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Abstract
In this paper, a compartmental model is proposed to study the dynamics of COVID-19 pandemic caused by the coronavirus 
SARS-CoV-2 and the role of media in controlling this ongoing infection. Model includes implementation of media awareness 
as a control measure to mitigate the spread of the disease. In the proposed model, we have divided the total human popula-
tion into four sub-classes, namely susceptibles, asymtomatic infectives, aware susceptibles and symptomatic infectives (or 
Isolated infectives which are under treatment/hospitalized) incorporating classes representing cumulative density of virus 
and media alert. The important mathematical features of the model are thoroughly investigated. The endemic equilibrium 
is found to be locally asymptotically stable as well as non-linearly asymptotically stable with certain conditions. Numerical 
simulations are also carried out in support of the analytical results and to show the effects of certain key parameters.

Keywords Coronavirus · Media · Immigration · Stability · Simulation

Mathematics Subject Classification 92D25 · 34A34 · 34M04

Introduction

In present time, the coronavirus infection is the most com-
mon infection escalated worldwide with alarming rate. The 
spread of coronavirus disease 2019 (COVID-19) is threaten-
ing people’s physical and mental health and even life safety. 
Almost every country is facing the impact of this dreaded 
disease. To contain the spread of the disease, countrywide 
or local lockdown was imposed which itself is enough to 
describe the seriousness of the pandemic. Globally, till 30 

May 2021, there have been 169,597,415 confirmed cases of 
COVID-19, including 3,530,582 deaths, reported to WHO. 
As of 26 May 2021, a total of 1,546,316,352 vaccine doses 
have been administered (Corona virus fact sheet by WHO 
2021). Figures of COVID-19 cases clearly indicate the huge 
impact of the disease on human population. Therefore, it is 
essential to pay the attention to study the dynamics of this 
disease and suggest the ways to stop further its spreading.

This recent spread of COVID-19 disease has led to many 
theoretical investigations suggesting various non-pharma-
ceutical interventions (Aldila et al. 2020; Almomani and 
AlQuran 2020; Agaba 2020; Cai et al. 2020; Chen et al. 
2020; Chekol and Melesse 2020; Contreras et al. 2020; 
Cooper et al. 2020; Corbet et al. 2021; Cui et al. 2008a, b; 
Dubey et al. 2016; Fredj and Cherif 2020; Gao et al. 2020; 
Hu et  al. 2020; Khan and Atangana 2020; Krishna and 
Prakash 2020; Misra et al. 2015; Mitchel 2020; Naresh et al. 
2009, 2011a; Kumar and Somani 2020; Pai et al. 2020; Pan-
ovska-Griiths 2020; Pandey et al. 2020; Sarkar et al. 2020; 
Shereen et al. 2020; Wang et al. 2020; Wiah et al. 2020; 
Zeb et al. 2020; Zehra et al.2020). In particular, Aldila et al. 
(2020) formulated a modified susceptible, exposed, infec-
tious, recovered compartmental model considering asymp-
tomatic individuals. They used the incidence data from the 
city of Jakarta, Indonesia and observed that the strict social 
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distancing is very much helpful is delaying the outbreak of 
the disease. However, if the strict social distancing policy 
is relaxed, a massive rapid-test intervention should be con-
ducted to avoid a large-scale outbreak in future. Contreras 
et al. (2020) developed a general multi-group SEIRA model 
for representing the spread of COVID-19 among a heteroge-
neous population. Cooper et al. (2020) studied the effective-
ness of the modeling approach on the pandemic due to the 
spreading of the novel COVID-19 disease and developed 
a susceptible-infected-removed (SIR) model that provides 
a theoretical framework to investigate its spread within a 
community. Liu et al. (2020) developed models to account 
for latency period and evaluated the role of the exposed or 
latency period on the dynamics of a COVID-19. Sarkar et al. 
(2020) proposed a compartmental model that predicts the 
dynamics of COVID-19 in 17 provinces of India and the 
overall India. Almomani and AlQuran (2020) observed that 
with the spread of the coronavirus globally, the negative 
effects increased at all levels especially in the economic 
and social sectors. Their study shows that the situation fur-
ther worsened by the spread of rumors and false informa-
tion about the disease circulated through social media and 
online platforms. Cai et al. (2020) observed in their study, 
the impact on mental health, resilience and social support of 
health care workers due to continuously being in close vicin-
ity with persons affected with COVID-19. Chen et al. (2020) 
proposed a reservoir-people transmission network model 
for calculating the transmissibility of SARS-CoV-2. Fredj 
and Cherif (2020) proposed a deterministic compartmental 
model based on the clinical progression of the disease, the 
epidemiological state of the individuals and the intervention 
for the dynamics of COVID-19 infection. Khan and Atan-
gana (2020) proposed a mathematical model by assuming 
interaction among the bats and unknown hosts, then among 
the peoples and the infection reservoir (seafood market). 
The seafood markets, considered to be the main source of 
infection, where bats and the unknown hosts (may be wild 
animals) leave the infection for further transmission. Krishna 
and Prakash (2020) developed a phase-based mathematical 
model for COVID-19 and concluded that the spreading of 
COVID-19 capacity is superior than MERS into the Middle 
East nationals.

The disease spread is faster in closed population groups 
through small droplets emanated from the nose or mouth 
via coughing, sneezing or exhalation of a COVID-19-af-
fected person. These droplets may deposit on objects and 
surfaces around the person or remain airborne for some 
time. The susceptibles may get exposed to COVID-19 
infection upon touching their eyes, nose or mouth after 
coming in contact with these objects or surfaces or if they 
breathe in droplets from a person with COVID-19 who 
coughs out or exhales droplets. From the above studies, 
it may be noted that these investigations ignore a very 

important prevention strategy, i.e. media awareness cam-
paign. Though the vaccine has been developed but it may 
take years to reach the entire population. Thus, it would 
be very effective and helpful to educate the people about 
the COVID-19, its causes and preventive measures in the 
form of non-pharmaceutical intervention strategies like 
face cover/mask wearing, social distancing, etc. through 
media awareness campaigns. Media awareness campaigns 
not only play a very crucial role in creating awareness 
to reduce the spread of any infectious disease, but also 
induce the behavioral change in general population which 
ultimately changes the pattern of disease spread (Cui et al. 
2008a, b; Misra et al. 2011, 2015; Naresh et al. 2011a, 
b; Tripathi et al. 2007; Tripathi and Naresh 2019). The 
transmission dynamics of Corona virus is given in Fig. 1.

Formulation of mathematical model

We consider the population of size N(t) at time t with 
constant immigration rate A. The population size N(t) is 
divided into four subclasses of susceptibles X(t), asymp-
tomatic infectives Y(t) (also assumed to be infectious), 
aware susceptibles (who are staying home/isolated) XM(t) 
and symptomatic infectives Yi(t) (who are isolated for 
treatment/hospitalized). The variable V(t) be the cumu-
lative density of virus and the variable M(t) denotes the 
cumulative density representing media alert to make the 

Fig. 1  Schematic diagram of transmission dynamics of Corona virus 
(Shereen et al. 2020)
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population aware of the disease (Misra et al. 2011). With 
these considerations, the mathematical model is proposed 
as follows, 

where d is the natural mortality rate constant, �1 is disease-
induced death rate constant. The constant � represents the 
transmission rate by which susceptible individuals X(t) come 
into contact with asymptomatic infectives Y(t) directly and 
become infective. The constant � represents the transmission 
rate by which susceptible individuals X(t) become infected 
by directly coming in contact with virus V(t) deposited on 
surfaces/objects or airborne droplets. Some of the aware sus-
ceptibles may again become susceptible with a rate �11 due 
to fading of the effect of media awareness campaigns. The 
term �M

1+�M
 denotes the effect of media coverage on suscepti-

ble population where � can be thought of as the dissemina-
tion rate of awareness programs among susceptibles and � 
limits the effect of awareness programs on susceptibles, �

�
 is 

the maximum effect that media can put on susceptibles 
(Dubey et al. 2016). The constant � is the rate by which mild 
infectives from asymptomatic class are cured but remain 
vulnerable to join the susceptible class and �1 is the rate of 
appearance of symptoms by which asymptomatic infectives 
join the symptomatic (hospitalized/isolated) class. The con-
stant �11 represents the recovery rate coefficient of sympto-
matic (hospitalized/isolated) individulas who again become 
susceptible after recovery. The viral density V(t) is assumed 
to be directly proportional to the asymptomatic infectives 
where � is the rate of increase of V. The constant �0 is the 
rate by which viral density declines due to control/preventive 
measures. The constant � represents the rate by which aware-
ness programs are being implemented and are assumed to be 
directly proportional to the asymptomatic infective 

(1)
dX

dt
=A − �

XY

N
− �VX − �

XM

1 + �M

− dX + �11XM + �11Yi + �Y

(2)
dY

dt
= �

XY

N
+ �VX − dY − �Y − �1Y

(3)
dXM

dt
= �

XM

1 + �M
− dXM − �11XM

(4)
dYi

dt
= �1Y − dYi − �1Yi − �11Yi

(5)
dV

dt
= �Y − �0V

(6)
dM

dt
=�Y − �M

population. The constant � represents the depletion rate of 
these programs due to ineffectiveness, social problems in the 
population, etc.

Since N(t) = X(t) + Y(t) + XM(t) + Yi(t) , the model sys-
tem (1)–(6) can be rewritten as,

with initial conditions, N(0) = N0 > 0, Y(0) = Y0 ≥ 0,

X
M
(0) = X

M0 ≥ 0,Y
i
(0) = Y

i0 ≥ 0,V(0) = V0 ≥ 0, and M(0) = M0 ≥ 0

Invariant region

To study the stability of equilibrium points, we need the 
bounds of dependent variables of the model system (7)–(12). 
For this, we find the invariant region in the form of following 
lemma, stated without proof.

Lemma The closed set 
D = {(N,Y ,X

M
, Y

i
,V ,M) ∈ R

+

6
∶

A

𝛼1+d
< N <

A

d
, 0 < Y + X

M
+ Y

i
≤ N, 0 ≤ V ≤

𝜃

𝜃0

A

d
, 0 ≤ M ≤

𝜇

𝜎

A

d
}

Existence of equilibria

The system (7)–(12) exhibits two equilibria, namely 

 (i) E0(
A

d
, 0, 0, 0, 0, 0) , the disease-free equilibrium, which 

is obvious.
 (ii) E∗(N∗, Y∗,X∗

M
, Y∗

i
,V∗,M∗) , the endemic equilibrium,

where N∗, Y∗,X∗
M
, Y∗

i
,V∗ and M∗ are the positive solutions 

which we get on solving the following system of algebraic 
equations obtained by putting right-hand side of model equa-
tions (7)–(12) to zero,

(7)
dN

dt
=A − dN − �1Yi

(8)
dY

dt
= �

(N − Y − XM − Yi)Y

N

+ �V(N − Y − XM − Yi) − (d + � + �1)Y

(9)
dXM

dt
= �

(N − Y − XM − Yi)M

1 + �M
− dXM − �11XM

(10)
dYi

dt
= �1Y − (d + �1 + �11)Yi

(11)
dV

dt
= �Y − �0V

(12)
dM

dt
=�Y − �M
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From Eqs.  (13), (17) and (18) we get, respectively,

here, u =
(d+�1+�11)

�1
 , and from Eq.  (15) we get,

Now on substituting all the values in Eq. (14) we get,

It would be sufficient if we show that the Eq. (24) has one 
and only one positive root between A

�1+d
 and A

d
 . To prove this, 

from Eq. (24) we have,

(13)A − dN − �1Yi = 0

(14)

(
�Y

N
+ �V

)(
N − Y − XM − Yi

)

− (d + � + �1)Y = 0

(15)�
(N − Y − XM − Yi)M

1 + �M
− dXM − �11XM = 0

(16)�1Y − (d + �1 + �11)Yi = 0

(17)�Y − �0V = 0

(18)�Y − �M = 0

(19)Yi =
A − dN

𝛼1
= f (N)(say) > 0

(20)V =
𝜃

𝜃0
Y > 0

(21)M =
𝜇

𝜎
Y > 0

(22)Y =
(A − dN)(d + 𝛼1 + 𝛽11)

𝛼1𝛽1
= uf (N) > 0

(23)XM =
�
[
N − uf (N) − f (N)

]

� + (�11 + d)
[
1 + �

�

�
uf (N)

] = g(N)(say)

(24)
F(N) = (� + �

�

�0
N)[N − uf (N) − g(N) − f (N)]

− (� + d + �1)N = 0

provided R0(
𝜆11+d

𝜈+𝜆11+d
) > 1 . Here, R0 represents the reproduc-

tive number, given as R0 =
(�+�

�

�0

A

d
)

(�+d+�1)
.

Also, from Eq.  (24) and after some algebraic 
manipulation,

since, N − Y − XM − Yi = X , therefore,

provided

This shows that F(N) = 0 has exactly one root(say N∗ ) 
between A

�1+d
 and A

d
. Using N∗ , the values of Y∗,X∗

M
 , Y∗

i
 , V∗ 

and M∗ can be found easily.

Stability of equilibria

In this section, we carry out the stability analysis of the 
equilibrium points. For this, the following theorems are 
proposed.

Theorem 4.1 The disease-free equilibrium E0 is locally 
asymptotically stable if R0 < 1 so that the infection does 

(25)

F

�
A

𝛼1 + d

�
= −

A

𝛼1 + d

�
𝛽 + 𝜆

𝜃

𝜃0

A

𝛼1 + d

�

⎡
⎢⎢⎢⎣
u

(𝜆11 + d)
�
1 + 𝛾

𝜇

𝜎
u

A

𝛼1+d

�

𝜈 + (𝜆11 + d)
�
1 + 𝛾

𝜇

𝜎
u

A

𝛼1+d

�
⎤
⎥⎥⎥⎦

− (𝛼 + d + 𝛽1)
A

𝛼1 + d
< 0

(26)F
(
A

d

)
=
A

d
(d + 𝛼 + 𝛽1)

[
R0

𝜆11 + d

𝜈 + 𝜆11 + d
− 1

]
> 0

(27)
F�(N) =2� + �

�

�0
N + �

�

�0

[N − uf (N) − g(N) − f (N)] − 2(� + d + �1)

(28)F�(N) = 2𝛽 + 𝜆
𝜃

𝜃0
(N + X) − 2(𝛼 + d + 𝛽1) > 0

(29)2𝛽 + 𝜆
𝜃

𝜃0
(N + X) > 2(𝛼 + d + 𝛽1)
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not persist in the population and under this condition the 
endemic equilibrium E∗ does not exist. It is unstable for 
R0 > 1 and endemic equilibrium E∗ appears.

Theorem 4.2 The endemic equilibrium E∗ is locally asymp-
totically stable under the following conditions,

See Appendix 1 for proof of Theorems 4.1 and 4.2.

Theorem 4.3 The endemic equilibrium E∗ is non-linearly 
asymptotically stable under the following conditions,

See Appendix 2 for proof of Theorem 4.3.

The symbols used in Theorems 4.2 and 4.3 are defined 
as follows:

(30)20ar < q(a + 𝜆11 + d)

(31)5s𝜃 < r𝜃0

(32)9

4

𝛼2

1

d(𝛼1 + d + 𝛽11)
<

4

15

dqr

p2𝛽1

(33)20a < (a + 𝜆11 + d)

(34)5𝜃𝜆
A

d
< r𝜃0

(35)9

4

𝛼2

1

d(𝛼1 + d + 𝛽11)
<

4

15

dr2

Y∗2𝛽1𝜙

p =
𝛽(Y∗+X∗

M
+Y∗

i
)Y∗

N∗2
+ 𝜆V∗ > 0 , q =

𝛽Y∗

N∗
+

𝜆V∗(N∗−X∗
M
−Y∗

i
)

Y∗
> 0 , 

r =
𝛽Y∗

N∗
+ 𝜆V∗ > 0  ,   s = 𝜆(N∗ − Y∗ − X∗

M
− Y∗

i
) > 0  , 

a =
𝜈M∗

1+𝛾M∗
> 0 , b =

𝜈(N∗−Y∗−X∗
M
−Y∗

i
)

(1+𝛾M∗)2
> 0 , 𝜙 =

[
(𝛼1+d)

d

𝛽

N∗
+

𝜆V∗

Y∗

]2
> 0

Numerical analysis and discussion

In this section, we perform some numerical simulations 
for the model system (7)–(12). For this, we integrate the 
system by fourth-order Runge–Kutta method using MAT-
LAB. Most of the parameter values used in simulation are 
adopted from previously published articles, while others are 
estimated intuitively. The unit of parameters is in per day. 
We use initial values for simulation as stated below (Sarkar 
et al. 2020; Tripathi and Naresh 2019).

In Table 2, the reported corona-positive cases (confirmed 
infectives) in India are depicted during first wave of pan-
demic for the months January to August 2020. Till 18 
September 2020, Indian government declared the total 
5,214,677 corona-positive cases, in which 4,112,551 were 
cured/discharged and 8472 deaths were due to this disease. 
The active cases of corona were 1,017,754. According to 
government of India, the recovery rate was 78.8% and death 
rate was 2.25% (Corona virus statistics by India 2020).

The parameters used in the model are given in Table 1.
From Fig. 2, we can see the trend of data as reported in 

Table 2 and the curve represented by the model for corona 
cases using the above parameters. It is noted that the num-
ber of confirmed infected persons (symptomatic/isolated) 

N(0) = 1300000000, Y(0) = 0,X
M
(0) = 0,

Y
i
(0) = 1,V(0) = 1,M(0) = 0

Table 1  Parameters of the model

Parameter symbol Value

Recruitment rate in susceptible class (A) 10,000 [estimated]
Transmission rate of susceptibles to asymptomatic infectives class (�) 0.86 per day (Sarkar et al. 2020)
Transmission rate of susceptibles via coronavirus (�) 0.00009 per day [estimated]
Mortality rate (days) 0.000038 per day (Corona virus statistics by India 2020)
Recovery rate (�11) 0.0036 per day (Corona virus statistics by India 2020)
Rate of appearance of symptoms (�1) 0.14 per day [estimated]
Death rate in symptomatic infectives class (�1) 0.00011 per day (Corona virus statistics by India 2020)
Transfer rate of mild infectives to susceptible class (�) 0.01 per day [estimated]
Efficacy of awareness programs (�11) 0.042 per day [estimated]
Rate of increase of viral density (�) 2 ×10−7 g [estimated]
Depletion rate of viral density (�0) 10−13 g [estimated]
Dissemination rate of awareness programs (�) 0.023 per day [estimated]
Limiting factor of awareness programs (�) 1 (Tripathi and Naresh 2019)
Implementation rate of media awareness programs (�) 0.0068 [estimated]
Depletion rate of media programs due to ineffectiveness (�) 0.001 [estimated]
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Table 2  Reported corona positive cases during first wave of pandemic by months Jan. to Aug. 2020 (Corona virus statistics by India 2020)

Months Jan. Feb. Mar. Apr. May Jun. Jul. Aug.

Cases 1 3 1071 33,050 182,143 566,840 1,638,870 3,542,733
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Fig. 2  Validation of model with Indian data
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estimated by the model for the above set of parameter values 
is closer to the reported Indian data (Table 2).

The results of numerical simulation are displayed 
graphically in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 
14. In Figs. 3 and 4, the behaviour of asymptomatic infec-
tives and symptomatic infectives is shown with time for 
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different values of the transmission rate � due to direct 
contact of susceptibles with virus. It is seen from these fig-
ures that the number of asymptomatic infectives increases 
with increase in the transmission rate � due to direct con-
tact of susceptibles with virus, (Fig. 3). Consequently, 

the number of symptomatic infectives also increases and 
remains endemic with higher viral load, (Fig. 4). This indi-
cates that if the transmission rate is curtailed by way of 
face cover/mask wearing, social distancing, avoidance of 
crowded places etc., the number of asymptomatic infec-
tives and consequently the symptomatic infectives can be 
decreased due to non-exposure with virus. In Fig. 5, we 

Fig. 10  Variation of aware susceptibles X
M

 with time t for different 
values of �11
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have shown the variation of aware susceptible population 
with time for different values of � , the transmission rate 
due to direct contact of susceptibles with virus. It is noted 
from this figure that the aware susceptible population 
declines as the transmission rate � due to direct contact of 
susceptibles with virus increases.

In Figs. 6 and 7, the variation of aware susceptible popu-
lation and symptomatic infectives is shown with time for 
different values of � , the dissemination rate of media aware-
ness programs. It is observed that the aware susceptible 
population increases with increase in the dissemination rate 
of media awareness programs, (Fig. 6) and consequently the 
symptomatic infectives population decreases, (Fig. 7). This 
highlights the importance of media awareness campaigns as 
a result of which more and more susceptible persons become 
aware of disease escalation. The resulting behavioral change 
helps in reducing the spread of COVID-19 infection and 
hence the symptomatic population decreases.

In Fig. 8, the variation of asymptomatic infectives with 
time t is shown for different values the recovery rate of 
symptomatic (hospitalized/isolated) infectives �11 . It is seen 
that the population of asymptomatic infectives increases in 
the long run with increase in the recovery rate of sympto-
matic infectives. These recovered symptomatic infectives 
remain susceptible to increase the susceptible population 
which in turn increases the asymptomatic infective popula-
tion. The increase in the recovery rate of symptomatic (hos-
pitalized/isolated) individuals �11 decreases the population 
of symptomatic class, (Fig. 9). This recovered population of 
symptomatic individuals who are discharged from hospitals 

increases the susceptible population which makes the aware 
susceptible population to increase, (Fig. 10).

In Figs. 11 and 12, the variation of aware susceptible 
population and symptomatic (hospitalized/isolated) infective 
population with time t is shown for different values of �11 , 
the rate at which aware susceptibles lose the effect of aware-
ness and become susceptible again due to fading of the effect 
of media programs. It is seen from these figures that as the 
effect of media awareness programs fades away, the aware 
susceptible population declines, (Fig. 11) and consequently 
the symptomatic infectives population increases, (Fig. 12). 
Thus, if aware susceptible population loses the impact of 
media awareness campaigns, the symptomatic population 
continues to grow and hence the infection will be maintained 
in the population.

In Figs. 13 and 14, the variation of virus density and 
symptomatic (hospitalized/isolated) infective population 
with time t is shown for different values of � , the growth 
rate of viral density which is directly proportional to the 
asymptomatic infectives. It is seen from these figures that 
as the growth rate of viral density, which is proportional 
to the asymptomatic infectives, increases, the load of virus 
increases in the atmosphere (Fig. 13) and hence the symp-
tomatic infectives population also increases (Fig. 14). Since 
the virus is directly emitted by the asymptomatic infective 
population and is deposited on surfaces/objects or remain 
airborne for some time, it increases the load of virus which 
ultimately results in increasing the symptomatic popula-
tion. This suggests that if people are educated through 
media awareness campaigns to wear face cover/masks and 
avoid touching the infected surfaces/objects and maintain 
social distancing, the viral density in the atmosphere would 
decline. This decreased viral density will consequently 
make the symptomatic infectives population diminish. Thus, 
media awareness campaigns can be of vital importance to 
reduce the spreading of COVID-19 infection.

Conclusion

In this paper, a non-linear mathematical model is pro-
posed and analyzed to study the effect of media awareness 
campaigns on the transmission dynamics of COVID-19 
pandemic caused by the coronavirus SARS-CoV-2 in a 
population with variable size structure. It is assumed that 
the susceptibles become infected by direct contacts with 
asymptomatic infectives as well as by coming in contacts 
with virus deposited on surfaces and /or droplets which are 
airborne for some time due to coughing, sneezing, exhala-
tion of symptomatic infectives, etc. In the proposed model, 
the total human population is divided into four sub-classes, 
namely susceptibles, asymptomatic infectives, aware 

Fig. 14  Variation of symptomatic infectives Y
i
 with time t for differ-

ent values of �
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susceptibles and symptomatic infectives (hospitalized/ 
isolated), incorporating classes representing cumulative 
density of virus and media alert. The model is analyzed 
using stability theory of differential equations and numeri-
cal simulation. Some inferences have been drawn regard-
ing the spread of the disease by way of establishing local 
and global stability results. It is found that with increase 
in the dissemination of media awareness programs, the 
aware susceptible population increases and consequently 
the symptomatic infectives population decreases. Thus, 
if more and more susceptible persons become aware of 
disease escalation, the resulting behavioral change helps 
in reducing the spread of COVID-19 infection.

Appendix 1

Proof of Theorem 4.1. To prove this theorem, we have the 
following Jacobian matrix evaluated at E0.

The characteristic equation is

From Eq. (36) it is clear that the three eigen values are nega-
tive and remaining three can be checked by cubic equation, 
(x3 + l1x

2 + l2x + l3) = 0, using Routh Hurwitz criteria

where, l1 = d + �0 − [� − (� + d + �1)]

l2 = d�0 − [� − (� + d + �1)](d + �0)

l3 = −[� − (� + d + �1)]d�0 − �
A

d
�

It can be easily seen that l1 and l2 are positive for 
𝛽 < (𝛼 + d + 𝛽1)  ,  w h i l e  l3  i s  p o s i t i ve  w h e n 
𝛽 + 𝜆

A𝜃

d𝜃0
< (𝛼 + d + 𝛽1) . Therefore, only for a condition 

𝛽 + 𝜆
A𝜃

d𝜃0
< (𝛼 + d + 𝛽1) the term l1, l2 and l3 are positive and 

also satisfying l1l2 − l3 > 0 . Which fulfills all the condi-
tions of Routh Hurwitz criteria. Thus, the disease free 
equilibr ium is locally asymptotically stable if 
𝛽 + 𝜆

A𝜃

d𝜃0
< (𝛼 + d + 𝛽1) i.e R0 < 1.

Proof of Theorem 4.2. Now to establish the local stabil-
ity of the endemic equilibrium E∗ , we linearize the system 
using small perturbations n, y, xm , yi , v and m as follows,

N = N
∗ + n,Y = Y

∗ + y,X
M
= X

∗
M
+ x

m
,Y

i
= Y

∗
i
,V = V

∗+

v,M = M
∗ + m

Let us consider the following positive definite function,

J(E0) =

⎡⎢⎢⎢⎢⎢⎢⎣

−d 0 0 − �1 0 0

0 [� − (� + d + �1)] 0 0 �
A

d
0

0 0 − (�11 + d) 0 0 0

0 �1 0 − (�1 + d + �11) 0 0

0 � 0 0 − �0 0

0 � 0 0 0 − �

⎤⎥⎥⎥⎥⎥⎥⎦

(36)
g(x) = (�11 + d + x)(�1 + d + �11 + x)

(� + x)(x3 + l1x
2 + l2x + l3) = 0

where k1 , k2 , k3 , k4 , k5 and k6 are positive constants to be 
chosen appropriately.

On differentiating U with respect to t

Now using the linearized system of (7)–(12) and after some 
algebraic manipulations, we get

Choosing, k1 = 1 , and after algebraic manipulation we 
o b t a i n  k2 <

4

15

dq

p2
 ,  k3 < min.(𝜙1,𝜙2,𝜙3,𝜙4)  , 

9

4

𝛼2
1

d(𝛼1+d+𝛽11)
< k4 <

4

15

dqr

p2𝛽1
 , k5 <

4

15

dqs

p2𝜃
 and k6 <

8

75

dq2𝜎

p2𝜇2
.

Here �1 =
1

3

d(a+�11+d)

a2
 , �2 =

4

15

dqr

p2a
 , �3 =

4

75

dq2�2(a+�11+d)

p2�2b2
 , 

�4 =
1

3
k4

(a+�11+d)(�1+d+�11)

a2
 we get dU

dt
 to be negative definite 

for the conditions given in the theorem.

Appendix 2

Proof of Theorem 4.3. To prove this theorem, we consider 
the following positive definite function,

Differentiating W with respect to t, we get

(37)
U = k1

1

2
n2 + k2

1

2
y2 + k3

1

2
x2
m

+ k4
1

2
y2
i
+ k5

1

2
v2 + k6

1

2
m2

(38)

dU

dt
= k1n

dn

dt
+ k2y

dy

dt
+ k3xm

dxm

dt

+ k4yi
dyi

dt
+ k5v

dv

dt
+ k6m

dm

dt

(39)

dU

dt
= − k1dn

2 − k2qy
2 − k3(a + �11 + d)

x2
m
− k4(�1 + d + �11)y

2

i
− k5�0v

2 − k6�m
2

+ k2pny + k3anxm − k1�1nyi − (k2r + k3a)yxm+

(k4�1 − k2r)yyi

+ (k5� + k2s)yv + k6�ym − k3axmyi + k3bxmm

(40)

W =
1

2
p1(N − N∗)2 + p2

(
Y − Y∗ − Y∗ln

Y

Y∗

)

+
1

2
p3(XM − X∗

M
)2

+
1

2
p4(Yi − Y∗

i
)2

+
1

2
p5(V − V∗)2 +

1

2
p6(M −M∗)2
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where pi(i = 1, 2, 3, 4, 5, 6) are positive constants, to be cho-
sen appropriately.

After some algebraic manipulations,dW
dt

 can be written as

The Eq. (42) can be rewritten as,

(41)

dW

dt
= p1(N − N∗)

dN

dt
+ p2

(Y − Y∗)

Y

dY

dt

+ p3(XM − X∗
M
)
dXM

dt

+ p4(Yi − Y∗
i
)
dYi

dt
+ p5(V − V∗)

dV

dt
+ p6(M −M∗)

dM

dt

(42)

dW

dt
= − p1d(N − N∗)2 − p2[

r

Y∗
+ �

(N − Y − XM − Yi)V

Y∗Y

]
(Y − Y∗)2

− p3(a + �11 + d)(XM − X∗
M
)2 − p4(�1 + d + �11)(Yi − Y∗

i
)2

− p5�0(V − V ∗)2 − p6�(M −M∗)2 + p3a(N − N∗)(XM − X∗
M
)

+ p2

[
�(Y + XM + Yi)

NN∗
+ �

V∗

Y∗

]

(N − N∗)(Y − Y∗) − p1�1(N − N∗)(Yi − Y∗
i
)

−

(
p2

r

Y∗
+ p3a

)
(Y − Y∗)(XM − X∗

M
)

+

(
p4�1 − p2

r

Y∗

)
(Y − Y∗)(Yi − Y∗

i
)

+ p6�(Y − Y∗)(M −M∗) + p3
�(N − Y − XM − Yi)

(1 + �M)(1 + �M∗)

(XM − X∗
M
)(M −M∗)

+

[
p2

�(N − Y − XM − Yi)

Y∗
+ p5�

]
(Y − Y∗)(V − V∗)

− p3a(XM − X∗
M
)(Yi − Y∗

i
)

(43)

dW

dt
≤ − p1d(N − N∗)2 − p2

r

Y∗
(Y − Y∗)2 − p3(a + �11 + d)(XM − X∗

M
)2

− p4(�1 + d + �11)(Yi − Y∗
i
)2 − p5�0(V − V ∗)2 − p6�(M −M∗)2

+ p2

�
�

N∗

(�1 + d)

d
+ �

V∗

Y∗

�

(N − N∗)(Y − Y∗) + p3a(N − N∗)(XM − X∗
M
)

− p1�1(N − N∗)(Yi − Y∗
i
) −

�
p2

r

Y∗
+ p3a

�
(Y − Y∗)(XM − X∗

M
)

+

�
p4�1 − p2

r

Y∗

�
(Y − Y∗)(Yi − Y∗

i
) − p3a(XM − X∗

M
)(Yi − Y∗

i
)

+

⎡⎢⎢⎢⎣
p2

�

�
A

d

�

Y∗
+ p5�

⎤⎥⎥⎥⎦
(Y − Y∗)(V − V∗) + p6�(Y − Y∗)(M −M∗)

+ p3

�

�
A

d

�

(1 + �M∗)
(XM − X∗

M
)(M −M∗)

Choosing, p1 = 1 , and after algebraic manipulation we 
obtain p2 <

4

15

dr

Y∗𝜙
 , p3 < min.(𝜙1,

4

15

dr2

aY∗2𝜙
,

4

75

dr2𝜎2(a+𝜆11+d)

Y∗2𝜇2𝜙
𝜈( A

d )
(1+𝛾M∗)

,𝜙4) , 

9

4

𝛼2
1

d(𝛼1+d+𝛽11)
< p4 <

4

15

dr2

Y∗2𝛽1𝜙
 , p5 <

4

15

𝜆Ar

Y∗2𝜃𝜙
 and p6 <

8

75

d𝜎r2

Y∗2𝜇2𝜙
 . 

we get dW
dt

 to be negative definite for the conditions given in 
the theorem. Here p, q, r, s, a, b and � used in the Theorems 
4.2 and 4.3 are defined as follows,

p =
𝛽(Y∗+X∗

M
+Y∗

i
)Y∗

N∗2
+ 𝜆V∗ > 0 , q = r +

𝜆V∗(N∗−X∗
M
−Y∗

i
)

Y∗
> 0,

r =
𝛽Y∗

N∗
+ 𝜆V∗ > 0 , s = 𝜆(N∗ − Y∗ − X∗

M
− Y∗

i
) > 0,

a =
𝜈M∗

1+𝛾M∗
> 0 , b =

𝜈(N∗−Y∗−X∗
M
−Y∗

i
)

(1+𝛾M∗)2
> 0 , 𝜙 =

(𝛼1+d)

d

𝛽

N∗
+

𝜆V∗

Y∗
> 0.
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