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Abstract

In the present study, multilayer perceptron (MLP) neural network and support vector regression (SVR) models were developed
to assess the suitability of groundwater for drinking purposes in the northern Khartoum area, Sudan. The groundwater quality
was evaluated by predicting the groundwater quality index (GWQI). GWQI is a statistical model that uses sub-indices and
accumulation functions to reduce the dimensionality of groundwater quality data. In the first stage, GWQI was calculated
using 11 physiochemical parameters collected from 20 groundwater wells. These parameters include pH, EC, TDS, TH,
Cl, SO4_2, NO;™, Ca™?, Mg+2, Nat, and HCO;™. The primary investigation confirmed that all parameters except for EC
and NO;™ are beyond the standard limits of the World Health Organization (WHO). The measured GWQI ranged from 21 to
396. As a result, groundwater samples were classified into three classes. The majority of the samples, roughly 75%, projected
into the excellent water category; 20% were considered good water and 5% were classified as unsuitable. GWQI models are
powerful tools in groundwater quality assessment; however, the computation is lengthy, time-consuming, and often associated
with calculation errors. To overcome these limitations, this study applied artificial intelligence (AI) techniques to develop
a reliable model for the prediction of GWQI by employing MLP neural network and SVR models. In this stage, the input
data were the detected physiochemical parameters, and the output was the computed GWQI. The dataset was divided into
two groups with a ratio of 80% to 20% for models training and validation. The predicted (AI) and actual (calculated GWQI)
models were compared using four statistical criteria, namely, mean square error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), and coefficient of determination (R%). Based on the obtained values of the performance measures,
the results revealed the robustness and efficiency of MLP and SVR models in modeling GWQI. Consequently, groundwater
quality in the north Khartoum area is evaluated as suitable for human consumption except for BH 18, where highly mineral-
ized water is observed. The developed approach is advantageous in groundwater quality evaluation and is recommended to
be incorporated in groundwater quality modeling.

Keywords Sudan - Khartoum - Groundwater quality - Artificial intelligence - SVR - MLP

Introduction

The primary source of water supply in dry and sub-dry areas
is groundwater (Kayemah et al. 2021). Groundwater quality
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areas to the capital city. As a result, groundwater demand
has rapidly increased to fulfill the strategic plans. How-
ever, this has resulted in a variety of challenges, including
decreased production and groundwater quality degradation
(Abdo and Salih 2012). Groundwater quality degradation
leads to an increase in groundwater salinity, caused mainly
by natural and anthropogenic activities (Mohammed et al.
2022). In Khartoum, groundwater contributes to more
than 52% of the total demand, primarily for agriculture.
Since north Khartoum is agricultural land, the communities
have maintained stable life due to the efficiency of irriga-
tion and chemical fertilizers. However, their extensive use
harmed the quality of the groundwater. Water quality evalua-
tion and management are issues profoundly affecting human
health. According to the World Health Organization (WHO)
(Edition 2011), 80% of all diseases are water-borne. There-
fore, it is critical to periodically assess groundwater quality
with appropriate and effective methods to ensure its suit-
ability for human consumption (Ram et al. 2021).
Groundwater quality evaluation necessitates collect-
ing massive physical and chemical data, which can be
challenging to analyze and synthesize. The traditional
approach of laboratory analysis is time-consuming and
requires intensive efforts. Water quality index (WQI)
models are one of the techniques that have been created
to analyze water quality data. WQI models rely upon an
aggregating mechanism that allows the analysis of huge
datasets to yield a single value, i.e., the water quality
index. Horton (1965) introduced the first WQI. Subse-
quently, many experts have developed several WQI and
groundwater quality index (GWQI) to assess the suitabil-
ity of surface and groundwater for drinking and irriga-
tion purposes (Gitau et al. 2016; Tian et al. 2019; Asadi
et al. 2020; Kanga et al. 2020). GWQI is a complex index
that integrates physical, chemical, and biological param-
eters to provide an easy-to-understand index for policy
and decision-makers (Brown et al. 1970). However, assess-
ing groundwater quality using GWQI is time-consuming
and costly (Tung et al. 2020). To overcome the limitations
of GWQI, some researchers have turned to non-physical
methods using artificial intelligence (AI) models (Imneisi
2019; Kadam et al. 2019; Gaya et al. 2020; Agrawal et al.
2021; Asadollah et al. 2021; Elbeltagi et al. 2021). This
approach is based on the idea that any system can learn
from datasets, create models, and then make decisions
with the least amount of manual intervention (Azrour
et al. 2022). For modeling GWQI, Al-based models have
minimized sub-index calculations and generated GWQI
value efficiently. The benefits of Al approaches include
solving complex nonlinear problems and the capacity
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to manage big datasets (Bui et al. 2020). Researchers
have been able to utilize a variety of Al models due to
the continual advancement of computational capabilities.
Approaches such as artificial neural networks (ANN) and
support vector regression (SVR) have been effectively
applied by many researchers to predict the quality of water
worldwide. For example, Sakizadeh (2016) used ANN to
predict GWQI in Andimeshk City. The study indicated the
excellent generalization ability of ANN in the modeling of
GWQI. Kadam et al. (2019) confirmed the robustness of
multi-linear regression (MLR) and ANN in the prediction
of WQI. For WQI modeling in Nainital Lake, Koranga
et al. (2022) used multiple machine learning techniques
such as random forest, support vector regression, and sto-
chastic gradient descent. Wang et al. (2020) combined par-
ticle swarm optimization (PSO), wavelet analysis (WA),
and support vector regression (SVR) for modeling WQI in
China. Their study indicated the robustness of these mod-
els in modeling parameter fluctuation. Singha et al. (2021)
developed and compared a deep learning model to other
conventional methods for modeling WQI. Their research
indicated that deep learning is more effective than the tra-
ditional GWQI models in groundwater quality assessment.
Gholami et al. (2021) operated an Al-based model using
a co-active neuro-fuzzy inference system (CANFIS) and
ANN, to assess the quality of groundwater in Iran. The
study revealed that the fuzzy neural network has the high-
est performance in simulating water quality parameters
over the other techniques. Elbeltagi et al. (2021) applied
four AI models including random subspace (RSS), sup-
port vector machine (SVM), M5 pruning tree, and addi-
tive regression to predict WQI. The research carried out
by Sillberg et al. (2021) demonstrated the possibility of
applying machine learning tools such as attribute realiza-
tion (AR) and SVM algorithms to classify WQI. Ahmed
et al. (2019) explored a series of machine learning algo-
rithms, including gradient boosting and multilayer percep-
tron (MLP), to estimate the WQI. The study conducted by
Nathan et al. (2017) revealed that ANN models could be
considered a powerful and dependable tool for simulat-
ing GWQI. The inspiration from previous works demon-
strates the great applicability of Al approaches for GWQI
simulation. In general, it was found that every study in
the reviewed literature had improved upon earlier ones
regarding the effectiveness and reliability of observations.

From the prementioned reviews, artificial intelligence
techniques have successfully and accurately predicted water
quality indices. Thus, this study aims to investigate the accu-
racy and performance of two models, including support vec-
tor regression (SVR) and multilayered perceptron neural
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network (MLP-ANN), in the modeling of GWQI in north-
ern Khartoum State, Sudan. The modeling results will help
evaluate groundwater quality, thereby contributing to water
supply sustainability. To the best of the authors’ knowledge,
this is the first study to evaluate the groundwater quality in
the central Sudan hydrogeologic system using Al methods.

Study area

The area is located in north Khartoum State, Sudan, and it
covers about 350 km? (Fig. 1). The study area is situated
in the Savanna belt, with an average annual precipitation
range of 100-200 mm/year. The Savanna belt is associated
with a hot climate and low humidity. The research area is
associated with flat topography, which progressively rises
from 300 m above the sea level in the west to more than
600 m in the east. Figure 2 shows the geological map of
the study area. The geological succession is composed of

three main units as basement rocks, Nubian formation, and
recent deposits. The Precambrian basement rocks are the
oldest rocks in the study area. They consist of gneisses,
schists, and granites, which crop at the surface mainly to
the north and eastern sides of the area. The Precambrian
rocks underlie the Cretaceous Nubian formation (Khei-
ralla 1966; Whiteman 1971; Saced 1974; Awad 1994).
This formation consists of conglomerates, sandstone, and
mudstone. The recent deposits are found in the vicinity of
the Nile River and are composed of unconsolidated sand,
silt, and gravel. In the study area, groundwater is stored
in the Nubian sandstone formation under semiconfined to
confined conditions due to the occurrence of clay, clayey
sand, and mudstone layers above the groundwater aquifers
(Abdelsalam et al. 2016). Two aquifers have been recog-
nized in the Nubian formation (Farah et al. 1997): an upper
aquifer of variable thickness (10-300 m) and a lower one
more than 400 m thick with higher transmissivity val-
ues. The water levels vary from15 to 20 m near the Nile
River. However, it attains 45 m in the eastern part of the
study area. The flow in the Nubian aquifer, as illustrated
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Fig. 1 Location map of the study area, including Khartoum State showing the location of the collected groundwater samples
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in Fig. 3, shows diverse directions, but the main direc-
tion for groundwater flow is from the west to the south-
eastern parts. The primary source of groundwater recharge
in Khartoum State is the Nile River (Farah et al. 2000).
In the areas outside the Nile influence, the groundwater
aquifers recharged from the wadies and ephemeral streams.

Methodology
Groundwater sampling

Twenty groundwater samples were collected during the post-
monsoon season to assess the groundwater quality and its
suitability for domestic purposes in the north Khartoum area,
Sudan. The groundwater samples were taken from bore wells
installed in the study area and ranged in depth from 100 to
150 m. The locations of groundwater samples are selected
randomly, aiming at covering vast spaces in the study area.
The spatial distribution of groundwater samples is illustrated
in Fig. 1. Groundwater samples were also collected based
on the accessibility to groundwater boreholes. The collected
samples were kept in previously cleaned plastic bottles to
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avoid interacting with the atmospheric gases and ions. The
location of samples is tracked using the global positioning
system (GPS) and subsequently supplied to the geographic
information system (GIS) to design base and geographic
distribution maps.

Eleven physicochemical parameters for 20 groundwa-
ter samples are analyzed in the groundwater and wadies
directorate (GWD) laboratory. The analyzed parameters
are total hardness (TH), calcium (Ca*?), sodium (Na*),
magnesium (Mg+2), chloride (CI7), nitrate (NO5 ™), sulfate
(SO4_2), and bicarbonate (HCO;™). Electrical conductiv-
ity (EC), total dissolved solids (TDS), and hydrogen ion
activity (pH) were measured using a portable multi-param-
eter instrument immediately after the sample collection.
Appelo and Postma (2005) equation (Eq. 1) is applied
to reveal the reliability of the conducted hydrochemical
analysis. This formula measures the electrical balance
(EB%) between the total of all cations (X cations) and
anions (X anions) in milliequivalents per liter (meq/L).
If the calculated EB is within+ 10 and — 10, the accu-
racy of the measurement is indicated as reliable and can
be considered for further interpretation. Otherwise, the
hydrochemical must be repeated to fulfill the suggested
range. Fortunately, in this research, the measured EB for
all groundwater samples was within + 5, indicating high
accuracy. The EB formula is as

Y cations — Y anions
Y cations + ). anions

(EB%) = % 100. (1)

Groundwater quality index (GWQI)

GWQI is a widely used model in determining the potabil-
ity of groundwater, considering management strategies.
GWQI results from a rating method that uses water quality
parameters to create an overall depiction of groundwater
quality. This approach is utilized to reduce the dimension-
ality of the groundwater quality data into a single depend-
ent numerical value. In general, GWQI is created in three
steps: assigning weights, computing the rating scale, and
aggregating the sub-indices. In this study, 11 physiochemi-
cal parameters (i.e., pH, EC, TDS, TH, Cl~, SO4‘2, NO;™,
Ca*2, Mg*?, Na*, HCO;") for 20 groundwater samples
were incorporated in GWQI computation. The lack of
microbiological contamination measurements in the study
area constrains the definition of the groundwater quality
index. However, the routinely analyzed physiochemical
parameters can effectively determine the suitability of the
groundwater for drinking purposes in the Khartoum area
since biological contamination is rare.

Weights are loaded to the selected parameters depend-
ing on their influence on the overall groundwater qual-
ity. In this study, the weights area was assigned with the
aid of correlation analysis to reveal the influence rate of
each physiochemical parameter in the overall groundwa-
ter quality. A weight of 5 is given to the most significant
parameter, while the least significant parameter is given
a weight of 2. Consequently, the relative weight (W,) for
the parameters is calculated using Eq. 2 (Singh 1992) as

w;
SLow @

i=1

W, =

where W; denotes the relative weight of each parameter,
w; is the weight allocated to each parameter, and n denotes
the number of variables used in the GWQI calculation. The
assigned weights and the relative weights applied in this
study are illustrated in Table 1.

The rating scale is calculated in the second phase. Since
the measured hydrochemical parameters have different units
and ranges, the goal of scaling is to convert all the selected
parameters into a common scale. The rating scale in this
study was generated using the standard limits prescribed
by WHO (Edition 2011). Equation 3 is applied to create the
rating scale as

R = i 100

=X, x 100, 3
where R, is the rating scale value, X; is the actual parameter
value, and X is the prescribed standard value.

The final stage in GWQI calculation is aggregating the
sub-indices with their weights. In this study, the mean arith-
metic with unequal weights approach has been used for sub-
index aggregation, and the final index value was calculated
by Egs. 4 and 5 (Tiwari and Mishra 1985). Based on the final

Table 1 The weights and the relative weights of the physiochemical
parameters

Parameters/units Weight (w;) Relative
weight
W)
pH 2 0.05
EC pS/cm 3 0.08
TDS mg/L 5 0.13
TH mg/L 4 0.10
Ca> mg/L 4 0.10
Mg** mg/L 4 0.10
Na* mg/L 4 0.10
Cl mg/L 4 0.10
SO, mg/L 4 0.10
HCO; mg/L 3 0.08
NO; mg/L 3 0.08
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Table 2 Classification of groundwater based on GWQI as given by
Ramakrishniah et al. (2009)

GWQI range Class Type of water
<50 I Excellent water
50.1-100 I Good water
100.1-200 1 Poor water
200.1-300 v Very poor water
>300 \" Unsuitable water

GWQI, groundwater is categorized into five classes. Table 2
shows the classification of groundwater samples based on
GWAQI values as given by Ramakrishniah et al. (2009).

SI= W, xR, @)

GWQI= ) SI, (5)

where SI is the sub-index values for each parameter.
Artificial intelligence methods

Multilayer perceptron neural networks (MLP-ANN) and
support vector regression (SVR) are employed to predict
GWQI in this research. The experiment was performed using
Python 3.7 environment with Keras as a high-level appli-
cation programming interface (API) based on TensorFlow
module. A detailed description of MLP and SVR is given in
the following sections.

Multilayer perceptron (MLP)

ANNs are computer programs that use a large number
of interlinked neurons to replicate the functioning of the

biological nervous system (Akbari and Jalali 2007). They
serve as a representation for the nervous system, where
neurons act as operating units. Their wide scope of uses
comes from the capacity of the networks to simulate the
human brain (Tom et al. 2020). The ANN is a decentral-
ized, parallel data processing system with unique opera-
tional characteristics similar to the human brain (Momen-
zadeh et al. 2011). The popular type of ANN applied for
environmental problems is multilayer perceptron (MLP)
neural networks (Heddam 2016). MLP is the most realistic
neural network architecture applied for classification or
regression problems (Gholami et al. 2015). MLP neural
networks are basic types of feed-forward neural networks
(FFNN), which are parallel layered structure networks. A
one-layer perception is transformed into an MLP model
by adding one or more hidden layers. This suggested the
topology is capable of resolving challenging and complex
linear and nonlinear problems (Tokar and Markus 2000).
In most cases, an MLP network has three layers: the input
layer, hidden layers, and output layer (Fig. 4). In this work,
the inputs were the physiochemical variables (i.e., pH, EC,
TDS, TH, CI-, SO, %, NO,~, Ca*?, Mg*?, Na*, HCO;"),
and the output is the groundwater quality index (GWQI).
The hidden layers consist of neurons for transforming the
input data. The neurons in the first layer transmit the sig-
nal to the neurons in the following layer until the optimal
output is reached. The degree of association between every
two neurons in two layers is called weight, and the modi-
fication of this weight is called model training (Schaid
et al. 1999). In other words, the resulting output is the
total of the weighted inputs. In the modeling procedure,
the data is divided for model training and validation. The
network training aims to evaluate the network capacity to
replicate the relationship between inputs and output. The
first stage in MLP neural network operation is to link the

Fig.4 The architecture of MLP
neural network applied in this
study

Hidden layers

Output
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input variables to the hidden layers and weights. For train-
ing, MLP employs Bayesian regularization, which adjusts
the weight values by optimization (Toprak and Cigizoglu
2008). The weighted parameters are added to the bias of
the layer and changed from the jth to the jth+1 layer. The
layer weights and biases are adjusted iteratively through-
out the training process to achieve good performance and
provide an acceptable correlation coefficient (Nasir et al.
2022). The following equation (Eq. 6) is used to predict
the output (GWQI):

Y, =fk<; Wif; (;Xiwij)>+wo’ (6)

where f; and f; are the transfer functions of the output and
hidden layer neurons k and j, accordingly, n is the features
number, m is the hidden layer neuron number, and the bias
is W,,. The weight between the jth neuron and the kth target
neuron is W whereas the weight between the ith and jth
neurons is W;.

Support vector regression (SVR)

Support vector machine (SVM) is a machine learning tech-
nique that can provide satisfactory solutions to the nonlin-
ear problems of regression, prediction, classification, and
function estimation (Haghiabi et al. 2017). An additional
feature of support vector machines over the conventional
artificial neural network is their capability to enhance the
data network functionality (Manzar et al. 2022). The regres-
sion model of the SVM is divided into linear support vector
regression (L-SVR) and nonlinear support vector regres-
sion (N-SVR) (Kaya et al. 2021). Support vector regres-
sion (SVR) was first introduced by Boser et al. (1992). It is
a machine learning technique that was developed from the
SVM. In this study, SVR is employed to predict GWQI. In
order to improve the forecasting capability of the model,
the primary goal of SVR is to simultaneously minimize
the system complication and prediction error (Bagheripour
et al. 2015). SVR is a supervised classifier that can quickly
and accurately fit and predict samples. The approach effec-
tively finds a hyperplane in the data sets that fits the nearest
plane distance. The optimal hyperplane is the line with the
maximum margin, which defines the distance separating the
hyperplane and the adjacent input variable (Aldhyani et al.
2020). Figure 5 shows how hyperplanes fit the data points.
In Fig. 5, the green and blue dots represent two types of data
points. Three planes designated as P1, P2, and P3 are pro-
jected. The data points are not successfully categorized by
P1. Although both P2 and P3 can categorize data points, P2
provides a narrower margin than plane P3. This is the ration-
ale behind choosing P2 for prediction. There are three levels

P3 P2

Fig.5 Data classification using different hyperplanes

in the SVR framework: inputs, kernel functions, and outputs.
In this study, the input is the physiochemical parameters, and
the output is the GWQI. The kernel function is employed
to map the lower-dimension data into high-dimension data
points and, thus, reduce the space between the points. The
kernel function enables the separation of the nonlinear data
points. There are different types of kernel functions such
as sigmoid, polynomial, Gaussian kernel functions. In this
analysis, Gaussian kernel function (RBF) was employed for
its simplicity and reliability. Gaussian kernel function is an
exponential function and expressed in Eq. 7 where K (x;, x,)
is the kernel function.

K(xl,xz) = exp (—xl —xz). @)

Performance metrics

The functionality of MLP-ANN and SVR models is assessed
using four statistical indicators: mean square error (MSE),
root mean squared error (RMSE), mean absolute error
(MAE), and coefficient of determination (R?). These statis-
tical indicators are referred to the variance explored by the
predicted model compared to the actual. The performance
metrics were calculated by Eqgs. 8, 9, 10, and 11 as

MSE = % ; (i) — ) @)
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i=1
MAE = Y () - x()]. (10)
i=1
2
n . — . 2
e | Z 60O =566 -2 ’ an

\/ T =3) T, ) - #?

where 7 is the number of observations and x(i) and y(i) are
the actual and predicted value for the ith observation, respec-
tively. y and % are the mean for the predicted and actual
values, respectively.

Results and discussions
General hydrochemistry

Physicochemical parameters of the groundwater are con-
sidered prime principles in identifying the type and nature
of groundwater (Selvakumar et al. 2017). In this study,
the detected physiochemical parameters are pH, TDS,
EC, TH, Na*, Ca*?, Mg, HCO,~ CI~ SO,*~, and NO;",
and the result of the hydrochemical analysis is illustrated
in Table 3. Table 4 shows the descriptive statistics of the
analyzed physiochemical parameters (minimum, mean, and
maximum) to reveal the deviation of the parameters from the
prescribed standards. The pH of the groundwater samples
ranged from 7.14 to 8.59, and the greatest pH value was
reported in borehole 17. A pH above seven is considered
acidic for groundwater, and lower than seven is considered
alkaline. The acceptable pH values for groundwater sam-
ples range from 6 to 8.5 WHO (Edition 2011). Thus, the
groundwater in the study area is neutral to alkaline in nature.
TDS is one of the major parameters used to understand the
amount of contaminant in the groundwater. Classifying
groundwater according to TDS is crucial to assess its suit-
ability for all uses (Freeze and Cherry 1979). It ranges from
190 to 6225 mg/L. WHO (Edition 2011) advises that a TDS
level of 600 mg/L is ideal for drinking. In this study, 20%
of the groundwater samples exceeded the prescribed limits.
Groundwater with TDS concentration below 1000 mg/L is
considered fresh, between 1000 and 10,000 mg/L is brack-
ish, and groundwater is considered saline when TDS con-
centration exceeds 10,000 mg/L WHO (Edition 2011).
In this research, 90% of groundwater samples were clas-
sified as freshwater, while 10% were defined as brackish
water. The EC varies between 317 and 1500 pS/cm. The
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permissible limit for the EC of groundwater is 1500 pS/
cm WHO (Edition 2011). Thus, all the groundwater sam-
ples are suitable for human consumption based on EC. TH
concentrations range from 124 to 1172 mg/L. Na* is the
major ion in groundwater chemistry. The maximum con-
centration (1844 mg/L) is recorded at borehole 18 in the
eastern part of the study area, and the minimum (14 mg/L)
is at location 19. Temporary hardness is mainly caused
by calcium or magnesium carbonates, while calcium and
magnesium sulfate or chloride contributes to the TH. Con-
sumption of hard water for drinking purposes may stimulate
kidney stones and cardiovascular diseases (Sengupta 2013).
According to Sawyer and McCarty (1967), groundwater
with TH concentration less than 75 mg/L is regarded as soft
water, 75-100 mg/L is considered to be moderately hard
water, 150-300 mg/L is hard water, and groundwater with
TH higher than 300 mg/L is considered to be very hard. In
this analysis, 90% of groundwater samples are hard, whereas
10% of the samples are very hard water. Na* concentration
in groundwater samples ranges from 14 to 1844 mg/L with
an average value of 161.5 mg/L. Consumption of ground-
water with Na* concentration higher than 200 mg/L. may
induce congenital disorders and nervous system problems
according to WHO (Edition 2011). Higher Na* might indi-
cate weathering of silicate minerals or the dissolution of
halite (Hem 1985). Ca*? content of the groundwater samples
varies from 16 to 132.8 mg/L. Calcium is an essential con-
stituent of many igneous-rock minerals such as pyroxenes,
amphiboles, and feldspars. The most common forms of Ca™>
in sedimentary rocks are calcite, aragonite, and dolomite
gypsum. The maximum concentration of Ca*? is recorded
in borehole 18. In the case of Mg+2, the concentration var-
ies from 5.8 to 201 mg/L. Water hardness is mainly affected
by cations such as Ca™ and Mg™. Generally, the sources
of Mg™? are the ferromagnesian minerals, especially pyrox-
ene, amphiboles, and biotite. Common forms in sedimentary
rocks include carbonates such as magnesite and dolomite.
The concentration of the HCO;™ varies between 130 and
620 mg/L. HCO;™ is the dominant anion present in the study
area. The maximum concentration is found in borehole 18.
As the mineral content increases, the HCO;™ content also
increases. SO,*~ content in groundwater varies from 3 to
1500 mg/L. The permissible limit prescribed by WHO (Edi-
tion 2011) for SO,>~ concentration is exceeded in 10% of
groundwater samples. The presence of SO,>~ ions in water
can affect the taste, and too much sulfate concentration can
negatively impact consumers (Rishi et al. 2020). CI™ concen-
trations range from 4 to 2120 mg/L. The highest concentra-
tion is detected in sample location 18, while the lowest is
recorded in borehole 19. 95% of the groundwater samples
are below the limit of WHO (Edition 2011). The concentra-
tion of NO;™ ranges from 0.07 to 13.6 mg/L. The maximum
concentration is recorded in borehole 2, while the minimum
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Table 4 The descriptive statistics of the parameters and their permis-
sible limits prescribed by WHO

Minimum Mean Maximum WHO standard
(Edition 2011)

Parameter Unit

pH - 7.1 76 86 8.5
EC (uSfem) 317 689.4 1500 1500
TDS (mg/L) 190 718.6 6225 1000
TH (mg/l) 124 2633 1172 500
cr- (mg/L) 4 148.5 2120 250
SO,2  (mgL) 3 133.7 1500 250
NO,~ (mg/L) 0.07 45 136 50

Ca*? (mg/L) 16 443 1328 200
Mg*2 (mg/L) 58 36.6 201 150
Na* (mg/L) 14 161.5 1844 200
HCO,~  (mg/L) 130 299.6 620 350

concentration is recorded in borehole 5. The essential source
of NO;™ is agricultural activities. High NO;™ concentrations
in drinking water can result in goiter, stomach cancer, and
hypertension, in addition to methemoglobinemia in children
(Majumdar and Gupta 2000). Figure 6 shows the geographi-
cal dispersion of the physical and chemical parameters used
in this study. Na*, Mg*2, CI~, SO,2~, TH, and TDS exhibit
similar trend with their concentrations increasing from the
western to the eastern part of the study area. This suggests
the high contribution of these ions on the groundwater qual-
ity. The other parameters show diverse trend which suggests
different origination source.

Groundwater quality index (GWQI)

The input variable selection and weight assignment are
the most crucial part of developing the GWQI model. the
highest weights are assigned to the parameter with the most
substantial influence on the overall groundwater quality.
In this study, the selection of the relevant weights for each
parameter is based on the degree of correlation between the
measured physiochemical parameters. Pearson correlation
analysis is applied to detect the linearity between ground-
water quality parameters. Correlation analysis measures
the degree of the association between the selected vari-
ables; if the correlation coefficient is nearer to+1 or—1,
the relationship between the two variables, either propor-
tion or inversely proportion, is perfected and vice versa. In
this study, the highest weight is assigned to TDS since its
concentration determines the suitability of groundwater for
domestic purposes (Freeze and Cherry 1979). The high link-
age of the dominant ions and TDS reflects the role of mineral
dissolution in groundwater chemistry (Singh et al. 2008).
The Pearson correlation analysis is illustrated in Fig. 7. It is
observed that TDS has a high correlation with TH (r=0.99),

@ Springer

Na* (r=1), CI” (r=1), SO, (r=0.99), Ca™ (r=0.84),
MgJr2 (r=0.96), and HCO;~ (r=0.74), which indicates the
great influence of these parameters on the overall ground-
water chemistry, medium correlation with EC (r=0.53)
and NO;~ (r=0.34), and low association with pH (r=0.1),
which reflect the least effect of these variables on ground-
water quality. Accordingly, the highest weight was assigned
to TDS, while the lowest one was given to pH, EC, and
NO;™. Accordingly, the total weights are used to calculate
the relative weights.

Weighted arithmetic GWQI is calculated to appraise the
groundwater quality in the north Khartoum area. The quan-
titative results of GWQI are evaluated to determine the suit-
ability of groundwater for domestic purposes based on WHO
(Edition 2011) guidelines for drinking water. GWQI aided in
comprehending the combined overall effect of the analyzed
physiochemical parameters on groundwater quality (Srivas-
tava 2019). The calculated values of GWQI range from 21
to 396 (Table 3); hence, the water samples were classified
into three categories. The majority of the samples, around
75%, fall under the excellent water class, 20% are projected
in the good water class, and 5% of groundwater samples are
considered unsuitable for human consumption. The areal
distribution of WQI, represented in Fig. 8, shows that most
of the area is occupied by excellent water types and water
quality characteristics change gradually from the western
to the eastern part of the study area. The lowest value is
observed in BH 14, while the highest GWQI is indicated
in BH 18. The high WQI at BH 18 is impacted by TDS,
TH, Ca*?, Mg*2, Na*, CI-, HCO;™ and SO,7% As Sharma
et al. (2022) suggested, the abundance of these parameters
is likely to be influenced by rock—water interaction. The
remaining water samples represent an excellent water type.
However, some samples are highly influenced by individual
physiochemical parameters. For example, borehole two (2) is
associated with high NO;™ concentration, while in borehole
5, high EC is observed. Therefore, caution must be taken
when using groundwater samples with a high concentration
of individual physiochemical parameters.

According to the measured GWQI, the groundwater in the
study area is suitable for drinking purposes Except for the
BH 18 sample. The unsuitability of groundwater in BH 18
may significantly influence the present scenario of ground-
water quality in the study area since advection and disper-
sion processes may spread pollution along the groundwater
flow paths. Therefore, the concerned authorities should plan
proper steps for maintaining and improving the current situ-
ation of the groundwater quality in the study area.

Artificial intelligence models

In this research, 11 routinely analyzed physiochemi-
cal parameters were chosen to model GWQI using the
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Fig.6 The areal distribution of the physiochemical parameters used in the calculation and prediction of the water quality indices

multiLayer perceptron (MLP) of ANN and support vector  considered the output. Experimental data were categorized
regression (SVR). These methods are applied to overcome  into training and testing. The training set was employed to
the limitation of the conventional GWQI. The analyzed  generate the ANN and SVR model; validating sets were used
parameters are considered the input, while the calcu-  to confirm the model’s generalization competencies. The
lated GWQI using a statistical (conventional) approach is
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Table5 MLP performance during training and validation stages for
WQI prediction

Models MSE RMSE MAE R® Support
MLP training 1.4436  1.2015 0.8999 0.9998 16
MLP validation ~ 0.2594  0.5093  0.4663 09976 4

measured water samples are divided into 80% for training
and 20% for validation.

MLP exhibits the best performance by applying two hid-
den layers with 126 and 64 neurons by a trial-and-error pro-
cedure in each layer, respectively (Belayneh et al. 2016). So,
the most appropriate model structure is 11-128-64-1, and
the trial-and-error process led to the selection of learning
rates of 0.1. The weights were also updated using RELU
function. Providing the right choice in the selection of hid-
den neurons and the architecture of the network is crucial
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to prevent overlearning in the calibration stage. Table 5
shows the effectiveness of the MLP model for predicting
WQI during the training and validation stages. The values
of MSE, RMSE, MAE, and R? obtained for MLP training
are 1.4436, 1.2015, 0.8999, and 0.9998, respectively, while
the performance measures for validation are 0.2594, 0.5093,
0.4663, and 0.9976 respectively. The statistical results of the
MLP model for predicting GWQI during the training and
validation stages are presented in Fig. 9, which indicates the
projected points generally correlated close to the 1:1 line.

SVR modeling was created by using the Gaussian kernel
type. Both grid and pattern search and tenfold cross-vali-
dation re-sampling methods were employed to find optimal
parameter values. The performance measures, including
MSE, RMSE, MAE, and R? for SVR training, as shown in
Table 6 are 0.0083, 0.0911, 0.0874, and 0.9999 and 0.0113,
0.1064, 0.0853, 0.9998 for validation, respectively. The rep-
resentation of the observed and optimal simulated GWQI by
SVR model is presented in Fig. 10. It is evident from this
figure that the predicted GWQI derived by SVR model is
well-matched with the observed GWQI. Based on quantita-
tive performance assessment indicators, the SVR model per-
formed better than the MLP model. The comparison between
the predicted and actual GWQI presents a good correlation
between the GWQI of SVR model and the conventional
GWQI with high values of statistical coefficient. The robust-
ness of SVR could be attributed to the great advantage of
handling complex and nonlinear system, unlike that of the
MLR models, which is based on the assumptions of linear
input—output relationship.

The results of GWQI modeling using artificial intelli-
gence techniques showed a resealable match with the con-
ventional GWQI. Consequently, the quality of groundwater
in the north Khartoum area can be evaluated solely with
artificial intelligence techniques. It can be concluded that
artificial intelligence techniques such as MLP neural net-
work and SVR can effectively simulate GWQI and other
hydrochemical parameters in time and cost-effective way
in regional assessment when large water quality data is
recorded. In order to improve groundwater quality assess-
ments and management, the application of artificial intel-
ligence is recommended for groundwater resource modeling.

Conclusions

Management of groundwater resources requires a proper
assessment of groundwater quality since it provides evidence
of the influence of physical and anthropogenic activities on
groundwater resources. In this research, the groundwater
quality index (GWQI) model as a practical tool is developed
to evaluate groundwater quality for domestic uses in the
north Khartoum area. GWQI model is constructed by using
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Table 6 Performance measures for SVR model during training and
validation stages for WQI prediction

Models MSE RMSE MAE  R? Support
SVR training 0.0113  0.1064 0.0853 0.9998 16
SVR validation ~ 0.0083  0.0911  0.0874 0.9999 4

11 physiochemical parameters measured in 20 groundwater
boreholes scattered over the study area. These parameters
are primarily investigated to reveal their deviation from the
world health organization (WHO) standard. As a result, all
the detected parameters are found to be beyond the applied
standard except for EC and NO;™. The most challenging part
of GWQI calculation is the assignment of the weights since
there is no consensus on the weight that should be given to
each physiochemical parameter. In this study, Pearson cor-
relation analysis is applied to aid in the weight assignment;
consequently, GWQI is computed. The measured GQWI
indicated that most of the groundwater samples fall in excel-
lent and good categories, and only one sample (BH 18)
showed a GWQI of 396, projected in the unsuitable class.
The major limitation of the weighted arithmetic GWQI
model is the calculation of the sub-indices since it is

time-consuming and prone to calculation errors. Artifi-
cial intelligence (AI) techniques are introduced to cope
with the limitations associated with conventional GWQI
models. Soft computing models such as multilayer percep-
tron (MLP) neural network and support vector regression
(SVR) are proposed to reduce the time for sub-indices cal-
culation. The architecture of MLP network involves inputs,
hidden layers, and output. The inputs are the physiochemi-
cal parameters, (2) hidden layers are applied, and the out-
put is the GWQI. For SVR, the Gaussian kernel function is
applied to find the optimal hyperplane in the data and thus
predict the GWQI. In this research, the collected ground-
water samples are used for training and validation of the
developed model in a ratio of 80% to 20%, respectively.
The performance metrics revealed that AI models could be
applied successfully for groundwater quality assessment as
an alternative to conventional GWQI. Furthermore, they
suggested that the prediction capabilities of SVR models
are higher than MLP, mainly due to the high ability of
SVR to process complex nonlinear data.

The results obtained from GWQI models helped to
understand the groundwater’s overall quality. It is indi-
cated that groundwater quality in north Khartoum State
is generally acceptable for human consumption except

@ Springer
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Fig. 10 Actual versus simulated WQI during training and validation for SVR model

for some samples with high salinity. Consequently, for
water supply sustainability, the present study suggested
implementing a groundwater quality monitoring program
in the study area since pollution spread may affect the
suitability of groundwater. The general outcomes of the
present research indicate the benefits of using Al tech-
niques in GWQI prediction with enhanced accuracies. The
algorithms established in this research can be used for
groundwater quality evaluation effectively.
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