
ORIGINAL ARTICLE

Evaluation of adaptive neural-based fuzzy inference system
approach for estimating saturated soil water content

Fereshte Haghighi Fashi1

Received: 23 October 2016 /Accepted: 2 November 2016 / Published online: 10 November 2016

� Springer International Publishing Switzerland 2016

Abstract The saturated soil water content (hs) is an

important parameter in hydrological studies. In this paper,

adaptive neural-based fuzzy inference system (ANFIS) was

used for estimation of soil saturation percentage of some

flood spreading areas in Iran. Soil particle size distribution

(sand%, silt%, and clay%), bulk density and medium

porosity (0.2–30 lm) were used to develop saturated soil

water content pedotransfer functions (PTFs). Then, con-

tributions of various member functions (MFs) were asses-

sed on estimation of hs. The results showed that the

member function type has an important role in performance

of ANFIS approach. In the present investigation, Gaussian

curve (gaussmf) was found to be superior over the other

MFs in estimating hs. In all of the hs PTFs, correlation

between estimations of hs and corresponding observations

was the low. R2 values between measured and PTF-esti-

mated hs using ANFIS approach did not increase as some

input predictors were used in the PTFs (from PTF1 to

PTF5). Based on the results, it is suggested that ANFIS

model can be applied for reasonable estimation of hs and
there is a need for obtain more information of the proposed

approach especially for the selection of best member

functions. Therefore, a good performance may be obtained

when best member function would be selected in addition

to the more effective PTF inputs.

Keywords ANFIS � Member function � PTFs � Saturated
soil water content

Introduction

The estimation of saturated soil water content (hs) is

important for the knowledge of hydrological behaviour of

watersheds. Measuring this parameter is time- and finance-

consuming. Therefore, indirect estimation of the soil

hydraulic properties has been concerned. Pedotransfer

functions (PTFs) are functions applied to estimate the soil

hydraulic properties using basic soil properties such as

sand, silt, and clay percentages, bulk density (BD) and

other easy to measure properties (Bouma and Van Lanen

1987). A detailed review of PTFs can be found in ver-

eecken et al. (2010). Multiple-linear regression method

(Mayr and Jarvis 1999; Tomasella et al. 2000), group

Method of Data Handling (Pachepsky and Rawls 1999) and

neural network analysis (ANN) (Schaap et al. 1998; Min-

asny and McBratney 2002; Minasny et al. 2004) have been

used to develop hs PTFs. Tamari et al. (1996) have pre-

sented a review of ANN applicability to estimate soil

hydraulic properties. Two problems that should be con-

cerned in developing ANN-based models are included: (1)

the learning algorithm may not get optimum weights to

minimize prediction errors, (2) a number of weights that

are difficult to easy interpretation (Schaap et al. 2001).

Therefore, ANN approach is not always applicable to

develop the accurate and reliable hs PTFs (Twarakavi et al.
2009). Adaptive neuro-fuzzy inference system (ANFIS)

can be an appropriate approach using the learning capa-

bility of an ANN for parameter optimization. ANFIS have

been used for database management, signal processing,

hydrologic applications (Jang 1993; Nayak et al. 2004) and

developing PTFs for estimation of paddy soils CEC

(Seyedmohammadi et al. 2016). Researchers have not

assessed the potential of this approach in saturated soil

water study. There is no discussion in the literature of
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applications of ANFIS approach for developing hs PTFs

and evaluation of member function types. An important

advantage of this technique is that it does not require the

model structure to be known a priori compared with most

of the approaches (Nayak et al. 2004). Nayak et al. (2004)

showed that the ANFIS outperforms ANNs and other tra-

ditional methods in terms of prediction errors, computa-

tional speed and efficiency. The objective of this study was

to evaluate the applicability of ANFIS-based PTFs and

different member functions in estimating hs to overcome

the problems with the other approaches in some soils of

Iran’s flood spreading areas. In addition, the effect of dif-

ferent input variables to develop hs PTFs was investigated.

Description of ANFIS

Since the detailed review of adaptive networks of ANFIS

have been provided by Jang (1993), only a briefly

description is presented in this paper. The adaptive network

is a multi-layer feed-forward network in which each node

performs a particular function on incoming signals and a

set of parameters pertaining to this node (Jang 1993). This

structure has five layers including fuzzy layer, product

layer, normalized layer, de-fuzzy layer and total output

layer. A detail about the functioning of the ANFIS is as

follows (Jang 1993):

Layer 1 Every node (i) in this layer is an adaptive node

with node function. Ol,i is the output of the ith node of the

layer l:

O1;i ¼ lAiðx) for i ¼ 1; 2; or

O1;i ¼ lBi�2ðy) for i ¼ 3; 4;
ð1Þ

where x (or y) is the input to node i, and Ai is a linguistic

label associated with this node. Therefore, O1,i is the

membership function of Ai. The bell shaped membership

functions (MF) can be computed as follows:

lAðxÞ ¼
1

1þ x�ci
ai

�
�
�

�
�
�

2b
; ð2Þ

where ai, bi and ci are the parameter set to be learnt.

Layer 2 Each node in this layer denoted as P which

multiply incoming signals and sending the product out.

O2;i ¼ wi ¼ lAi xð Þð Þ � lBi yð Þð Þ i ¼ 1; 2; ð3Þ

where each node represents the firing strength of the rule.

w1, w2 are the weight functions of the next layer.

Layer 3 Each node in this layer is labeled as N. O3,i indi-

cates the Layer 3 output as shown in Eq. 4:

O3;i ¼ �w ¼ wi

w1 þ w2

: ð4Þ

Layer 4 This layer’s nodes are adaptive with node

functions.

O4;i ¼ wifi ¼ wi pix þ qiy þ rið Þ; ð5Þ

where wi denotes the output of layer 3 and pi, qi, ri are the

parameters set.

Layer 5 This layer’s single node computes the overall

output as the summation of all incoming signals as:

O5;i ¼
X

i
�wfi ¼

P

i wifi
P

i wi

; ð6Þ

where O5,i denotes the layer 5 output.

Materials and methods

The hs PTFs were developed using the database established

by Mahdian and Kamali (2010). Some flood spreading

areas in Iran were chosen and soil properties data including

sand%, silt%, clay%, Organic carbon and bulk density

(BD) were collected. Then, the content of pores of medium

size (0.2–30 lm) was calculated. Soil properties have been

measured based on USDA standards. Data were divided

into approximately 80% for training and the 20% for

testing. Then, the performance of ANFIS-based PTFs and

different member functions for hs predictions were asses-

sed. In the present study, the Sugeno fuzzy model (Takagi

and Sugeno 1985) and back propagation algorithm were

applied for training. A set of models was developed based

on the ANFIS approach for the water content at hs. The
selection of best inputs is an important issue in the ANFIS-

based models development. ANFIS-based PTFs were

developed by varying the above mentioned input variables.

In the first set of models (P1) (SSC), sand%, silt%, and

clay% were employed as inputs. The second set of models

(P2) (SSCBD) employed sand%, silt%, clay% and BD as

input variables, while the input data of the third set of

models (P3) were included medium porosity (0.2–30 lm)

in addition to those inputs used for P1. The fourth set of

models (P4) used all input variables mentioned above

together. The fifth set of models (P5) used all input vari-

ables mentioned above together in addition to organic

carbon (OC). Moreover, considering a hierarchical

approach, SSCBDh33 model employed sand, silt and clay

percentages, bulk density and water retention point at

-33 kPa potential. SSCBD h33h1500 added the water con-

tent at -1500 kPa to the input variables of the SSCBDh33
model. In the present investigation, different eight MFs

(Gaussian curve (gaussmf), P-shaped (pimf), Triangular-

shaped (trimf), Trapezoidal-shaped (trapmf), Generalized

bell-shaped (gbellmf), composed of product of two sig-

moidally shaped (psigmf), composed of difference between
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two sigmoidal (dsigmf) and Gaussian combination

(gaussmf)) were assessed for developing hs ANFIS-based
PTFs. The PTFs performance was investigated based on

the RMSE, ME, and R2. The MFs of the ANFIS takes

values between 0 and 1. Therefore, input data were nor-

malized so as to lie in the range of 0–1 (Masters 1993). The

models development was done using MATLABTM (The

MathWorks Inc. USA).

Result and discussion

PTFs performance of the saturated soil water

content

The brief statistics of soil properties of the studied flood

spreading areas are presented in Table 1. In this research,

studied soils were coarse-textured and the bulk densities

ranged from 1.02 to 1.95 g cm-3. The goodness of fit

statistics on the normalized values (Table 2) for all the

PTFs is presented in Table 3. In this research, it was

observed that the variation of the performance criteria was

significant for ANFIS-based PTFs with different MF types

(Table 4). Ignoring the various input data set, the ANFIS-

based models were able to estimate soil hydraulic

properties with a reasonable accuracy, as can be evidenced

by relatively the low RMSE values (Table 3). The fairly

same RMSE values for estimation of hs using different

combinations of input variables were observed in Table 3

and Fig. 1. Soil structure and pore-size distribution may

extensively influence soil water content in the air-entry and

capillary region of the soil water retention curve (Merdun

et al. 2006), which were only indirectly accounted for in

the hs PTFs by BD and medium porosity. Medium pore-

size was included as an input variable to develop ANFIS-

based PTFs of hs, which was not effective to improve the

model accuracy.

Effect of input variables

From Table 3, it is apparent that all of the PTFs perform

similarly as the RMSE did not vary significantly amongst

different combination of inputs except. One other obser-

vation is that R2 values between measured and PTF-esti-

mated hs using ANFIS approach did not increase as some

input predictors were used in the PTFs (from P1 to P5). In

all of the hs PTFs, correlation between estimations of hs
and corresponding observations was the low (Tables 3, 4).

Nemes et al. (2003) and Vereecken et al. (2010) have stated

that including extra input variables can improve the effi-

ciency of ANN models. However, the results of the present

study showed that increasing the number of input variables

did not necessarily lead to improve the model performance

and better estimations. This is consistent with earlier

findings of Nemes et al. (2006) and Haghverdi et al. (2012).

As mentioned above, there are many other important

parameters such as soil salinity and clay mineralogy that

may significantly influence the soil water content (Nemes

et al. 2003), which were not accounted for as input data for

water retention PTFs in the present research. Vegetation

and topography characteristics may significantly affect soil

hydraulic properties (Sharma et al. 2006), which were

Table 1 Summary statistics of

input data for training and

testing ANFIS-based PTFs

Variables Training set Testing set

Min Max Mean SD Min Max Mean SD

Sand (%) 17.00 79.00 59.95 13.226 62.00 79.00 71.50 5.212

Silt (%) 3.00 49.00 26.97 9.392 9.00 26.00 17.22 4.969

Clay (%) 2.00 35.00 13.08 6.349 6.00 15.00 11.27 1.876

BD (g cm-3) 1.02 1.95 1.44 0.168 1.50 1.66 1.55 0.030

OC (%) 0.02 2.70 0.55 0.562 0.16 0.64 0.26 0.089

FC (cm-3 cm-3) 0.05 0.37 0.16 0.057 0.16 0.21 0.18 0.012

PWP (cm-3 cm-3) 0.02 0.24 0.08 0.038 0.07 0.11 0.09 0.009

P (lm) 0.01 0.16 0.08 0.029 0.08 0.11 0.09 0.009

hs (cm
-3 cm-3) 0.17 0.49 0.27 0.069 0.20 0.43 0.25 0.041

SD Standard deviation, BD bulk density, FC field capacity, PWP permanent wilting point, OC organic

carbon, P medium porosity (0.2–30 lm)

Table 2 Summary statistics on the normalized values of studied soil

hydraulic properties for training and testing pedotransfer functions

Variables Training set Testing set

Min Max Mean SD Min Max Mean SD

FC 0.00 1.00 0.37 0.18 0.35 0.50 0.43 0.04

PWP 0.00 1.00 0.27 0.18 0.22 0.40 0.33 0.04

hs 0.00 1.00 0.32 0.21 0.09 0.81 0.25 0.12

SD Standard deviation, BD bulk density, FC field capacity, PWP

permanent wilting point, OC organic carbon, P medium porosity

(0.2–30 lm)

Model. Earth Syst. Environ. (2016) 2:197 Page 3 of 6 197

123



ignored in the current study. Considering vegetation and

topography characteristics as similar among training and

test datasets, if not included as estimators, may improve the

performance of the models (Haghverdi et al. 2012).

Tomasella et al. (2000) reported the poor fits of retention

points near saturation. Considering RMSE, it was seen that

increasing the BD and porosity as predictors did not nec-

essarily improve the performance of the PTFs. It seems that

while evaluating the performance of any model for its

accuracy and applicability in predicting saturated soil water

content, it is not only important to evaluate the number and

type of input variables but also the differences in member

functions. Including more input variables for developing

the hs PTFs may be confusing and, especially when they

have not significant effect, the development will be com-

plicated. Extra input variables may also be employed to

improve the performance of the models, such as soil

structure (Minasny et al. 1999), soil chemical properties.

In the case of the ANFIS-based PTFs developed in this

study, there are different models with various input data set

and MF types. Therefore, it seems ANFIS approach pro-

vides more flexible hs PTFs. To investigate the above

mentioned reason and observed improvement, it is needed

to do further research evaluating ANFIS in future resear-

ches. In the present study, the ANFIS model took 150–300

epochs, implying considerable savings in computational

time for ANFIS models. The results suggested that the

model building process can be simplified when an ANFIS

model is developed compared to an ANN, and the ANFIS

model preserves the full potential of ANN models in its

performance (Nayak et al. 2004). Neuro-fuzzy techniques

remove some of the shortcomings of ANNs. ANFIS had a

good applicability in this study that is reported by Nayak

et al. (2004), Aqil et al. (2007) and Dastorani et al. (2010).

A comparative analysis suggests that the proposed

modeling approach may outperform ANNs and other tra-

ditional models in terms of computational speed, estima-

tion errors and performance. Despite the general belief that

ANN-based models are relatively successful, there are

number of weights that do not allow easy interpretation

(Schaap et al. 2001). Considering the above mentioned

problems associated with ANN-based PTFs, ANN

approach is not always able to improve the PTFs accuracy

and reliability (Twarakavi et al. 2009).

The results demonstrated that the ANFIS showed good

performance in terms of various statistical indices and the

results are promising. It was also observed that the ANFIS

model eases the model developing process. Therefore, it is

important to develop the suitable PTFs using appropriate

approaches (i.e. ANFIS) after the knowledge of limitations

and weaknesses that need to be considered. Finally, a good

performance may be obtained when pore size distribution

would be measured in addition to the typical PTF inputs. It

is noted that there are large uncertainties in estimation of

ANFIS-based PTFs due to the lack of data for some tex-

tural classes (fine- and medium textured) in the training.

Table 3 The goodness of fit statistics during validation for the best selected PTFs

Hydraulic parameter Input variables R2 RMSE ME MF MF type Epoch

hs Sand, Silt, Clay 0.5527 0.0733 0.0241 Gauss2mf Constant 150

hs Sand, Silt, Clay, BD 0.5265 0.0779 0.0437 gaussmf Constant 150

hs Sand, Silt, Clay, P 0.5218 0.0745 0.0335 gaussmf Constant 150

hs Sand, Silt, Clay, P, BD 0.4977 0.0792 0.0431 trapmf Constant 150

hs Sand, Silt, Clay, P, BD, OC 0.519 0.0804 0.0480 gbellmf Constant 150

Gaussian curve (gaussmf), Trapezoidal-shaped (trapmf), Generalized bell-shaped (gbellmf), Gaussian combination (gauss2mf)

ME correlation coefficient, RMSE root mean square error

Table 4 The correlation

coefficient between the

estimated and measured

saturated soil water content for

different member functions

(MF1 to MF8)

Parameter PTF MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8

hs P1 (SSC) 0.24 0.04 0.55 0.43 0.51 0.35 0.05 0.05

P2 (SSCBD) 0.32 0.22 0.52 0.50 0.24 0.30 0.18 0.18

P3 (SSCP) 0.35 0.37 0.48 0.52 0.47 0.21 0.34 0.34

P4 (SSCPBD) 0.48 0.47 0.49 0.46 0.47 0.26 0.27 0.43

P5 (SSCPBDOC) 0.51 0.49 0.48 0.47 0.47 0.26 0.26 0.26

P1 sand, silt and clay; P2 sand, silt, clay and BD; P3 sand, silt, clay and porosity; P4 sand, silt, clay, porosity

and BD; P5 sand, silt, clay, porosity, BD and OC; OC organic carbon; P medium porosity (0.2–30 lm); BD

bulk density
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Conclusion

This study presented the application of an adaptive neuro

fuzzy inference system (ANFIS) to saturated soil water

content modeling. In this study, the ANFIS approach was

successfully employed to develop saturated soil water

content PTFs that used various input set. It was observed

that an increase in some of the predictors (i.e. medium

porosity) did not result in improved saturated soil water

content prediction by PTFs. It was concluded that by

increasing the BD as input variable to develop the ANFIS-

based PTFs of saturated soil water content, the model

accuracy was not improved and the observed difference

was not statistically significant. The results were encour-

aging and suggest that an adaptive neuro-fuzzy approach is

viable for modeling hs. Although estimation errors of

ANFIS for hs estimation were relatively similar, the results

were different for various member function types to esti-

mate soil water content at hs. There is a need for more

application of the ANFIS approach especially for fine- and

medium textured classes.
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