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Abstract This study suggests a different view of the

change in water level fluctuation of Urmia Lake (UL),

Northwestern Iran, and its descriptive statistics in term

of the seasonal variation of monthly average time series

during 1966–2012. A significant change is demonstrated

in the descriptive statistical characteristics, such as the

mean and the variance after a change point in 1999 by

nonparametric techniques. Therefore, two models

namely, mono- and multiple-time trend (Mono- and

Multiple-TT), are applied to remove trends observed in

the UL water level. In case of Mono-TT model, the trend

assessment of water level exhibit downward trend sig-

nificantly. In case of Multiple-trend model, the time

series is divided into before and after change point

subseries and a linear time trend model is fitted to each

subseries. The results showed a significant increasing

and decreasing trend, respectively. Furthermore, this

paper have developed hybrid time series models

including Seasonal Auto Regressive Integrated Moving

Average (SARIMA) and Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) fitted to

detrended values by Mono- and Multiple-TT models.

The criteria evaluation demonstrates the adequacy of

SARIMA, Mono- and Multiple-TT-SARIMA models and

their combination with GARCH approach for modeling

monthly water level which have significant trends. The

GARCH models indicate the existence of short-run

persistency in the water level. The proposed SARIMA

and Mono-TT-SARIMA and their combination with the

GARCH models are found useful for modeling the water

level with significant trends.

Keywords Mono- and multiple- time trend � SARIMA �
GARCH � Urmia Lake water level � Iran

Introduction

Urmia Lake (UL) is one of the most significant lakes in

Iran and the second largest salt lake in the world (Karbassi

et al. 2010). Since 1967 it has been considered as a wetland

protected region, in 1971 the Ramsar convention declared

it as an important international wetland, and in 1976 it

designated as a UNESCO biosphere reserve (Fathian et al.

2014a; Vaheddoost and Aksoy 2016). The region’s indus-

trial and agricultural sectors have been jeopardized and the

vibrant and vivid lake has experienced underwater buried

salt exposure due to the water level decline in recent years

(Eimanifar and Mohebbi 2007; Fathian et al. 2014b). The

persistence of the declining trend of water level in UL due

to various reasons allows the exposed salt to blow away,

causing a serious threat to the health of the inhabitants of

the region, and has reached the level of a national concern

(Hassanzadeh et al. 2012).
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Undoubtedly, studies on water level fluctuations are

important for planning, design, construction and operation

of lake shore structures, testing the impacts of the natural

climate fluctuation or human induced climate changes on

lake hydrology, and also in modeling water levels to use

those for quantitative interpretation (Çimen and Kisi 2009;

Kakahaji et al. 2013). Furthermore, various studies have

been done in modeling and statistical analysis of water

level fluctuations in different lakes over the world,

specifically for UL of Iran (See Jones et al. 2001; Kebede

et al. 2006; Çimen and Kisi 2009; Yin and Yang 2012;

Kavehkar et al. 2011; Kakahaji et al. 2013). Modeling

water level series of UL, as a continuing worry in water

resources management and hydrological researches, can

help in reducing the damages (Kebede et al. 2006; Fathian

et al. 2014a). Therefore, it is necessary to build and

develop a suitable model for simulating water level

changes.

A direct method for calculating water level values is to

build a complicated model involving the hydroclimatic

variables; however, modeling water level series on the

basis of past levels is an economically preferable tech-

nique. In this regard, time series analysis methods are

applied and developed for finding out temporal pattern of

water levels (Çimen and Kisi 2009; Aksoy et al. 2013).

Application of linear time series models for simulation and

forecasting hydrological time series, which were described

by Box and Jenkins (1976) for the use of practicing engi-

neers, has received many attentions during recent decades

(Modarres and Ouarda 2012a, b). Among these linear

models, the Seasonal Autoregressive Integrated Moving

Average (SARIMA) linear model is a common applied

model. However, linear models are not capable of captur-

ing an important part of hydrologic fluctuation, e.g. non-

linear variation. In this case, the application of the

Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) nonlinear approach has been recently growing in

modeling time-dependent variance of hydrological time

series. Several studies have been carried out to apply both

linear and nonlinear models for hydrological and climatic

variables such as temperature (Romilly 2005; Modarres

and Ouarda 2014), rainfall (Modarres and Ouarda 2012a),

streamflow (Wang et al. 2006; Chen et al. 2008; Modarres

and Ouarda 2012b) and drought (Modarres and Ouarda

2014). Not only the application of GARCH model in

hydrology is rare but also water level fluctuations of lake

are a missing variable in nonlinear time series modeling.

This study is carried out to build and develop the linear

and nonlinear time series models to capture monthly UL

water level series during 1966–2012. In this regard, water

level modeling in the existence of trend will be also

developed. In addition, the linearity and nonlinearity of this

series will be investigated. Therefore, the objectives of this

study are (1) to identify the changes in the statistical

characteristics in terms of trend, stationarity, linearity/

nonlinearity and change point detection analyses; (2)

develop linear and nonlinear models for the seasonal

variations by considering mono- and multiple-time trend

(Mono- and Multiple-TT) models to remove the trend

behavior in that series; (3) present the useful/harmful

effects of the GARCH model for modeling the UL water

level series. As it is seen from the literature review, this is

the first study of its kind investigating these statistical

models for great lake water level, specifically for UL of

Iran.

Study area and data

UL is located in the northwestern territory, inside the

Urmia Lake Basin, of Iran, and extends as much as 140 km

from north to south and is as wide as 85 km east to west

during high water periods (Vaheddoost et al. 2015). Urmia

Lake Basin is shared between three provinces of West

Azerbaijan, East Azerbaijan, and Kurdistan of Iran. It is

located between 44�070 and 47�530 North longitudes and

35�400 and 38�300 East latitudes and can be classified as a

semi-arid (cold) climate region (Vaheddoost and Aksoy

2016). The lake’s surface area has been estimated to have

been as large as 6100 km2, but since 1995 it has generally

been declining; in August of 2011, it was estimated from

satellite data to be only 2366 km2 (Eimanifar and Mohebbi

2007). The drainage area of the lake is 51,800 km2. The

lake basin includes 14 main subbasins that surround the

lake, and the ZarrinehRoud, SiminehRoud and Aji Chai

(Fig. 1) are the most important rivers of the basin (Fathian

et al. 2014b). These rivers are the source of the majority of

the Lake’s expected annual water intake, and additional

input comes from rainfall directly over the lake, floodwater

from the immediate watershed and a very small fraction

from groundwater flow (Eimanifar and Mohebbi 2007). For

UL, the monthly average water level data during the period

of 1966–2012 (47 years, i.e. 564 monthly levels) is used in

this study.

The monthly water level series is illustrated in Fig. 2a.

As it can be seen, the water level had a gradually upward

trend in the late 1960 s, after which it maintained an almost

constant level, and subsequently a gradual upward jump

was observed in the 1990s to reach its maximum level.

After that, at the end of the water level series, a sudden

decline is recorded and this downward trend is continu-

ously observed. Minimum and maximum observed values

of water level series were 1270.98 and 1278.39 m during

the period of 1966–2012, respectively. The mean and

standard deviation (sd) behaviors of water level series for

all months (Fig. 2b) display that the water level behavior
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increase in the early winter, continuously increases until

spring, decrease in summer and then stay almost constant

in autumn. Notably, when the mean water level increases,

the standard deviation of the water level also increases

from January to June. This can be due to the great deal of

variability in hydroclimatic variables, such as precipitation,

snowmelt and temperature fluctuations during this time

period.

Fig. 1 Location of UL basin and hydroclimatic stations into basin
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Methods

Testing procedures

Trend assessment and change point detection

The dependence of an observed value to the past observed

values and the stationarity of the statistical moments

through time are as two key assumptions of the SARIMA

models. Therefore, it is unavoidable to examine monthly

water level series in terms of a trend or nonstationarity

behavior before applying the SARIMA model (Modarres

et al. 2012). The nonparametric Mann–Kendall (MK) test

is applied to explore the nonstationarity behavior in water

level series. To find significant change point for the water

level series, the nonparametric Pettitt’s test (Fathian et al.

2014a), which is less sensitive to outliers, as well as seg-

mentation software called AUG-SEGMENTER (Gedikli

et al. 2010; Aksoy et al. 2013), which introduced as a user-

friendly tool for segmentation of long time series, have

been used. A change point presents an abrupt change (or a

sudden change) in the statistics of the trend. (Rybski and

Neumann 2011).

Testing for equality

In the presence of trend in water level series, two non-

parametric tests are applied to examine the change in the

mean and the standard deviation values before and after the

detected change point (Modarres et al. 2012). These tests

are including the Wilcoxon rank sum test and the Levene’s

test for the equality of the mean and the standard deviation,

respectively (Levene 1960; McCuen 2003). The compar-

ison of the water level statistical parameters before and

after the change point will provide the opportunity to

examine the temporal trend in the future and to apply this

analysis before trend analysis in order to avoid misleading

results (Villarini et al. 2009).

Testing for stationarity and nonlinearity

To test the change in stationarity and nonlinearity of the

water levels and its heteroscedasticity, two tests are

employed namely, the Augmented Dickey Fuller (ADF)

test (Dickey and Fuller 1979) for stationarity and the

Brock–Dechert–Scheinkman (BDS) test (Brock et al. 1996)

for nonlinearity. The ADF test is to test the presence of a
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water level time series,
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water level mean and standard
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unit root in the series based on considering an autore-

gressive AR(1) model. If the autoregressive parameter is

equal to one, the process is considered nonstationarity.

Otherwise, the process is stationary. The BDS test is useful

to detect deterministic chaos based on the correlation

integral of the time series, and presents the time series

dynamic by testing the serial independence and temporal

correlation (Wang et al. 2006). These two tests are applied

to compare the water levels before and after the change

point. For details of the formulations of these tests see

Wang (2006).

SARIMA model

The SARIMA model is used to build a model of seasonal

time series, which the seasonality is as a general element of

monthly variation of UL water level. The general multi-

plicative form of a SARIMA model is written as SARIMA

(p,d,q) 9 (P,D,Q), where p, d and q are the order of non-

seasonal and P, D and Q are the order of seasonal param-

eters (Modarres and Ouarda 2012a). The mathematical

formulation of this model can be written as follows:

/pðBÞUPðBSÞrdrD
S Yt ¼ hqðBÞHQðBSÞxt; ð1Þ

where xt is the usual Gaussian white noise process. Yt is

the observed time series, the ordinary autoregressive and

moving average components are represented by polyno-

mials /pðBÞ and hqðBÞ of order p and q, respectively, and

the seasonal autoregressive and moving average compo-

nents by UP and HQ of orders P and Q, and ordinary and

seasonal difference components by rd and rD
S . B is the

backward operator and S represents the number of seasons

per year (Hipel and McLeod 1996).

For modeling the monthly water level series by

SARIMA model, first step is to select the order value of

the SARIMA model parameters with the help of the

autocorrelation function (ACF) and Partial ACF (PACF)

of the observed series. Then, the parameters of the

selected model are estimated and should be significant at

a specified significance level (Modarres et al. 2012). In

order to check the acceptable fitted SARIMA model, the

ACF of the obtained residual series by fitted model is

first examined. The adequacy of the fitted SARIMA

model is accepted if all coefficients of the ACF locate

within the confidence intervals. In addition, the Ljung–

Box test is also used to examine the ACF structure of

the residual series (Modarres and Ouarda 2012a). This

test calculates a statistics Q, which is distributed as Chi

square with (L–p–q) degrees of freedom and as below

form (Ljung and Box 1978):

Q ¼ NðN þ 2Þ
XL

k¼1

ðN � KÞ�1
r2k ðxÞ; ð2Þ

where N is the sample size, L is the number of autocorre-

lation of the residuals between 15 and 25, and rk is the ACF

of the residuals, x, at lag k. If the calculated Q-statistic is

less than tabulated value at a significance level, it means

that the residual series are uncorrelated, and then the fitted

model is acceptable (Hipel and McLeod 1996).

Given the existence of a significant trend in a water level

series, the trend behavior is first removedusing twomono- and

multiple-trend regression models between water level and

time.Then, the SARIMAmodel is fitted to the residuals of two

time trend models, which are now trend-free time series

(Modarres et al. 2012). Therefore, it can be modeled the

deterministic component of the monthly water level series

using twoMono- andMultiple-TT models, and the stochastic

component using a SARIMAmodel (Aksoy et al. 2013). The

performances of the SARIMA and TT-SARIMA in compar-

ison with observation water levels are then examines.

Nonlinear modeling approach

When a SARIMA model is fitted to a seasonal time series,

the calculated residuals from the fitted model may show

adequate fitting. However, the squared residual series may

show the significant autocorrelation in ACF structure of

residuals. Therefore, heteroscedasticity behavior or condi-

tional time-variant variance may be observed in the

residual series. This behavior can be modeled by a GARCH

approach, which is named a SARIMA-GARCH model

(Modarres and Ouarda 2012a). The GARCH model,

introduced by Bollerslev (1986), is defined as follows:

r2t ¼ cþ
XV

i¼1

aix
2
t�i þ

XM

j¼1

bjr
2
t�j; ð3Þ

xt ¼ rtet et �Normalð0; 1Þ; ð4Þ

where r2t is the conditional time-variant variance of the

residual series, c is a constant, and a1; . . .; aV and

b1; . . .; bM are the coefficients of the GARCH (V,M) ap-

proach where V and M are the order of the coefficients

(Wei 2006). In order to identify and check the existence of

the heteroscedasticity in the residual series, Bollerslev

(1986) presented the testing ACF of the standardized

squared residuals (SSRs, hereinafter) could be helpful

technique. In identifying and checking GARCH behavior

for SSRs, the Ljung–Box test if the time-dependent vari-

ance exists can be applied. Similar Eq. (2), the Ljung–

Box Q-statistic is calculated for SSRs series (x2) instead of
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residual series. The assumption of no GARCH effect (as

null hypothesis) for the residual series is approved if the

calculated Q-statistic is less than tabulated value at a sig-

nificance level (Modarres and Ouarda 2012a, b).

Comparison approach

The performance of the different modeling methods

applied for this research is examined by means of evalua-

tion metrics set (Modarres and Ouarda 2012a, b). The used

evaluation metrics are given by:

1. Root mean squared error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðQi � Q̂iÞ2

n

vuuut
: ð5Þ

2. Relative absolute error

RAE ¼

Pn

i¼1

Qi � Q̂i

�� ��

Pn

i¼1

Qi � �Qj j
: ð6Þ

3. Mean error

ME ¼ 1

n

Xn

i¼1

ðQ̂i � QiÞ: ð7Þ

4. Coefficient of determination (R-squared)

R2 ¼

Pn

i¼1

ðQi � �QÞðQ̂i � ~QÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðQi � �QÞ2
Pn

i¼1

ðQ̂i � ~QÞ2
s

2
66664

3
77775
: ð8Þ

According to the above equations, Qi and Q̂i are the

observed and estimated data, and �Q and ~Q are the mean of

the observed and the estimated data, respectively.

Results and discussion

Change point and trend analysis of lake levels

Using the Pettitt’s test as well as AUG-SEGMENTER

method, a change point in the UL water level series in 1999

was detected. By partitioning the time series based on the

detected change point and fitting a regression line to each

segment (Fig. 3), the water levels are divided into two seg-

ments, 1966–1999 and 2000–2012. This change point indi-

cates a shift (also called a ‘‘jump’’) in the trend detection of

the water level series during the study period. As shown in

Fig. 3, the decreasing mono-trend fitted to the whole time

series can have different behavior when the multiple inner

trend lines are taken for each segment (the green solid lines).

For 1966–2012, theMK test indicates a downward trend (the

MK test statistic is -0.313) for the water level at 1% sig-

nificance level (the brown dash line). The MK trend test was

also applied for first (1966–1999) and second (2000–2012)

segments. The results showed a significant upward (down-

ward) trend for first (second) subseries and their MK test

statistic value is 0.268 (-0.853) for the water level.

According to Fathian et al. (2014b), the results of trend

detection after the common change point (2000–2010)

showed that water levels experienced significant downward

trends, while there are upward trends but not significant in all

subseries before the detected change point. Confirmation of

these results is obviously observable.

Statistical comparison of the UL water levels

When considering 1999 as a change point in the UL water

level series, the change in the descriptive statistics of the
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point detection for the water

level time series (1966–2012).
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water level is first examined. It can be seen in Table 1 that

the mean (unconditional) variance, skewness, and kurtosis

values show remarkable change after 1999. The mean

changed from 1276.06 to 1272.94. The (unconditional)

variance increased from 0.89 to 1.45. Moreover, the dis-

tribution of the water level series has become less skewed

and peaked. According to the study of Aksoy et al. (2013),

this statistical information may be helpful in many cases

and it is important when the inner trends may behave dif-

ferently than the trends taken over the whole time series.

Figure 4 shows the explanatory data analysis of the

water level series before and after 1999. The normal his-

tograms (Fig. 4a) and quantile–quantile plots (Fig. 4b)

demonstrate a change in the upper and lower tails after

1999, where a downward monotonic trend is observed for

the second period. The Jarque–Bera test for normality

(results not shown) indicates that the normality assumption

(as null hypothesis) cannot be rejected for the first and

second periods at 5% significance level. The normality for

the 1999–2012 cannot be rejected (p value = 0.160) while

the normality is violated for the 1966–1999

(p value = 0.053) period at 10% significant level. This

suggests that monotonic negative trend has a significant

effect on the symmetry, or normality, of the water level

frequency distribution in the second period.

The ACFs of the lake level series (Fig. 4c) and its

squared series (Fig. 4d) show an observable change in the

second period in comparison with first period, while there

is no difference between the two ACFs in two figures.

Consequently, Fig. 4d shows that the autocorrelation

coefficients at most lag times (k) are higher for the second

period than for the first period. This suggests that the time-

varying variance or the conditional variance became

stronger after 1999.

The statistical changes in the lake level data during

whole period (1966–2012) are also examined by the Wil-

coxon rank sum and Levene’s methods to test the validity

of the explanatory analysis for the statistical features. The

results of the two nonparametric tests showed that the mean

value of water level points out a strong difference (sig-

nificant at the 1% level) before and after 1999, and the

change in the standard deviation is also significant

according to the Levene test at the 1% level. According to

the some previous studies, the UL water level decline in the

two most recent decades has been caused by many factors

(such as changes in hydroclimatic variables, human activ-

ities, etc.), which have resulted in many socioeconomic and

ecological problems (Fathian et al. 2014a). Accordingly,

the timing of trends in the study factors began in the 1990s,

and generally there is a significant relationship among them

(Hassanzadeh et al. 2012). The results of the analyses as

presented in this section confirm the conclusion of this

paper.

The stationarity and nonlinearity of the water level

series before and after the change point are evaluated using

the ADF and BDS tests. The results are presented in

Table 2. The ADF statistics indicate that the water level

series before and after the change point are nonstationary

and it cannot be accepted the stationarity at the 10% or

lower significance level. The less negative ADF statistic

indicates a stronger acceptance of the hypothesis of a unit

root. Therefore, one can see that the nonstationarity of the

water level series for 1999–2012 is greater than that for

1966–1999. In addition, the results of the BDS test also

demonstrate increasing nonlinearity after 1999. For all

dimensions (m2–m5), the nonlinearity is significant for

both periods, but the test statistics are greater for the sec-

ond period, which implies the existence of a higher degree

of nonlinearity in the water level series after 1999. The

results obtained from this section show that the water level

series have nonstationarity and nonlinearity behaviors,

which can be appropriated to the existence of these

behaviors in the hydroclimatic variables of the UL basin.

Consequently, fluctuations in these behaviors could have

caused a change in the UL water level series during the two

last decades. In inspecting the influence of various factors

on UL fluctuations, Hassanzadeh et al. (2012) found that

changes in hydroclimatic variables have been most

influential.

Time series modeling of the UL water level

For modeling section, the SARIMA, TT-SARIMA and TT-

SARIMA-GARCH approaches are adopted for fitting these

models to the water level data. For TT-SARIMA approach,

a SARIMA model is fitted to the residuals of Mono- and

Multiple-TT models separately, which is first applied for

fitting to the water level data, which has a significant trend.

In the case of the SARIMA model, the

SARIMA(3,1,2)(2,1,3)12 model fitted to the water levels.

Table 1 Descriptive statistics

of the water level time series
Time series Period Mean (m) (Unconditional)

variance (m2)

Skewness Kurtosis

Water level 1966–2012 1275.20 2.98 -0.74 -0.16

1966–1999 1276.06 0.89 -0.19 0.47

2000–2012 1272.94 1.45 0.04 -0.73
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This model is selected based on the minimum Akaike

Information Criterion (AIC) and testing the residuals of the

model for adequacy. Figure 5a shows the sample ACF of

water level series, which shows an intense nonseasonal

behavior. It should be noted that the unit of horizontal axis

(lag time) in all figures is one month. The

SARIMA(3,1,2)(2,1,3)12 model includes five nonseasonal

autoregressive and moving average parameters of orders 3

and 2, and five seasonal autoregressive and moving average

parameters of orders 2 and 3, respectively, that are sig-

nificant at the 95% confidence level.

The adequacy of this approach is confirmed using the

Ljung–Box test and inspecting ACF behavior in residual

series, as shown in Fig. 5b, c. The ACF behavior shows no

Fig. 4 Exploratory data

analysis plot for the water level

series: a normal histogram,

b quantile–quantile plot, c ACF

for water level, d ACF for

squared water level
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significant autocorrelation structure in the residuals

(Fig. 5b). Since the seasonality behavior is not significant

for the residual series, thus, the sample autocorrelation

values locate between two upper and lower confidence

lines for lags k = 12, 24. The sufficiency of the fitted

approach is also confirmed by Ljung–Box test (Fig. 5c), as

the p values of this test is higher than the critical line at 1%

significance level. For this purpose, it can be accepted that

there is no significant autocorrelation values in the residual

series structure (null hypothesis). However, in order to

show the existence of the GARCH effect, the autocorre-

lation structure of the SSRs is examined. The extracted

p values from Ljung–Box test are presented in Fig. 5d for

inspecting the GARCH effect in the SSRs of the

SARIMA(3,1,2)(2,1,3)12 model. The results demonstrate

the existence of a GARCH effect (rejection of the null

hypothesis) in the SSRs for all lags.

In the case of the Mono- and Multiple-TT-SARIMA

models, the fitted models are selected based on the mini-

mum (AIC) including Mono-TT-SARIMA(3,1,2)(2,1,3)12

Fig. 5 a ACF of monthly water

level series, b ACF of the

residuals of the

SARIMA(3,1,2)(2,1,3)12 model,

c p values of the Ljung–Box test

of the residuals, and d p values

of the Ljung–Box test for the

SSRs of the

SARIMA(3,1,2)(2,0,3)12 model

Table 2 Stationarity and

nonlinearity test results for the

water level

ADF

Test 1966-1999 2000–2012

Statistic -1.911 -3.14

p value 0.615 0.102

BDS

1966–1999 2000–2012

m2 m3 m4 m5 m2 m3 m4 m5

45.14 52.55 62.54 77.08 82.77 115.9 169.9 263.03

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m is dimension of space; m2 means a 2-dimensional space of embedded a scalar time series
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and Multiple-TT-SARIMA(1,1,0)(1,0,1)12, respectively.

Figure 6a1, a2 show the ACF of the residuals of the fitted

Mono- and Multiple-TT models to the original water level

series, respectively, which indicate high persistence and

non-stationarity. The sample ACF structure in the residual

series for two TT-SARIMA models (as mentioned above)

(Fig. 6b1, b2) and the calculated p values from Ljung–

Box test (Fig. 6c1, c2) indicate the adequacy of the fitted

models. No autocorrelation structure is observed in the

residual series, as all autocorrelation values are located

between the lower and upper critical lines, however, two

autocorrelation values for lags k = 12 and k = 22 intersect

the upper critical line at 5% significance level (Fig. 6b1). It

can be considered to be a random effect according to the

study of Modarres and Ouarda (2012a); furthermore, there

is no significant seasonality in the behavior of residual

series. The Ljung–Box goodness-of-fit test indicates the

adequacy of the fitted model (acceptance the null hypoth-

esis as all probability values located above the significance

line at 1% level).

By investigating the ACF plot of SSRs series as well as

the Ljung–Box test, it can be demonstrated the existence of

Fig. 6 a1, a2 ACF of mono-

and multiple- time trend model

residuals of the water level

series, b1, b2 ACF of the

residuals of the Mono- and

Multiple-TT-

SARIMA(3,1,2)(2,1,3)12 and

(1,1,0)(1,0,1)12 models, c1, c2
p values of the Ljung–Box test

of the residuals of the above

models, respectively
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a GARCH behavior in the SSRs of the fitted models. The

sample ACF of SSRs (Fig. 7a1) indicates the existence of a

conditional variance behavior or heteroscedasticity for

residual series of the Mono-TT-SARIMA(3,1,2)(2,1,3)12
model. Figure 7a1 shows that the autocorrelation values

cut off the critical line at the 5% significant level are sig-

nificant for lags k = 1, 2, 11 and 12. Figure 7b1 shows the

calculated p values from the Ljung–Box test for SSRs

series. As seen, all probability values are located below the

critical line at 5% significant level, and the existence of

GARCH behavior is confirmed. However, for Multiple-TT-

SARIMA(1,1,0)(1,0,1)12 model, the ACF of SSRs series

did not illustrate the presence of heteroscedasticity in this

model (Fig. 7a2). In other words, as shown in Fig. 7b2, the

null hypothesis of no GARCH effect cannot be rejected for

all lags at 5% level.

It is necessary to apply a GARCH approach for the

calculated residuals series from the SARIMA and Mono-

TT-SARIMA models in order to capture the existence

conditional time-dependent variance (or heteroscedasticity)

in the residuals series. The GARCH(2,0) model is selected

as the best fitted model to the extracted residuals from the

SARIMA and Mono-TT-SARIMA (3,1,2)(2,1,3)12 models

for the water level series. The estimated parameters of

these two GARCH models are presented in Table 3. The

GARCH models were selected based on the minimum AIC

in favour of higher order models. It can be seen that the

parameters of two GARCH models are statistically sig-

nificant. This implies the existence of a heteroscedasticity

in the residuals of the water level series during the study

period. According to the Table 3, the intensity of the short-

run persistence of the heteroscedasticity seems to be very

Fig. 7 a1, a2 Autocorrelation

function, b1, b2 p values of the

Ljung–Box test for the SSRs of

the Mono- and Multiple-TT-

SARIMA(3,1,2)(2,1,3)12 and

(1,1,0)(1,0,1)12 models,

respectively

Table 3 Parameters of the GARCH models fitted to SARIMA and Mono-TT-SARIMA models for the water level time series

Model c a1 a2 AIC

SARIMA 0.0021 (0.00) 0.6706 (0.00) 0.1773 (0.00) -1497.41

Mono-TT-SARIMA 0.0023 (0.00) 0.5971 (0.00) 0.1223 (0.00) -1499.56

p values for each parameter are given in parentheses
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strong (0.71–0.84) for two fitted GARCH models. More-

over, the short-run persistence characteristic for the SAR-

IMA model is more than the Mono-TT-SARIMA model

(a = 0.84[ 0.71).

Figure 8a1, a2 demonstrates the sample autocorrelation

structure of the SSRs series for SARIMA- and Mono-TT-

SARIMA(3,1,2)(2,1,3)12–GARCH(2,0) combined models

to examine the GARCH behavior for the water level series.

The two ACF plots of the residuals do not indicate not only

nonseasonal heteroscedasticity but also seasonal

heteroscedasticity for these fitted models. Therefore, as the

plots show, the autocorrelation values are insignificant at

5% significance level. However, two autocorrelation values

for lags k = 11 and 22 cut off the upper critical line.

According to the Modarres and Ouarda (2012a), these

significant values are as random effects in conditional

variance behavior of water level data. Based on the Ljung–

Box test (Fig. 8b1, b2), no GARCH effect are also found

out in the residuals series of the SARIMA- and Mono-TT-

SARIMA(3,1,2)(2,1,3)12–GARCH(2,0) models. It is

important to note that, as shown in Fig. 7a1, all significant

autocorrelation coefficients of the residuals (except at lag

k = 11) were eliminated. It can be concluded that the

GARCH model is an appropriate approach for modeling

the heteroscedasticity of water level series where it

indicates irregular temporal (time trend) fluctuations and

variations.

Model comparison

The performance of the applied SARIMA and GARCH

models in this study for modeling the water level series of

UL are evaluated using the multi-criteria approach listed in

‘‘Comparison approach’’. Before illustrating the evaluation

criteria, the scatter and time series plots of the observed

against estimated water level series are shown for all five

fitted models in Fig. 9a–e. It can be seen from the hydro-

graphs that the SARIMA (Fig. 9a) and Mono-TT-SARIMA

(Fig. 9b) are closer to the corresponding observed values

than those of the rest of the fitted models especially for the

peak values. In the form of scatter plots, it can be seen from

the fit line equations that the line slope value for the

SARIMA, Mono- and Multiple-TT-SARIMA models are

closer to the 1 than those of the rest of the fitted models.

The performance of these models is shown in Table 4. As

seen, the SARIMA and Mono-TT-SARIMA models indi-

cate slightly better performance than the SARIMA- and

Mono-TT-SARIMA-GARCH models according to the

applied criteria. It can also be seen that the first two models

have the smallest RMSE (0.07), RAE (0.03) and ME

Fig. 8 a1, a2 Autocorrelation

function, b1, b2 p values of the

Ljung–Box test for the SSRs of

the SARIMA and Mono-TT-

SARIMA(3,1,2)(2,1,3)12-

GARCH(2,0) model for the

water level data, respectively
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(0.005), whereas the last two models have highest R2

(0.999). For the Mono- and Multiple- time trend models, it

is observed that the evaluated outcome for the Mono-TT-

SARIMA model is better than the Multiple-TT-SARIMA

model according to the error criteria and R-squared. The

fitted SARIMA and Mono-TT-SARIMA models and their

combination with the GARCH model have the same per-

formance based on the error evaluation criteria for the

water level series, which has significant trend. Therefore,

the criteria in Table 4 suggest that the performance of the

time trend and GARCH combined models do not become

better than the SARIMA. It should be noted that the

GARCH model can capture the conditional variance

behavior (or heteroscedasticity) which exist in the residuals

series of a SARIMA model. However, there is no guarantee

to make better the performance by a GARCH approach (as

was reported by Modarres and Ouarda 2012a), at least for

this case study. Kakahaji et al. (2013) predicted the
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Fig. 9 Scatter and time series

plots of observed and estimated

water level for different fitted

models.

a SARIMA(3,1,2)(2,1,3)12,

b Mono-TT-

SARIMA(3,1,2)(2,1,3)12,

c Multiple-TT-

SARIMA(1,1,0)(1,0,1)12,

d SARIMA(3,1,2)(2,1,3)12-

GARCH(2,0), e Mono-TT-

SARIMA(3,1,2)(2,1,3)12-

GARCH(2,0) models
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fluctuations of monthly UL water level by linear models

such as AR with exogenous input (ARX), Box-Jenkins

models and intelligent methods during the period of

1967–2006. Comparative results showed that the intelligent

methods are superior to traditional models, and they are in

agreement with the results of this study. Çimen and Kisi

(2009) and Aksoy et al. (2013) used SVM, ANN and

stochastic time series techniques in modeling monthly

water level data of Lake Van in Turkey. The results

showed that the estimated water level is found to be in

agreement with the corresponding observed values. The

modeling results of this paper confirm the explanation of

these two studies.

For verifying the powerfulness (the significance of dif-

ferences between the observed and estimated values) of

different fitted models, the results were also tested using

one way analysis of variance (ANOVA) and t test methods.

Table 5 shows the statistics of the two methods for UL

water level at 5% significance level. If the p value was

higher than 0.05, the differences between observed and

estimated values were not considered significant. The

SARIMA, Mono- and Multiple-TT_SARIMA models yield

smaller testing values with higher p values for the ANOVA

and t test than the last two models. It means that the (a),

(b) and (c) models, which have not been combined with

GARCH approach, seem to be more powerful in water
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Fig. 9 continued

Table 4 Model multi-criteria

for the water level time series
Model RMSE (m) RAE ME (m) R2

SARIMA(3,1,2)(2,1,3)12 0.07 0.03 0.005 0.998

Mono-TT-SARIMA(3,1,2)(2,1,3)12 0.07 0.03 0.005 0.998

Multiple-TT-SARIMA(1,1,0)(1,0,1)12 0.11 0.04 -0.007 0.997

SARIMA(3,1,2)(2,1,3)12-GARCH(2,0) 0.07 0.05 -0.069 0.999

Mono-TT-SARIMA(3,1,2)(2,1,3)12-GARCH(2,0) 0.07 0.04 -0.068 0.999

Bold and italics indicate results with better performance
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level modeling than the (d) and (e) models. In other words,

the similarity between the observed water levels and esti-

mated values from (a), (b) and (c) models are significantly

high. It can be found that the GARCH methodology is not

appropriate to model water level fluctuations based on

these results.

Summary and conclusions

In this paper, a study of changes in the UL water level was

performed incorporating the trend and change point

detection approaches, assessment of the changes in mean

and standard deviation, testing the changes in stationarity

and nonlinearity, and applying the SARIMA, Mono- and

Multiple-TT-SARIMA models. The results are summarized

as follows.

In the case of the time trend models, it was observed that

monthly water level series had a significant statistically

decreasing trend in the mono time-trend case. However, in

the multiple-time trend approach the linear model fitted to

first and second subseries had significant increasing and

decreasing trends, respectively. In the case of the change

point detection method, a significant change point was

detected in 1999. Comparison of the UL water level series

before and after 1999 shows a remarkable change in

descriptive statistics. In the case of testing for equality, the

descriptive statistics showed a remarkable change after

1999. Because the continuous downward trend of the UL

water level after 1999 has occurred in this unique ecosystem.

In the case of the stationarity and nonlinearity approa-

ches, there is evidence of nonstationarity and nonlinearity

behaviors in the UL water levels, so that, the statistic

absolute values of these two approaches for the water level

series after the change point in 1999 are more than those

before 1999. These behaviors may be in the form of

gradual (trend) or abrupt (shift) changes or a combination

of both as evidence of nonstationarity. It has been shown

that the (unconditional) variance of the water level series

has increased, and that the distribution of this time series

became normal and the coefficient of skewness has

decreased after 1999. These behaviors in water level series

can be due to the effect of both natural and human forces

on the Lake’s water budget. A combination of the changes

in inflow caused by climate change and diversion of sur-

face water for upstream use, construction of dams, drought

and mismanagement can be declined the water level in the

recent decades.

After the time series was made trend-free, the SARIMA-

and GARCH-type stochastic models were built and

developed for both mono- and multiple-trend cases. These

models are helpful statistical methods for modeling

monthly variation of water level with a significant trend

and the different fitted models were compared with each

other. The SARIMA and Mono-TT-SARIMA models were

found to be slightly better than that obtained using the

Multiple-TT-SARIMA model. The heteroscedasticity was

not significant in the residuals of the Multiple-TT-SAR-

IMA models, but it was significant in the residuals of the

SARIMA and Mono-TT-SARIMA models. The GARCH

parameters presented the strong heteroscedasticity and the

existence of the short-term persistence in the water level

series. This existence in the heteroscedasticity may lead to

existing frequency of extreme events, such as extreme

hydroclimatic variables in relation to extreme water levels.

Possible future studies

In general, this study demonstrated the applications of two

Mono- and Multiple-TT linear models, the GARCH mod-

eling approach for both improving/not improving the effi-

ciency of the model, and capturing the heteroscedasticity in

the residuals of the linear time series model. In order to

better understand the application of the GARCH modeling

approach and Mono- and Multiple-TT models for water

level of lakes, the use of water levels from different areas

around the world is proposed for the future researches.

Furthermore, the application of nonlinear, multivariate and

multiple time series regression models with exogenous data

such as climate variables is proposed for water level

modeling. The application of multivariate GARCH models

for modeling the effects of streamflow, climate changes

and other factors such as land use/land cover change and

dams on water level fluctuations is also an interesting topic

for future research.

Table 5 Analysis of variance

and t test for different fitted

models to the water level

Model ANOVA t test

F-statistic t-statistic p value

(a) SARIMA(3,1,2)(2,1,3)12 0.0021 -0.0465 0.962

(b) Mono-TT-SARIMA(3,1,2)(2,1,3)12 0.0020 -0.0454 0.963

(c) Multiple-TT-SARIMA(1,1,0)(1,0,1)12 0.0010 0.0325 0.974

(d) SARIMA(3,1,2)(2,1,3)12-GARCH(2,0) 0.4493 0.6703 0.502

(e) Mono-TT-SARIMA(3,1,2)(2,1,3)12-GARCH(2,0) 0.4422 0.6650 0.506
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