021). Landsat satellite images, which have a spatial 
resolution of 30 ⋅ 30 m, can be a valuable economic data 
source to collect information from a particular area and 
identify changes in LULC (Gounaridis et al. 2018). Detect-
ing and monitoring changes in forested land using widely 
available remote sensing data and methods also contribute 
to implementing climate change mitigation initiatives like 
Reducing Emissions from Deforestation and Forest Deg-
radation (REDD+) and Clean Development Mechanism 
(CDM) (Sangermano et al. 2012; Potapov et al. 2014). The 
use of vegetation indices, such as the Normalized Differ-
ence Vegetation Index (NDVI) and Soil Adjusted Vegeta-
tion Index (SAVI), has frequently been reported for mapping 
forest cover (Nath and Acharjee 2013; Nath 2014; Bera and 
Prakash 2018; Islam et al. 2021; Oluwajuwon et al. 2021). 
Studies have also demonstrated how land surface tempera-
ture (LST) affects vegetation indices, such as NDVI (Alam 
et al. 2022; Hussain et al. 2022).

Moreover, until now, several studies have been conducted 
to detect changes in LULC of different Bangladesh’s hill 
forests (Redowan et al. 2014; Islam et al. 2018; Mamnun 
and Hossen 2020; Masum and Hasan 2020; Hasnat 2021). 
Specifically, in the case of the wildlife sanctuary in Bang-
ladesh, Chunati Wildlife Sanctuary was analyzed for land 
cover changes using satellite images, and it was discovered 
that the sanctuary had severely lost high-density forest cover 
(Islam et al. 2016). Another study found a strong correlation 
between forest fragmentation and the conversion of land to 
non-forest uses while using geo-informatics to track land use 
changes for Chunati Wildlife Sanctuary in Bangladesh (Rah-
man et al. 2016b). However, despite Billah et al. (2021)’s 
findings on LULC changes in Fashiakhali Forest Reserve 
as a whole and importantly its impact on human–elephant 
conflict, extensive scientific research on long-term LULC 

changes in the FKWS and its critically important surround-
ing impact area is lacking. In addition to the FKWS, the 
assessment of land use patterns in the impact region is cru-
cial because it primarily describes how socio-economic and 
environmental structures function at the landscape level 
while making the necessary sustainability concessions to 
conserve the core ecosystem. Therefore, this study aims to 
narrow down this research gap and assess the LULC changes 
in the FKWS impact area. The objectives of this study are 
to assess the spatiotemporal changes in LULC in the FKWS 
and surrounding impact area over a 3-decade period, analyze 
the extent of the forest cover using NDVI and SAVI indices, 
and demonstrate the correlation between NDVI and LST 
indices within the FKWS.

Materials and methods

Study area

Fashiakhali Wildlife Sanctuary (FKWS) is situated in 
Cox’s Bazar District of Chittagong Division, located 
in the South-Eastern part of Bangladesh. The FKWS is 
situated within Fashiakhali Forest Reserve (3068.7 ha) 
and lies between 21°45' to 21°40' N and 92°4' to 92°8' E 
(Billah et al. 2021; BFD 2015). The FKWS was declared 
a wildlife sanctuary according to the Bangladesh Wild-
life Amendment Act in 2007 and as a part of the Fashi-
akhali Forest Reserve, it covers a core protected area of 
1302.52 ha, which is further divided into blocks: Dula-
hazra (287.50 ha), Ringbong (613.00 ha), and Fashiakhali 
(402.02 ha) (BFD 2015). However, the study area purpo-
sively includes the core FKWS and its surrounding impact 
area (Fig. 1). Hence, the considered FKWS impact area 
covers a total area of around 7093 ha with the inclusion of 
a buffer zone (1366 ha) and an impact zone (4384 ha) to 
the main core FKWS area. The FKWS impact area (core, 
buffer, and impact zones) was delineated by the manage-
ment plan of the Bangladesh Forest Department in order to 
encourage co-management with the active involvement of 
locals to enhance their livelihoods, lessen forest degrada-
tion, and reduce the susceptibility to climate change. The 
impact area was identified to consider the 30 villages that 
encircle the designated FKWS territory and whose inhab-
itants have a history of harming ecosystems and making 
them more susceptible to climate change (BFD 2015). A 
moist tropical maritime climate prevails in the study area, 
where the average humidity is 79%, the mean annual rain-
fall is 741 mm, the mean annual temperature is 27 °C, and 
elevation ranges from 2 to 60 m with mostly flat terrain 
and scattered small hills of similar geology (BBS 2012). 
The FKWS region has a variety of different types of land 
cover. Forests, including natural stands and plantations, 
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agricultural land, water bodies, aquaculture, and settle-
ments are some examples of these land uses. Reportedly, 
the land cover has altered dramatically in each zone of the 
FKWS impact area as a result of anthropogenic activi-
ties over the past few decades, including migration, ille-
gal felling and harvesting, land conversion to agricultural 
uses, and invasion (BFD 2015). The human settlement 
in the sanctuary area started with 112 people under only 
two villages, which now includes a total population of 
about 50,000 under 30 villages around the core FKWS 
area. Agriculture is the primary occupation in the area, 
with 60% of the population engaging in it, 15% in fish-
ing, 20% as day laborers, and the remaining 30% in other 
jobs. The forest in the study area falls under the tropical 
rainforest category, and the dominant tree species are Gar-
jan (Dipterocarpus turbinatus) and Dhakijam (Syzygium 
grande). Among the plantation species, Teak, Eucalyptus, 
and Acacia species are the most prevalent. This sanctuary 
is crucial for maintaining the habitat of a wide range of 
local endangered and threatened wildlife species, espe-
cially Asian Elephants (Elephas maximus). People fre-
quently enter and extract forest resources without proper 
supervision, posing impacts on the natural regeneration 
of important trees along with impacts on the lives of other 

fauna of the ecosystem (BBS 2012; BFD 2012; BFD 2015; 
Billah et al. 2021).

Satellite images and field data

Landsat images of respective sensor and satellite types for 
1994, 2001, 2010, and 2021 were obtained from USGS 
(United States Geological Survey) Earth Explorer (path/
row: 136/45). Since there was a paucity of cloud-free images 
accessible for the study area in USGS Earth Explorer’s open 
sources, it was not feasible to obtain an equal year interval 
of Landsat images—a more detailed description of these 
satellite images is listed in Table 1. To avert the effect of 
cloud imaging in the land cover classification process, the 
satellite images used in this study were obtained during the 
winter season of the considered years: November-February. 
This choice aligns with previous remote sensing studies 
in Bangladesh, where most Landsat images from the win-
ter period in the country exhibited negligible or no clouds 
(Islam et al. 2018, 2021; Chowdhury et al. 2020; Billah et al. 
2021). Since the study area is primarily an old-growth forest 
environment, seasonal change, such as sun sensor geometric 
variation, was considered low or insignificant in this study. 
A ground truthing was done—GPS (Global Positioning 

Fig. 1  Study area–Fashiakhali Wildlife Sanctuary (FKWS) and its impact area
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System) data for the predetermined specific land use/land 
cover classes (described in Table 2) were recorded and used 
as the basis for training samples for the land cover clas-
sification of the FKWS impact area. Additionally, Google 
Earth Pro’s high-resolution real-time satellite images and a 
false-color composite image of the study area were used in 
addition to ground-based training samples from 2021 for a 
more precise land cover categorization.

Image pre‑processing and classification

In this study, all the remote sensing analyses (i.e., image 
pre-processing, classification, change detection, vegetation 
indices, surface temperature mapping, and accuracy assess-
ment) were performed in QGIS version 3.24.2 (Fig. 2)—a 
broadly used, freely available software (Congedo 2016). 
Before land cover classification, DN (digital numbers) val-
ues for all the considered raster bands of Landsat images 
were converted to TOA (top of atmosphere reflectance), 
which is the ratio of reflected and incident energy on a sur-
face. When a satellite image is converted to reflectance, it 
can be mosaicked and compared to other satellite images 
from different sensors (e.g., Landsat-8 and Landsat-5), sub-
sequently enhancing classification outcomes. Moreover, 

the atmospheric correction of reflectance values is critical 
during the pre-processing step because atmospheric factors, 
such as absorbance or dispersion, impact the electromagnetic 
energy captured by a satellite. The Semi-automatic Classifi-
cation Plugin (SCP) in QGIS was used to perform a simple 
atmospheric correction following the DOS1 (Dark Object 
Subtraction 1) method. Given that the forest cover was the 
primary goal, it was essential to create a false-color com-
posite of the study area to render the forest vegetation in 
red, which allowed to cross-check training samples (Fig. 3) 
and a prior visual understanding of the current conditions 
of forest cover in the study area. Finally, upon clipping the 
FKWS impact area from the satellite image grid, supervised 
classification following the maximum likelihood algorithm 
was carried out using the SCP plugin in QGIS (Congedo 
2016; Karlsson et al. 2016). This involved creating ROIs 
(regions of interests) from training samples while consid-
ering the spectral variability or signature of specific land 
cover classes (Table 2). The maximum likelihood algorithm 
is used to determine the likelihood of each pixel belonging 
to each of the predetermined LULC classes, and the pixel is 
then assigned to a class based on the highest probability. The 
area covered for each class per study year was determined 
by the pixel number.

Table 1  Features of landsat satellite images

Satellite Sensor Path/row Cloud cover-
age (%)

Acquisition date Resolution Spectral bands (µm)

Landsat–8 OLI–TIRS 136/45 0.00 21–11–2021 30 m B3 (Green): 0.53–0.59
B4 (Red): 0.64–0.67
B5 (Near Infrared): 0.85–0.88
B7 (Shortwave Infrared–2): 2.11–2.29

Landsat–5 TM 136/45 0.00 08–02–2010 30 m B2 (Green): 0.52–0.60
B3 (Red): 0.63–0.69
B4 (Near Infrared): 0.76–0.90
B7 (Shortwave Infrared–2): 2.08–2.35

Landsat–7 ETM+ 136/45 0.00 07–02–2001 30 m B2 (Green): 0.52–0.60
B3 (Red): 0.63–0.69
B4 (Near Infrared): 0.77–0.90
B7 (Shortwave Infrared–2): 2.09–2.35

Landsat–5 TM 136/45 0.00 13–12–1994 30 m B2 (Green): 0.52–0.60
B3 (Red): 0.63–0.69
B4 (Near Infrared): 0.76–0.90
B7 (Shortwave Infrared–2): 2.08–2.35

Table 2  Considered LULC 
classes of FKWS impact area

Source: Billah et al. (2021)

Class Description

Settlement Human settlements, commercial and industrial buildings, and roads
Water Water reserves, ponds, rivers, and lakes.
Agriculture/Grassland Crop fields and grazing lands with herbs and shrubs.
Forest Vegetation cover, homestead vegetation, reserve and non-reserve forests, etc.
Bare Land Exposed soil with no vegetation at all
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Change detection and accuracy assessment

The study employed pixel-by-pixel cross-tabulation analy-
sis (Jensen et al. 1987) to map and quantify pixel changes 
from one land use/land cover category to another within 
three different time frames: 1994–2001, 2001–2010, and 
2010–2021. The post-processing tools of the SCP plugin 
in QGIS were used to perform the change detection analy-
sis. Furthermore, the classification accuracy of the images 
was assessed to evaluate the validity of the information 
obtained from the data using stratified random sampling 
(Chowdhury et al. 2020; Islam et al. 2021). To reflect a 
sizable amount of validation data for each year, 149 ran-
domly selected validation points from across all catego-
ries were purposefully sampled. The accuracy was tested 
using an error matrix for each year of investigation. Also, 
in a bid to measure the level of accuracy, two class-based 
accuracy assessment approaches (i.e., producer accuracy: 
PA and user accuracy: UA) and the total accuracy of the 
classified images were determined. While UA measures 
the ratio of the number of correctly classified pixels in 
each class by its total number of classified pixels, PA con-
siders the total number of reference pixels in the said class 
as the denominator. Another common image classification 
accuracy measure is Kappa coefficient (K). Typically, its 
values range from 0 to 1, where the higher the value, the 
higher the agreement and accuracy (Billah et al. 2021; 
Islam et al. 2021; Hasnat 2021). This K statistic was also 
computed in this study using the following formula:

 where TP is total pixels, and TCP is total corrected pixels.

Vegetation indices

Several vegetation indices can be employed to detect and 
analyze the existence and extent of vegetation and forest 
cover. Among the commonest ones are NDVI and SAVI 
(Huete 2012; Vani and Mandla 2017; Huang et al. 2021; 
Islam et al. 2021). These indices are measures of vegetation 
and soil surface reflectance. In this research, the viability 
of these two widely used vegetation indices was therefore 
investigated to further determine the extent of forest cover 
and greenness in the ecosystem and its adjourning impact 
area. To do so, the NDVI and SAVI values of all pixels were 
extracted, respective to each year of assessment, using the 
raster calculator tool in QGIS based on the formulas below 
(Eqs. 2 and 3). NDVI formula was sourced from Huang et al. 
(2021), while the SAVI was from Huete (1988).

(1)K =
(TP × TCP) −

∑

(ColumnTotal × RowTotal)

TP
2 −

∑

(ColumnTotal × RowTotal)
,

(2)NDVI =
NIR − R

NIR + R
,

(3)SAVI =
NIR − R

NIR + R + L
× (1 + L),

Fig. 2  The schematic framework of methodology
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In these equations, NIR is the DN value from the near infra-
red band; R is the DN value from the red band; L is the soil 
brightness correction factor. L values range from 0 for very 
high vegetation cover to 1 for very low vegetation cover, and 
the most typically used value is 0.5, which is for intermedi-
ate vegetation cover. Both NDVI and SAVI values range 
from + 1 to -1, with areas of no or sparse vegetation charac-
teristically recording low values while highly vegetated or 
forest areas are attributed to higher values.

Land surface temperature (LST)

LST is an essential parameter that measures the emission of 
thermal radiance (temperature) from the land surface or, in 
vegetated areas, the canopy surface (Alam et al. 2022). The 
higher the surface temperature value for an area, the less 
probability of it having sufficient vegetation cover. To calcu-
late the LST index for the FKWS impact area over the course 
of the study period, the TM thermal band 6 (10.4–12.5 μm), 

Fig. 3  False-color composite 
of FKWS impact area (Land-
sat-8/2021)
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ETM + thermal band 6 (10.4–12.5 μm), and OLI thermal 
band 10 (10.6–11.19 μm) were used. The first stage involved 
converting the thermal band digital number (DN) values 
for each Landsat image, according to the respective sensor 
types, to sensor spectral radiance using the following for-
mula (Eq. 4) (Amiri et al. 2009).

 where, Lmaxλ
 = Maximum spectral radiance scaled to Qcalmax

 
in [watts/m2 + sr + µm]. Lminλ

 = Minimum spectral radiance 
scaled to Qcalmin

 in [watts/m2 + sr + µm]. Lλ = TOA spectral 
radiance [watts/m2 + sr + µm].

The following equation (Eq. 5) is then used to convert 
spectral radiance to temperature in Kelvin (Alam et  al. 
2022), and then to Celsius by subtracting 273.15. The cali-
bration constants  K1 and  K2 were acquired from the Landsat 
data user’s manual (Table 3).

 where Lλ = TOA spectral radiance [watts/m2 + sr + µm]. 
 K1 = Calibration constant 1.  K2 = Calibration constant 2. 
 TKelvin = Surface temperature in Kelvin

Relationship between NDVI and LST

The linear relationship between the NDVI and LST was 
computed using R (R Core Team, 2013). The relationship 
between the two indices was investigated by randomly 
choosing 500 NDVI and LST point data within the FKWS 
boundary, where NDVI was regarded as the dependent vari-
able and LST as the independent variable.

Results and discussion

LULC patterns of FKWS impact area (1994–2021)

The LULC classification of the study area for the years 
1994, 2001, 2010, and 2021 are shown in Fig. 4, while the 
area statistics of the LULC patterns are summarized for the 
respective years in Table 4. In 1994, forest accounted for 

(4)Lλ =

[

Lmaxλ
− Lminλ

Qcalmax
− Qcalmin

]

× (Qcalmax
− Qcalmin

) + Lminλ
,

(5)Tkelvin =
k2

ln

[(

k1

Lλ

)

+ 1

] ,

45.17% of the protected forest and its impact area, covering 
3202.56 ha out of 7090.38 ha and making it the predominant 
land cover class. By that year, other LULC categories shared 
the remaining land area in the following proportions: agri-
culture/grassland (1997.10 ha), bare land (1071 ha), water 
(586.08 ha), and settlement (233.64 ha), with agriculture and 
bare land accounting for 43.27% in total. By 2021, the forest 
area had reduced to 2085.39 ha, amounting to only 29.41%, 
giving way mainly to settlement and bare land. Although the 
land area covered by agriculture/grassland had first slightly 
increased by approximately 3% in 2010 relative to 1994, 
there was a substantial reversal to 1403.37 ha (19.79%) by 
2021. Meanwhile, settlement, which only covered 3.30% at 
the earliest classification year had recorded an exponential 
increase to 27.72% (1965.15 ha) in the study area. A rela-
tively similar trend of land coverage was observed for bare 
land, but with only an initial increase from 15.10% to 1994 
to 27.57% in 2001, which later reduced to 17.27% by 2021.

Therefore, according to the LULC analysis of the 27-year 
Landsat data of the FKWS impact area, the forest remained 
the dominant land use category for all the assessment peri-
ods, but with a substantial decreasing trend. The record of 
a considerable tract of remnant forest cover in the protected 
area could be attributed to the co-management activities 
and Bangladesh Forest Department’s initiatives to avert 
deforestation in the Cox’s Bazar forest range, wherein our 
study area falls (Ullah et al. 2022a). Nonetheless, the recent 
influx of Rohingyas in Cox’s Bazar is drastically changing 
the status of land usage and has resulted in decreased for-
est cover (Hassan et al. 2018; Hasan et al. 2021). Although 
agriculture took the next largest share of the reserve and 
its impact area up till 2010, being a principal livelihood 
source in Bangladesh (Hossain 2013; Misbahuzzaman and 
Smith-Hall 2015), its cover increase and degrading impact 
on the forest is reducing, with settlements now taking 
over. According to our findings, 1117.17 ha of forest land 
was depleted, agricultural and grassland had declined by 
593.73 ha, while settlement had increased by 1731.51 ha 
between 1994 and 2021. Interestingly, only the settlement 
was responsible for destroying 404.64 ha of forest land in 
the FKWS impact area (Table 5). These findings partly align 
with Billah et al. (2021), who by 2015 found the primary 
cause of deforestation and land conversion in the study area 
to be the increasing demand for settlement as well as rural 
livelihoods. Nevertheless, these reports are not so different 
since we identified agricultural expansion for livelihoods to 
have predominantly driven forest loss by 2010 before being 
displaced by settlement expansion.

Land cover change detection of FKWS impact area

The change detection analysis for each land cover category 
is mapped in Fig. 5 and summarized in Table 5. The relative 

Table 3  Calibration constants of thermal bands for LST computation

Satellite Sensor Band K1 K2

Landsat-5 TM Band 6 607.76 1260.56
Landsat-7 ETM+ Band 6 607.76 1260.56
Landsat-8 OLI–TIRS Band 10 774.8853 1321.0789
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Fig. 4  LULC classification of FKWS impact area (1994–2021)
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changes in the land cover classes are graphically presented in 
Fig. 6. From the findings, it was observed that the land cover 
of the reserve and its impact area had undergone a consider-
able change within the assessed overall epoch 1994–2021. 
The forest, water, and agriculture/grassland classes predomi-
nantly experienced negative changes, although agriculture/
grassland had recorded a considerable positive change 
within 2001–2010. On the other hand, the land areas con-
sidered bare land and settlement recorded a positive change 
over the years. The most significant transitions between 1994 
and 2021 were found for forest and settlement, with a total of 
about 16% loss and 24% gain, respectively. Of these changes, 
the hugest forest change was recorded within the earliest 
seven (7) years evaluated (i.e., 1994–2001). This period wit-
nessed the removal of 867.78 ha of forest cover, account-
ing for over 12% relative to the initial cover. The substan-
tial loss of forest vegetation commensurated the observed 
extensive conversion to bare land, which recorded almost a 
12.5% (883.71 ha) increase. By that time, the rates of change 
in agricultural lands and settlement areas had not become 
prominent. Although the forest conversion had significantly 
decreased by the following epochs (i.e., 2001–2010 and 
2010–2021), the already depleted land in the reserve was 
substantially transformed into agricultural and structural 
development uses. There was a conversion of approximately 
392.0 ha and 521.3 ha to agriculture and settlement between 
2001 and 2010. Both land uses were the leading causes of 
deforestation and degradation in the protected area. How-
ever, the trend became reversed for agriculture but doubled 
for settlement in the last evaluation period—between 2010 
and 2021. That is, while almost 808.65 ha of land managed 
under an agricultural system was lost, settlement expansion 
had recorded a significant increase accounting for 14% rela-
tive to 2010, indicating the recent pressure of the rural com-
munities and migrants to satisfy their needs for habitation.

Furthermore, a cross-tabulation of pixel-by-pixel exami-
nation of Landsat images provides more discernible find-
ings to corroborate the LULC change analysis of an area 
(Chowdhury et al. 2020). Therefore, the cross-tabulation of 
the land use changes over three distinct periods: 1994–2001, 
2001–2010, and 2010–2021 are presented in Tables 6, 7 and 

8. This analysis confirms that the most extensive forest cover 
depletion was within the first two periods. During these 
periods, the majority of the lost vegetated area had been 
immediately converted to cropland/grassland (334.35 ha 
for 1994–2001 and 177.93 ha for 2001–2010), while other 
bulk of the land areas left bare by 2001 were further utilized 
for agriculture between 2001 and 2010 (i.e., over 600 ha) 
(Tables 6 and 7). Meanwhile, in these periods, the conver-
sion of forest cover for settlement was relatively minimal, 
cumulating to 104.49%. These findings align with Billah 
et al. (2021), who assessed the changes in the study area 
without its impact area until 2015 and attributed forest loss 
mainly to agricultural land. The primary source of livelihood 
for the surrounding rural communities of FKWS is agricul-
ture, principally, Jhum cultivation—a traditional method of 
shifting cultivation. People usually clear a forest patch into 
bare land and gradually convert it to agricultural land. This 
kind of widely adopted indigenous cropping practice has 
been likewise reported as the main driver of deforestation 
and land use change in other forest areas in Bangladesh, such 
as in Chittagong Hill Tracts (Rahman et al. 2012). Likewise, 
several studies across the country have ascribed the deple-
tion of forest resources to the people’s dependency on forest 
lands and products, encroachment for farming, illegal occu-
pation and grabbing of forest land, and inadequate supervi-
sion by the forest department (Salam et al. 1999; Iftekhar 
and Hoque 2005; Biswas and Choudhury 2007; Xu et al. 
2020; Billah et al. 2021).

In the recent decade, although the direct conversion of 
forest for agriculture in the protected area was no longer 
prominent, there has been continual cultivation of a large 
expanse of bare land. However, the rate decreased, with 
settlement expansion becoming the most prominent 
driver of forest cover loss (300.15 ha) (Table 8). During 
this period, there was critical pressure for human settle-
ment due to a significantly huge migration and intrusion 
of about a million Rohingya refugees (Hassan et al. 2018; 
Hasan et al. 2021; Dampha et al. 2022; Ullah et al. 2022b). 
This might stimulate even more future forest degradation 
as a substantial proportion (798.93 ha) of the agricul-
tural lands available for household farming was already 

Table 4  LULC patterns of 
FKWS impact area (1994–
2021)

Category Land cover in 1994 Land cover in 2001 Land cover in 2010 Land cover in 2021

Area (ha) (%) Area (ha) (%) Area (ha) (%) Area (ha) (%)

Forest 3202.56 45.17 2334.78 32.93 2311.29 32.60 2085.39 29.41
Water 586.08 8.27 500.94 7.07 356.85 5.03 411.84 5.81
Agriculture
/Grassland

1997.10 28.17 1819.98 25.67 2212.02 31.20 1403.37 19.79

Bare land 1071.00 15.10 1954.71 27.57 1208.97 17.05 1224.63 17.27
Settlement 233.64 3.30 479.97 6.77 1001.25 14.12 1965.15 27.72
Total 7090.38 100 7090.38 100 7090.38 100 7090.38 100
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Fig. 5  Land cover change detection of FKWS impact area. (A = agriculture/grassland; B = bare land; S = settlement; F = forest; W = water)
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converted for settlement development by 2021 (Table 8), 
despite the dependence of the rural people on agriculture 
for survival (Hossain 2011). Already, almost 500 ha and 
195 ha of agricultural and forest lands, respectively, had 

been converted to bare land with a high potential of being 
transformed into buildings in future years if the settlement 
rate remains unchecked.

Nonetheless, there has been a considerable improve-
ment in forest management, as demonstrated by the rela-
tively reduced forest conversion rate in recent times. Also, 
in the last 2 decades, some agricultural and bare lands 
(e.g., 64.08 ha and 135.72 ha, respectively, between 2010 
and 2021) had been re-established with forest stands. This 
development is similar to the report of Islam et al. (2021) 
in Nijhum dwip national park, which might be because 
of the involvement of community participation through 
the community forest management practice as an initiative 
by the Bangladesh Forest Department to increase the for-
est cover in the eastern upland of Bangladesh (Ahammad 
et al. 2019). However, such achievement is still minimal, 
considering the overall forest cover loss of the FKWS 
impact area and the Chittagong Hill Tracts. Therefore, 
while improving forest monitoring, dealing with the criti-
cal deforestation drivers is pivotal, including adequate 

Table 5  Land cover changes 
of FKWS impact area (1994–
2021) 

Category Change (1994–2001) Change (2001–2010) Change (2010–2021) Change (1994–2021)

Area (ha) (%) Area (ha) (%) Area (ha) (%) Area (ha) (%)

Forest –867.78 –12.24 –23.49 –0.33 –225.90 –3.19 –1117.17 –15.76
Water –85.14 –1.20 –144.09 –2.03 54.99 0.78 –174.24 –2.46
Agriculture
/Grassland

–177.12 –2.50 392.04 5.53 –808.65 –11.40 –593.73 –8.37

Bare land 883.71 12.46 –745.74 –10.52 15.66 0.22 153.63 2.17
Settlement 246.33 3.47 521.28 7.35 963.90 13.59 1731.51 24.42
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Fig. 6  Graphical visualization of relative land cover changes of 
FKWS impact area. (A = agriculture/grassland; B = bare land; S = set-
tlement; F = forest; W = water)

Table 6  Cross tabulation of 
land cover change between 1994 
and 2001 (area in ha)

Category Forest Water Agriculture
/grassland

Bare land Settlement Total

Forest 2258.1 2.43 334.35 601.02 6.48 3202.38
Water 0.09 343.8 80.91 150.93 10.35 586.08
Agriculture/grassland 75.87 138.96 1047.78 636.12 98.37 1997.1
Bare land 0.54 5.13 245.25 523.98 296.1 1071
Settlement 0 10.62 111.69 42.66 68.67 233.64
Total 2334.6 500.94 1819.98 1954.71 479.97 7090.2

Table 7  Cross tabulation of 
land cover change between 2001 
and 2010 (area in ha)

Category Forest Water Agriculture/
grassland

Bare land Settlement Total

Forest 1966.77 0.36 177.93 91.53 98.01 2334.6
Water 0 299.61 168.66 20.88 11.79 500.94
Agriculture/Grassland 111.6 26.64 926.28 117.27 638.19 1819.98
Bare land 230.85 22.41 654.66 825.66 221.13 1954.71
Settlement 1.89 7.83 284.49 153.63 32.13 479.97
Total 2311.11 356.85 2212.02 1208.97 1001.25 7090.2



3163Modeling Earth Systems and Environment (2023) 9:3151–3173 

1 3

management of the recent Rohingya influx, prevention of 
land grabbing, forestalling encroachment for agricultural 
expansion, among others.

Accuracy of classified images

An important step after land cover classification is accu-
racy evaluation, which defines the validity of the resultant 

Table 8  Cross tabulation of 
land cover change between 2010 
and 2021 (area in ha)

Category Forest Water Agriculture
/grassland

Bare land Settlement Total

Forest 1794.6 0.09 21.51 194.76 300.15 2311.11
Water 0.09 253.08 21.24 36.18 46.26 356.85
Agriculture/Grassland 135.72 137.34 640.8 499.23 798.93 2212.02
Bare land 64.08 10.26 584.64 400.77 149.22 1208.97
Settlement 90.81 11.07 135.18 93.6 670.59 1001.25
Total 2085.3 411.84 1403.37 1224.54 1965.15 7090.2

Table 9  Error matrix of 
classified image 1994

Category Forest Water Agricul-
ture/grass-
land

Bare land Settlement Total UA (%) PA (%)

Forest 28 0 1 1 0 30 93.33 95.36
Water 0 25 5 0 0 30 83.33 93.19
Agriculture/Grassland 2 0 24 3 0 29 82.76 82.51
Bare land 0 1 3 26 0 30 86.67 72.93
Settlement 1 0 5 4 20 30 66.67 100.00
Total 31 26 38 34 20 149

Table 10  Error matrix of 
classified image 2001

Category Forest Water Agricul-
ture/grass-
land

Bare land Settlement Total UA (%) PA (%)

Forest 17 0 1 0 0 18 94.44 96.68
Water 0 23 0 0 0 23 100.00 86.03
Agriculture/Grassland 2 1 41 3 1 48 85.42 89.98
Bare land 0 1 1 40 3 45 88.89 90.72
Settlement 0 0 0 2 13 15 86.67 71.20
Total 19 25 43 45 17 149

Table 11  Error matrix of 
classified image 2010

Category Forest Water Agricul-
ture/grass-
land

Bare land Settlement Total UA (%) PA (%)

Forest 18 0 1 0 0 19 94.74 95.68
Water 0 19 1 0 0 20 95.00 90.34
Agriculture/Grassland 1 1 57 2 0 61 93.44 88.65
Bare land 0 0 0 33 0 33 100.00 94.34
Settlement 1 0 2 0 13 16 81.25 100.00
Total 20 20 61 35 13 149
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map by assessing the errors for each class and generally for 
the whole classified image (Anderson et al. 1976; Congedo 
2016; Rwanga and Ndambuki 2017). Therefore, the error 
matrices for the classified images are shown in Tables 9, 
10, 11 and 12, while Table 13 summarizes their overall 
accuracy and Kappa measures. The almost perfect number 
of corrected pixels and the high user and producer accura-
cies (mostly 80–100%) for the land cover maps across all 
the years demonstrated the performance and validity of the 
land cover classification and products. This is even further 
established by the high overall accuracy of 87.64%, 90.46%, 
93.34%, and 92.87%, with satisfactory kappa coefficients of 
0.82, 0.87, 0.91, and 0.91 for 1994, 2001, 2010, and 2020, 
respectively. Such a great accuracy could be largely attrib-
uted to the classification technique adopted for this study, 
as Mahmon et al. (2015) had earlier reported the Maximum 
Likelihood classifier to have produced the greatest accuracy 
when compared with some other classifiers like Mahalanobis 
Distance. Moreover, the accuracy assessment results corre-
spond with the standard land cover classification accuracy of 
85–90% proposed by Anderson et al. (1976) and are similar 
to some other land cover mapping studies in adjacent forests 
in Bangladesh (Hassan et al. 2018; Billah et al. 2021).

Assessment of forest cover based on vegetation 
indices (NDVI and SAVI)

Remotely sensed vegetation indices are straightforward and 
efficient methods for quantitative and qualitative assess-
ments of vegetation cover, vitality, and growth dynam-
ics (Xue and Su 2017; Pesaresi et al. 2020; Pasternak and 

Pawluszek-Filipiak 2022). The maps of the two most exten-
sively used vegetation indices for vegetation monitoring and 
mapping—NDVI and SAVI—of the FKWS impact area are 
presented in Figs. 7 and 8. The NDVI and SAVI values of 
the area ranged from 0.63 to -0.39 and 0.94 to -0.59 across 
the years of evaluation, with the higher values indicating 
forest, low positive values characterizing sparse vegetation 
and negative values representing water (Huete 2012; Xue 
and Su 2017; Islam et al. 2021; Pasternak and Pawluszek-
Filipiak 2022). Although the main FKWS area was mostly 
covered by forest over the years, as indicated by the darker 
green color and high indices values, its adjoining impact 
area had become increasingly dominated by sparse or no 
vegetation exhibiting low values. The heightened values of 
NDVI (0.60 > 0.49) and SAVI (0.90 > 0.74) by 2010 relative 
to 2001 slightly confirmed the earlier evidence of reduced 
forest loss and increased reconversion to forest area by the 
end of that same period (Tables 5 and 7). Nevertheless, a 
further comparative validation of these indices’ reports was 
necessary to establish their forest cover assessment devia-
tions, as subsequently provided in Fig. 9.

Table 14 further summarizes the estimation of forest 
land cover of the study area based on these indices. In this 
process, all pixel values of NDVI and SAVI were extracted 
from the classified image of 1994, and the lowest values 
representing forest cover predominantly within the FKWS 
boundary were carefully identified (i.e., 0.31 and 0.50, 
respectively). Therefore, for each image, pixels with NDVI 
≥ 0.31 and SAVI ≥ 0.5 were assigned to the forest class and 
those with lower values to the non-forest category. A com-
parative evaluation of forest area estimates from both indices 
against the supervised classification output revealed reason-
ably similar trends but with a relative overestimation in 1994 
and underestimation in 2001 by NDVI as well as overestima-
tion in both 2001 and 2010 by SAVI (Fig. 9). Both indices 
largely undervalued the forest area percentage in 2001 and 
reported a relatively higher forest cover values for 2010. 
These estimation biases could be attributed to the sensitivity 
of the vegetation indices to effects of soil reflectance, soil 
appearance, atmosphere, and cloud shadows, necessitating 
remote sensing calibration (Huete 1988; Vani and Mandla 

Table 12  Error matrix of 
classified image 2021

Category Forest Water Agricul-
ture/grass-
land

Bare land Settlement Total UA (%) PA (%)

Forest 19 0 0 1 0 20 95.00 95.39
Water 0 17 0 0 0 17 100.00 75.29
Agriculture/grassland 0 0 43 2 1 46 93.48 97.08
Bare land 1 2 1 26 1 31 83.87 86.14
Settlement 1 1 0 0 33 35 94.29 96.36
Total 21 20 44 29 35 149

Table 13  Overall accuracy and 
Kappa coefficient of land cover 
classification

Year Overall 
accuracy 
(%)

Kappa 
coeffi-
cient

1994 87.64 0.82
2001 90.46 0.87
2010 93.34 0.91
2021 92.87 0.91



3165Modeling Earth Systems and Environment (2023) 9:3151–3173 

1 3

Fig. 7  NDVI of FKWS impact area (higher NDVI values or darker green indicate forest area)
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Fig. 8  SAVI of FKWS impact area (higher SAVI values or darker green, indicate forest area)
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2017; Xue and Su 2017; Pasternak and Pawluszek-Filipiak 
2022). Nonetheless, from the comparative deviations in 
Fig. 9, it could be inferred that NDVI identifies and esti-
mates vegetation cover more accurately than SAVI, which is 
consistent with the findings of Islam et al. (2021). NDVI is 
therefore preferably recommended for rapid evaluation and 
monitoring of forest cover in Bangladesh (Redowan et al. 
2014; Hassan et al. 2018; Islam et al. 2021).

Land surface temperature of FKWS impact area

Remotely sensed Land Surface Temperature (LST) has 
become one of the crucial indices to characterize and 
understand the thermal behavior of the earth cover in 
response to vegetation changes and associated climate 
processes (Trigo et al. 2008; Srivastava et al. 2018). Fig-
ure 10 presents the land surface temperature trends in the 
FKWS impact area over the study period (1994–2021). It 
is revealed that the LST has increased considerably in the 
study area over the last decades, with the minimum and 
maximum temperatures increasing from 17.47 to 25.09 °C 
and 23.68 to 34.09 °C respectively within the entire period. 
Such an exponential increase could be directly attributed 
to the rapid depletion of forest cover and consequent 

expansion of settlement in the area. This finding resonates 
with the elevated surface temperatures recorded in differ-
ent geographical areas and terrestrial ecosystems across 
various parts of the world (Jiang and Tian 2010; Zhang 
et al. 2016; Mohamed et al. 2017). Likewise, in Bangla-
desh, Alam et al. (2022) recorded a rise in the maximum 
surface temperature at Bhawa National Park by 9.05 °C 
between 1990 and 2020. According to Tafesse and Surya-
bhagavan (2019), LST increases every year globally, and 
this is mainly a result of the anthropogenic conversion 
of natural vegetated surfaces into other land covers/uses 
like farmlands, grasslands, bare lands and, more severely, 
into other impermeable artificial structures like human set-
tlements and industrial buildings (Morsy and Aboelkhair 
2021; Alam et al. 2022).

Nevertheless, the general increase in land surface tem-
peratures over the years in the protected area could not 
be considered to follow a linear trend, similar to the veg-
etation indices (Fig. 9). The mean LST value (24.02 °C) 
recorded in 2010 was lower than the average temperature 
(27.00 °C) found about 10 years earlier (in 2001) (Fig. 10). 
Such a trend is in tandem with the land use type and inten-
sity experienced within a given period, besides other envi-
ronmental (natural) factors like slope, soil type, altitude, 
soil moisture, and rainfall variation (Li et al. 2013; Jiang 
and Tian 2010; Tafesse and Suryabhagavan 2019). Unlike 
within 1994–2001, there was no considerable reduction 
in the forest cover, and even a large proportion of the bare 
land had become revegetated mostly by crops by 2010 
(Figs. 4 and 5). This resulted in the relatively lower land 
surface thermal radiance emission reported in the year. 
Meanwhile, several studies have emphasized the compara-
tive potential of agricultural lands (i.e. crops) to reduce 
land surface temperature over other (non-vegetated) LULC 
classes, mainly due to plants’ considerable evapotranspi-
ration capacity and their ability to scatter incident solar 
radiation and absorb heat, similar as the forests (Tafesse 
and Suryabhagavan 2019; Morsy and Aboelkhair 2021; 
Alam et al. 2022).

Table 14  Vegetation indices 
(NDVI and SAVI) based forest 
cover of FKWS impact area 
(1994–2021)

Category Distribution in 1994 Distribution in 2001 Distribution in 2010 Distribution in 2021

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

NDVI
Forest 3409.31 48.08 1460.36 20.60 2041.29 28.79 1995.48 28.14
Other 3681.07 51.92 5630.02 79.40 5049.09 71.21 5094.90 71.86
Total 7090.38 100.00 7090.38 100.00 7090.38 100.00 7090.38 100.00
SAVI
Forest 3209.31 45.26 1152.07 16.25 1531.75 21.60 1864.55 26.30
Other 3881.07 54.74 5938.31 83.75 5558.63 78.40 5225.83 73.70
Total 7090.38 100.00 7090.38 100.00 7090.38 100.00 7090.38 100.00
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and supervised classification
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Fig. 10  LST of FKWS impact area (1994–2021)
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Relationship between LST and NDVI

NDVI has been widely demonstrated as a crucial, conven-
tional indicator for assessing land surface temperature and 
dryness (Roberts et al. 2015; Morsy and Aboelkhair 2021; 
Alam et al. 2022). This tendency is contingent upon the 
observable relationship between the earth’s near-infrared 
and thermal reflections. That is, there is commonly a corre-
lation between NDVI and LST, although the direction of the 
relationship might be dependent on the LULC types (Jiang 
and Tian 2010; Zhang et al. 2016; Tafesse and Suryabhaga-
van 2019). Also, in FKWS, excluding the impact area, the 
relationship between LST and NDVI indices was investi-
gated by randomly extracting and regressing 500 NDVI and 
LST data within the wildlife sanctuary’s boundary. This 
selection was considered statistically representative of the 

pixels of the vegetation indices. The output of the regres-
sion analysis (i.e., scatterplot) for each of the assessed years 
is presented in Fig. 11. It is evident that the NDVI had an 
inverse or opposite relationship with LST, depicted by the 
negative regression coefficient between the indices, which 
aligned with several other studies (Jiang and Tian 2010; 
Morsy and Aboelkhair 2021; Alam et al. 2022). The coeffi-
cient of determination  (R2) between the indices varied across 
the years, ranging from 0.38 to 0.53; however, it could be 
generally asserted that the vegetation in the protected area 
assumes a moderate effect on the land surface temperature 
for all the years evaluated. Such finding therefore posits that 
the remaining LST variance would be explained by and is 
dependent on other site conditions in the area, like soil type, 
geological setting, elevation and climatic factors, including 
rainfall (Tafesse and Suryabhagavan 2019).

Fig. 11  Relationship between NDVI and LST in FKWS
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Conclusion

This study assessed the land use land cover changes in 
FKWS impact area in Bangladesh within nearly 3 decades 
(1994–2021) using remotely sensed multispectral imagery. 
The forest cover, predominantly accounting for almost 50% 
of the entire land area, drastically reduced over the years, 
especially within the first evaluation period (1994–2001), 
when over 12% of the forest was lost. Up till 2010, forest 
conversion to bare lands primarily for agricultural activi-
ties was a prevalent driver of deforestation with almost 6% 
increase in agricultural land, due to the absolute depend-
ence of the rural communities on household agriculture for 
livelihoods. However, in the last decade, settlement expan-
sion increased sporadically by 14% as a result of the popu-
lation expansion in the area from the massive migration of 
Rohingya refugees. This development not only resulted in 
forest depletion but also reduced the livelihood potential 
of the local people owing to the conversion of even agri-
cultural lands to human settlements.

Nonetheless, the trend of forest cover loss recently 
decreased as some proportions of agricultural lands and 
bare lands were re-established with forest trees. Based on 
our findings and observation, we recommend that the sus-
tainability of such development and a transition to positive 
forest cover change in the area will largely depend on several 
forest management factors. Some of these include effective 
control of settlement expansion, continuous prevention of 
agricultural encroachment and land grabbing by settlers, 
and improved forest monitoring. Another important find-
ing of this study was the applicability of the two vegetation 
indices (NDVI and SAVI) for evaluating or mapping forest 
cover changes. NDVI performed better and more accurately 
than SAVI in forest estimation and is most recommended 
for rapid monitoring of the protected area. Furthermore, the 
relationship (i.e., a negative correlation) existing between 
LST and NDVI was assessed in the forest area, which 
implies an indirect effect of the vegetation cover on the land 
surface temperature and vice versa in the area.
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