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Abstract
There has been an increasing interest in using multi-model ensembles over the past decade. While it has been shown that 
ensembles often outperform individual models, there is still a lack of methods that guide the choice of the ensemble mem-
bers. Previous studies found that model similarity is crucial for this choice. Therefore, we introduce a method that quantifies 
similarities between models based on so-called energy statistics. This method can also be used to assess the goodness-of-fit 
to noisy or deterministic measurements. To guide the interpretation of the results, we combine different visualization tech-
niques, which reveal different insights and thereby support the model development. We demonstrate the proposed workflow 
on a case study of soil–plant-growth modeling, comparing three models from the Expert-N library. Results show that model 
similarity and goodness-of-fit vary depending on the quantity of interest. This confirms previous studies that found that “there 
is no single best model” and hence, combining several models into an ensemble can yield more robust results.

Keywords  Multi-model ensembles · Energy statistics · Model set visualization · Crop modeling

Introduction

Multi‑model approaches

Multi-model ensembles have received increasing interest in 
crop-modeling over the last decade (Palosuo et al. 2011; 
Asseng et al. 2013, 2015; Martre et al. 2015; Wöhling et al. 
2015; Yun et al. 2017; Makowski 2017; Wallach et al. 2018). 
While multi-model approaches can serve different purposes 

(Höge et al. 2019; Minka 2002), the main focus in the crop-
modeling community has been to improve the accuracy of 
predictions (Asseng et al. 2015; Martre et al. 2015) or to 
estimate the uncertainty due to model choice, often referred 
to as conceptual uncertainty (Asseng et al. 2013). Please 
note that no multi-model method can quantify the conceptual 
uncertainty on an absolute level (Nearing and Gupta 2018). 
The reason for this is evident: In practice, there is no way 
to create and sample from an exhaustive list of all plausible 
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models that cover the entire range of possible outcomes 
(Nearing and Gupta 2018; Vehtari and Ojanen 2012; Höge 
et al. 2019; Ferré 2017).

Therefore, Nearing and Gupta (2018) suggest understand-
ing multi-model methods rather as sensitivity analyses. From 
this point of view, multi-model methods are tools that make 
modelers aware of how much predictions may differ within 
the model set depending on the choice for a certain concep-
tual model. This follows the line of thought of Ferré (2017) 
who introduced the idea of a multi-model ensemble as a 
“team of rivals”, which provides competing views of a sys-
tem. If the competing models agree on a certain prediction, 
this increases the decision makers’ confidence, while disa-
greement indicates the need for further investigation (Ferré 
2017).

When different models are merged to improve predic-
tions, modelers hope for two effects that make the ensem-
ble more skillful than its individual members: (1) the errors 
of the individual models cancel one another. This requires 
the individual models to be independent, i.e. different in 
their assumptions and conceptualizations (e.g. Abramow-
itz and Gupta 2008; Abramowitz 2010; Evans et al. 2013; 
Sanderson et al. 2015a, b; Abramowitz et al. 2018; Ene-
mark et al. 2019). However, this assumption is often not met 
(Abramowitz and Gupta 2008; Abramowitz 2010; Bishop 
and Abramowitz 2013; Evans et al. 2013; Sanderson et al. 
2015a, b; Knutti et al. 2017; Abramowitz et al. 2018). (2) 
The ensemble covers a broad spectrum of possible system 
behavior (Enemark et al. 2019) and thus compensates for 
over-confident individual models (e.g. Fritsch 2000; Doblas-
Reyes et al. 2005; Weigel et al. 2008).

Various studies have compared the predictive perfor-
mance of multi-model ensembles to the ones of the indi-
vidual ensemble members (e.g. Krishnamurti et al. 2000; 
Georgakakos et al. 2004; Doblas-Reyes et al. 2005; Hage-
dorn et al. 2005; Weigel et al. 2008; Diks and Vrugt 2010; 
Arsenault et al. 2015; Yun et al. 2017; Christiansen 2018). 
They found the following aspects to be crucial for the per-
formance of ensemble predictions: 

1.	 the applied combination/averaging/weighting method 
(Krishnamurti et al. 2000; Doblas-Reyes et al. 2005; 
Diks and Vrugt 2010; Arsenault et al. 2015; Höge et al. 
2019, 2020),

2.	 the performance measure used for assessing the predic-
tive skills (Hagedorn et al. 2005; Weigel et al. 2008; 
Diks and Vrugt 2010),

3.	 the spread (variability) of the individual models (Fritsch 
2000; Doblas-Reyes et al. 2005; Weigel et al. 2008), and

4.	 the similarity of the individual models regarding their 
structure and their predictions (Tebaldi and Knutti 2007; 
Abramowitz and Gupta 2008; Abramowitz 2010; Winter 
and Nychka 2010; Bishop and Abramowitz 2013; Evans 

et al. 2013; Sanderson et al. 2015a, b; Abramowitz et al. 
2018; Enemark et al. 2019).

In the present study, we focus on the last two of these 
aspects: the similarity and the spread of the individual mod-
els. We show how the similarities of (or distances between) 
the models can be quantified while accounting for the spread 
in their predictions.

Referring to the often claimed superiority of ensemble 
predictions, Hagedorn et al. (2005) argue that the question 
of whether the ensemble has higher predictive skill than the 
best individual model is posed wrongly because there is 
often no “best” individual model. They show that it is usu-
ally not the same model that performs best considering all 
quantities of interest or under all conditions. Rather, what is 
typically identified as the “best” model looking at a particu-
lar aspect of the simulated system might be a weak model 
considering another aspect. Therefore, Hagedorn et  al. 
(2005) conclude that the ensemble is superior to single mod-
els because its predictions are more robust, i.e. better over a 
broad range of predicted variables and modeling periods. We 
set up the present analysis accordingly, such that it enables a 
model comparison considering various quantities of interest.

Ensemble predictions in crop modeling

In crop modeling, a systematic assessment of multi-model 
ensembles was initiated within the Agricultural Model Inter-
comparison and Improvement Project (AgMIP; Rosenzweig 
et al. 2013). In the wheat pilot study of that project, Asseng 
et al. (2013) compared 27 wheat models by analyzing the 
predicted grain yield under climate change conditions. They 
found that predictions vary significantly between different 
models. Thus, there is considerable uncertainty concerning 
model choice when predicting yields under climate change 
conditions. In an earlier comparison of yield predictions 
from eight crop models, Palosuo et al. (2011) also found 
great differences between the individual models. This study 
showed that none of the models was able to outperform its 
competitors across different environmental conditions and 
for different variables. In addition, the comparison of four 
crop models by Wöhling et al. (2015) had similar findings 
that support the argument of Hagedorn et al. (2005) that 
there is no “single best model”.

While Asseng et al. (2013) focused on the “end-of-sea-
son variable” grain yield, Martre et al. (2015) compared the 
same 27 models also regarding grain protein concentration 
and “in-season variables” (leaf area index, plant-available 
soil water, total aboveground biomass, total above-ground 
nitrogen, and nitrogen nutrition index), with all models being 
calibrated on phenology data. The authors found that the 
ensemble predictions are more reliable and attributed this 
improvement to the different process descriptions providing 
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a wide range of plausible system behavior. The study also 
reports that some models had rather small errors for the end-
of-season variables yield and grain protein concentration 
while showing large errors for in-season variables. There-
fore, Martre et al. (2015) emphasize that for comparing the 
performance of different models, it is important to consider 
several variables as a model might perform well regarding a 
certain variable, but poorly regarding others.

Another suggestion of Martre et  al. (2015) is to fur-
ther investigate how to choose the individual models for 
an ensemble and how to weigh them. Many studies in the 
climate modeling community found that the dissimilarity 
of the individual models is crucial for the success of an 
ensemble (e.g. Tebaldi and Knutti 2007; Abramowitz and 
Gupta 2008; Abramowitz 2010; Sanderson et al. 2015a, b; 
Abramowitz et al. 2018). If two models in the ensemble 
are highly similar, this leads to difficulties in the weighting 
scheme as these models should not receive the same weight 
as if they were independent. George (2010) and Garthwaite 
and Mubwandarikwa (2010) therefore recommend using 
so-called “dilution priors” that divide the weight between 
partly redundant models. We hypothesize that quantifying 
the similarity between the models can help to choose the 
individual ensemble members and weigh them in a way that 
accounts for possible redundancies.

Another ubiquitous issue when comparing models is 
calibration. In a recent study, Wallach et al. (2020) dis-
cuss the “chaos in calibrating crop models”, i.e. the lack 
of a unified calibration procedure in the crop modeling 
community. In an earlier study, Wallach (2011) stated 
that in the calibration of crop models, often model struc-
tural errors are compensated by specifying non-physical 
parameter values. As a result, a model might perform well 
for the quantity of interest it has been calibrated on, but 
poorly for others. This effect is more severe, the more 
parameters a model has (e.g. Jefferys and Berger 1992; 
Lever et al. 2016). Therefore, Vogel and Sankarasubra-
manian (2003) recommend checking model adequacy in 
an uncalibrated state. We follow that recommendation 
and implement our analysis in a Monte Carlo framework, 
sampling prior parameter distributions. This allows us to 
evaluate the model performance independent of a specific 
parameter choice and we avoid to cloud model errors by 
assigning parameter values that compensate for structural 
deficiencies. As in any Bayesian framework, a subjective 
choice of prior distributions based on expert knowledge is 
needed. In fact, in the Bayesian setting, plausible ranges 
and assumed distributions are part of the model, just as a 
fixed parameter assumption (or the decision that a param-
eter is free for calibration) would be part of a model in 
deterministic modelling. Different choices among these 
options makeup different models.

Goal and approach of this study

The main goal of this study is to quantify similarities between 
probabilistic model predictions and visualize them intuitively. 
The proposed methods help modelers to gain deeper insights 
into the model set and to choose a suitable multi-model strat-
egy accordingly. Our approach is to use a statistical metric, 
the so-called energy distance (Rizzo and Székely 2016) to 
quantify the (dis-)similarity between probabilistic model pre-
dictions and noisy measurements. Metrics, in general, are 
distance measures. Statistical metrics measure how close sta-
tistical objects such as probability distributions are, i.e. they 
take probability densities into account. We use the energy 
distance as a metric to compare predictive distributions that 
are generated by sampling from the prior parameter distri-
butions of each model in a Monte Carlo framework. This 
enables us to take parametric uncertainty into account and 
to compare the models independent of a specific parameter 
choice. Thus, for comparing the models, we calculate the 
energy distance between their predictive distributions.

With the same method, we can also assess model perfor-
mance by calculating the energy distance between model 
predictions and noisy observations. For this, we fit a prob-
ability density function to replicate measurements. From this 
distribution, we draw samples to calculate the energy dis-
tance in a Monte Carlo framework. If no distribution for the 
measurement errors can be defined (e.g. because no replicate 
measurements are available and no assumptions about meas-
urement noise seem defendable), we can use the determinis-
tic counterpart of the energy distance: The so-called energy 
score (Gneiting and Raftery 2007) compares probabilistic 
distributions to deterministic values and is directly related 
to the energy distance. This makes the concept of energy 
statistics widely applicable for rating probabilistic models.

The proposed method fulfills the following properties: 

1.	 It can act on multivariate model predictions and thus 
reflect “overall” model characteristics.

2.	 It quantifies the similarity between pairs of models in 
the same way as the similarity between models and 
observations. Thus, it can assess the similarity between 
model predictions as well as model performance given 
observed data.

3.	 It can be used for comparing probabilistic model predic-
tions to both noisy observations (by using the energy 
distance) and to deterministic observations (by using the 
energy score).

4.	 It acts on prior predictive distributions and thus accounts 
for parametric uncertainty in each model.

For guiding the multi-model process, we need an intui-
tive way to visualize the quantified similarities among the 
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models and measurements. Therefore, we suggest different 
methods for visualizing similarities among models, which 
highlight different aspects of similarity and, when combined, 
provide a detailed overview for interpreting the model set.

The paper is structured as follows: First, we present the 
mathematical methods, i.e. the “Energy distance” and the 
“Energy score”, and visualization techniques in the sec-
tion “Visualizing predictive similarity”. Experimental data 
are presented in “Field experiments” and we introduce 
the model set in “Model description”. This is followed 
by “Results and discussion”. We summarize our findings 
and provide conclusions in the section  “Summary and 
conclusions”.

Methods

Energy distance

In this section, we describe how the (dis-)similarity between 
two probabilistic models or between a probabilistic model 
and noisy measurements can be quantified and visualized 
based on Monte Carlo samples of the models’ predictive 
distributions.

Well-known distance measures like the Euclidean or 
Manhattan distance ( LP-metrics) are based on the coordi-
nates of points in the Euclidean space. These distances do 
not take the density of probability distributions into account. 
In contrast, statistical distances (also known as probability 
metrics) measure the distance between two statistical objects 
such as random variables, probability distributions, or data 
samples (e.g. Deza and Deza 2016) and include information 
about probability densities.

Rizzo and Székely (2016) introduced the energy distance 
as a metric that measures the distance between two random 
vectors X, Y in ℝD . It is called energy distance because of 
the analogy to the potential energy between objects (Rizzo 
and Székely 2016). It satisfies all axioms of a distance metric 
(non-negativity, identity of indiscernibles, triangle inequal-
ity) (e.g. Deza and Deza 2016). The squared energy distance 
D2 between the distributions F(X) and G(Y) is defined as

with � being the expected value, || ⋅ ||2 being the Euclid-
ean norm, X and X′ being independent and identically dis-
tributed (iid) variables, the same applies for Y  and Y ′ . In 
this study, we analyze data based on the energy distance 
d(F,G) =

√
D2(F,G).

The expected values in Eq. 1 can be implemented in a 
Monte Carlo framework as follows:

(1)
D

2(F,G) = 2�||X − Y||2 − �||X − X
�||2 − �||Y − Y

�||2 ≥ 0,

where x ∼ F , y ∼ G , and NMC being the number of Monte 
Carlo samples.

Figure 1 shows four 1D examples that illustrate how 
the energy distance between two univariate probability 
density functions (pdf) changes depending on the mean 
Euclidean distance between these pdfs �||X − Y||2 and 
the mean Euclidean distance within each pdf �||X − X�||2 . 
Analogously, the energy distance can quantify the distance 
between D-dimensional random vectors.

Comparing Fig. 1a, d as well as (b) and (e) shows that 
keeping the same mean and increasing the variance of dis-
tribution G decreases the energy distance d(F, G) between 
both distributions. Subfigure (c) shows that for two identi-
cal distributions, the energy distance becomes zero, while 
the expected value of the Euclidean norm �||X − Y||2 is 
not equal to 0. Subfigure (f) illustrates the energy distance 
between two distributions with the same mean but different 
variances.

Energy score

When working with real and error-prone data, we do not 
have access to the full distribution of the data (i.e. a “true” 
value and a distribution function of errors) but only to the 
measured instances thereof, i.e. our observations. In some 
cases, these measurements suffice for estimating the underly-
ing distribution reasonably well. If this is not the case (e.g. 
if there are only a few measurements available), we need an 
alternative for rating probabilistic predictions given deter-
ministic measurements.

In deterministic modeling, the performance of a model is 
usually evaluated by an error measure between the model’s 
best estimate �̂k and the observations �meas . Different models 
are then rated based on the achieved best estimate error, 
e.g. a root mean square error (RMSE) or the mean absolute 
error (MAE).

In probabilistic modeling, model rating is based on so-
called scoring rules (Gneiting and Raftery 2007). These 
scores account for the entire predictive distribution of the 
model instead of only the best estimate. Many different 
scores exist (Gneiting and Raftery 2007; Yao et al. 2018). 
Among these, the energy score is directly related to the 
above-introduced energy distance (Székely and Rizzo 2013), 
i.e. it resembles the one-sided version of the energy distance 
(Ziel and Berk 2019). The energy score ES for the model 
predictive distribution G and observations �meas writes as:

(2)�||X − Y||2 =
1

N2
MC

NMC∑

k=1

NMC∑

l=1

√
(
�k − �l

)2
,

(3)ES(G, �meas) =
1

2
�||Y − Y �||

�

2
− �||Y − �meas||

�

2
,
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with � ∈ (0, 2) . We choose � = 1 as it is a standard choice for 
distributions that are not heavily tailed (Ziel and Berk 2019). 
For � = 2 , the energy score is equal to the negative squared 
error (Gneiting and Raftery 2007).

In cases we cannot assume a reasonable distribution 
based on replicate measurements, we will use the energy 
score instead of energy distance. We want both quantities 
to act on the same scale, so they are directly comparable. 
Therefore, we use d(F,G) =

√
D2(F,G) and 

√
ES for the 

analysis.

Visualizing predictive similarity

We want to visualize the (dis-)similarity of the model pre-
dictions to get an intuitive understanding of the diversity 
in the considered model set. At the same time, we want to 
visualize how well the predictions match the measurements. 
Therefore, we treat both the models and the measurements as 
objects in a common model predictions-observations space, 
which we call “quantity of interest space”. Representing the 
similarities of N objects (models and observed data) leads to 
ncomb = N ⋅ (N − 1)∕2 combinations. While in our applica-
tion, this number (three models and one measurement data 
set, hence, six combinations) is comparatively small, visu-
alization of model similarity in two dimensions is already 
not a straightforward task. Clearly, the number of models to 
be compared can become much higher in extensive multi-
model ensembles. Therefore, the methods we propose for 
visualization are also suitable for larger model sets.

Each of these objects (models and observed data) consists 
of nqoi variables (quantities of interest). In the case of proba-
bilistic modeling, each variable is assigned a probability dis-
tribution. Therefore, we have to deal with high-dimensional 
data, and regarding its two-dimensional visualization, we 
have to balance the interpretability and the preservation of 
the original structure in the applied projection (Liu et al. 
2017), which is a typical problem in the visualization of 
high-dimensional data.

We make use of different techniques for visualizing the 
similarity of two objects (model-model, model-data) under 
different conditions. Each visualization method highlights a 
different aspect, so which method is the most insightful one 
depends on the specific question we ask about the model set: 

1.	 Heatmaps: In a matrix, the distances between all pairs of 
objects are visualized through varying colors or intensity 
(e.g. Nandi and Sharma 2020).

2.	 Radar charts: Several axes are arranged radially starting 
from a common center. Each axis represents a certain 
quantity of interest, i.e. a different variable or the same 
variable under different boundary conditions. Each value 
(here, the distance between two objects) is plotted along 
one axis. This is repeated for all axes. Finally, all values 
are connected to a polygon, representing one object (e.g. 
Nandi and Sharma 2020).

3.	 Dendrograms: Dendrograms are tree-like diagrams that 
are typically used for visualizing hierarchical structures. 
A dendrogram consists of branches that connect objects 

Fig. 1   Illustrative 1D example of the energy distance d(F, G) between 
two probability density functions F and G. It is calculated based on 
the mean Euclidean distance between these functions �||X − Y||2 and 

the mean Euclidean distance within each function �||X − X
�||2 and 

�||Y − Y
�||2 , respectively
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depending on their similarity. The height at which 
two objects are joined together represents the distance 
between these objects (e.g. Nandi and Sharma 2020). 
For creating such a diagram, we use an agglomerative 
hierarchical clustering approach (Xu and Wunsch 2008): 
An algorithm identifies pairs of clusters with minimal 
distance in-between and merges them. This merging pro-
cedure is repeated until all data points are finally in one 
overarching group (Xu and Wunsch 2008). The merging 
depends on the chosen linkage method, i.e. the definition 
of the distance between two clusters. For the present 
study, we chose a linkage that uses the average distance 
between data points in two clusters.

Case study description

Central to our study is the simulation of wheat growth, 
energy and water fluxes in six agricultural fields in two 
regions during several years (2010–2015). These fields fea-
ture slightly contrasting meteorological conditions at two 
different sets of sites (1–3 and 4–6), with soils being only 
similar in sites 1–3. The study is based on an extensive data 
set enabling coupled soil–plant-growth modeling and com-
paring simulation results to high-quality measurements. The 
field data is summarized in “Field experiments” and the par-
ticipating models of the ensemble in “Model description”.

Field experiments

The data set used in this study is a subset of a multi-site, 
multi-year, and multi-crop data set that contains extensive 
characterization of soil properties and states, plant growth 
and yield, management, and soil–atmosphere fluxes of 
energy, water and carbon dioxide. It was obtained from 
measurement campaigns in intensively managed agricultural 
fields of local farmers. We will limit the description of the 
data set to a minimum since it was published alongside a 
manuscript with full methodological details (Weber et al. 
2021).

The data were collected between May 2009 and Sep-
tember 2018. In this study, we use a subset that covers the 
sites and years in which winter wheat was cultivated from 
2010–2015 (year of harvest). The combination of a site at 
which and a year during which winter wheat was cultivated 
are reported as site-years. For example, winter wheat grown 
at site 1 from November 2014 to July 2015 is denoted as 
site 1, year 2015. In total, we analyze data of 14 site-years. 
Details of the two regions can be found in Weber et al. 
(2021), and their soil properties are summarized in Table 1.

All required meteorological forcings were measured at 
half-hourly time intervals and data gaps were filled. In the 
data set, grain yield was reported both by the farmer as a 
field average and by extrapolation of the plot sampling to 
the field. Phenology and leaf area index were measured at 
least biweekly during the main vegetation season (April to 
mid July).

Table 1   Properties of the soil 
horizons at sites 1–6, and the 
soil hydraulic property model 
parameters �

s
 and �

r
 , which are 

the fixed saturated and residual 
water content, respectively

Site Depth No. of simu-
lation layers

Organic matter Clay Silt Sand Bulk den-
sity

�
r

�
s

(–) (cm) (–) (gg−1 ⋅ 100) (g cm−3) (cm3 cm−3
⋅ 100)

1 0–30 6 1.75 18.2 79.4 2.5 1.37 7.5 46.0
30–45 3 0.61 18.8 79.2 2.0 1.51 7.2 42.9
45–165 24 0.42 18.7 80.4 0.9 1.48 7.3 43.9

2 0–30 6 1.53 17.9 79.5 2.6 1.33 7.6 47.0
30–45 3 0.52 20.1 77.0 2.9 1.46 7.5 43.9
45–165 24 0.34 18.7 79.7 1.6 1.53 7.1 42.5

3 0–30 6 1.64 17.1 81.1 1.8 1.37 7.4 46.2
30–45 3 0.83 18.7 80.4 1.0 1.50 7.3 43.4
45–165 24 0.63 16.1 83.0 0.8 1.51 6.9 43.2

4 0–20 4 4.35 37.8 56.0 6.2 1.31 9.5 49.2
20–30 2 2.13 38.6 52.5 8.9 1.34 9.4 48.2
30–50 4 1.63 48.4 43.3 8.4 1.32 10.0 50.0

5 0–20 4 3.64 28.9 68.3 2.8 1.37 8.6 46.8
20–60 8 1.44 33.6 64.3 2.1 1.40 8.9 46.7
60–165 21 0.71 34.2 64.0 1.8 1.51 8.7 44.0

6 0–30 6 5.50 45.6 51.2 3.2 1.04 10.7 59.0
30–45 3 3.88 47.6 48.3 4.1 1.29 10.1 51.3



5149Modeling Earth Systems and Environment (2022) 8:5143–5175	

1 3

Model description

The relevant processes for crop development and growth, 
unsaturated water flow, nitrogen and carbon turnover in 
the soil, evapotranspiration, and drainage water quantity 
and quality were simulated with the multi-model library 
Expert-N (Priesack 2006). Expert-N is a model system that 
facilitates a high degree of flexibility in selecting compet-
ing model formulations for the relevant processes in the 
soil-vegetation-atmosphere continuum. An example of a 
48 member multi-model ensemble using Expert-N is the 
study about climate change impact on wheat and maize 
yield development in Ethiopia by Rettie et al. (2022). That 
study uses a model ensemble consisting of 48 unique model 
members set up in Expert-N. For the presented study we 
selected three different plant growth models within Expert-
N: CERES (Ritchie et al. 1988), SUCROS (van Laar et al. 
1997), and SPASS (Wang and Engel 2000; Gayler et al. 
2002), which are coupled to the soil carbon and nitrogen 
turnover and transport models SOILN (Johnsson et al. 1987) 
and LEACHN (Hutson and Wagenet 1995), and the Richard-
son–Richards equation for variably saturated water flow as 
implemented in HYDRUS-1D (Šmunek et al. 1998). Fluxes 
of heat and dissolved nitrogen in the soil were described by 
LEACHN and potential evapotranspiration as calculated by 
the Penman–Monteith equation (Allen 1998) modulated by 
crop coefficients. These models are described in “Pheno-
logical development”– “Soil nitrogen”. The model initial 
and boundary conditions, including a description of the 
uniformly distributed and bounded model parameter priors 
for sampling the prior predictive distribution, are given in 
“Process models”. In the following, SUCROS, CERES, and 
SPASS are described and refer to the versions implemented 
in Expert-N v.3.1. Model parameters and priors are listed in 
Tables 5, 6, and 7.

Phenological development

In Expert-N, the phenological development (BBCH) is 
modeled as a parametric function of thermal time, ver-
nalization, photoperiod effect, and temperature sensitiv-
ity. While CERES is differentiated into nine development 
phases, SPASS and SUCROS are differentiated into three. 
All three adopted models distinguish the vegetative growth 
phase (BBCH ≤ 60) from the generative phase (BBCH > 60 ) 
and one for emergence. CERES (Ritchie and Godwin 1989; 
Jones 1986) and SUCROS (Spitters et al. 1989; Van Laar 
et al. 1992) are widely established models and SPASS is a 
combination and development out of the other two (Wang 
1997; Gayler et al. 2002). Internally, phenological develop-
ment is first simulated as a development stage on a scale 
from − 0.5 to 2.0, and is subsequently converted to an exter-
nally reported BBCH variable using fixed lookup tables with 

10 support points (11 in the case for SPASS). The support 
points in the lookup tables were considered as fixed. The 
simulated phenology acts as a boundary condition for the 
remaining part of the dynamic plant growth model, by set-
ting the precondition after which certain other parts of the 
model are active (i.e. triggering submodules for, e.g. leaf 
area index or grain filling after anthesis at BBCH = 60). 
An important difference between the models is that winter 
wheat requires vernalization, which is the induction of flow-
ering after a cold period. In contrast to CERES and SPASS, 
which contain routines for vernalization. Since SUCROS 
does not include vernalization, it is strictly speaking, a 
spring wheat model.

Root growth, root water uptake, and transpiration

Dynamic root growth in all plant models is simulated by 
roots growing downward up to a maximum root extension 
depth. The maximum growth rate is reached under optimum 
conditions. This is modulated by impacts of unfavorable 
environmental factors (temperature, soil moisture) in the 
layer of the currently greatest root extension. Specifically, 
these impedances are functions of temperature and low soil 
moisture (SPASS, SUCROS), or of low soil moisture and 
low mineral nitrogen contents (CERES). In each simula-
tion layer, the active roots are the balance between root 
growth and senescence at each time step (Gayler et  al. 
2013). To calculate root water uptake, a root length density 
is required. CERES and SPASS use an identical approach: 
the root length growth rate is linearly related to the root 
biomass growth rate, and the vertical distribution is related 
to water and nitrogen availability in the respective soil lay-
ers. In SUCROS, the root length growth rate is derived for 
each simulation layer based on a crop-specific root depth 
distribution function, the root biomass, and a specific root 
length. The upper limit of root water uptake is limited to the 
potential transpiration as calculated by the Penman–Mon-
teith equation (Allen 1998). In the case of SPASS and 
CERES, a maximum root water uptake rate per root length 
is additionally defined. All three models use a macroscopic 
approach in which root water extraction is distributed to 
the individual simulation layers proportionally to the rela-
tive root length in the layers, as long as the water supply is 
optimum. Impedance factors such as oxygen deficiency in 
(near-)saturated soils, soil compaction and structure, disease 
and pests, adverse chemical conditions (e.g. salts) are not 
considered in the models. To account for crop effects on 
potential evapotranspiration, all three models use crop coef-
ficients, which we modeled as a piece-wise phenology-state 
dependent function with three parameters kcini (−) , kcmid (−) , 
and kcend (−) , which are the crop coefficient for the initial, 
mid and end of the vegetation period, respectively. These 
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parameters were considered uncertain with the uniform dis-
tribution in the ranges given in the Appendix, Table 4.

CO
2
 assimilation, biomass growth and leaf area 

development

CERES adopts a robust “big leaf” approach to calculate car-
bon assimilation, using empirical adjustments to account for 
the depth-dependence of photosynthetic capacity and light 
response, with the interception of photosynthetically active 
radiation dependent on leaf area index. Biomass develop-
ment depends on the partitioning of assimilates to different 
plant organs (roots, leaves, stem, and fruit). It is achieved 
through potential growth rates and a priority scheme for the 
allocation of assimilates to each organ (differentiated into 
five developmental stadia). In the juvenile phase, i.e. in the 
stadium between the emergence and, the development of 
the first apical spikelet, the leaf area index develops expo-
nentially, and after the juvenile phase, leaf area develops 
proportionally to the leaf biomass development, depending 
on temperature, and water and nitrogen stress. In SUCROS 
and SPASS, the calculation of carbon assimilation is based 
on a multi-layer approach, which is more comprehensive 
compared to CERES. The aim of this approach is to dif-
ferentiate between sunlit and shaded leaves and to account 
for the attenuation of direct and diffuse radiation. The two 
models differ in vertical resolution as SUCROS uses a 
three-layer approach, and SPASS uses five layers, but the 
calculation of leaf internal CO2 concentration and net pho-
tosynthesis is similar, with small differences in the calcu-
lation of water stress and nitrogen response functions. In 
contrast to CERES, in SPASS and SUCROS carbohydrate 
allocation and hence organ growth follows an assimilate-
partitioning scheme, which is fixed at optimum water supply 
and is determined solely by the development stage of the 
plant. However, in the case of water deficiency, root growth 
is favored in both models to counteract the cause of stress. 
In SUCROS, the leaf area growth is directly coupled to leaf 
biomass growth rate, whereas in SPASS, leaf area growth 
rate does account for water and nitrogen deficiency. More 
detailed presentations can be found in Priesack (2006), Prie-
sack and Gayler (2009), Biernath et al. (2011), Wöhling 
et al. (2013) and references therein.

Soil hydrology

In Expert-N, the standard process model for simulating 
variably saturated moisture fluxes in soils is the Richard-
son–Richards equation (RRE) (Richardson 1922; Richards 
1931). The solution of the RRE requires parameter functions 
to describe the soil hydraulic properties. Since we simulated 
root water uptake using a macroscopic approach (van Dam 
et al. 2008), it is sufficient to parameterize the RRE using 

the van Genuchten Mualem model (van Genuchten 1980). 
There would be physically more comprehensive soil hydrau-
lic property models that account for water storage and con-
ductivity in medium to dry soils (Weber et al. 2019; Streck 
and Weber 2020; Weber et al. 2020). These would influence 
the simulation of actual transpiration under water-stressed 
conditions only when using microscopic (not macroscopic) 
root water uptake models (van Dam et al. 2008), providing 
hydraulic uplift does not influence the simulation.

For each site, a top-soil/sub-soil differentiation was made, 
each with a different parameterization. The varied param-
eters per soil layer are � ( cm−1 ) and n (–), which are the 
van Genuchten shape parameters, the saturated hydraulic 
conductivity Ks ( cm d−1 ), and the tortuosity parameter � (–), 
and we fixed m = 1 − 1∕n . Instead of varying the saturated 
and residual water contents, �r(−) and �s , respectively, we 
vary the soil water content profile set as an initial condi-
tion. The soil model is discretized into simulation layers of 
5 cm depth (see Appendix, Table 1). Here, in contrast to the 
observed soil profiles, we reduce the number of simulated 
soil horizons for the soil hydrological part to two by merging 
the second and third horizon at sites 1–5. The differentia-
tion into more horizons is pedologically founded, but for 
the modeling purpose of this study not parsimonious, i.e. 
we group horizons with very similar hydraulic properties.

Soil nitrogen

Mineralization, nitrification, and denitrification are modeled 
following the SOILN approach, while urea hydrolysis, vola-
tilization and dissolved nitrogen transport are modeled using 
the LEACHN approach.

The model concept of SOILN differentiates three pools 
of organic nitrogen representing the three different pools of 
organic carbon, available to the soil microbes. These pools 
are termed ‘litter’, ‘humus’, and ‘manure’. The ‘litter’ pool, 
a pool with fast turnover rates, represents fresh organic mat-
ter and microbial biomass. The ‘humus’ pool with a slow 
turnover of soil organic carbon, and the ‘manure’ pool, 
which represents the organic fertilizer. There are two essen-
tial assumptions of this model concept; (i) the N demand 
for the internal carbon cycle is governed by a constant C/N 
ratio of 10:1 in the microbial biomass and in the humus 
pool, and (ii) mineral nitrogen that is released or assimilated 
by the microbial biomass, follows this ratio. We varied the 
rate constants kminer,man (d−1) , kminer,lit (d−1) , kminer,hum (d−1) , 
which govern the rate of mineralization of the manure, lit-
ter, and humus pools. We also varied the rate coefficients for 
the nitrification knit (d−1) and denitrification kminer,lit (d−1) , 
where, analogously to the treatment of the soil hydraulic 
properties, we model the two horizons with different sets of 
kinetic rate constant parameters, except for kminer,man , which 
we set to 0 for the sub-soil. The rate constant for the urea 
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hydrolysis kurea,hy is a constant 0.36 (d−1) . The effectivity of 
decomposition fe (–) describes the fraction of carbon that 
is re-immobilised after decomposition and set to a constant 
0.45. The humus development constant fh (–) describes the 
fraction of decomposed litter that is added to the humus pool 
and was set to 0.2.

Model setup and implementation

Process models

As an upper boundary, we generally use in situ measured 
daily aggregated atmospheric temperatures (minimum, 
mean, and maximum), global radiation, wind speed, and 
precipitation. Potential evapotranspiration fluxes were calcu-
lated based on the Penman–Monteith approach. For the sol-
utes, we use flux boundary conditions prescribing constant 
atmospheric NH4 deposition, and the timing, frequency, 
type, and amount of fertilizers. At the lower boundary, we 
used free drainage for the water flow module and a zero gra-
dient for the solute and heat flux modules. Field management 
in terms of nitrogen input by fertilizers, and sowing and 
harvest dates were set to the farmer-reported data.

The selection of which parameters are considered as 
uncertain priors, and their respective ranges and distribu-
tional assumptions was guided by both model system and 
expert knowledge. Details are listed in Tables 4, 5, 6 and 7). 
We ran simulations based on nMC = 10,000 parameter vec-
tor realizations generated by Latin Hypercube sampling per 
site-year and model. The gained forward simulation results 
resemble approximations to the prior predictive distributions 
for each of the 14 site-years and each of the plant models. 
This resulted in a total of 420, 000 individual simulations 
performed on the High-performance Cluster bwFOR of the 
Federal State of Baden-Württemberg. The varied model 
parameters are listed in the Appendix in Tables 4, 5, 6 and 7.

Similarity analysis

We analyze the similarity of probabilistic predictions of 
CERES, SUCROS, and SPASS (Priesack 2006) via the 
energy distance between the predictive distributions of the 
models for different variables. The analyzed variables are 
yield, phenology, and leaf area index. For comparing model 
predictions and measurements, we use either the energy dis-
tance or the energy score as discussed in “Energy distance” 
and “Energy score”: 

1.	 Fitting a distribution to the observations and using the 
energy distance: In the case of yield predictions, we can 
reasonably assume a Gaussian measurement error and, 
hence, define a distribution for the observations. There-
fore, we can use the energy distance not only for the 

pairwise comparison of the models’ distributions among 
each other but also for the comparison with the distribu-
tion fitted to the observations.

2.	 Using the median of the observations and the energy 
score: In the case of the other two variables, leaf area 
index and phenology, making assumptions about meas-
urement error and fitting a distribution to the obser-
vations is not as straightforward. Instead, we take the 
median of the measurements and use the energy score 
to compare the models and the observations. For the 
comparison of the models among each other, however, 
we still use the energy distance because the predictive 
distributions are available.

Please remember that similarities quantified by the energy 
score and the energy distance are on the same scale, and 
hence directly comparable.

We analyze data from six sites and up to three years per 
site to check how model performance and similarity vary 
under different conditions.

Results and discussion

First, we compare the models’ similarity (among each other) 
and their performance (i.e. similarity to observations) based 
on the end-of-season variable yield. Later, we analyze in-
season variables to gain more insight into the processes that 
may have led to differences in the final yield predictions.

Analysis of the end‑of‑season variable yield

For yield, we assume a Gaussian measurement error, 
describing the distributions based on the replicates’ mean 
and variance. The resulting distributions are shown in 
Figs. 2 and 3. Based on Monte Carlo samples of these dis-
tributions, we calculate the energy distance between models 
and observations.

Predictive distributions

Figures 2 and 3 depict the distributions for yield predicted 
by the three models and the measurements for the sites 1–3 
and 4–6, respectively. The probability density functions 
represent the prior model predictions, i.e. the models have 
not been calibrated and represent the full range of plausible 
parameters as defined in Tables 5, 6 and 7.

The mean observed values for yield range from 7.0 t∕ha 
(site 2, 2013) to 9.2 t∕ha (site 4, 2014), the corresponding 
standard deviations range from 0.39 t∕ha ≈ 5% (site 2, year 
2011) to 2.1 t∕ha ≈ 23% (site 6, year 2014).

The probability density functions show that the predic-
tions made by SPASS (yellow) have the highest variance for 
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Fig. 2   Probability density functions of the yield predicted by the three models and observed (gray), sites 1–3. For better visualization, y-axis 
scales are not the same across all sub-plots

Fig. 3   Probability density functions of the yield predicted by the three models and observed (gray), sites 4–6. For better visualization, y-axis 
scales are not the same across all sub-plots



5153Modeling Earth Systems and Environment (2022) 8:5143–5175	

1 3

all sites and years and it predicts ranges of very low yield 
with a higher probability than CERES (blue) and SUCROS 
(red) do. For most cases, SUCROS shows the smallest vari-
ance in the yield predictions and, from the visual impression, 
the best goodness-of-fit to the measurements (gray).

Energy distance‑based similarity analysis

To get a more aggregated and objective comparison of the 
predictive distributions of all models and the data, we quan-
tify their similarity according to their prior predictive distri-
butions using the energy distance (Eq. 1). In the following, 
we discuss corresponding visualizations with radar charts, 
dendrograms, and heat maps.

Visualizing model similarities using radar charts
Figure 4 shows four radar diagrams that represent the simi-
larity of the models and the observations, each centered on 
one of the models, or the observations, respectively. In each 
chart, each model is represented by points that are connected 
across all radial axes. Each axis represents one site-year. The 
closer a point to the center, the lower the energy distance 
between the respective distributions, i.e. the more similar 
the distributions.

The background color of each segment is color-coded 
according to the weather conditions of the respective site-
year. For this color-coding, we calculated the ratio of mean 
precipitation and mean temperature from April to June p/T 
and represent low values as red and high values as blue. This 
color-code is useful to investigate if there is any obvious 
relationship between weather conditions and model perfor-
mance or similarity.

From Fig. 4a we can see that SUCROS is closest to 
the observed data for most site-years. In parts, this can be 
explained by SUCROS showing the lowest variance in the 
yield predictions, while being reasonably centered on the 
observations (see Figs. 2, 3).

Comparing model performances for sites 1 and 2 in 2013, 
we notice that CERES and SPASS are much closer to the 
data for site 1 than they are for site 2. Considering that the 
conditions at both sites are very similar, it may be surprising 
that the models perform so differently. The model predic-
tions for both sites are indeed highly similar. However, the 
observations’ variances differ considerably between both 
sites (see Fig. 2). Please recall the property of the energy 
distance that decreasing the variance of a distribution 
while keeping the same mean increases the energy distance 
between two distributions (see Fig. 1). This effect is clearly 
visible in the case of model performances for site 1 and 2 
in 2013.

Focusing on the weather conditions during the growing 
season, we see that all models perform relatively poorly 
for site 5, 2010, which was a rather wet year at this site. Here, 

SPASS is slightly closer to the measurements than the other two 
models. This is due to the high variance of its predictions (see 
Fig. 2), which leads to a larger overlap of the predictive distribu-
tion with the measurement distribution, even though the modes 
of all three predictive model distributions are relatively similar, 
all overestimating the yield. For the other wet year 2013, we can-
not observe a similarly poor performance of all models. Only the 
CERES predictions of site 2, 2013 show a rather high distance 
to the observations again overestimating the measured yield (see 
Fig. 2). However, for the relatively dry conditions at site 3 in 
2010, CERES shows a similar distance as it again overestimates 
yield (see Fig. 2). Hence, in the current data set, the poor per-
formance of the models cannot be clearly explained by specific 
weather conditions.

Next, we check whether any of the models perform above 
its average during certain weather conditions: CERES per-
forms well for site 6 in 2014, which was a rather dry year. 
SUCROS shows equally good performance under both dry 
and wet years. SPASS performs comparatively well for site 
4 in 2011, which was the second driest year in our data set. 
However, this is not true for other dry years in this data set.

In summary, we cannot observe a specific pattern of good 
or poor model performance under certain weather conditions. 
This result indicates that the data do not provide evidence for 
identifying systematic mispredictions based on climate or site. 
An exception is site 5, which, however, only has one replicate 
year, so that no general statement can be made.

In Fig. 4b–d, we focus on the similarity between the mod-
els. When CERES is in the center of the radar chart (subfig-
ure (b)), we can see the high discrepancy between CERES 
and SPASS for site 3, 2014, site 1 and 2, 2015, site 3, 2010 
(rather dry years). The highest distance between CERES and 
SUCROS occurs for site 1 and 2, 2013 (wet years). When 
SUCROS is centered (subfigure (c)), it is apparent that 
SPASS is closer, i.e. more similar for most site-years. Sub-
figure (d), with SPASS being centered does not contain new 
information that has not yet been shown in figures (a)–(c) 
and is only shown for the sake of completeness.

Visualizing model similarities using dendrograms
In Fig. 5, an alternative visualization of model similarities 
based on dendrograms is presented. Here, the data of sites 
1–3 are shown, the corresponding Figure for sites 4–6 can be 
found in the appendix (Fig. 11). Please note that the order of 
the models is not necessarily the same for all dendrograms. 
Rather, this so-called leaf order was optimized such that the 
sum of the similarities between adjacent leaves is maximized 
(Novoselova et al. 2015).

From the way models and observations are merged into 
clusters and from the height at which two objects are joined 
together in the dendrograms, we can intuitively see their 
similarity.



5154	 Modeling Earth Systems and Environment (2022) 8:5143–5175

1 3

As can be seen from Figs. 5 and 11, different clusters are 
formed for different site-years. This shows that both, model 
similarity and goodness-of-fit, vary depending on the site-years.

Visualizing model similarities using heatmaps
In the heatmaps shown in Figs. 6 and 12, small values are 
represented by light colors and large values by dark colors. 

To dissect the individual components that the energy dis-
tance consists of, we plot its constituent parts �||X − Y||2 
and �||X − X�||2 separately. The main diagonal entries repre-
sent the spread within the predictive distribution of a single 
model �||X − X�||2 , while the off-diagonal entries represent 
the similarity of two objects �||X − Y||2.

Fig. 4   Radar charts showing the energy distance between all models 
and observations based on yield predictions. In each subplot, one of 
the models or the observations are centered. Each colored line rep-
resents the distance of one model or the observations to the data set 

in the center. Each axis represents one site-year (abbreviated as, e.g. 
“s1–11” for site 1, year 2011). Segment colors resemble the annual 
weather conditions: hot and dry (red), average (yellow) to cold and 
wet (blue)
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From the color-coding, we can intuitively see that the 
highest dissimilarity among the models occurs for site 3 in 
2010 and 2014, as well as for sites 1 and 2 in 2015, as these 
heatmaps are overall darker than the others. In the same 
manner, it is immediately obvious that SPASS clearly differs 
from the other models and the measurements. This is neither 
visible in Fig. 4 (radar charts), nor in Fig. 5 (dendrograms). 
The last columns/rows show the goodness-of-fit to the obser-
vations. Here, it is clearly visible that SUCROS performs 
best and SPASS performs worst for most site-years.

Comparison of the visualization methods
Table 2 summarizes the properties of the three visualization 
methods and their applicability for different use cases.

With heatmaps and dendrograms, all objects (here: mod-
els) can be compared at one glance, however, only for one 
condition (here: site-year). Therefore, for comparing many 
models under specific conditions (e.g. per site-year), heat 
maps and dendrograms are suitable. In contrast, radar charts 
are useful for comparing one object (e.g. measurement data) 
to a small number of other objects (e.g. models) under many 
different conditions (e.g. site-years).

Dendrograms make it easy to identify clusters. Such clus-
ters can, for example, indicate settings in which all models 
are similar, but are far from measurements. Such a case may 
point to the fact that an important process was not considered 
in any of the models. Examples for such a setting are the yield 

predictions for site 5, year 2010 and site 4, year 2014 (see 
Appendix B1). Of course, we can also see from the density 
functions in Fig. 3 or the radar chart centered on the observa-
tions (Fig. 4) that none of the models fits the measurements 
for this site-year well. However, the analysis based on density 
functions is only trivial in 1D cases such as the exemplary yield 
predictions used here. Imagine if we wanted to compare higher 
dimensional predictions. In such cases, this task would be much 
easier using dendrograms based on probability metrics. Also 
the analysis based on radar charts would be less convenient for 
identifying clusters: we can tell from the radar chart centered on 
the observations that all models are far off. However, we cannot 
tell based on the same radar chart whether the models are close 
to each other. To get this insight, we would have to analyze 
several radar charts with different models being centered.

Summary regarding the Expert-N model set
Summarizing the comparison of the Expert-N model set, 
SUCROS performs best in predicting yield based on the simi-
larity of its prior predictive distribution and the distribution of 
the observations. The highest similarity among the models is 
between SPASS and SUCROS, while the biggest differences 
appear for SPASS and CERES. Our analysis confirms that 
yield predictions vary significantly between different models 
as Asseng et al. (2013) and Palosuo et al. (2011) found in 
earlier studies.

Fig. 5   Dendrograms showing the energy distance between models and observations based on yield predictions, sites 1-3
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Using the energy distance to aggregate the information and 
visualizing it with radar charts, dendrograms, and heat maps 
have been found insightful when inspecting influencing factors 
such as different sites or different weather conditions.

Analysis of the in‑season variable phenology

After analyzing the end-of-season variable yield, we now 
focus on time series of the in-season variables phenologi-
cal development stage (BBCH) and leaf area index (LAI, 

“Analysis of the in-season variable leaf area index”). Exem-
plary plots of the BBCH time series for site 1, year 2011 are 
shown in Fig. 7. The corresponding plots for all site-years 
are provided in the Appendix (Fig. 25).

We start with a qualitative analysis of the time series in 
“Predictive distributions”. Next, we quantify how similar 
or different the models behave at each daily time step by 
calculating the energy distance between the predictive distri-
butions in “Energy distance-based similarity analysis”. We 
compare this between-model distance to the spread within 

Fig. 6   Heatmaps reflecting the similarities between models and observations based on yield predictions, for sites 1–3. The color-coding repre-
sents the values of the individual components of the energy distance: �||X − Y||2 (off-diagonal entries) and �||X − X

�||2 (main diagonal entries)

Table 2   Comparison of the 
visualization methods

The checkmark means that the method is well suited, the checkmark in parentheses means that the method 
can be used for the task in certain cases, but the visualization might become overloaded

Visualization method Radar charts Heat maps Dendrograms

Type Axis-based Matrix-based Hierarchy-based
Comparison of many objects × ✓ ✓

Comparison of many conditions ✓ (✓) ×

Easy identification of clusters × (✓) ✓

Color-coding possible ✓ (✓) (✓)
Variation within and between objects × ✓ ×
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each model. This spread is calculated as the square root of 
the mean Euclidean distance between all samples of the pre-
dictive distribution (see Eq. 1).

In contrast to the analysis of the yield predictions, we do not 
assume a distribution for the measurement errors for BBCH or 
LAI. Therefore, we use the median of the replicates and calcu-
late the energy score, i.e. the counterpart of the energy distance 
for comparing distributions to a single observation.

Predictive distributions

From Fig. 7 we can see that the prior predictive distribu-
tions for the development stage generated by SPASS show 
a very small variance until January, whereas the predictions 
of CERES and SUCROS initially have little variance, but the 
spread increases already in November. This can be observed 
for all site-years (see Fig. 25).

Comparing the predictions to the measurements shows 
that early BBCH stages are usually overestimated by all 
three models. Starting approximately in March, when the 
development stage reaches values of 20, the predictions 
become more accurate.

The mean predictions of SPASS are closest to the meas-
urements for most site-years, while particularly CERES, 
and to a lesser extent SUCROS, overestimate earlier phe-
nological development. The discernible steps in the SPASS 
simulations are a direct result of and consistent with the 
model structure: in contrast to the two other models, which 
represent the secondary growth stages as fractions of the 
temperature sums required for each principal growth stage 
(BBCH = 10–20, 20–30, 30–40, … ), SPASS simulates the 
secondary growth stages during the early development 
(BBCH = 10–40) based on the number of emerged main 
stem leaves (BBCH = 11, 12, … ), tillers (BBCH = 21, 22, 

… ), and main stem nodes (BBCH = 31, 32, … ) Wang and 
Engel (1998). Therefore, in this model simulated BBCH may 
not be a continuous function of time. For example, if only 
five main stem leaves have unfolded by the day on which 
the principal growth stage “tillering” (BBCH = 20) has 
been reached, a discontinuity from BBCH = 15 to BBCH = 
20 would be simulated. The model behaves similarly with 
respect to the number of tillers on day of principal growth 
stage “stem elongation” (BBCH = 30) and the number of 
nodes at principal growth stage “booting” (BBCH = 40).

We note that the better predictions of BBCH by SPASS 
are in contrast to the worst performance in yield. We can 
put these results into perspective with the yield predic-
tions. While our belief about plausible parameter ranges 
of SUCROS and CERES led to an early onset of BBCH 
development, on average, the grain filling period from anthe-
sis (BBCH = 60) until maturity (BBCH = 90) is longest. 
The price of this is a worse match in BBCH, in contrast 
to SPASS. While SPASS reaches maturity approximately 
similarly as SUCROS, it is the shorter grain filling duration 
in SPASS that results in a tendency for lower yields, shown 
by the heavy tails on the left of the predictive distribution 
functions (see Figs. 2, 3).

For the stated reasons, this delayed BBCH development 
(i.e., not-achieved maturity, leading to lower grain yields) 
does not occur in CERES. From this insight, we can update 
our formulation of plausible parameter ranges by ensuring 
that the grain filling rate in the SPASS model parameters is 
increased. Similar updates are possible for SUCROS and 
CERES, where a delayed BBCH would have been matched 
with an increased grain filling rate. Since, in practice, fertili-
zation dates are co-informed by BBCH, this result is of great 
significance to enhance the prior predictive capabilities of 
the models for these types of environments.

Fig. 7   Time series of phenology 
predictions for site 1, year 2011. 
The shaded intervals represent 
the 90% credible intervals. The 
points represent the median of 
the replicate measurements
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Energy distance‑based similarity analysis

Figure 8 (a) shows time series of the spread of each model, 
(b) the energy distance between pairs of models and (c) the 
energy score between models and observations. The corre-
sponding figures for all other site-years are provided in the 
Appendix (Figs. 19, 20, 21, 22, 23 and 24).

From Fig. 8 we can see phenomena that can be observed 
in most site-years: Within-model spreads of phenology pre-
dictions (Fig. 8a) show an increasing trend until June and 
decrease steadily thereafter. This is to be expected since all 
models aim at reaching fill plant maturity by the time of 
harvest. While the curves for CERES (blue) and SUCROS 
(red) are similar, the one representing SPASS (yellow) is 
often shifted towards a later maximum in July and there-
fore shows the highest spread in its predictions at harvest 
date. From this, we can identify that the largest predictive 
uncertainty occurs around BBCH = 60, although it is one 
of the most important predicted stages. Within all models, 
the anthesis date at BBCH=60 is very important, as it marks 
the point at which grain filling starts. In principle, a very late 
start and short grain filling period (visible as steep slopes in 
the curves after BBCH=60 in Fig. 7) can be compensated 
with implausibly high grain filling rate parameters, such that 
reasonable yields can nevertheless be simulated. This can be 
achieved in all of the models.

In Fig. 8b, we can analyze the distance, i.e. dissimilar-
ity between pairs of models. The distance between CERES 
and SPASS (green curve) is the highest during most phases 
for all site-years. After reaching the maximum distance in 
May, it decreases again. The distance between SUCROS 
and SPASS (orange curve) shows a similar development, 
however, the distance between these models is smaller most 
of the time. The distance between CERES and SUCROS 
(purple curve) does not show this characteristic maximum 
in May, rather it increases more or less steadily over the sea-
son and thus, the difference between CERES and SUCROS 
becomes the highest at the harvest date.

The curves in Fig. 8c can be interpreted as the models’ 
goodness-of-fit to measurements. A low energy score means 
a low distance to the observations and hence a good model 
performance. The time series of CERES and SUCROS show 
similar behavior with a maximum energy score in May to June, 
followed by a decline. For most site-years, CERES has the 
highest energy score. Although in some cases SPASS starts 
with the highest energy score, for most site-years, it is closest 
to the observations during most phases. Hence, from a model 
selection perspective, SPASS would be considered best overall. 
Nonetheless, the analysis with the energy score clearly shows 
that, especially in certain time windows, employing additional 
alternative models increases reliable predictive coverage.

Fig. 8   a Within-model spread 
(square root of the mean 
Euclidean distance between the 
samples within each model) √
E
ii
 , b energy distance d 

between pairs of models, and c 
root energy score 

√
ES between 

models and observations based 
on phenology predictions, site 
1, year 2011. The dashed lines 
indicate the date when the mean 
predictions reach BBCH = 60
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Analysis of the in‑season variable leaf area index

Predictive distributions

After the analysis of BBCH, we now study the in-season 
variable LAI. Exemplary plots of the time series for site 1, 
year 2011 are shown in Fig. 9. The corresponding plots for 
all site-years are provided in the Appendix (Fig. 26).

The adopted measurement technique (Weber et al. 2021) 
for field observations of LAI does not differentiate between 
green leaf (i.e. photosynthetically active) and dead leaves. 
After the onset of leaf senescence, which dominates the 
LAI evolution after maximum LAI, we can consider that 
the measured LAI values contain an unknown amount of 
green leaf as well as dead leaves. However, the modeled 
LAI is green leaf LAI. For LAI, we can see clear differences 
between the predictions of the three models: CERES and 
SUCROS overestimate the LAI in the initial phase, however, 
the predictions of CERES do not drop as significantly as 
the ones of SUCROS. As for the phenological development, 
SPASS can describe the measured data most accurately.

In all cases, the peak of the median simulated LAI is 
much earlier than the peak in the measurements, sometimes 
by far. Since green leaf LAI of winter wheat is 0 at harvest, 
we see that, out of the three models, only a few individual 
simulation runs of SUCROS achieve this. Recall that the 
SUCROS wheat model does not simulate the vernalization 
of winter wheat. In other words, it is a summer wheat model, 
providing a feasible explanation of the, comparatively, very 
early development of LAI. This overestimation leads to a 
premature maximum and underestimates the measurements 
in the decreasing phase during senescence.

Figure 9 indicates that the prior predictive of SUCROS at 
harvest is close to zero, however with both an early and large 
peak in simulated LAI. Both CERES and SPASS are closer 
to the data but do not reach a green leaf of 0 at harvest. For 
SPASS this could relate to the fact that the simulated phenol-
ogy had not fully reached maturity by the time of the harvest. 
In other words, if in the model the harvest date had been set 
to full maturity, and not to the farmer-reported harvest date, 
we would surely observe a further decrease in LAI. While 
the development stage of SPASS is “too slow”, we can learn 
that the senescence of CERES is not fast enough.

Energy distance‑based similarity analysis

Similar to BBCH, the within-model spread of the LAI pre-
dictions in Fig. 10a increases slowly until June, followed by 
a decrease until harvest. The curves representing CERES 
and SPASS are relatively similar. SUCROS shows the larg-
est spread for most of the simulation time until it declines 
starting in June. At the harvest date, it is mostly SPASS that 
has the highest spread in its predictions.

In Fig. 10b, the energy distance between the models 
shows that, during most of the seasons, the predictions of 
CERES and SPASS are the most similar ones. The time 
series of the energy distance between SUCROS and CERES 
and between SUCROS and SPASS are similar, with the ones 
of SUCROS and CERES being usually lower (i.e. the mod-
els are more similar) and showing a minimum in June–July, 
followed by a rising phase until harvest.

Figure 10c shows that SPASS has the lowest distance to 
the observations for most months, which means it performs 
best. The curve representing CERES’ energy score ranges in 
the middle, and SUCROS performs worst, having the highest 
distance. The case of SUCROS highlights one of the major 
benefits of analyzing model predictive distributions using 
energy distance and energy score: While SUCROS shows 
the worst predictions according to Fig. 10c, it provides these 
with the highest confidence in the time from July to August. 
Energy statistics support this insight in a straightforward 
way on an easily-interpretable scale.

Compared to the energy-statistics-based analysis of 
BBCH (Fig. 8), the within-model spreads of the LAI predic-
tions (Fig. 10) are smaller and increase less during the grow-
ing season. From the energy distance between the models, 
we can observe that CERES and SPASS are the most dis-
similar models with regard to BBCH predictions, while they 
are the most similar ones considering LAI predictions. Here, 
the biggest differences are between the LAI predictions of 
SUCROS and SPASS. The smallest energy score and, hence, 
the best goodness-of-fit during most phases was calculated, 
for both quantities of interest, by SPASS. The worst per-
forming model regarding LAI predictions is SUCROS, while 
considering BBCH predictions, it is CERES.

Fig. 9   Time series of LAI predictions for site 1, year 2011. The 
shaded intervals represent the 90% credible intervals
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Our analysis of the prior predictive distributions revealed 
that a model that performs well during season might still 
end with an imprecise yield prediction: During the sea-
son, SPASS is best in predicting LAI and BBCH, whereas 
CERES and SUCROS clearly deviate from the observations, 
especially in the case of LAI. In predicting yield, however, 
SUCROS performs best, while SPASS is worst due to its 
very broad prior predictive distribution that covers even very 
low values with a relatively high probability. This confirms 
what was observed in the study by Martre et al. (2015). They 
compared the goodness-of-fit for calibrated models: a model 
that cannot reproduce in-season measurements well might 
do a better job in predicting end-of-season variables. Given 
our analysis, one could add to this statement that also the 
reverse can be true, i.e. a model that performs well during 
the season might still fail to predict yield reasonably.

In addition, the similarity among the models was not con-
sistent across different variables: while the LAI predictions 
of CERES and SPASS are the most similar ones and the ones 
of SUCROS and SPASS are the most dissimilar ones, the 
opposite is true considering the yield predictions.

Summary and conclusions

We analyzed the similarity of predictions by the three 
plant growth models CERES, SPASS and SUCROS and 
their goodness-of-fit to observed data in a probabilistic 

framework. The goal of this study was to find methods for 
gaining deeper insights into the model set. An intuitive 
understanding of similarities between the models and the 
measurements can help model developers to improve both 
the individual models and the multi-model methods. The 
presented method can be used to identify different model set-
tings, e.g. situations in which all models form a cluster while 
being distant from the measured data. This may indicate that 
all models are highly similar and that a relevant process is 
not considered in any of the models. An intuitive visualiza-
tion of model similarities can guide the multi-model process, 
e.g. when it comes to assigning model weights for averag-
ing. Therefore, we propose to combine specific visualization 
methods that make modelers aware of the (dis)similarities 
in the predictions of the considered model set. Each method 
highlights another piece of information and adds to a com-
prehensive overview of the considered model set.

The analysis is based on so-called energy statistics intro-
duced by Rizzo and Székely (2016). The energy distance 
between the probabilistic predictions is used to quantify 
model similarities. With the same method, we can also 
assess model performance by calculating the energy distance 
between model predictions and noisy measurements. For 
comparing probabilistic model predictions to deterministic 
observations, the so-called energy score is used. It acts on 
the same scale as the energy distance making both intuitively 
comparable. Therefore, energy statistics proved to be widely 
applicable, as energy distance and energy score can be used 

Fig. 10   a Within-model spread 
(square root of the mean Euclid-
ean distance between the sam-
ples within each model) 

√
E
ii
 , b 

energy distance d between pairs 
of models, and c root energy 
score 

√
ES between models and 

observations based on LAI, site 
1, year 2011
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jointly to compare two probability distributions as well as a 
probability distribution and a deterministic reference.

Our results confirmed that “there is no single best model” 
(Hagedorn et al. 2005; Palosuo et al. 2011; Martre et al. 
2015): none of the investigated models performed consist-
ently better or worse than the others when considering dif-
ferent variables. While SPASS showed the best goodness-of-
fit regarding in-season variables LAI and BBCH, its overly 
wide yield predictions lead to poor performance for this end-
of-season variable. Therefore, combining the models in an 
ensemble might indeed give more robust predictions as a 
broader range of possible predictions is covered.

Generally, we suggest analyzing model similarities when 
using multi-model ensembles, as redundancies in the model 
set lead to an overly high weight of certain predictions and 
therefore, model weights should be diluted (George 2010; 
Garthwaite and Mubwandarikwa 2010). Similar to the 
results regarding goodness-of-fit, we also found that model 
similarities vary for different variables: two models that gave 
similar predictions for one variable showed clear differences 
in predicting another one. Therefore, no general dilution pri-
ors can be defined for this model set. Rather, they need to 
be chosen depending on model similarities for each quantity 
of interest.

We also investigated whether model similarities or per-
formance are dependent on the weather conditions during 
the growing season. To this end, we used radar charts to 
visualize the similarities and color-coded them according to 
the wetness or dryness of the respective site-year. Although 
there was no apparent effect of the weather conditions on 
the model predictions visible, we suggest this approach of 
visualization to be studied further. We assume that, for other 
scenarios and model sets, this might be a straightforward 

tool to display the influence of different boundary condi-
tions on the prediction accuracy and similarity of models. 
By assessing the within-model spread, the distance between 
the models, and the goodness-of-fit on the same scale, we 
can gain a better understanding of the model set.

Our study was based on prior predictions, i.e. the models 
have not been calibrated. There are two main reasons for 
this: (1) (not only) in the crop modeling community, dif-
ferent groups use different calibration approaches (Wallach 
et al. 2020) and hence, there is a lack of consistency. (2) 
Model structural errors are often compensated by choos-
ing non-physical parameters (e.g. Wallach 2011). This leads 
to good model performance for the variable the model has 
been calibrated on, but poor performance for others. There-
fore, we support the suggestion of Vogel and Sankarasu-
bramanian (2003) to validate the model structure prior to 
calibration. As in any Bayesian framework, a subjective 
choice of prior distributions based on expert knowledge is 
needed. Future research should assess the sensitivity of the 
analysis regarding the priors. Another promising way to go 
is the assessment of structural model similarity, e.g. based 
on information-theoretic methods as done by Bennett et al. 
(2019). As our analysis suggests that a combination of the 
individual models into an ensemble prediction might yield 
more robust results, our introduced model evaluation work-
flow might also inform different model combination methods 
and weighting schemes of future applications.

Appendix 1: Model description

See Tables 3, 4, 6, 5, 7.

Table 3   Characteristics of the three models, adapted from Asseng et al. (2013), supplementary material (Table S2)

CERES SPASS SUCROS

Leaf area/light interception Simple Detailed Detailed
Light utilization Radiation use efficiency approach Gross photosynthesis-respiration Gross photosynthesis-respiration
Yield formation Tot. (above-ground) biomass, num-

ber of grains
Number of grains, partitioning dur-

ing reproductive stages
Partitioning during reproductive 

stages
Phenology Temperature, photoperiod (day 

length), vernalization
Temperature, photoperiod (day 

length), vernalization
Temperature

Root distribution over depth Exponential Exponential Exponential
Environmental constraints Water limitation, N limitation Water limitation, N limitation Water limitation, N limitation
Type of water stress Actual to potential evapotranspira-

tion ratio, soil available water in 
root zone

Actual to potential evapotranspira-
tion ratio, soil available water in 
root zone

Actual to potential evapotranspiration 
ratio, soil available water in root 
zone

Water dynamics Richards approach Richards approach Richards approach
Evapotranspiration Penman–Monteith Penman–Monteith Penman–Monteith
Soil CN-model CN model, 3 organic matter pools, 

microbial biomass pool
CN model, 3 organic matter pools, 

microbial biomass pool
CN model, 3 organic matter pools, 

microbial biomass pool
No. of cultivar parameters 7 5 2
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Table 4   Description of model parameters varied and parameter bounds of the uniform prior where a = lower bound and b = upper bound, sub-
script 1 denotes the top-soil and 2 the sub-soil as defined in Table 1

Module Parameter Unit a b Description

Soil water �1 , �2 cm−1 0.002 0.03 van Genuchten �
n1, n2 – 1.2 2.2 van Genuchten n
K
s,1,Ks,2 cm d−1 10 500 saturated hydraulic conductivity

�1, �1 – − 1 8 Tortuousity parameter
ET

a
kcini – 0.2 1 Crop coefficient for the initial vegetation period (dev stage 0)
kcmid – 0.5 1.8 Crop coefficient for the mid vegetation period (dev stage 0.75–1.5)
kcend – 0.2 1 Crop coefficient for the end of the vegetation period (dev stage 2.0)

Nitrogen Nit1 d−1 0.1 1 Nitrification rate
Nit2 d−1 0.05 0.6
DeNit1 d−1 0.1 1 Denitrification rate
DeNit2 d−1 0.0 0.01
MiLit1 d−1 0.01 0.1 Mineralization rate constant of the litter pool
MiLit2 d−1 0.01 0.1
MiHum1 d−1 1e−5 1e−4 Mineralization rate constant of the humus pool
MiHum2 d−1 1e−6 1e−5

MiMa d−1 0.01 0.1 Mineralization rate constant of the manure pool
Initial condition �

ini,1 vol% 10 40 Initial soil profile water content
�
ini,2 vol% 15 45



5163Modeling Earth Systems and Environment (2022) 8:5143–5175	

1 3

Table 5   Description of SPASS model parameters and parameter bounds of the prior

Parameter Unit a b Description

PMAX kgCO2
ha−1

leaf
h
−1 38 45 Gross photosynthesis rate at light saturation and CO2 340 ppm

LUE g J−1 0.55 0.7 Light use efficiency
TMINPS ◦C 0 5 Minimum temperature for photosynthesis
TOPTPS ◦C 20 25 Optimum temperature for photosynthesis
TMAXPS ◦C 32 40 Maximum temperature for photosynthesis
PDD1 d 32 48 Duration from emergence to anthesis
PDD2 d 20 36 Duration from anthesis to emergence
VERN d 24 46 Minimum value of vernalization days
PDL – 0.01 0.25 Photoperiod sensitivity factor
DLOPT h 18 20 Optimal photoperiod length
TMINDEV ◦C 0 2 Minimum temperature of vegetative development
TOPTDEV ◦C 22 26 Optimum temperature of vegetative development
TMAXDEV ◦C 32 38 Maximum temperature of vegetative development
TMINDEV2 ◦C 2 6 Minimum temperature of reprod. development
TOPTDEV2 ◦C 26 30 Optimum temperature of reprod. development
TMAXDEV2 ◦C 38 45 Maximum temperature of reprod. development
G1 #g−1 24 35 Number of grains per stem weight at anthesis
SPCLW kgDW ha−1

leaf
350 500 Specific leaf weight

RESR – 0.36 0.45 Fraction of stem weight as reserves
G2 mg grain−1 d−1 2.4 3.6 Maximum grain filling rate
NACCR​ mgN grain−1 d−1 0.02 0.06 Nitrogen accumulation rate
REXT cm d−1 1.5 3.0 Maximum root extension rate
SPCRL cm g−1 8000 12000 Specific root length
RWUR​ cm3 cm−1 d−1 0.024 0.036 Maximum water uptake rate per root length
RNUR kgN cm−1 d−1 0.006 0.01 Maximum nitrogen uptake rate per root length
RDMAX cm 100 200 Maximum rooting depth
DVSSEN – 1 1.3 Development stage at which senescence begins
RDRL – 0.015 0.025 Relative death rate of leaves
RDRR – 0.015 0.025 Relative death rate of roots

Table 6   Description of 
CERES model parameters and 
parameter bounds of the prior

Parameter Unit a b Description

P1D – 0.001 0.008 Daylength coefficient
P1V h 25 60 Inverse of optimum vernalization rate
PHINT – 70 150 Phyllochrone interval
P1 ◦C d 170 400 Thermal Time from emergence-to terminal spikelet
P4 ◦C d 120 200 Thermal Time from end of pre-anthesis ear 

growth-begin of grain filling
P5 ◦C d 400 700 Thermal Time for grain filling (phase 5)
G1 #g−1 20 40 Number of grains per stem weight at anthesis
G2 mggrain−1 d−1 1 4 Maximum grain filling rate
RWUR​ cm3 cm−1 d−1 0.01 0.1 Maximum water uptake rate per root length
RNUR kg ha−1 0.003 0.027 Maximum nitrogen uptake rate per root length
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Appendix B: Figures

See Figs. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25 and 26.

Table 7   Description of 
SUCROS model parameters and 
parameter bounds of the prior

Parameter Unit a b Description

PMAX kgCO2
ha−1

leaf
h
−1 38 45 Gross photosynthesis rate at light saturation and 

CO2 340 ppm
LUE g J−1 0.55 0.7 Light use efficiency
TBASE1 ◦C 0 2 Base temperature for phen. dev. vegetative phase
TSUM1 ◦C d 700 1500 Temperature sum of vegetative growth phase
TBASE2 ◦C 2 5 Base temperature for phen. dev. generative phase
TSUM2 ◦C d 600 1400 Temperature sum of generative growth phase
LA0 m2 plant−1 ∗ 10,000 0.45 0.7 Initial leaf area
RGRL ◦C−1 d−1 0.005 0.01 Relative growth rate of leaf area
G1 #g−1 24 35 Number of grains per stem weight at anthesis
SPCLW kgDW ha−1

leaf
350 500 Specific leaf weight

REXT cm d−1 1.5 3.0 Maximum root extension rate
SPCRL m kg−1 8000 12,000 Specific root length
RDMAX cm 100 200 Maximum rooting depth

Fig. 11   Dendrograms based on the energy distance between models and observations (yield predictions)



5165Modeling Earth Systems and Environment (2022) 8:5143–5175	

1 3

Fig. 12   Heatmap reflecting the similarities between models and observations based on yield predictions for site 4–6. The color-coding represents 
the values of the individual components of the energy distance: �||X − Y||2 (main diagonal entries) and �||X − X

�||2 (off-diagonal entries)

Fig. 13   a Within-model spread (square root of the mean Euclidean distance between the samples within each model) 
√
E
ii
 , b energy distance d 

between pairs of models, and c root energy score 
√
ES between models and observations based on LAI for site 1
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Fig. 14   a Within-model spread (square root of the mean Euclidean distance between the samples within each model) 
√
E
ii
 , b energy distance d 

between pairs of models, and c root energy score 
√
ES between models and observations based on LAI for site 2

Fig. 15   a Within-model spread (square root of the mean Euclidean distance between the samples within each model) 
√
E
ii
 , b energy distance d 

between pairs of models, and c root energy score 
√
ES between models and observations based on LAI for site 3
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Fig. 16   a Within-model spread 
(square root of the mean 
Euclidean distance between the 
samples within each model) √
E
ii
 , b energy distance d 

between pairs of models, and c 
root energy score 

√
ES between 

models and observations based 
on LAI for site 4

Fig. 17   a Within-model spread (square root of the mean Euclidean 
distance between the samples within each model) 

√
E
ii
 , b energy 

distance d between pairs of models, and c root energy score 
√
ES 

between models and observations based on LAI for site 5



5168	 Modeling Earth Systems and Environment (2022) 8:5143–5175

1 3

Fig. 18   a Within-model spread 
(square root of the mean 
Euclidean distance between the 
samples within each model) √
E
ii
 , b energy distance d 

between pairs of models, and c 
root energy score 

√
ES between 

models and observations based 
on LAI for site 6

Fig. 19   a Within-model spread (square root of the mean Euclidean 
distance between the samples within each model) 

√
E
ii
 , b energy 

distance d between pairs of models, and c root energy score 
√
ES 

between models and observations based on phenology for site 1. 
The dashed lines indicate the date when the mean predictions reach 
BBCH = 60
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Fig. 20   a Within-model spread (square root of the mean Euclidean 
distance between the samples within each model) 

√
E
ii
 , b energy 

distance d between pairs of models, and c root energy score 
√
ES 

between models and observations based on phenology for site 2. 
The dashed lines indicate the date when the mean predictions reach 
BBCH = 60

Fig. 21   a Within-model spread (square root of the mean Euclidean 
distance between the samples within each model) 

√
E
ii
 , b energy 

distance d between pairs of models, and c root energy score 
√
ES 

between models and observations based on phenology for site 3. 
The dashed lines indicate the date when the mean predictions reach 
BBCH = 60
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Fig. 22   a Within-model spread 
(square root of the mean Euclid-
ean distance between the sam-
ples within each model) 

√
E
ii
 , b 

energy distance d between pairs 
of models, and c root energy 
score 

√
ES between models and 

observations based on phenol-
ogy for site 4. The dashed lines 
indicate the date when the mean 
predictions reach BBCH = 60

Fig. 23   a Within-model spread (square root of the mean Euclidean 
distance between the samples within each model) 

√
E
ii
 , b energy 

distance d between pairs of models, and c root energy score 
√
ES 

between models and observations based on phenology for site 5. 
The dashed lines indicate the date when the mean predictions reach 
BBCH = 60
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Fig. 24   a Within-model spread 
(square root of the mean Euclid-
ean distance between the sam-
ples within each model) 

√
E
ii
 , b 

energy distance d between pairs 
of models, and c root energy 
score 

√
ES between models and 

observations based on phenol-
ogy for site 6. The dashed lines 
indicate the date when the mean 
predictions reach BBCH = 60

Fig. 25   Time series of phenology predictions for all site-years. The shaded intervals represent the 90% credible intervals (blue: CERES, red: 
SUCROS, yellow: SPASS), the dashed lines represent the model means and the black points represent the medians of the measurements
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