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Abstract
Drought is the absence or below-required supply of precipitation, runoff and or moisture for an extended time period. Mod-
elling drought is relevant in assessing drought incidence and pattern. This study aimed to model the spatial variation and 
incidence of the 2018 drought in Brandenburg using GIS and remote sensing. To achieve this, we employed a Multi-Criteria 
Approach (MCA) by using three parameters including Precipitation, Land Surface Temperature and Normalized Difference 
Vegetation Index (NDVI). We acquired the precipitation data from Deutsche Wetterdienst, Land Surface Temperature and 
NDVI from Landsat 8 imageries on the USGS Earth Explorer. The datasets were analyzed using ArcGIS 10.7. The infor-
mation from these three datasets was used as parameters in assessing drought prevalence using the MCA. The MCA was 
used in developing the drought model, ‘PLAN’, which was used to classify the study area into three levels/zones of drought 
prevalence: moderate, high and extreme drought. We went further to quantify the agricultural areas affected by drought in 
the study area by integrating the land use map. Results revealed that 92% of the study area was severely and highly affected 
by drought especially in districts of Oberhavel, Uckermark, Potsdam-Staedte, and Teltow-Flaeming. Finding also revealed 
that 77.54% of the total agricultural land falls within the high drought zones. We advocated for the application of drought 
models (such as ‘PLAN’), that incorporates flexibility (tailoring to study needs) and multi-criteria (robustness) in drought 
assessment. We also suggested that adaptive drought management should be championed using drought prevalence mapping.

Keywords  Drought · Land surface temperature · Brandenburg · NDVI · Agriculture

Introduction

Climate change and the associated increase in temperature 
are causing a variety of extreme weather events such as 
droughts (IPCC 2019; Buras et al. 2020). The Convention 
to Combat Desertification of the United Nations consid-
ered droughts as one of the most far-reaching natural dis-
asters, causing short- and long-term economic and social 
losses for millions of people worldwide. Many countries 
around the world are facing the consequences of drought. 

The agricultural and food production sectors, in particular, 
are struggling with the consequences, such as dry shocks 
and losses in food production. Droughts also have a major 
impact on human health, economic growth, and poverty 
(FAO 2019).

To detect and monitor droughts, indices are used and thus 
provide a useful means of scientifically assessing the extent 
and impact of droughts and making policy recommendations 
(Mishra and Singh 2011; Deutscher Wetterdienst 2021). 
According to the measurements of the German Institute for 
Drought Monitoring (Helmholtz Centre for Environmental 
Research), Germany was affected by a historic drought event 
in 2018. This drought was drier than in all previously avail-
able years since 1951 (Helmholtz Institut 2020). Branden-
burg, a German federal state, is dominated by agricultural 
and large forest areas. It has experienced the most severe 
droughts in April until November 2018, which have caused 
economic damage and led to the payment of 72 million euros 
from public funds to farmers (KIT 2018; Reinermann et al. 
2019; Buras et al. 2020).
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In reference to modelling drought, several approaches 
exist. Approaches can be probabilistic (Cancelliere et al. 
2007; Mishra and Singh 2011), artificial neural-based 
(Mishra and Desai 2006; Morid et al. 2007), hybrid (Kim 
and Valdes 2003; Mishra et al. 2007), author-defined (which 
is usually based on one or more index, for example, Berhail 
et al. 2021). Irrespective of the models applied, the indi-
ces used are usually one or a combination of climatic and 
hydro-meteorological variables (Mishra and Singh 2011). 
Numerous works have been done on drought modelling. For 
instance, Yisehak and Zenebe (2021) modelled drought of 
the Ethiopian Rift Valley Basin using the multivariate stand-
ardized drought index (MSDI). The model was based on 
the drought information derived from the standardized pre-
cipitation index (SPI) and standardized runoff index (SRI). 
Berhail et al. (2021), in their geostatistical assessment of 
drought in Algeria, employed the standardized precipitation 
index (SPI) to assess the spatial and temporal dynamics of 
meteorological drought over 42 years. In a review on drought 
modelling, Mishra and Singh (2011) concluded that drought 
modelling involving multi parameters were more desirable 
and that multi-criteria decision analysis should be applied in 
making an informed decision in modelling drought.

Several allied research has been done in the study area. 
For example, Schindler et al. (2007) evaluated the current 
situation and continuing development of drought risk to agri-
cultural land in Northeast (NE) and Central Germany based 
on soil-hydrological data that revealed the strongest water 
deficit in Brandenburg and Saxony-Anhalt. Holsten et al. 
(2009), based on the trend in soil water moisture in Special 
Areas of Conservation (SACs), investigated past trends and 
future effects of climate change on soil moisture dynamics in 
Brandenburg. Reyer et al. (2012) in their study of adaptation 
measures to climate change in Brandenburg identified sum-
mer drought and its cascading effects (decreasing groundwa-
ter tables, water stress, fire risk, productivity losses) to be the 
most vulnerable climate condition in Brandenburg. Bloch, 
Wechsung and Hess (2015) applied weather data series in 
evaluating the impact of climate change on legume-grass 
swards production in Brandenburg. Their result showed a 
20% reduction in annual yield which was mainly attributed 
to drought impact in the region. From the foregoing, we can 
deduce that these studies have made valuable contributions 
to our understanding of climate change impacts, drought 
risks, and climate change adaptation in Brandenburg. 
However, there remains a need to systematically study the 
incidence and spatial variation of drought in Brandenburg, 
especially as the Helmholtz Institut (2020) has identified 
the 2018 drought to be drier than in all previously available 
years since 1951 in Brandenburg. This would contribute to 
German drought monitoring and adaptive management.

It is, therefore, pertinent to understand the severity and 
effects of this drought in the study area. In the context of the 

described relevance, this paper aims to examine the inci-
dence and spatial variation of the 2018 drought in Branden-
burg using GIS and Remote Sensing. This study has four 
objectives: (a) examine the degree and incidence of drought 
in Brandenburg Federal State, (b) examine the spatial vari-
ation in the incidence of drought among the various dis-
tricts, (c) examine the intensity of drought on agricultural 
lands and food security and (d) suggest possible solutions to 
improve drought monitoring, remediation, and management. 
This paper is structured as follows. The next section reviews 
the methods employed. This is followed by a presentation 
of the results of this paper. After the result presentation is 
the discussion of the resultant implications. The last section 
concludes and provides recommendations.

Material and methods

Study area

Brandenburg Federal State, the study area, is in North-
East Germany (Fig. 1) and it occupies an area of 29,478 
km2 and is majorly an agricultural state, with about 45% 
of its area comprising agricultural land (Amt für Statistik 
Berlin-Brandenburg 2016). Of the total agricultural land, 
77% is dedicated to cropland and 23% permanent grassland 
(Troegel and Schulz 2018). Brandenburg entirely borders 
Germany’s capital city of Berlin (Fig. 1), which is highly 
urbanized. Food demand in the neighbouring state has been 
on the increase, as has the use of cropland for the production 
of renewable energy (Gutzler et al. 2015), which has trig-
gered the considerable rise in maize production for cheaper 
biogas fermentation in Brandenburg (Wolff et al. 2021).

Brandenburg is one of the warmest regions in Germany 
with a mean daily high temperature of 14 degrees centigrade 
(World Data 2021). The climate type in Brandenburg is tem-
perate with warm summers and relatively warm winters. 
According to the German Weather Service—Deutscher Wet-
terdienst (2020), the mean annual temperature in Branden-
burg was 10.9 degrees Celsius, while in winter the air tem-
perature was on average 4.7 °C, and in summer 19.2 °C. It 
has a precipitation of less than 600 mm and thus, one of the 
aridest and vulnerable regions to climate change in Germany 
(Kipping 2020).

Data sources and processing

This project applied a Multi-Criteria Approach (MCA) 
using precipitation, Land Surface Temperature (LST), 
and Normalized Difference Vegetation Index (NDVI) to 
determine the incidence and spatial variation of drought 
in Brandenburg. Finally, Land Use and Land Cover Clas-
sification (LULC) was used to determine the effect of 
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drought on agricultural lands. The MCA has been applied 
and appraised by various scholars (Agboola and Ayanlade 
2016; Malik and Abdalla 2016; Erfurt et al. 2019; Brito 

et al. 2020) for its robustness in decision making. A dia-
grammatic representation of the approach employed is 
visualized in Fig. 2.

Fig. 1   The study area

Fig. 2   Diagrammatical presentation of the methods employed
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The first step in this project was sourcing the various 
drought indices. The precipitation data of all weather sta-
tions (55) across Brandenburg was sourced from the website 
“www.​wette​rkont​or.​de”. The data was imported as points 
into GIS and was used to prepare the precipitation map using 
the IDW interpolation method (Fig. 3). The Normalized Dif-
ference Vegetation Index (NDVI) was derived from cloud-
free Landsat 8 Operational Land Imager (OLI) sourced 
from USGS Earth Explorer. The land surface temperature 
was prepared from Band 10 of Landsat 8 images and pro-
cessed in ArcGIS 10.7 software using the method applied by 
Sobrino et al. (2004). The LULC was also derived from pro-
cessing Landsat 8 Operational Land Imager (OLI) in ArcGIS 
10.7, using the Interactive Supervised Classification method.

The second step in this project involved the reclassifi-
cation of our drought indices into three equal classes each 
(Moderate, High, and Extreme drought). This was done to 
better visualize the spatial variation in the occurrence of 
drought in the study area. The final stage of this project was 
the weighting process in ArcGIS 10.7 software, where differ-
ent weights of influence were assigned to the different indi-
ces to generate the drought prevalence map. In combination 
with the LULC, we were able to determine the agricultural 
areas of Brandenburg that may be exposed and impacted by 
the drought events using the intersect tool in ArcGIS.

The integration of precipitation and remote sensing data 
was used to estimate the Precipitation (P), Land Surface 
Temperature (LA) and Normalized Difference Vegetation 

Index (N). These three parameters were used to develop 
our ‘PLAN’ model. This model was then used to assess the 
prevalence of drought in the study area (see Fig. 2).

To validate this model, we compared our findings with 
existing literature on drought and with the German Drought 
System (Wetterkontor) in the study area.

Development of ‘PLAN’ model

This study employed the Multi-criteria approach (MCA) 
in the context of the analytic hierarchy process (AHP) as 
proposed by Saaty (1980) to determine and assign weights/
influence to the three identified parameters [Precipitation 
(P), Land Surface Temperature (LA) and Normalized Differ-
ence Vegetation Index (N)]. This method helps to organize 
and analyze complex decisions based on the importance of 
each parameter in the study context (Fig. 2). To develop this 
model (used to assess drought prevalence in Brandenburg), 
we employed the following procedure:

(a)	 Identification and selection of factors indicating 
drought intensity in the study area. These factors 
include Precipitation (P), Land Surface Temperature 
(LA) and Normalized Difference Vegetation Index (N),

(b)	 Processing of individual parameters
(c)	 Determination and assigning of weight values to fac-

tors/parameters
(d)	 Reclassification and rating of study parameters

Fig. 3   Precipitation distribution in Brandenburg for 2018

http://www.wetterkontor.de
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(e)	 Estimation of drought prevalence (pattern and 
intensity)—‘PLAN’ model; and

(f)	 Validation of the ‘PLAN’ model in (e) above

Study parameters

A brief overview of the parameters and the processing 
employed is presented below.

Precipitation (P)

To show the spatial variation and amount of precipitation 
in 2018, we retrieved the average annual rainfall data for 
all 55 weather stations in Brandendurg from the website of 
the “Wetterkonto”. The rainfall data and the coordinates of 
the respective weather stations were collected in Excel file 
format. This data was imported into the ArcGIS software for 
further processing and interpolation of the rainfall dataset. 
With the precipitation data and the corresponding coordi-
nates, we were able to generate a map that shows the spatial 
variation of precipitation amounts throughout Brandenburg. 
The rainfall data is an important indicator for the aridity in 
a region of study (Fig. 3). 

Land surface temperature (LA)

The Land Surface Temperature (LST), is the radiative skin 
temperature of the land surface, as measured in the direction 
of the (remote) sensor. The LST is not the temperature of the 
air and, therefore, highly dependent on the surface which is 
being measured. Its estimation highly depends on the albedo, 
the vegetation cover, and the soil moisture of the measured 
object. All these factors highly influence the surface tem-
perature of an object. For example, a rooftop is going to 
have a much different surface temperature than a forest or 
an agricultural area. The LST is often measured with remote 
sensing satellites because it is possible to measure big areas, 
quick and cheap.

We generated the LST from the thermal band of the Land-
sat 8 images, which is band 10. We generated the LST by 
using the USGS method applied by Sobrino et al. (2004) for 
LST creation. Therefore, we followed the following proce-
dure and applied them in the raster calculator in ArcGIS 10.7:

(a)	 Conversion to TOA (Top of Atmospheric) tadiance

(1)L� = MlQcal + Al

where; L� = TOA spectral radiance. Ml = Band-spe-
cific multiplicative rescaling factor from the metadata. 
Qcal = Quantized and calibrated standard product pixel 
values (band 10 image). Al = Band-specific additive 
rescaling factor from the metadata.

(b)	 Conversion to top of atmospheric brightness tempera-
ture

	 T = Top of atmosphere brightness temperature (K).
	 K1 = Band-specific thermal conversion constant from 

the metadata (K1_CONSTANT_BAND).
	 K2 = Band-specific thermal conversion constant from 

the metadata (K2_CONSTANT_BAND).
	 Lλ = TOA spectral radiance.
(c)	 Estimation of LSE (Land Surface Emissivity)

	 
where

	 e = emissivity

(d)	 Estimation of LST (Land Surface Temperature)

where
	 W = wavelength of emitted radiance (11.5 ύm)

The product of this method is a map, showing the spa-
tial variation of the LST in Brandenburg. The LST is a 
good method to highlight seasonal climatic fluctuations. 
Combining the results of the LST with other measures, 
such as the NDVI, gives a great opportunity to understand 
and analyze droughts very well with remote sensing data 
(Karnieli et al. 2003).

(2)T
K2

Ln
(

K1

L�
+ 1

) − 273.15◦ C

(3)e = 0.004PV + 0.986

(4)
PV = proportion of vegetation

=

(

NDVI − NDVImin

NDVImax − NDVImin

)2

(5)LST =
T

1
+ W

(

T

P

)

Ln(e)

(6)P = h
c

s

(7)h = Plancks constant (6.626 × 10−34 JS)

(8)s = Boltzmann constant (1.38 × 10−23 J/K)

(9)c = velocity of light (2.998 × 108 m/s)
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Normalized difference vegetation index (N)

The NDVI (Normalized Difference Vegetation Index) is a 
simple graphical indicator calculated using remote sensing 
data. It is one of the most commonly used vegetation indices 
in environmental studies (Benedetti and Rossini 1993; Mou-
lin et al. 1998; Wolff et al. 2021). The vegetation index uses 
the different reflections of the cell structures of plants, such 
as the mesophyll cells in leaves. Healthy vegetation reflects 
a lot of radiation in the near-infrared range, which includes 
a wavelength of 700–1300 nm. In contrast, little radiation 
is reflected in the red region of the visible spectrum, which 
is a wavelength of 600–700 nm. The greener a plant is, the 
greater the increase in reflectance. Based on these increases, 
various surface materials can be distinguished from one 
another. The NDVI is the difference between reflected Red 
(RED) and Near Infrared radiation (NIR) divided by their 
sum (Rouse et al. 1974) and can therefore be calculated from 
the formula:

The NDVI values range from − to + 1. The negative limit 
value is derived from water, while the positive limit value 
indicates high vegetation. The NDVI cannot take values 
above 1, which can be biased in heavily vegetated areas 
because biomass can increase despite the NDVI limitation 
(Sobrino et al. 2004).

Land use and land cover classification

Land cover maps represent spatial information on different 
types (classes) of physical coverage of the earth’s surface, 
e.g. forests, grasslands, croplands, lakes, wetlands. Land 
cover is the observed (bio)physical cover on the earth’s 
surface. A suitable land cover map should be dynamic to 
capture the changing features on the earth surface (Njoku 
et al. 2018). The LULC map was produced using cloud-free 

(10)NDVI =
NIR − RED

NIR + RED

images of Landsat 8 images from USGS Earth Explorer in 
ArcGIS 10.7. We created a composite image with all the 
bands of Landsat 8 and trained our samples. While training 
our samples, we constantly changed our visualization from 
true to false-colour composite for best classification (see 
Figs. 4a–c). We also ensured we selected a minimum of 50 
training samples for each land-use class (for better output). 
For this study, we used five classes namely: Heavy vegeta-
tion (forests), Light vegetation (agriculture), waterbody, 
urban area, and bare soils using the Interactive Supervised 
Classification method in ArcGIS 10.7 (Fig. 5). 

Reclassification of parameters for further analysis

In this study, each of the parameters was reclassed into three 
classes (moderate, high, and extreme drought) using the 
natural break methods as shown in Table 1. We choose this 
reclassification method for our study as the 2018 drought in 
Brandenburg and Germany at large was drier than any previ-
ously available years since 1952 (Helmholtz Institut 2020; 
Deutscher Wetterdienst 2021).

This rating is user-defined, supported by literature, and 
also depending on their significance of influence on drought 
prevalence (Muthumanickam et  al. 2011; Murthy et  al. 
2015; Olaseeni et al. 2021). The ranks were further grouped 
into a rating index of extreme, high, and moderate drought 
(Table 1).

Weighting process

Weight values represent the priorities assigned to the study 
indices which are absolute numbers between zero and 100%. 
This means that the sum of weights assigned to all param-
eters should be 100%. Table 1 gives an overview of the 
drought parameters and how they were rated according to 
their influence on drought events in the study area.

The weight apportioned for each criterion/index is 
often based on expert knowledge of the importance of 

Fig. 4   a False colour composite. b True/natural colour composite. c Water composite
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each parameter and sometimes based on analytical proce-
dures and literature. Bhuiyan et al (2006) work on drought 
assigned equal importance to NDVI, LST, and rainfall. 
The work of Njoku (2018) on flood susceptibility, assigned 
the highest weighting to proximity to the river followed 
by elevation and slope. For this study, LST and Rainfall 
were assigned a weight of 40% each while the NDVI was 
assigned a weight of 20%. The NDVI was assigned the 
lowest weight because it might not truly reveal the arid 

condition of the study area. This is because Brandenburg, 
an agricultural area, is mainly mechanized and irrigated.

To generate the drought prevalence map of the study 
area, each factor was weighted according to their estimated 
significance specified in Table 1. The weighted overlay 
analysis tool on ArcGIS 10.7 was used to integrate the 
rates and weights and to generate a drought prevalence 
map of Brandenburg. The drought prevalence map was 

Fig. 5   LULC of Brandenburg

Table 1   Multi-criteria analysis 
parameters

Source: authors analysis

Parameter/index Classes Reclass Rating index Weighting (%)

Land surface temp  − 0.60–14.7 3 Moderate drought 40%
14.8–30.2 2 High drought
30.3–45.6 1 Extreme drought

Rainfall 287.8–343.7 1 Extreme drought 40%
343.8–399.6 2 High drought
399.7–455.5 3 Moderate drought

NDVI  − 1.021–0.289 1 Extreme drought 20%
0.290–0.442 2 High drought
0.443–0.674 3 Moderate drought

Total weighting 100%
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classified into 3 zones: extreme, High, and moderate 
drought, respectively.

Results

Precipitation (P)

From the precipitation map (Fig. 3), it is evident that the 
lowest annual precipitation was recorded by Potsdam, Mit-
telmark, and Teltow-Flaming districts while Oberspreewald-
Lausitz, Cottbus-Staedte received the highest precipitation 
for the year 2018. It is important for us to understand the 
spatial variations of precipitation distribution among the 
districts of Brandenburg with a rainfall amount between 
288 and 455 mm in 2018. In comparison to the annual pre-
cipitation of 2016 (Deutscher Wetterdienst 2020), the values 
range from 373 to 633 mm which points to a precipitation 
decrease in 2018.

Land surface temperature (LA)

The LST map in Fig. 6 shows that the lowest temperature 
was recorded in Barnim, Prignitz districts while the high-
est temperatures were recorded in the Southern parts of 
Brandenburg including Elbe-Elster, Cottbus Staedte. What 
this means, according to Ibrahim et al. (2016), is that the 
heating effect would be more obvious in these areas and 
therefore, requires several adaptive measures to mitigate the 
adverse impacts of temperature extremes.

NDVI (N)

As can be seen from Fig. 7, the NDVI value for Brandenburg 
ranges from − 1.02 to 0.67. A mere glance at the map shows 
that the majority of the study area falls within the NDVI 
threshold of 0.5 and 0.67 as the study area is mainly agrar-
ian. The predominance of agricultural land use in Figs. 5 
and 8 is an empirical confirmation of the result of the NDVI 
map.

Land use and land cover classification

For this paper, we classified the land use of the study area 
into five classes namely: heavy vegetation (forests), light 
vegetation (agriculture), waterbody, urban area and bare 
soils using various colour composite (Fig. 4a–c) and the 
Interactive Supervised Classification method. Table 1 shows 
a summary of the classification result according to the area 
and percentage covered by each class.

The LULC map in Fig. 5 shows that Brandenburg is pre-
dominantly an agricultural area with 73% of its total area 
covering heavy and light vegetation. This is an empirical 
confirmation of our NDVI analysis in Fig. 7.

Drought prevalence in Brandenburg (‘PLAN’ model)

For this paper (creating a drought prevalence map of 
Brandenburg, using the ‘PLAN’ model), we reclassified 
the study parameters [Precipitation (P), Land Surface 
Temperature (LA) and Normalized Difference Vegeta-
tion Index (N)] using the reclass tool in ArcGIS 10.7. We 

Fig. 6   Land surface temperature 
of Brandenburg in 2018
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reclassified them into three equal classes each and ranked 
them accordingly: Extreme drought, High rought, and 
Moderate drought (Table 2). The results of the reclassifi-
cation are shown in Figs. 9, 10, and 11.

Following the procedures of the ‘PLAN’ model, the 
drought prevalence map was generated in ArcGIS 10.7. 
Figure 12 visualizes the spatial variation in the prevalence 
of 2018 drought amongst the Brandenburg districts while 

Fig. 7   NDVI map of Brandenburg for 2018

Fig. 8   Reclassified LULC
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Table 3 shows the drought prevalence in terms of the land 
area covered. A glance at Fig. 12 shows that drought was 
generally experienced by all districts in the study area.

Following from the result in Fig.  12, the classes of 
drought identified at the district level are presented in 
Table 4.

Drought and agriculture

For a more focused policy recommendation, the extent of 
agricultural lands (including forests) impacted by the 2018 
drought in the region (as the region is predominantly agrar-
ian) was examined. For this, the LULC map was reclassed 
into two classes: agricultural and non-agricultural land use. 
The heavy and light vegetation were grouped into agricul-
tural land use while the water body, urban and bare soils 
were grouped into the non-agricultural land use. The reclas-
sified LULC map is shown in Fig. 8. Figure 8 shows that 
73% of the study area is either an agricultural or forested 

area while Fig. 13 shows the agricultural lands that fall 
within the high drought zone. This is relevant because haz-
ards events (drought, in this context) translates to risk when 
an exposed element (agricultural lands, in this context) is 
affected (IPCC 2019).

Table 5 shows the grouping of the study area into agricul-
tural and non-agricultural land use which re-emphasizes the 
claims of Troegel and Schulz (2018), while Table 6 summa-
rizes the relationship between agricultural lands and drought 
in 2018 and this shows that 77% of the total agricultural land 
were impacted by high drought. This is thus a severe threat 
to food security and the sustainability of agriculture, the 
major economic activity in Brandenburg.

Discussion

The results of this paper all agree with the severity of the 
2018 drought in the study area. While the precipitation (P) 
analysis suggests that drought was most severe in Oberspree-
wald-Lausitz and Cottbus-Staedte districts, the Land Surface 
Temperature (LA) suggests that drought was most severe 
in Elbe-Elster and Cottbus Staedte districts. However, the 
Normalized Difference Vegetation Index (N), suggests that 
the occurrence of the drought was evenly distributed in the 
study area. To make a more informed decision in drought 
assessment, a multi-criteria approach that incorporates rel-
evant parameters must be adopted. Hence, the validity of the 
‘PLAN’ model. The drought prevalence map went further 
to show that a high proportion of the study area was highly 
affected by drought. Figure 12 and Table 3 further revealed 

Table 2   Summary of LULC analysis

Source: authors analysis

Land Class Area (SqKm) Percentage (%)

Heavy vegetation 11,659.09 39.55
Light vegetation 9,949.28 33.75
Water body 642.72 2.18
Bare land 2,112.05 7.16
Urban areas 5,114.85 17.35
Total 29,478 100

Fig. 9   Reclassified precipitation



2045Modeling Earth Systems and Environment (2022) 8:2035–2049	

1 3

that 91% of the region (of which agriculture accounts for 
73%) were highly impacted by drought. Figures 4 and 13 
reveal that 77.54% of the total agricultural areas were highly 
impacted by drought. This is threatening to food security in 
the region and Germany at large as Brandenburg is predomi-
nantly agrarian. Our results agree with that of Reinermann 
et al. 2019; Buras et al. 2020; Deutscher Wetterdienst 2020; 

Deutscher Wetterdienst 2021. These findings also agree with 
Erfurt et al. (2019) who went further to highlight the adverse 
effects of the 2018 drought on agriculture in the region. They 
attributed crop failure, earliness of harvests, early slaughter-
ing, rapid sale of produce, loss of earnings in agriculture, 
and damage to silviculture to the 2018 drought in the region. 
Brito et al. (2020) also affirmed that the agricultural sector 

Fig. 10   Reclassified NDVI

Fig. 11   Reclassified LST
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witnessed the greatest economic loss in Germany as a result 
of the 2018 drought. These findings complement our results 
from the ‘PLAN’ model.

The implication is quite obvious: drought models that 
incorporate multi-criteria and flexibility (such as ‘PLAN’ 
model) should be employed in drought assessment against 
the use of a single and rigid parameter. The flexibility is rel-
evant to tailor studies to suit local peculiarities as was also 
championed by Mishra and Singh (2011). Also, more atten-
tion needs to be given to the agricultural sector in regards to 
early warning, adaptive planning, and management, relief 
funds allocation. Drought management strategies especially 
relief funds disbursement should be done following the 
drought risk and impact profile in the study area and within 
Germany. This is because agricultural areas within places 
highly affected by droughts suffer more losses than urban 
areas within the same region. Furthermore, agricultural 
areas, such as Brandenburg, serves provisioning functions 
in terms of food supplies within and beyond Germany. We 
also argued for the inclusion of adaptive drought manage-
ment in the disaster risk management plans of the region.

This study is limited in scope as it does not cover some 
key aspects of droughts (such as socio-economy) in the 
region. Hence, we propose future research to investigate the 
socio-economic impacts of the 2018 droughts on Branden-
burg farmers. Research should be done to examine the 

Fig. 12   Drought prevalence in Brandenburg in 2018

Table 3   Drought Prevalence in Brandenburg in 2018

Source: authors analysis

Drought prevalence Area (SqKm) Percentage

Extreme drought 0.19 1
High drought 27,093.05 91
Moderate drought 2384.96 8
Total 29,478 100

Table 4   Summary of drought classes identified at the district level

Source: authors analysis

Degree of drought Districts

High drought Teltow-Fläming, Märkisch-Oderland, Ober-
havel, Dahme-Spreewald, Potsdam Städte, 
Havelland, Cottbus Städte, Frankfurt am 
Oder Städte

High drought with a 
little proportion of 
moderate drought

Uckermark, Ostprignitz-Ruppin, Barnim, 
Märkisch-Oderland, Prignitz, Brandenburg 
an der Havel, Potsdam- Mittekmark, Elbe-
Elster, Spree-Neiße,

Moderate drought 
with a little 
proportion of high 
drought

Oberspreewald-Lausitz
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effectiveness of the drought relief funds (by the German 
government in 2018) in cushioning the effects of the 2018 
drought. Importantly, research should be done to answer 
the questions: "Have droughts been effectively managed in 
Brandenburg lately? How? How can we adapt to droughts in 
Brandenburg under fluctuating climatic conditions?”.

Conclusion

Droughts are characterized by complex interrelationships 
and therefore, like nature, can only be treated in a model-
ling fashion. This study has been able to model the inci-
dence of the 2018 drought in Brandenburg (using ‘PLAN’ 

model) and has identified districts with high drought risk. 
This is very relevant to be able to better inform agricul-
ture and thus society and ecosystems in the future and 
to constantly drive forward adaptation to climate change. 
The presented results are encouraged to be applied in 
policymaking and law formulation to be able to support 
the affected people and districts. Based on our findings, 
we strongly recommend that ‘PLAN’ model is adopted in 
future drought studies while integrating a multi-criteria 
approach and flexibility based on study context. We also 
suggest that adaptive drought management is included 
in the disaster management plans: this is important as 
the climate is constantly changing and this would help 
to enable flexibility to capture future uncertainties in cli-
mate conditions (Werners et al. 2021). A proactive early 
warning system should be enforced and encouraged. This 
would ensure people get prepared and take preventing 
measures before drought strikes. Drought relief funds 
should be disbursed with the use of weather and drought 
impact maps for a better representation of those (farmers) 
severely affected by drought (as highlighted in the rela-
tionship between drought and agricultural land use in our 
analysis). It is very important that drought research in the 
study area is demand-based and continuously funded by 
the government. This would help the public stay informed 
before and after drought events. In the face of the current 
climate projections, buildings, agriculture and infrastruc-
tures should be designed/planned in a way that is drought 
resistant. This would help reduce losses from drought. 
Effective and adaptive implementation of these measures 
would go a long way in preventing and managing future 
drought events in the study area.

Fig. 13   Agricultural area highly 
affected by high drought

Table 5   Indicating the grouping by agricultural and non-agricultural 
land use and their respective area cover in Sq Km

Source: authors analysis

Reclassified LULC Area (Sq Km) Percentage (%)

Agricultural area (vegetation) 21.60837 73
Non-agricultural area 7869.63 27
Total 29,478 100

Table 6   Agriculture and high drought in Brandenburg

Source: authors analysis

Total agricultural lands (Sq Km) 21,608.37

Agricultural lands impacted by high drought (SqKm) 16,756.06
Percentage of Agric areas impacted by high drought 77.54%
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