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Abstract Soil andWater Assessment Tool (SWAT) and Soil

and Water Assessment Tool-Variable Source Area (SWAT-

VSA) models were employed to predict surface runoff gen-

eration in a watershed of the Himalayan landscape in GIS

environment. Both the models differed in term of defining

hydrological response units (HRUs) that serves as basis in

assigning curve number for surface runoff estimation. HRUs

in SWAT was derived by combination of hydrological soil

groups based on soil types and land use/land cover (LULC)

whereas in SWAT-VSA, it was based on soil wetness index

derived fromdigital elevationmodel (DEM) and LULC.Both

models were calibrated to predict surface runoff at watershed

scale. SWAT-VSA predicted quite well [Root Mean Square

Error (RMSE) ¼ 3:88, Nash–Sutcliffe coefficient of effi-

ciency (NSE) ¼ 0:75] than the SWAT (RMSE ¼ 4:12, NSE

¼ 0:72) model. Paddy (rice) cropland in the watershed gen-

erated highest surface runoff. Integration of topographic

wetness index derived from DEM with SWAT model helped

in estimating spatially distributed surface runoff generation in

the watershed. Study revealed that saturation excess as the

dominant runoff process in the Himalayan landscape and

SWAT-VSA provide more representative results than the

SWAT based on infiltration excess.

Keywords Surface runoff � Watershed � SWAT � SWAT-

VSA � DEM � Himalayan landscape

Introduction

Soil erosion due to accelerating runoff in various land

cover types pose a serious threat to the long term sustain-

ability of the fragile Himalayan landscape (Tiwari 2000).

Runoff generation and soil erosion varies both spatially and

temporarily. Few areas of the watershed are critical and

witness high amount of soil loss caused by surface runoff.

Knowledge of these critical source areas of soil erosion are

necessitated for adopting suitable soil and water conser-

vation measures in the watershed. Surface runoff genera-

tion plays an important role in delimiting these areas. Thus,

effective control of non-point source of sediment loss

transported by runoff requires information about these

areas (Frankenberger et al. 1999) to develop management

strategies for controlling soil degradation and controlling

runoff.

The process of transformation of rainfall into runoff

over a watershed is very complex, highly nonlinear, and

exhibits both temporal and spatial variability (ASCE 2000).

Either infiltration or saturation-excess processes may pre-

dominate temporarily and spatially within a watershed.

Infiltration excess or Hortonian flow occurs when rainfall

intensities exceed the rate at which water can infiltrate into

the soil. Hortonian flow is primarily controlled by soil type,

land cover and rainfall intensity whereas the saturation

excess runoff is generated by direct precipitation on or

exfiltration from saturated areas in the watershed (Ward

1984). Most commonly models used in predicting surface

runoff are Soil and Water Assessment Tool (SWAT)

(Arnold et al. 1993), General Watershed Loading Function

(GWLF) (Haith and Shoemaker 1987), Agricultural Non-

point Source Pollution (AGNPS) (Young et al. 1989),

Areal Non-point Source Watershed Environment Simula-

tion (ANSWERS) (Beasley et al. 1980) and Chemicals,
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Runoff and Erosion from Agricultural Management Sys-

tems (CREAMS) (Knisel 1980). These models are semi-

distributed and usually based on Hortonian overland flow

generation mechanisms following Soil Conservation Ser-

vice Curve Number (SCS-CN) (USDA-SCS 1972) method.

They represent relatively large portions of watersheds as

lumped hydrological units and, therefore, cannot be used to

identify discrete, saturated areas in the watershed. These

models are based on NRCS curve number (CN) equations

to predict surface runoff from watershed. The way the CN

is applied in these models implicitly assumes infiltration-

excess (Hortonian) response to rainfall (Walter and Shaw

2005). In Humid and well vegetated area, especially with

soils underlain by a shallow restricting layer or shallow

water tables witness saturation-excess process of runoff

generation on variable source area (VSAs) (Srinivasan

et al. 2002; Needelman et al. 2004).

SCS-CN based SWAT model is widely used infiltration

excess surface runoff prediction (McCuen 1982; Jain et al.

2010; Qiu et al. 2012) at basin, catchment and watershed

scale due to its simplicity and reliability. This model does

not account variable source area (VSAs) of runoff gener-

ation. It predicts surface runoff considering hydrological

response units (HRUs) which do not allow water flows

among HRUs and therefore, cannot simulate the formation

of VSAs. Easton et al. (2008) proposed topographic wet-

ness index (TWI) to redefine HRUs to predict VSAs for the

watersheds dominated by saturation-excess runoff (Lyon

et al. 2004; Schneiderman et al. 2007). Steenhuis et al.

(1995) and Schneiderman et al. (2007) showed how CN

models can be used to predict the distribution of VSAs and

explicitly simulated saturation-excess runoff from VSAs.

Thereafter, Easton et al. (2008) re-conceptualized SWAT

to model which integrates topographic parameter to simu-

late the spatial distribution of runoff based on saturation

excess within the watershed.

Topography of watershed plays a dominant role in

spatial distribution of soil properties and hydrological

processes (McKenzie and Ryan 1999; Bell et al. 1995;

Beven and Wood 1983) and thus controlling runoff gen-

eration processes in the hilly terrain (Krause and Flügel

2001). In recent years, digital terrain models (DTMs)

demonstrated potential application in predicting soil

hydrological parameters and their spatial distribution (Park

et al. 2001; Romano and Palladino 2002; Martinez et al.

2010) and it had helped in improving runoff estimation in

the hilly landscape (Lyon et al. 2006). TOPMODEL (to-

pography based hydrological model) (Beven and Kirkby

1979) was the earliest model that provided the model

structure to integrate DEM as (TWI) to simulate variable

source area (VSA) hydrology and thereafter it had been

applied outside of TOPMODEL. TWI has been found

effectively in predicting (VSA) for watersheds dominated

by saturation-excess runoff (Western et al. 1999; Lyon

et al. 2004; Agnew et al. 2006; Schneiderman et al. 2007).

While modeling surface runoff in the data scarce hilly and

mountainous landscape DTM derived terrain indices can be

used to represent spatial distribution of soil hydraulic

properties with limited field observations, since soil

hydraulic conductivity data may not be available for most

of the inaccessible areas. Moreover, the soil variability

strongly correlates with the topographic features, because

of the relation of the soil genesis to topology and hydrology

(Page et al. 2005; Sharma et al. 2006). In spatial hydro-

logical modeling, runoff generation seems to be very sen-

sitive to the variation of soil hydraulic conductivity (Herbst

et al. 2006) and tends to vary widely in space.

Himalayan landscape is characterized as mountainous

and hilly topography with complex slope. The soils in the

region are dominantly shallow to moderately deep under-

lain by lithic rock. The area witness high rainfall and

characterized by humid to sub-humid climate. They are

composed of hillslopes where surface water flows from

upper to lower slopes develops sub-surface flow and satu-

ration of sub-soils which facilitates saturation-excess run-

off. Agriculture field lying at lower hillslopes cultivated

mainly for paddy crop and remain saturated with water.

Thus, the watershed witnesses variable source area (VSA).

It requires incorporating VSA hydrology concept into

models employing CN-type functionality to capture spatial

variability of saturation excess runoff source area (Easton

et al. 2008). Therefore, the present study aims to study

performance of SWAT and SWAT-VSA in predicting

surface runoff at watershed scale and to identify spatially

distributed runoff source area in the watershed of Hima-

layan landscape.

Materials and methods

Study area

The watershed located in the outer Himalayan landscape in

Dehra Dun district Uttarakhand state, India (Fig. 1). It is

located between 30�2801500–30�2804400 and 30�2801500E
latitude and 77�5404600–77�5504500E longitude covering an

area of 57 hectare and the elevation ranges from 920 to

1480 min the watershed. The watershed is characterized by

moderately steep to very steep sloping hills which drains

by an ephemeral channel that runs from north-west to

south-west. The mean annual rainfall is 1753 mm of which

about 60% (about 1000 mm rain) is received during

monsoon season (June–September) and the remaining 40%

during the winter season (December–April). Soils belong

to soil taxonomy family of Loamy skeletal Typic Udorth-

ents, Coarse loamy and Fine loamy Typic Hapludepts.

202 Page 2 of 11 Model. Earth Syst. Environ. (2016) 2:202

123



Maize and paddy (rice) crops are grown in the rainy season

(kharif) and wheat and mustard in winter (rabi) season. The

natural vegetation cover comprises of Sal forest (Shorea

robusta), shrubs (Lantana camera, Ipomoea batata) and

grasses (Saccharam spontanium) and barren lands at the

higher elevation regions on steeper slopes.

Runoff modelling

Watershed in Himalayan landscape characterized by rug-

ged terrain that develops variable source area (VSA) which

is controlled by topography for runoff generation. SWAT

and the SWAT-VSA models were tested in order to find

suitable method for runoff estimation at watershed scale as

well as to identify spatially distributed area of surface

runoff generation. The description of the models as

follows:

SWAT model

Soil and Water Assessment Tool (SWAT) model (Arnold

et al. 1998) is a distributed, continuous model operating

on a daily time step to predict runoff, erosion, sediment

and nutrient transport from agricultural watersheds under

different management practices (Arnold et al. 1996).

SWAT uses the CN method to partition precipitation into

either infiltration, which can then reach a stream by

several flow paths, or to overland runoff, which flows

directly to a stream (Neitsch et al. 2002). The model

simulates surface runoff volumes for each HRU using the

SCS-CN (curve number) method. The CN equation was

originally developed by Rallison (1980) and estimated

total watershed runoff depth Q (mm) for a stream

(USDA-SCS 1972). The runoff prediction with SCS curve

number equation is given by:

Q ¼ Pe2= Peþ Seð Þ for Pe[ Ia
ð1Þ

Se ¼ ð25; 400=CN) �254

where, Q is the surface runoff depth (mm), Ia is the initial

abstraction (mm), Pe is effective rainfall (mm) computed

by subtracting Initial abstract ion (Ia) from rainfall (P), Se

is the depth of effective available storage within the

watershed in mm, and CN is the curve number which

originally derived as function of soil and land use types. Ia

is estimated as an empirically derived fraction of available

watershed storage (USDA-SC 1972).

The curve number is a function of the soil’s perme-

ability, land use and antecedent soil moisture (AMC)

conditions. Soil was classified in one of the four hydro-

logical soil groups (HSGs) according to its runoff potential.

Other than soil properties and land use, AMC conditions

also affect the curve number. SWAT model adjusts the CN

according to the antecedent moisture condition calculated

from daily rainfall data.

India

Uttarakhand state 

Watershed 

Dehra Dun 

Fig. 1 Location of watershed in Dehra dun district, Uttarakhand, state, India
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SWAT-VSA model

The model simulates surface runoff volumes using SCS-CN

equation. The significant difference in SWAT-VSA lies in

the redefining of the HRUs in terms of CN-VSA (variable

source area) hydrology. In SWAT model, HRUs were

defined by land-use and soil types whereas in SWAT-VSA,

soil wetness index (SWI) was used in combination with land

use to define the HRUs. Thus, contrary to SWAT where

primary mechanism is assumed to be infiltration excess, the

SWAT-VSA takes into account saturation excess response

to rainfall. In SWAT-VSA, the CN equation was re-inter-

preted in terms of a saturation-excess runoff process.

The SCS-CN equation (Eq. 1) is an empirical relation-

ship between rainfall and runoff, and is therefore inde-

pendent of the underlying runoff generation mechanism.

Steenhuis et al. (1995) differentiated this equation to

express the saturated fraction (Af) contributing runoff as:

Af ¼ 1� S2

Pe þ Seð Þ2
ð2Þ

where, Pe is the effective precipitation and defined as P-Ia,

or the amount of water required to initiate runoff. It is

assumed that runoff only occurs from areas that have local

effective storage, re, less than Pe. Therefore, by substitut-

ing re for Pe in Eq. 2, the relationship for the fraction of

the watershed area, As, that has local effective storage Bre
for a given overall watershed storage of Se becomes

(Schneiderman et al. 2007):

As ¼ 1� S2e

re þ Seð Þ2
ð3Þ

here, Se and Ia are watershed properties while re is defined
at local level. Solving for re gives the maximum effective

local soil moisture storage within any particular fraction,

As, of the watershed area (Schneiderman et al. 2007):

re ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� As

� 1

r

� �

ð4Þ

For a given storm event with precipitation P, the fraction

of the watershed that saturates first (As = 0) has local

storage re = 0, and runoff from this fraction will be P-Ia.

Successively drier fractions retain more precipitation.

Runoff qi (mm) for an saturated area, can be expressed as

(Schneiderman et al. 2007):

qi ¼ Pe � re for Pe [ re ð5Þ

And for the unsaturated area

qi ¼ 0 for Pe � re ð6Þ

To avoid changing any SWAT code, Eq. 5 can be

approximated with CN equation (Easton et al. 2008)

qi ¼
P2
e

Pe þ re
ð7Þ

qi predicts the fractional area of the watershed contributing

to runoff without indicating important information about

where that area is located in a watershed. To determine

this, soil topographic index was used (Lyon et al. 2004)

Soil wetness index ¼ ln
a

T tan b

� �

ð8Þ

where, a is the upslope contributing area for the cell per

unit of contour line (m), tan b is the topographic slope of

the cell, and T is the soil transmissivity (soil depth 9 sat-

urated soil hydraulic conductivity) of the uppermost layer

of the soil (m2 per day).

The effective value of re can be defined linearly on the

basis of wetness value obtained from the soil wetness

index, the value of re is set to minimum for unsaturated

zone (low index) and to maximum for saturated zone (high

index) (Lyon et al. 2004; Schneiderman et al. 2007;

Zachary et al. 2008).

Data processing

AVSWAT-2000 interface of SWAT model was used for

the model calibration instead of AVSWAT-X interface of

SWAT model, as it follows automatic calibration process.

SWAT model requires several data ranging from soil, land

use, topography and climate etc.

Land cover/land use data

IRS Resourcesat-1 LISS IV satellite data (5.8 m spatial reso-

lution) was used to prepare land use/land cover by visual

method. The watershed was traversed prior to rainy season in

the months of May–June to record land use/land cover infor-

mation at 21 sites with their geographic location using GPS.

The FCC image characteristics of various land use/land cover

were established and visual interpretation was carried out by

on-screendigitization toprepare landuse/covermap (Fig. 2) of

thewatershed. It revealedLULCclasses of forest cover (30%.),

barren and scrub (18%), cropland (51%) and settlement (1%).

Paddy and maize crops are grown in the rainy season (July–

October). The information on average plant height and plant

density of the cropswas observed at 15 days interval during the

months of July–15October, 2008 at randomly selected 12field

sites of plot size of 1–2 m2 in the watershed.

Soil characteristics

Thewatershedwas delineated into land units of hilltop, upper,

middle and lower hillslopes based on topography and domi-

nant land use/land cover (Fig. 3). Soil types in the watershed
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were found to be closely associated with land use/land cover

types. The soils in the hilltops (H1) (6–8% slope) were grav-

elly loamy sand, shallow (\20 cm) in depth and containing

coarse fragment of 40–45%. These soils easily got saturation

condition due to its shallow depth. Upper hillslope (H2)

havingvery steep (50–70%)slope andmid-hillslope (H3)with

steep (30–35%) slope were characterized bymoderately deep

and deep soil depth, respectively. The soils are sandy loam in

texture and contain 35–50% coarse fragments in the sub-

surface layer. These soils are underlain by stones/weathered

rock fragments. The soils at lower hillslope (H4) are deep

(80–110 cm), loam in texture, 10–15% graves/pebbles in

surface and are moderately well drained. These soils occupy

by the paddy fields and remain saturated or pondedwith water

due to traditional puddling and management practices. The

upper hillslope (H2) are under dense forest cover and mid-

hillslope (H3) is cultivated for maize crop. These soils are

underlain by stones/weathered rock fragments or compacted

C-horizons with large amount of coarse fragments which

ceases the downward movement of water or reduces the

H1

H2

H3

H4

±

b

a

Fig. 2 a Soil map of the

watershed, b land use/land

cover map of the watershed
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permeability of soils. The necessary input information namely

soil texture, bulk density, HSG, soil depth, rock fragments,

organic carbon content, soil erodibility factor (K) required by

the SWAT model was extracted from the soil database for

each soil type.Availablewater content (AWC)was calculated

from soil–plant–air–water (SPAW) software based on soil

texture and organic matter content.

During fieldwork (18 July–12 August 2008), soil mois-

ture was measured in transectsat hilltop, upper, mid and

lower hillslopes using Theta Probe during 18 July to 12

August, 2008. In total 23 sites were observed for soil

misture. Saturated hydraulic conductivity (Ksat) was also

measured in the dominant land use/cover types in the

hillslopes using double ring infiltrometer.

Soil wetness index (SWI)

IRS stereo Cartosat satellite data was used to generate

digital elevation model (DEM) with grid size of 5.8 m. The

generated DEM had the vertical accuracy of RMSE

4.48 m. DEM was used to prepare slope (in radiance) and

flow accumulation maps using ArcGIS. The flow accu-

mulation map was generated following multiple flow

algorithm (Quinn et al. 1991) embedded in the Arc-GIS.

Soil wetness index (SWI) was prepared using slope,

flow accumulation, soil transmissivity (Ksat) and soil depth

maps to derive SWI map by implementing Eq. 8 in ArcGIS

9.2, stated below:

DEM was processed further to delineate sub-watershed

by defining outlet point. First order stream/drainage lines

from toposheet (1:50,000 scale) was provided to the SWAT

model for better hydrographic segmentation and sub-wa-

tershed delineation (Neitsch et al. 2005). Topographic

index concept effectively predicts VSAs for many water-

sheds dominated by saturation-excess runoff (Western

et al. 1999; Lyon et al. 2004).

Weather data and surface runoff measurement

Daily rainfall data was obtained from the automatic tipping

bucket rain gauge with HOBO data logger installed in the

watershed. Rainfall data for 2008 was processed in Box Pro

4.0 software to obtain the rainfall and number of rainy days

in months from July to October. Weather data of the mean

monthly maximum and minimum temperature, wind

velocity, and relative humidity were obtained from Auto-

matic weather station (AWS) installed at 1 km. away from

the sub-watershed outlet.

A rectangular weir structure was constructed at the outlet

of the watershed to record surface run-off using automatic

stage level runoff recorder. It records daily surface runoff at

15 min interval from a catchment of 57 ha. The total dis-

charge was calculated using daily runoff-hydrographs in

Excel. Daily Surface runoff measurements of selected rain

events of the year 2008 were used to calibrate and simulate

the model for predicting surface runoff.

Soil moisture field measurement

Soil moisture variations are to an extent, dependent upon

the topographic position in a landscape and has a linear

relation with topography (Rohde and Seibert 1999; Sor-

ensen and Seibert 2007). Soil moisture at the surface

(0–10 cm) and sub-surface (10–20 cm) layers were mea-

sured in transect using Theta Probe during 18 July–12

August, 2008. During the field observations, soil moisture

values of the sub-surface (10–20 cm) was observed very

close to the surface layer (0–10 cm), thus indicating the

saturation of the lower layer with progress of monsoons.

High soil moisture content was observed at the hillslopes

with the highest SWI values in the watershed. Slightly

more variation in soil moisture (0–10 cm) was observed at

SWIðmapÞ ¼ Natural logðlgÞ FlowaccumulationðmapÞ � cellsize � cellsize

TanðslopemapðradiansÞÞ � ðKsatðmapÞ � soildepthðmapÞÞ

� �

ð9Þ
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and SWAT-VSA models
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the upslope area (lower SWI) and less variation in the mid

and lower hillslope (higher SWI) area indicating saturation

of these area. Paddy fields were located at lower (toe)

hillslope in the watershed remain saturated as they are

flooded with water. These observations suggested variable

source area of runoff generation and dominantly saturation

excess surface runoff processes in the landscape.The

watershed received continuous rains (21, 27 and 25 days

rain in months of July, August and September of 2008,

respectively) that have kept the soil moist and saturated in

these months. It facilitated saturation-excess surface runoff

generation.

Generating hydrological response units (HRUs)

The model predicts surface runoff for HRUs based on CN

value following look up table. In SWAT, HRU is charac-

terized by unique combination of land-use, management

and HSG derived from soil map (Neitsch et al. 2002).

AVSWAT model then automatically calculates CN values

for each HRUs. In the SWAT-VSA model, the HRUs were

defined by combination of SWI and land cover/land use

classes. The CN was then assigned based on the HRUs.

Once the initial CN defined, the management option is used

to redefine the CN value. Important consideration in

modelling was to define information pertaining to man-

agement for the various land use/land cover. For the main

crops such as paddy and maize, plant growing season, til-

lage practices and harvesting period information were

collected and based on this information management

practices (P) factor were assigned. Priestley–Taylor

method (Priestley and Taylor 1972) was chosen for esti-

mating evaporation over the others methods because of its

suitability for humid conditions and ability to generate

daily values from average data (Neitsch et al. 2005).

Skewed normal distribution method (Nicks 1974) was used

to determine rainfall amount for the area based on the daily

rainfall data.

Model calibration and validation

The hydrologic calibration was performed using daily

runoff data at the outlet of the watershed. Models were run

to predict the daily surface runoff on selected rain events

and were calibrated by changing the sensitive parameters

such as CN, AWC, USLE-P, ESCOUSLE-C and BIOMIX

(Table 1). The calibration was carried out by changing the

parameters until the runoff and predicted values obtained

closely. These parameters were adjusted with trial and error

adjustment to predict near to the observed values. CN,

AWC and ESCO are basic water balance parameters rec-

ommended in the SWAT user manual (Neitsch et al. 2005).

ESCO factor was not considered for the calibration

process, since its effect on the model output was negligible

due to humid climatic conditions in the area.

After the calibration, model was run to predict the sur-

face runoff from each HRU on daily time step. The model

performance was evaluated qualitatively using 1:1 plot of

predicted and observed runoff. Selected rain events (22

nos.) of the year 2008 showing clear hydrographs were

used for calibration (5 nos.) validation (17 nos.) of the

model for surface runoff. Quantitatively, Nash–Sutcliffe

coefficient of efficiency (NSE) (Nash and Sutcliffe 1970)

and Root Mean Square Error (RMSE) were used to eval-

uate the goodness of fit of calibration.

Results and discussion

SWAT being lumped model implicitly ignore distribution

of intra-watershed processes as they simulate integrated

watershed response whereas SWAT-VSA captures the

spatial distribution of runoff source area (Easton et al.

2008). In the study, SWAT and SWAT-VSA models were

Table 1 Sensitive parameters of SWAT and SWAT-VSA models

S. no Parameter Change SWAT SWAT-VSA

Surface runoff Surface runoff

1 CN -4 -33.5 -31.5

2 CN ?4 59 56

3 AWC -0.05 -8 -3.3

4 AWC ?0.05 -1.92 -5.5

5 ESCO -76 0 0

6 ESCO ?76 0 0

7 USLE-C -25 1.15 –

8 USLE-C ?25 1.15 –

9 USLE-P -5 -45.23 –

10 USLE-P ?5 -45.23 –

11 SLOPE -25 1.15 –

12 SLOPE ?25 1.15 –

13 SLSUBBS -25 19.9 –

14 SLSUBBS ?25 19.9 –

15 BIOMIX -50 -45.23 –

16 BIOMIX ?50 -45.23 –

Table 2 Evaluation of SWAT, SWAT-VSA and modified SWAT-

VSA model performance

S. no. Low to moderate rainfall events With all rainfall events

SWAT SWAT-VSA SWAT SWAT-VSA

1 r2 0.97 0.97 0.89 0.89

2 RMSE 4.12 3.88 11.82 10.86

3 NSE 0.70 0.75 0.42 0.49
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calibrated to predict runoff at watershed scale. There were

4 and 12 numbers of HRUs generated in SWAT and

SWAT-VSA models, respectively. CN was assigned based

on SWI classes (Easton et al. 2008) and land use/land cover

in SWAT-VSA. HRUs generation in SWAT-VSA provided

an opportunity for implementing the model as SWAT

model without altering SWAT model structure. Thus, it

facilitated for assigning CN values automatically as in

SWAT model.

For analysing the sensitivity of the parameters used in

runoff prediction, CN, AWC and USLE-P were altered by

value, whereas ESCO, USLE C, SLOPE (steepness),

SLSUBBSN (slope length), BIOMIX were modified by

percentage. Curve number (CN) was found to be most sen-

sitive parameters followed by available water capacity

(AWC) for runoff prediction (Table 1). Positive and

negative change in AWC value resulted into decrease in

runoff, because of the complex relationship of theAWCwith

antecedent rainfall. Surface runoff was not found sensitive to

ESCO, because of the humid climatic conditions in the area.

Surface runoff modelling

Rainfall and predicted surface runoff of the watershed with

SWAT and SWAT-VSA models is shown in Fig. 3.

Among all 17 rain events, rainfall varied from 9.4 to

117 mm. Surface runoff predicted very well except of high

rainfall events ([100 mm) with the models (Table 2). The

study aims to spatial prediction of surface runoff in the

watershed. SWAT model predicted highest amount of

surface runoff from paddy fields (HRU1) followed by scrub

(HRU4), maize (HRU2) and forest cover (HRU3) (Fig. 4a).

Fig. 4 a SWAT predicted

surface runoff from various land

cover types, b SWAT-VSA

predicted surface runoff in SWI

classes
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Rice crop and scrub areas located near the streams con-

tributed same runoff to that located far away from the

streams. In the SWAT-VSA, 11 HRUs were generated

from the combination of three SWI classes and four major

land uses. Surface runoff varied in SWI class according to

the land use classes (Fig. 4b). The highest runoff was

modelled from HRU created with SWI-VI (highest prone to

saturation) having paddy area (land use having high runoff

potential) followed by scrub land cover, of similar char-

acteristics to that of former. Similarly the maize crop area

in SWI-I accounted for low runoff in comparison to the

maize located in SWI-II/III. The SWAT-VSA accounted

soil wetness index (topography/soil transmissivity) and

land use into consideration for modelling runoff, in other

words the model took into account the degree of saturation

along with effect of land use/land cover. Integration of

SWI incorporated variable source area concept hence,

improved the prediction of surface runoff with SWAT-

VSA model.

The trend line (1:1 line) showed that the model over-

estimated the surface runoff for high rainfall volume

(Fig. 5a, b). For low to moderate rainfall events surface

runoff was well estimated (Fig. 6a, b) and similar obser-

vation was reported by Haregeweyn and Yohannes (2003).

Evaluations of the model performance showed that the

models predicted well (R2 value of 0.89 when all rain

events were considered and r2 of 0.97 for low to moderate

rain events excluding high rainfall events (Table 2). Runoff

prediction was observed very well for low to medium

amount of rainfall events whereas poor in case of high

amount of rainfall events. Srinivasan et al. (2002) showed

that for extremely large rain events both infiltration excess

and saturation excess runoff processes may be possible

which could result in high runoff. Simulation of runoff with

these models is independent of rainfall intensity; this may

be the reason for over estimation for large rain events

(Arnold et al. 2000).

Nash–Sutcliffe coefficient of efficiency (NSE) (Nash

and Sutcliffe, 1970) and Root Mean Square Error (RMSE)

were used to evaluate the goodness of fit of observed and

predicted data. The closer the NSE value to 1.0 the better is

the estimation by the model. NSE more than or equal to

0.75 is considered to be an excellent estimate and NSE

between 0.75 and 0.36 is regarded to be satisfactory

(Motovilov et al. 1999). The closer the RMSE value to

zero, the better is the estimation. For all rain events

including high rainfall events, the RMSE for predicted to

observed runoff was 11.82 and 10.86 for SWAT and

SWAT-VSA, respectively. When the high rainfall event

(for which models were still predicting high runoff) was

neglected then the RMSE of 4.12 and 3.88 were estimated

for SWAT and SWAT-VSA, respectively. NSE showed

Fig. 5 Observed vs. predicted runoff (for all rainfall events).

a SWAT, b SWAT-VSA

Fig. 6 Observed vs. predicted runoff (for low to moderate rainfall

events). a SWAT, b SWAT-VSA
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that the SWAT-VSA (NSE = 0.75) performed better in

predicting runoff as compared to SWAT (NSE = 0.70).

The study clearly showed integration of SWI in SWAT

model has improved the runoff prediction as well as pro-

vided spatially distributed surface runoff in the watershed.

Conclusion

SWAT model primarily considers infiltration excess runoff

generation whereas SWAT-VSA accounts saturation excess

runoff generationmechanism. Sub-humid climatic condition

leading to continuous rains in rainy season supported the

saturation of soils that caused saturation excess runoff gen-

eration process in dominance in the Himalayan landscape.

Mid and lower hillslopes in the watershed showed saturation

of the fields in large.The soilmoisture varies with convergent

topography suggested variable source area of runoff gener-

ation. Digital terrain model (DTM) derived soil wetness

index (SWI) provided a unique opportunity to account spa-

tial variability of soil hydrological condition that controls

runoff generation. Highest surface runoffwas predicted from

HRU generated with SWI-III (highly prone to saturation)

with paddy cropland and lowest fromHRUwith SWI-I lies in

hill top area. Paddy croplands followed by scrub, maize and

forest cover as most contributing area of surface runoff

generation in the watershed. HRUs generation in SWAT-

VSA provided an opportunity of predicting spatial dis-

tributed surface runoff generation without altering SWAT

model structure. Study revealed that saturation excess as the

dominant runoff process in the Himalayan landscape and

SWAT-VSA models based on this method provide more

representative results than the SWAT based on infiltration

excess.
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