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Abstract Lack of fresh water has been a major obstacle to

development and flourishing in human history. Desalina-

tion provides a new vision toward fresh water production in

the upcoming future. The study has proposed a simple

mathematical equation and ANN models to simulate eight

types of sea water RO membranes. The Artificial Neural

Network (ANN) models have been developed to simulate

TDS corresponding to the temperature (T, �C), flow rate

(gpm) and recovery percentage. The feed data was gener-

ated by ROSA software. The model developed using a

simple rational mathematical method. ANN models were

trained using feed-forward back propagation algorithm

with two hidden layers and various numbers of neurons in

each layer. The model verification analysis proved both

mathematical and ANN models to be highly accurate,

reliable and practical for analyzing, designing, operating

and optimizing of RO systems. The correlation coefficients

(R) of 0.96 and 0.97, respectively, confirmed that the

equation and ANN models resulted in this study are in

good agreement with the measured data.

Keywords Artificial neural network � Desalination �
Modeling � Osmosis membranes � ROSA

Introduction

Fresh water is one of the most essential and vital necessi-

ties of human and other living creatures. However, less

than one percent of available water is fresh, while 97% is in

the oceans and 2% is in ice form (Clayton 2011). Models

can act as a considerable amount of illustration for sim-

plifying the complicated hydrogeological occurrences in

water resources assessment strategy (Ehteshami et al. 1991;

Salami Shahid and Ehteshami 2015, 2016; Ebrahimi et al.

2015; Ehteshami and Biglarijoo 2014). A possible solution

to the shortage of fresh water is desalination of seawater or

brackish water which is freely available nearby coastal

lands (Zirakrad et al. 2013). Desalination processes pro-

duce a stream of freshwater, and a separate, saltier stream

of water that requires disposal (Carter 2015; Crittenden

et al. 2005; Zirakrad et al. 2013). Greenlee et al. (2009)

studied system performance variation and impacts of using

brackish or sea water for desalination by RO systems.

There are several different methods for desalination

such as thermal and membrane methods. Thermal methods

separate water by evaporation and condensation whereas

membrane processes use semi-permeable membranes for
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the separation (Venkatesan 2014). Application of reverse

osmosis membranes is the most viable method for desali-

nation today. Furthermore, using RO membrane for

wastewater treatment is swiftly expanding (Garud et al.

2011). Low cost, energy efficiency and versatility of the

process, in comparison with other technologies are some of

its advantages (Abraham 2005; Nakayama and Sano 2013;

Stover 2013). RO systems also provide an adequate capa-

bility of strong separation (Pangarkar et al. 2011). Its

concept is known and studied from 1748 by many scien-

tists, however, as a feasible separation process, it is a rel-

atively young technology (Williams 2003). In addition to

desalination of sea and brackish water, RO systems also

remove dissolved solids, organic, pyrogens, submicron

colloidal matter, color, nitrate and bacteria from water/

wastewater (Garud et al. 2011). System structure details of

RO are briefly explained by many researchers such as

(Crittenden et al. 2005; Hiroki 2010; Williams 2003). The

RO systems efficiency, described as E in Eq. 1, depends on

three main types of factors such as: design details of the

plant and operation conditions, quantity and quality char-

acteristics of influent So and outflow Se, and type of the

membranes used in the RO system (Crittenden et al. 2005;

Hiroki 2010; Williams 2003).

Eð%Þ ¼ 1� Se

S0

ð1Þ

This study focuses on the performance of eight different

types of SWRO membranes with one pass and one stage in

each pass. As it is shown in Fig. 1, no feed/back pressure is

applied added before and after SWRO element.

Reverse Osmosis System Analysis (ROSA) software

was used to produce data required for the study. ROSA

software has been developed by Dow Chemical Company

(ROSA 2010). Many researchers have used the software for

modeling or comparing their models predictions with

ROSA’s simulation results (Afrasiabi et al. 2009; Chen and

Li 2005; Gedam et al. 2012). A correlation of 85% was

obtained, comparing the developed model and ROSA

software results (Jafar and Zilouchian 2002). Jiang et al.

(2014) used several mathematical methods to find the

relations between temperature and feed pressure and per-

formance of a SWRO plant. They focused on and paid

special attention to details of working parameters and dif-

ferential changes in operational variables. Patroklou (2013)

tried to model the effect of pH, temperature and pressure

on boron concentrations at the end of RO processes, using

RE4040-SR membrane, through a mathematical relation

based on a solution of a diffusion model. Arulchinnappan,

presented a multivariate fuzzy regression model to simulate

RO process conditions (Arulchinnappan and Rajendran

2011). Artificial neural network (ANN) presented by (Li-

botean et al. 2009; Abbasi Maedeh et al. 2013) used

numerous daily performance data as inputs to simulate

permeate flux and salt passage. A two-dimensional (2-d)

mathematical model (computational fluid dynamics and

biofilm models) was used by Radu et al. (2010) to describe

the negative effects of biofilm growth on the performance

of a spiral-wound reverse osmosis which indicates the

importance of RO system performance monitoring.

Almost all researchers in this field have faced the per-

formance analyses such as the study done by Harrak et al.

(2013). They suggested removing chlorination and sodium

bisulfite addition steps from the pretreatment to reach an

acceptable performance. Kumar and Saravanan (2011) and

Gedam et al. (2012) compared the recovery rate, TDS

reduction, energy consumption and investment cost of a

ROSA type membrane, with a KOCH type membrane for

treatment of effluent from knitted fabric dyeing and

showed that the KOCH membranes work better. Stover,

(2013) tried to show how better performances are acces-

sible in a closed circuit or semi-batch RO techniques. Al-

Mutaz (2003) and Abraham (2005) showed that coupled

systems consist of RO and multi-stage flash (MSF) have

the best wastewater desalination performance.

The main goal of this study is to represent mathematical

equations and also artificial neural network (ANN) models

for estimating effluent total suspended solids (TDS), fresh

flow concentration, (Se), of a treated saline water with

influent concentration of (S0), temperature (T), recovery

percentage (Re) and influent flow (q). The developed

models and equations are calibrated for 8 different types of

sea water RO membranes (SWRO). Both methods of

modeling (ANN and mathematical equation) have accurate

and reliable results, while each method has its advantage

that can be very useful for the application of SWRO

systems.Fig. 1 Design of one stage one pass desalination system used in the

study
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Strategy and procedure

RO desalination procedure, SWRO membranes

Table 1 shows eight types of SWRO membranes that are

used in this study and also the boundary conditions for each

RO element. Maximum recovery percentage (Re) is limited

to 15% and temperature is up to 46 �C for each element.

Other researchers have tried to model the RO perfor-

mance systems, like Altaee (2012) who presented a

mathematical model for two types of SW30HRLE-440i

and SW30HR-380 in TDS ranges of 32,000, 35,000,

38,000, and 43,000 mgL-1.

Efficiency (E) is the best parameter to indicate the

system performance. The main goal of present study is to

find a simple mathematical model/equation and ANN

models for predicting Se by knowledge of S0, T, Re, and q.

The highlight of this study is to present an equation and/or

model(s) for 8 types of SWRO membranes, while the most

of preceding research works include only one or two RO

membrane types. The main parameters that affect the

efficiency of RO systems are the properties of influent

water, including: T, q, TDS and operational conditions

such as the pressure, which has a major impact on RO

performance (Gedam et al. 2012; Harrak et al. 2013).

Figure 2 shows pH has a negligible effect on Se. The

results of pH analysis are not in agreement with the study

done by (Gedam et al. 2012). They have concluded pH has

a large impact on Se, ignoring the fact that the other

parameters (such as T or S0) need to be fixed during the pH

analysis. As Fig. 2 shows when the other parameters are

kept at a constant level, the impact of changing pH on Se is

practically negligible. The pH performances of the other 6

membranes are exactly similar to Fig. 2. The main effec-

tive parameters that can change the efficiency (E) are: T, q,

Re and the type of membrane used. Table 2 shows the

variation of the parameters in this study.

Data preparations

For each membrane type the first step is to adjust the feed

water data, extracted from water library of ROSA under the

name of ‘‘california.wat’’, which is shown in Table 3.

Water temperature is 17 �C and SDI (silt density index),

assumed to be under 5 (SDI \5) and (except for pH) the

units of all parameters in Table 3 are in mgL-1.

After processing feed water data in ROSA software, the

other input parameters are: feed water flow (q), set at

(approximately) half of maximum possible value of q (see

Table 1) and Re as 15%. Then recovery percentage (Re)

are changed by 1% at each time step from 1 to 15%

Table 1 SWRO membranes used and their limitations

Used membranes Max qe (gpm) Min q (gpm) Max q (gpm)

SW30-2540 0.35 1 6

SW30HRLE-4040 1.06 3 16

SW30-4040 0.99 3 16

SW30-3031 0.53 3 9

SW30HR-380 4.75 15 64

SW30HRLE-440i 5.5 15 70.4

SW30 HRLE -400i 5 15 64

SW30 HRLE -1725 21.56 64.5 275.2

Fig. 2 Se variations caused by changes in pH. a Membrane type is SW30-2540, T = 20 �C, q = 1.3 gpm, Re = 15%, S0 = 32,000.

b Membrane type is SW30hrle-1725, T = 25 �C, q = 120 gpm, Re = 10%, S0 = 32,000

Table 2 The range and amount

of changes and parameter limits
Parameter Range of parameter Amount of change in each step

T�C 5–46 1@5–20, 2@20–46

TDS (S0; mgL-1) 10,000–45,000 1000

Re (%) 1–15 1

q (gpm) In possible rangea Depended on type

a See Table 1
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(Fig. 3 zone A) for covering all possible ranges of q-Re

combinations, or ‘‘q’’ and ‘‘Re’’ variations, and individ-

ually (Fig. 3 zone B), which should not reach more values

than the ones shown in Table 1 such as qe denoted as

Eq. 2.

permeat:flow ¼ effeluent:flow ¼ qe ¼ Re� q ð2Þ

It is noticeable that the different shapes which are seen in

zone(s) B of Fig. 3 are caused by different or irregular/

random q-Re values assigned for each membrane. For

covering the range of temperature, parameters reset on the

default mode and only T can change in each time step from

5 to 46 �C (Fig. 3 zone C).Then the properties will return

to default mode again. The variation of TDS is form 10,000

to 45,000 (mgL-1). The concentrations of Na and Cl

somehow are adjusted by relation between Na/Cl (in

Table 3), so that the values are constant. To satisfy more

practical conditions, temperature will change with TDS,

while it can be calculated by Eq. 3. (Figure 3 zone D)

T ¼
15 �C TDS ¼ 10000þ 3k � 1000

20 �C TDS ¼ 10000þ ð3k þ 1Þ � 1000

25 �C TDS ¼ 10000þ ð3k þ 2Þ � 1000

8
<

:
ð3Þ

k is a natural number from 0 to 11. In each ‘‘step’’ input

data such as S0, q, Re, T and Se are recorded in an EXCEL

file. Figures 3, 4 show all the output data for 8 types of

membranes. Table 4 shows the range of variation of the

parameters that have been used for modeling and testing

procedures.

Figures 3, 4 show all membranes have the same para-

metric variation or behavior corresponding to the variation

of input parameters. Therefore, to show the relation

between Se and other parameters we will focus on one of

the membranes. And after developing the simulation

equations, we can proceed with the calibration of other

membranes.

Table 3 Default sea water properties (mg/l) that are used in this

study

NH4 ? ? NH3 0.39 Ba 5 SO4 1.5

K 262 CO3 3.89 SiO2 1

Na 6700 HCO3 101 Boron 2.14

Mg 755 NO3 0.5 CO2 0.91

Ca 210 Cl 11,000 TDS 19,055.84

Sr 2.6 F 0.7 pH 7.9

Fig. 3 The values of Se in different conditions for 4 SWRO membranes (2540, hrle4040, 4040, 3031 models)
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Fig. 4 The values of Se in different conditions for 4 SWRO membranes (hr380, hrle4040, hrle40i, hrle1725 models)

Table 4 The variation of

parameters in each zone of

Fig. 5

RO membrane Parameter A B C D

SW30-2540 q (gal/m) 1 1–6 2.3 2.3

Re %a 1–15 1–15 15 15

Temp (�C)a 17 17 5–45 15–25

S0 (mg/L)a 19,057 19,057 19,057 10,000–42,000

The zone data number 15 32 29 35

SW30hrle-4040 q (gal/m) 7 5–16 7 7

The zone data number 15 18 29 35

SW30-4040 q (gal/m) 6 6–15 6.6 6.6

The zone data number 15 27 29 35

SW30-3031 q (gal/m) 3.5 3–9 3.2 3.2

The zone data number 15 19 27 35

SW30hr-380 q (gal/m) 30 15–64 30 30

The zone data number 15 39 29 35

SW30hrle-440i q (gal/m) 35 15–70 35 35

The zone data number 15 46 29 35

SW30hrle-400i q (gal/m) 32 15–64 33 33

The zone data number 15 40 29 35

SW30hrle-1725 q (gal/m) 140 71.5–261.5 140 140

The zone data number 15 51 29 35

a Variation of these parameters is similar for all 8 membranes
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Mathematical modeling

In this study, the least squares method is used to solve the

over constrained linear system to obtain the coefficients of

the fitting polynomial (Venkatesan 2014). This method is

based on linear algebra. Let y be the nth degree polynomial

of x:

yi ¼ f ðxi; nÞ ¼
Xn

j¼0

aj � xni ð4Þ

where aj(s) is coefficient of polynomial, Eq. 4 can be also

expressed in form of a matrix:

a0 a1 � � � an½ �:
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Anþ1
x0

1 ¼ 1 1 � � � 1

x1
1 x2

2 � � � x2
i

..

. ..
.
� � � ..

.

xn1 xn2 � � � xni

2

6
6
6
4

3

7
7
7
5

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Xnþ1;i

¼ y1 y2 � � � yi½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Yi

ð5Þ

or

Anþ1:Xnþ1;i ¼ Yi or A:X ¼ Y ð6Þ

For every matrix X 2 Rn9m, a unique matrix X? 2 Rm9n,

which is called generalized (right) inverse exists satisfying

(Karampetakis 1997):

X:Xþ ¼ In ð7Þ

In: Identity matrix of size n. By multiplyingX? on (right

hand of) both sides of Eq. 7 we have:

A:X:Xþ ¼ A:I ¼ A ¼ Y:Xþ ð8Þ

And by this method ‘A’ which is a polynomial coefficients

matrix, can be calculated. The analyses of the present study

are performed using MATLAB software. The derived

equation can be in the form of Eq. 4:

Se ¼ k:
S0:a

ðq:ReÞh
ð9Þ

where k is a constant that depends on the type of the

membrane; a, an ‘‘n’’ degree polynomial of T (Eq. 5); and

h, parameter that let us to calibrate the effect of (q.Re) for

each membrane.

aðTÞ ¼ a0 þ a1:T þ a2T
2 þ � � � þ an�1:T

n�1 þ an:T ð10Þ

To evaluate k and h for each membrane Eq. 6 is used, just

when the temperature is equal to 17 �C (A, B zones in

Fig. 3). In other words, we assume that a (17) = 1. In order

to optimize the value ofh, it can change from 0.50 to 2.00

by 0.01 steps to find out for what value of hi (s), ki (s) has

the relative minimum average absolute difference

(RMAAD) with average ki (Eq. 11–14).

ki ¼
ðq:ReÞhi

S0

ð11Þ

hi ¼ 0:50þ i� 0:01 ð12Þ

average:ki ¼ ki ¼
Pt

j¼1 ki;n

t
ð13Þ

RMADDi ¼
Pt

j¼1 ki � ki;n
�
�

�
�

t:ki
ð14Þ

where i: A natural number between 1 and 150; t: Number

of existed steps in A and B zones in Figs. 3, 4; and ki,n: ki
for step number ‘‘n’’, n varies between 1 and t. The best fit

achieved and values of proper ‘‘i’’ and k for each mem-

brane are shown in Table 4. Recognizing k and h for each

membrane and using data in zones C and D, the polynomial

which best fits the T and a(T) is derived as Eq. 15, by

MATLAB software. According to the calculations a will be

in the form of Eq. 16:

aðTÞ ¼ Se;T :ðq:ReÞh

k:S0

ð15Þ

Se, T is the Se in temperature of T (�C); zones C and D of

Figs. 3, 4.

a ¼ a0 þ a1:T þ a2:T
2 ð16Þ

Fig. 5 A two layer feed-

forward network
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Values of a0, a1 and a2 for each membrane are shown in

Table 5. The Se for each membrane is calculated by

Eq. 16. Verification of Eq. 17 is shown in Table 8.

Se ¼
k:S0

ðq:ReÞ0:5þi�0:01
:ða0 þ a1:T þ a2:T

2Þ: ð17Þ

Neural network modeling

Artificial neural network (ANN) modeling is relatively a

new method that is based on human’s brain function of

learning algorithms (Yi-Ming et al. 2004). Its priority is

flexibility and capability of learning complex nonlin-

ear/linear relations. MLF (multilayer feed-forward) net-

works trained with back-propagation algorithm are the

most popular types of networks (Kabsch-korbutowicz and

Kutylowska 2008; Salgado-Reyna et al. 2013; Svozil et al.

1997). We used MLF networks to make ANN models. The

details of ANN structures and algorithms are briefly dis-

cussed by Ehteshami et al. (2016), Abraham (2005),

Menhaj (2008), Salgado-Reyna et al. (2013). Basic archi-

tecture consists of three types of neuron layers such as

input, hidden, and output layers. Figure 5 shows a two

layer network. The signals flow from input to output units

through feed-forward ANN networks, strictly in a form of

feed-forward direction (Abraham 2005; Yang et al. 2009).

The hidden layers consist of different number of neurons.

In Fig. 5 parameters such as ‘‘a’’ is the output of neuron

and ‘‘p’’ is the input. Parameters ‘‘w’’ and ‘‘p’’ are weight

and bias, respectively, and all parameters denoted as

matrices, and can be expressed as:

a ¼ f ðnetÞ ¼ f ðnÞ ¼ f ðwT :pþ bÞ ¼ f
XR

i¼1

wT
R:pR þ b

 !

ð18Þ
p ¼ p1; p2; . . .; pR½ �;w ¼ w1;w2; . . .;wR½ � ð19Þ

Figure 6 shows the most common ‘‘f’’ function. It transfers

output of each layer to a simpler/more useful expression for

calibrating the wi and bi (s) in next layer/step.

In order to train the function correctly, we must continue

and repeat the process of calibrating and optimizing wi,

bi(s). The optimum of wi, bi(s) will result in minimizing

the mean square of error (MSE) value. This process will

continue until we reach the required precision. In the fol-

lowing procedure, weights and biases will change every

time that the process is repeated. The calibration process

for wi, bi(s) is as (Alnaizy et al. 2013; Menhaj 2008; Sal-

gado-Reyna et al. 2013):

w
ðlþ1Þ
i;j ¼ w

ðlÞ
i;j �a

oeðw; bÞ
ow
ðlÞ
i;j

ð20Þ

b
ðlþ1Þ
i;j ¼ b

ðlÞ
i;j �a

oeðw; bÞ
o b
ðlÞ
i;j

ð21Þ

oeðw; bÞ
ow
ðlÞ
i;j

¼ 1

m

Xm

i¼1

o

ow
ðlÞ
i:j

eðw; b; xðiÞ; yðiÞÞ
" #

þ awðlÞi;j ð22Þ

oeðw; bÞ
o b
ðlÞ
i;j

¼ 1

m

Xm

i¼1

o

o b
ðlÞ
i:j

eðw; b; xðiÞ; yðiÞÞ
" #

þ a b
ðlÞ
i;j ð23Þ

where a is the learning rate. Figure 5 shows that outputs of

previous layers will be the inputs of the neurons in the next

layer and the result(s) of the output layer will be compared

to the target values. In this study mean square of error

(MSE) is the criterion for comparing the outputs.

mse ¼ 1

m

Xm

i¼1

e2 ¼ 1

m

X

i¼1

ðt � aiÞ2 ð24Þ

Table 5 Values of k, i, a0, a1, a2 for each membrane

k i a0 a1 a2

SW30-2540 0.002,218 39 0.527 -0.002 0.0018

SW30hrle-4040 0.001481 39 0.5957 -0.0096 0.0021

SW30-4040 0.002769 38 0.6077 -0.0086 0.0021

SW30-3031 0.002068 38 0.586 -0.0088 0.0021

SW30hr-380 0.007223 40 0.5971 -0.0095 0.0021

SW30hrle-440i 0.006498 40 0.5964 -0.0096 0.0021

SW30hrle-400i 0.005956 39 0.589 -0.0095 0.0021

SW30hrle-1725 0.022264 40 0.5955 -0.0096 0.0021

Fig. 6 Transfer functions
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where ti is target (real) value data and ai is the network

output.

Two feed-forward with back propagation learning rule

(Eqs. 20–23) are used to develop the models in MATLAB

environment. Design parameters of the networks have been

represented in Tables 6, 7.

Data and models

Input data are parameters such as T, Re, q and target(out-

put) data will be Se/S0. Table 7 shows the model properties

for each membrane. To obtain a better precision, values

shown in Figs. 3, 4 were multiplied by 10, with simple

interpolation of existing data (Figs. 3, 4). Table 7 shows

number of hidden layers and number of neurons in each

layer.

Results and discussion

Table 8 shows the precision of equation (Eq. 17) for each

membrane. Both (NN models) and Eq. 17 are verified by

the initial input data (Fig. 3). The resulted or simulated Se,

are compared to Se values of (Figs. 3, 4). For a better

understanding of both MAE and R, values are shown in

Table 8.

MAE ¼
Pt

i¼1 Se � Se
�
�

�
�

t
ð25Þ

R ¼ 100�

Pt
i¼1 1� Se�Sej j

Se

� �

t
ð26Þ

Error ¼ 1�Model result

Real data

� �

� 100 ð27Þ

Table 6 Training parameters
a0 0.001 Network type Feed-forward back-propagation

a decrees 0.1 Training function Trainlm (Levenberg–Marquardt)

a increase 10 Adapting learning function Train GDM

Maximum a 1E?10 Performance function MSE

Min grad 1.00E–10 Transfer function Tansign (x)

Table 7 Details of layers and

neurons for each membrane
RO membrane Number of hidden layers Neurons in first layer Neurons in second layer

SW30-2540 2 4 10

SW30hrle-4040 2 4 10

SW30-4040 2 5 8

SW30-3031 2 5 10

SW30hr-380 2 5 8

SW30hrle-440i 2 6 13

SW30hrle-400i 2 5 10

SW30hrle-1725 2 4 10

Table 8 Comparing models and Eq. 17 results to (existed) real data (Figs. 3, 4)

RO Average (real) Se (mgL-1) MAE for models (mgL-1) R for models (%) MAE for Eq. 17 (mgL-1) R for Eq. 17 (%)

SW30-2540 249.6 5.95 97.03 9.46 96.52

SW30hrle-4040 54.97 1.46 96.92 1.67 96.71

SW30-4040 120.34 3.39 96.73 5.54 95.38

SW30-3031 138.01 3.04 97.43 4.91 96.33

SW30hr-380 71.41 2.01 97.33 2.5 96.27

SW30hrle-440i 62.05 2.15 96.33 2 96.38

SW30hrle-400i 58.68 1.99 96.88 1.84 96.64

SW30hrle-1725 58.78 1.83 96.73 2.1 96.21
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where t is the number of existing data for each membrane

(Figs. 3, 4) and Se is the simulated Se with models and/or

Eq. 17. The error values as calculated by Eq. 27 are shown

in Fig. 6.

Table 8 shows that both models and Eq. 17 are reliably

accurate and the ANN models even have a slightly higher

precision comparing to Eq. 17. Figures 7, 8 illustrate the

model verification results based on the simulated data. The

dashed lines show mathematical models errors and simple

lines show ANN models errors.

Conclusions

In this study an effective mathematical equation was

developed as a simple expression, such as Eq. 17. Presented

formula can be used/calibrated for other types of membranes.

Both Eq. 17 and models are reliable to predict RO system

performance, and design parameters such as S0, T, Re and p.

Furthermore, it can be used to optimize the process of

desalination systems. The effects of pressure and/or the other

design and operating parameter(s) of membranes structure

can be added by other researchers to the Eq. 17 and models.

Therefore, the main highlight of this study was to develop a

model to simulate 8 types of RO membranes that are able to

cover a wide range of feed water and operational conditions.

Main advantages of the mathematical modeling are: (1)

simplicity of expression/proving and using them and (2) the

form of solutions and its sensitivity toward two/multi

parameter that can be observed and analyzed. The advan-

tages of ANN modeling are: (1) ability of modeling of

complex relationships which is not possible for model with

ordinary mathematical methods; (2) in most cases ANN

models have higher precision compared with mathematical

methods; (3) ANN models can be adapted with new data and

upgraded with them; (4) best combination of design

parameters in ANN models can be achieved by try and error

method. This process also revealed that the number of

(hidden layers) and their neurons should be chosen wisely,

both lack and excess of it, may decrease the model precision.

One of the most important finding in this study is when the

number of data is sufficient for modeling the precision of

Fig. 7 The errors of mathematical equations and models procedure for selected 4 SWRO membranes, (2540, hrle4040, 4040, 3031 models)

Model. Earth Syst. Environ. (2016) 2:207 Page 9 of 11 207

123



model is directly depended on (and limited by) data that are

being used. In other word the most important uncertainty

would be caused by uncertainty of input data. This means

that even if we use the other methods of modeling (such as

genetic algorithm, dynamic NN, etc.), better result will not

be achieved because, errors depend on error of data that are

used for making the models.
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