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Abstract The present paper deals with a food chain model

consisting of three species phytoplankton, zooplankton and

fish. We have divided the present paper into two parts. In

the first part, we have assumed that the fish population is

harvested using a non-linear harvesting function. Consid-

ering this rate of harvesting ‘E’ as a control parameter, we

have estimated different ranges of harvesting parameter for

maintaining the sustainability in the plankton ecosystem.

Moreover, the bifurcation analysis of the system is carried

out using normal form theorem by taking ‘E’ as bifurcation

parameter. In the second part, a digestion delay corre-

sponding to zooPlankton–fish interaction is introduced for

more realistic consideration of the real world problem.

Taking harvesting parameter in the stability range, the

effect of time delay on the given system is investigated.

This research demonstrate that for a certain range of delay,

system enters into the excited state with the existence of

stability switches which seems new findings for the

Plankton–fish system. Explicit results are derived for sta-

bility and direction of the bifurcating periodic solution by

using normal form theory and center manifold arguments.

To validate our analytical findings numerical simulations

are also executed.

Keywords Plankton � Fish � Quadratic harvesting � Time

delay � Stability switches � Normal form � Center manifold

theorem

Introduction

A major concern in population ecology is to understand

how a population of a given species influences the

dynamics of populations of other species. The dynamic

relationship between predator and their prey has long been

and continue to be one of the dominant themes in mathe-

matical ecology due to its universal existence and impor-

tance (Berryman and Millstein 1989). The pioneering work

of May (1976) has established some mathematical models

based on certain ecological principles to explore the

complexity of the ecological system. The research of the

last two decades have demonstrated that very complex

dynamics can arise in three or more species food chain

models (Hastings and Powell 1991; Klebanoff and Hast-

ings 1993; Rai and Upadhyay 2004; Gakkhar and Naji

2005; Upadhyay and Chattopadhyay 2005) including

quasi-periodic or chaos. A great number of theoretical

studies indicates that, indeed, plankton systems are, in

principle, capable to generate their own chaos. Prey-

predator models (e.g., phytoplankton-zooplankton interac-

tion) in seasonally varying environments have been proved

to be chaotic (Inoue and Kamifukumoto 1984; Klebanoff

and Hastings 1994; Kuznetsov and Rinaldi 1996). Chaotic

behavior in tritrophic food chain interactions have been

shown in Gilpin (1979), Hogeweg and Hesper (1978),

Scheffer (1991). It is well established that toxin has great

impact on phytoplankton-zooplankton interaction and can

be used as a mechanism of controlling complexity (bloom)

of the plankton ecosystem (Pal et al. 2007; Chakarborty

et al. 2008; Sarkar and Chattopadhyay 2003; Mukhopad-

hyay and Bhattacharyya 2006; Hansen 1995; Ives 1987;

Buskey and Hyatt 1995). Recently, Upadhyay and Chat-

topadhyay (2005), Upadhyay et al. (2007), Upadhyay and

Rao (2009) have studied a series of mathematical models
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representing the prey(TPP)-specialist predator(Zooplank-

ton)-generalist predator(Fish) interaction in the context of

deterministic chaos in the plankton system. They have

studied the role of toxin as a control parameter in stabi-

lizing the plankton system by using different response

functions for fish grazing.

Further, the introduction of strictly planktivorous fish to

lakes can alter plankton communities via cascading inter-

actions in food webs, where strong fish predation on zoo-

plankton leads to reduction of their grazing pressure on

algae. Many limnological studies have focused on this

dramatic impact of fish on plankton communities (Car-

penter et al. 1987; Leavitt and Findlay 1994; Pace et al.

1999). Furthermore, enhancement of piscivorous fish by

stocking and catch restrictions has been attempted in sev-

eral eutrophic or hypertrophic waters, and has resulted in

the elimination of excess algae (Carpenter et al. 1987;

Rinaldi and Solidoro 1998; Benndorf et al. 1984; McQueen

et al. 1989; Lazzaro 1987). Recently, research carried by

authors in Strock et al. (2013) reveals that the introduction

of white perch in eutrophic lake reduces the algal pigments

concentration and results high label of stability in trophic

interaction due to the cascading effects of white perch.

Attayde et al. (2010) in their model, also supports the idea

that omnivory decreases the amplitude of limit cycles and

increases the persistence in plankton dynamics.

Keeping in view the above findings, here, we have

considered a tri-trophic food chain model of Plankton–fish

interaction. We have assumed that the generalist predator

(fish) is harvested using a nonlinear harvesting function

(Feng 2014). Our major concern in this research to deter-

mine the impact of non-linear harvesting on the Plankton–

fish interaction by predicting different ranges of harvesting

parameter.

So far many researcher (Upadhyay et al. 2007; Upad-

hyay and Rao 2009, references there in) have studied that

toxicated phytoplankton may be used as controller and can

stabilize the Plankton–fish dynamic.

In this paper, we have introduced quadratic harvesting

of the fish population and proposed different ranges of

harvesting for regulating agencies so that they can utilize it

for future harvesting along with the stabilization of the

ecosystem.

The organization of our paper is as follows: In Sect. 2,

we have developed a mathematical model followed by its

properties in Sect. 2.1. The stability and bifurcation anal-

ysis of the given model system with rate of harvesting as a

bifurcation parameter is presented in Sect. 3. In Sect. 4, we

have assumed that there is a gestation delay in fish popu-

lation and considering this time delay as a bifurcation

parameter, we have discussed its possible impact on the

Plankton–fish dynamic. The stability and bifurcation

properties are provided in Sect. 5. The justification of our

analytical findings by numerical simulation and concluding

remarks are given in Sects. 6 and 6.2.

The mathematical model

Let p(t) be population density of the toxin producing

phytoplankton (prey) which is predated by individuals of

specialist predator zooplankton of population density

z(t) and this zooplankton population, in turn, serves as a

favorite food for the generalist predator (fish of mollusca)

population of size f(t). This tri-trophic interaction is rep-

resented by the following system of ordinary differential

equation as,

dp

dt
¼ rp� d1p

2 � a1
p

aþ p
z;

dz

dt
¼ c1a1

p

aþ p
z� d2z� a2

z

bþ z
f � h

p

aþ p
z;

df

dt
¼ �d3f þ c2a2

z

d þ z
f � Ef 2;

8
>>>>>><

>>>>>>:

ð1Þ

where r be the growth rate of the TPP species, a1 be the

maximum ingestion rate by zooplankton population, c1 is

the fraction of biomass converted to zooplankton, d1, d2, d3
be the mortality rates of phytoplankton, zooplankton and

fish population respectively. Let a2 be the rate at which fish

graze on specialist predator (zooplankton) and c2 is the

corresponding biomass conversion by fish predator. a, b

and d are the half saturation constants. The effect of

harmful phytoplankton species on zooplankton is modeled

by Holling-II type response function ‘ p
ðaþpÞ’. It is assumed

that the fish population is harvested quadratically at con-

stant rate of harvesting E.

Stability properties of equilibria

The given model system (1) has the following equilibrium

points in the closed first octant R3þ ¼ ðp; z; f Þ : p� 0;

z� 0; f � 0

(i) R0 ¼ ð0; 0; 0Þ, a trivial equilibrium always exist

and unstable,

(ii) R1 ¼ ð ad2
c1a1�h�d2

; 1
a1
ðr � d1p�Þðaþ p�Þ; 0Þ, the

boundary equilibrium exists when the conditions

ðc1a1 � hÞ[ d2 and p�\ r
d1
are satisfied and

(iii) The interior equilibrium point R� ¼ ðp�; z�; f �Þ of
(1) exists if and only if conditions p�\ r

d1
and

z�

dþz� \
d3
c2a2

are satisfied and is given by,

ðc1a1 � hÞ p�

aþp� � d2 ¼ a2f �

bþz�, z
� ¼ ðr�d1p�Þðaþp�Þ

a1
and

f � ¼ 1
E
ð�d3 þ c2a2 z�

dþz�Þ
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In this paper, our main interest is to investigate the stability

of the interior equilibrium R� for coexistence of the

population.

Using the transformation, p ¼ x1 þ p�, z ¼ x2 þ z� and

f ¼ x3 þ f �, the linearization of given system (1) in the

neighborhood of R� gives the following system,

where a100 ¼ r � 2d1p� � a1 a

ðaþp�Þ2 z, a010 ¼ �a1
p�

ðaþp�Þ,

a200 ¼ �2d1 þ 2aa1z�

ðaþp�Þ3, a110 ¼ � aa1
ðaþp�Þ2, a300 ¼ � 6aa1z�

ðaþp�Þ4,

a210 ¼ 2aa1
ðaþp�Þ3, b100 ¼

c1a1az�

ðaþp�Þ2 �
haz�

ðaþp�Þ2, b010 ¼
ðc1a1�hÞp�
ðaþp�Þ � d2

� ba2f �

ðbþz�Þ2, b001 ¼ � a2z�

ðbþz�Þ, b200 ¼ �2ac1a1z�

ðaþp�Þ3 þ 2ahz�

ðaþp�Þ3, b020 ¼
2a2bf �

ðbþz�Þ3, b110 ¼ ac1a1
ðaþp�Þ2 �

ah
ðaþp�Þ2, b011 ¼ � ba2

ðbþz�Þ2, b300 ¼
6aðc1a1�hÞz
ðaþp�Þ4 , b030 ¼ � 6ba2f �

ðbþz�Þ4, b210 ¼ � 2ac1a1
ðaþp�Þ3 þ

2ah
ðaþp�Þ3, b021 ¼

2ba2
ðbþz�Þ3, and c010 ¼ c2a2df �

ðdþz�Þ2, c001 ¼ �d3 þ c2a2z�

dþz� � 2Ef �,

c020 ¼ �2c2a2df �

ðdþz�Þ3 , c002 ¼ �2E, c011 ¼ dc2a2
ðdþz�Þ2, c030 ¼

6c2a2df �

ðdþz�Þ4 ,

c021 ¼ �2dc2a2
ðdþz�Þ3 .

Rewriting the given system in the form, _X ¼ MX þ R,

we have

M ¼
a100 a010 0

b100 b010 b001

0 c010 c001

0

B
@

1

C
A; X ¼

x1

x2

x3

0

B
@

1

C
A

and R is the matrix containing the nonlinear terms of (2).

The characteristic equation corresponding to the matrix

M is,

k3 þ B1k
2 þ B2kþ B3 ¼ 0: ð3Þ

Where, B1 ¼ �ða100 þ b010 þ c001Þ, B2 ¼ a100ðb010 þ c001Þ
þb010c001 � a010b100 � b001c010, B3 ¼ a010b110c001 � a100
ðb010c001 � b001c010Þ.

If B1 [ 0, B3 [ 0 and in addition B1B2 � B3 [ 0, then

using Routh-herwitz criterion, system (1) will be locally

asymptotically stable around R�.
Now, let us choose E, the rate of harvesting as a bifur-

cation parameter.

Theorem 2.1 Let B2 [ 0. Then (3) will have a pair of

purely imaginary roots provided H � B1B2 � B3 ¼ 0 and

system (1) will undergo a hopf-bifurcation if ½ d
dE
ðHÞ�E¼E0

6
¼ 0 where E0 is the value of E correspond to H ¼ 0.

Proof Proof is obvious and is left for the reader. h

Analysis of bifurcating solutions

In the last section, we have chosen E as the bifurcation

parameter and deduced that the system undergoes a Hopf-

bifurcation as E passes through some threshold value E0. In

this section we perform a detailed analysis about the

bifurcating solutions (Hassard et al. 1981).

Let E1 ¼ E0 � E and denote the matrix M as MðEÞ ¼
FXðX�;EÞ, where the given system is of the form
_X ¼ FðX;EÞ.
Let q(E) and q̂ðEÞ be the eigenvectors of M(E) and

MtðEÞ respectively corresponding to simple eigenvalues k
and �k. So we have MðEÞq ¼ kðEÞq,

For an imaginary value of k ¼ ir0 and q ¼ ðq1; q2; q3Þ,
we have

q1 ¼ a010b001 ¼ f1 þ if2,
q2 ¼ �a100b001 þ ix0b001 ¼ g1 þ ig2,
q3 ¼ a100b001 � a010b100 � x2

0 � ix0ða100 þ b001Þ
¼ h1 þ ih2,

We normalize q̂ relative to q, so that

\q̂; q[ ¼ 1: ð4Þ

where \:; :[ denote the Hermitian product,

\u; v[ ¼ R �uivi,

Also

\q̂; �q[ ¼ 0: ð5Þ

Let q̂ ¼
q̂1
q̂2
q̂3

0

@

1

A,

From (4) and (5), we get

�̂q1ðf1 þ if2Þ þ �̂q2ðg1 þ ig2Þ þ �̂q3ðh1 þ ih2Þ ¼ 1: ð6Þ

dx1

dt
¼ a100x1ðtÞ þ a010x2ðtÞ þ a200x

2
1 þ a110x1x2 þ a300x

3
1 þ a210x

2
1x2 þ � � �

dx2

dt
¼ b100x1ðtÞ þ b010x2ðtÞ þ b001x3 þ b200x

2
1 þ b020x

2
2 þ b110x1x2 þ b011x2x3 þ b300x

3
1

þb030x
3
2 þ b210x

2
1x2 þ b021x

2
2x3 þ � � �

dx3

dt
¼ c010x2ðtÞ þ c001x3ðtÞ þ c020x

2
2 þ c002x

2
3 þ c011x2x3 þ c030x

3
2 þ c021x

2
2x3 þ � � �

8
>>>>>>>><

>>>>>>>>:

ð2Þ
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�̂q1ðf1 � if2Þ þ �̂q2ðg1 � ig2Þ þ �̂q3ðh1 � ih2Þ ¼ 0: ð7Þ

Solving (6) and (7), we have

�̂q1 ¼
kðg1h2 � h1g2Þ þ g2

2
� g1

2i

f1g2 � f2g1
;

�̂q2 ¼
kðf2h1 � f1h2Þ þ f1

2i �
f2
2

f1g2 � f2g1
;

�̂q3 ¼ k;

ð8Þ

where k is a constant. So, q̂1, q̂2 and q̂3 can be determined

by taking complex conjugates of (8). Using the notation in

Hassard et al. (1981), we substitute

x1

x2

x3

0

B
@

1

C
A ¼ uqþ �u�qþW ; where u ¼ \q̂;

x1

x2

x3

0

B
@

1

C
A[ :

At bifurcation parameter E1 ¼ 0, we have,

_u ¼ ix0uðtÞ þ �̂qð0Þ:f ð2ReðuqÞ þWð0ÞÞ ¼ ix0 þ �̂qð0Þ:f ðu; �uÞ;

where

f0 ¼
f 10

f 20

f 30

0

B
@

1

C
A and

f 10 ¼ u2ða200q21 þ a110q1q2Þ þ u�uð2a200q1 �q1
þ a110ðq1 �q2 þ �q1q2ÞÞ

þ �u2ða200 �q12 þ a110 �q1 �q2Þ þ u3
a300

6
q31 þ

a210

6
q21q2

� �

þ u2�u
a300

2
q21 �q1 þ

a210

6
q21 �q2

� �

þ u�u2
a300

2
q1 �q1

2 þ a210

6
�q1
2q2

� �

þ �u3
a300

6
�q1
3 þ a210

6
�q1
2 �q2

� �
þ � � � ; ð9Þ

f 20 ¼ u2ðb200q21 þ b020q
2
2 þ b110q1q2 þ b011q2q3Þ

þ u�uð2b200q1 �q1 þ 2b020q2 �q2

þ b110ðq1 �q2 þ �q1q2Þ þ b011q2 �q3 þ b011 �q2q3Þ
þ �u2ðb200 �q12 þ b020 �q2

2 þ b110 �q1 �q2Þ

þ u3
b300

6
q31 þ

b030

6
q32 þ

b210

6
q21q2 þ

b021

6
q22q3

� �

þ u2�u
b300

2
q21 �q1 þ

b030

2
q22 �q2 þ b210

q21 �q2
6

þ q1 �q1q2
3

� ��

þb021
q32 �q36

þ
q2 �q2q3

3

� ��

þ u�u2
b300

6
q1 �q1

2 þ b030q2 �q2
2 þ b210 �q1

2q2 þ q1 �q1 �q2
� �

�

þb021 �q2
2q3 þ q2 �q2 �q3

� ��

þ �u3ðb300 �q13 þ b030 �q2
3 þ b210 �q1

2 �q2 þ b021 �q2
2 �q3Þ þ � � � ;

ð10Þ

f 30 ¼ u2ðc020q22 þ c002q
2
3 þ c011q2q3Þ þ u�uð2c020q2 �q2

þ 2c002q3 �q3 þ c011ðq2 �q3 þ �q2q3ÞÞ
þ �u2ðc020 �q22 þ c002 �q3

2 þ c011 �q2 �q3Þ

þ u3
c030

6
q32 þ

c021

6
q2q3

� �

þ u2�u
c030

2
q2 �q2 þ c021

q2 �q3
6

þ q2 �q2q3
3

� �� �

þ u�u2
c030

6
q2 �q2

2
� �

þ c021
�q2
2q3

6
þ q2 �q2 �q3

3

� �

þ �u3
c030

6
�q2
3 þ c021

6
�q2
2 �q3

� �
þ � � � ð11Þ

Now taking the dot product of f0 and �̂qð0Þ and expanding

we have,

_u ¼ ix0uþ �̂q1f
1
0 þ �̂q2f

2
0 þ �̂q3f

3
0 ;

¼ ix0uþ
1

2
g20u

2 þ 1

2
g02�u

2 þ g11u�uþ
1

6
g30u

3 þ 1

6
g03�u

3

þ 1

2
g21u

2�uþ 1

2
g12u�u

2 þ � � � ð12Þ

From (9), (10), (11) and (12), we obtain

g20 ¼ 2½ �̂q1ða200q21 þ a110q1q2Þ þ �̂q2ðb200q21 þ b020q
2
2

þ b110q1q2 þ b011q2q3Þ
þ �̂q3ðc020q22 þ c002q

2
3 þ c011q2q3Þ�;

g02 ¼ 2½ �̂q1ða200 �q12 þ a110 �q1 �q2Þ þ �̂q2ðb200 �q12 þ b020 �q2
2

þ b110 �q1 �q2 þ b011 �q2 �q3Þ
þ �̂q3ðc020 �q22 þ c002 �q3

2 þ c011 �q2 �q3Þ�;
g11 ¼ �̂q1ð2a200q1 �q1 þ a110ðq1 �q2 þ �q1q2ÞÞ

þ �̂q2ð2b200q1 �q1 þ 2b020q2 �q2

þ b110ðq1 �q2 þ �q1q2Þ
þ b011q2 �q3 þ b011 �q2q3Þ þ �̂q3ð2c020q2 �q2
þ 2c002q3 �q3 þ c011ðq2 �q3 þ �q2q3ÞÞ;

g21 ¼ 2 �̂q1
a300

2
q21 �q1 þ

a210

6
q21 �q2 þ

a210

3
q1 �q1q2

� �h

þ �̂q2
b300

2
q21 �q1 þ

b030

2
q22 �q2

�

þ b210
q21 �q2
6

þ q1 �q1q2
3

� �

þ b021
q32 �q3
6

þ q2 �q2q3
3

� ��

þ �̂q3
c030

2
q2 �q2 þ c021

q2 �q3
6

þ q2 �q2q3
3

� �� ��

: ð13Þ

Using the notation of Hassard et al. (1981) we write

c1ð0Þ ¼
i g20g11 � 2jg11j2 � jg02j2

3

n o

2x0

þ g21

2
;

l2 ¼ �Refc1ð0Þg
a0ð0Þ ;

b2 ¼ 2Refc1ð0Þg;

T2 ¼ �Imfc1ð0Þg þ l2x
0ð0Þ

x0

;
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where gij are given by (13).

Theorem 3.1 From the above obtained quantities, it can

be found that bifurcation is supercritical (stable) if l2 [ 0

and subcritical (unstable) if l2\0.

Coexistence in the presence of digestion delay

Inmost of ecosystems, both natural andmanmade, population

of one species does not respond instantaneously to the inter-

actions of other species. Sharma et al. (2014) mentioned that

animals must take some times to digest their foods before

further activities and responses. To incorporate this idea in the

modeling approach, we have considered a gestation delay in

the zooPlankton–fish interaction. This delay represents the

time lag required for gestation of predator which is based on

the assumption that the rate of change of predator depends on

the number of prey and of predators present at some previous

time (Sarwardi et al. 2012). Further time delays in ecological

system has destabilizing effects (Sharma et al. 2014; Cushing

1977; Gopalsamy 1992; Kuang 1993; Macdonald 1989;

Beretta and Kuang 2002; Das and Ray 2008; Sharma et al.

2015). So, the main aim of this section is to determined

whether the dynamic of given system under investigation in

stability region for some parameter values changes in the

presence of digestion delay or not.

The model is governed by the following system of the

nonlinear delay differential equation,

dp

dt
¼ rp� d1p

2 � a1
p

aþ p
z;

dz

dt
¼ c1a1

p

aþ p
z� d2z� a2

z

bþ z
f � h

p

d þ p
z;

df

dt
¼ �d3f þ c2a2

zðt � sÞ
bþ zðt � sÞ f ðt � sÞ � Ef 2;

8
>>>>>>><

>>>>>>>:

ð14Þ

The initial condition of the system (14) take the form

pðhÞ ¼ /1ðhÞ, zðhÞ ¼ /2ðhÞ and f ðhÞ ¼ /3ðhÞ, h 2 ½�s; 0�,
/ið0Þ� 0, /iðhÞ 2 Cð½�s; 0�;R3

þÞ.

Theorem 4.1 The system (14) remained uniformly

bounded in
P

, where
P

¼ ½ðpðtÞ; zðtÞ; f ðt � sÞÞ : 0� pðtÞ
þzðtÞ þ f ðtÞ� 1

g ðr
2

d1
� 2ð1þc2a2Þ

c2a2E
Þ� and g ¼ minð1; r; d2�

c2a2Þ.

Proof From (14) for all t 2 ½0;1Þ,
dp

dt
� rpðtÞð1� d1

r
pðtÞÞ;

or it can be obtain that, lim supt!1 pðtÞ� r
d1
.

Let us consider a time dependent function,

WðtÞ ¼ pðtÞ þ zðtÞ þ 1

c2a2
f ðt � sÞ:

Using (14) in above expression, we can obtain

dW

dt
¼ rp� d1p

2 � a1
p

ðaþ pÞ zðtÞ þ ðc1a1 � hÞ p

aþ p
zðtÞ

� d2z� a2
z

bþ z
f � d3

c2a2
f ðt � sÞ þ zðt � sÞ

d þ zðt � sÞ

f ðt � sÞ � E

c2a2
f 2ðt � sÞ

� � rpþ r2

d1
� ðd2 � c1a1Þz�

1

c2a2
f ðt � sÞ

þ ð1þ 1

c2a2
� E

c2a2
Þf ðt � sÞ

� � rpþ r2

d1
� ðd2 � c1a1Þz�

1

c2a2
f ðt � sÞ � 2

ð1þ c2a2Þ
c2a2E

or

dW

dt
þ gW� r2

d1
� 2ð1þ c2a2Þ

c2a2E

� �

; where g¼minð1; r;d2� c2a2Þ:

Now, applying the theorem of differential inequalities

(Birkhoff and Rota 1882), we obtain

0\WðtÞ�WðtÞe�gt þ 1

g
r2

d1
� 2ð1þ c2a2Þ

c2a2E

� �

:

As t ! 1, we have 0�WðtÞ� 1

g
r2

d1
� 2ð1þ c2a2Þ

c2a2E

� �

.

Hence all the solutions of the system (14) are bounded in
P

.

Now, using Taylor’s expension, (14) can be reduced to

the following system of differential equations,

dx1

dt
¼ a100x1ðtÞ þ a010x2ðtÞ þ a200x

2
1 þ a110x1x2 þ � � � ;

dx2

dt
¼ b100x1ðtÞ þ b010x2ðtÞ þ b001x3 þ b200x

2
1 þ b020x

2
2

þb110x1x2 þ � � � ;
dx3

dt
¼ c001x3ðtÞ þ c0010x2ðt � sÞ þ c0001x3ðt � sÞ þ c0020x

2
2ðt � sÞ

þc002x
2
3 þ c0011x2ðt � sÞx3ðt � sÞ þ � � � ;

8
>>>>>>>>>><

>>>>>>>>>>:

ð15Þ

where

c0010 ¼
c2a2bf �

ðbþ z�Þ2
; c0020 ¼

�2c2a2bf �

ðbþ z�Þ3
;

c0001 ¼
c2a2dz�

d þ z�
; c0011 ¼

c2a2b

ðbþ z�Þ2
; c002 ¼ �2E:

The corresponding characteristic equation is,
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DðR�; sÞ ¼
a100 � k a010 0

b100 b010 � k b001

0 c0010e
�ks c001 þ c0001e

�ks � k

	
	
	
	
	
	
	

	
	
	
	
	
	
	

¼ 0:

Remark The local asymptotical stability of the non-de-

layed system around R� using Routh–hurwitz criterion is

already discussed in above section and it follows that the

necessary and sufficient conditions for all roots of (3)

having negative real parts ðs ¼ 0Þ are given by B2 [ 0 and

B1B2 � B3 [ 0, which means that (14) is remained

asymptotically stable around R� in the absence of gestation

delay.

To obtain the effect of digestion delay on the stability of

equilibrium point R�, let us consider the case when s 6¼ 0

and the characteristic equation can be written as

DðR�;sÞ ¼ k3þB1k
2þB2kþB3þ e�ksðB4k

2þB5kþB6Þ:
ð16Þ

Now for k ¼ 0,DðR�; sÞ ¼ B3 � B6 6¼ 0, it means that k ¼ 0

is not a root of the characteristic equation (16) if the interior

equilibrium point R� exists. And the conditions for stability

of R� when s varies are given by the following theorem.

Theorem 4.2 If all roots of the Eq. (16) has negative real

parts and,

(i) When Hðr; sÞ ¼ 0 has no positive root, the

interior equilibrium point R� is asymptotically

stable for an arbitrary delay s.
(ii) When Hðr; sÞ ¼ 0 has at least one positive root

say r0, there exists a critical delay s0 [ 0 such

that the interior equilibrium point R� is asymp-

totically stable for seð0; s0Þ.
(iii) WhenHðr; sÞ ¼ 0has at least two positive roots say

r	 then there exist positive integer n, such that the

equilibrium R� switches n times from stability to

instability to stability and so on such that R� is

locally asymptotically stable whenever se½0; sþ0 � [
ðs�0 ; sþ1 Þ [ � � � [ ðs�n�1; s

þ
n Þ and is unstable when-

ever seðsþ0 ; s�0 Þ [ ðsþ1 ; s�1 Þ [ � � � [ ðsþn�1; s
�
n�1Þ.

The model system (14) undergoes a Hopf-bifurcation

around R� for every s ¼ s	k .
Where

Hðr; sÞ ¼ f 21 ðr; sÞ þ f 22 ðr; sÞ � f 23 ðr; sÞ ¼ 0;

f1ðr; sÞ ¼ ðB3 � B1r
2ÞðB4 � B6r

2Þ þ rB5ðr3 � B2rÞ;
f2ðr; sÞ ¼ ðB4 � B6r

2Þðr3 � B2rÞ � rB5ðB3 � B1r
2Þ;

f3ðr; sÞ ¼ �ðB4 � B6r
2Þ2 � B2

5r
2: ð17Þ

Proof Let ir0ðr0 [ 0Þ is a pair of purely imaginary roots

of (16), then we have

DðR�; irÞ ¼ �ir3 � B1ir
2 þ B2irþ B3

� e�irsð�B4ir
2 þ B5irþ B6Þ;

ð18Þ

Separating the real and imaginary parts, we obtain

�B1r
2 þ B3 ¼ ðB6 � B4r

2ÞcosðrsÞ þ B5rsinðrsÞ; ð19Þ

B2r� r3 ¼ B5rcosðrsÞ þ ðB6r� B4ÞsinðrsÞ; ð20Þ

Eliminating s from above equations, it can be obtained that

Hðr; sÞ ¼ f 21 ðr; sÞ þ f 22 ðr; sÞ � f 23 ðr; sÞ
¼ r6 þ ðB2

1 � 2B2 � B2
4Þr4

þ ðB2
2 � 2B1B3 þ 2B4B6 þ B2

5Þr2

þ ðB3
3 � B2

4Þ ¼ 0

ð21Þ

Setting z ¼ r2, (21) can be written as,

Hðr; sÞ ¼ z3 þ pz2 þ qzþ r ¼ 0: ð22Þ

where

p ¼ B2
1 � 2B2 � B2

4; q ¼ B2
2 � 2B1B3 þ 2B4B6 þ B2

5;

r ¼ B3
3 � B2

4:

Now from the sign of B1, B2 and B3, it can be obtained that

Eq. (22) possesses two positive roots say, z0	 which implies

(21) has two roots r	 ¼ 	 ffiffiffiffi
z0

p
. Substituting this value in

(19) and (20), the corresponding critical value of delay s ¼
s	k at which R� stability switches occurs are given by,

sk	 ¼ 1

r	0
arctan

ðB4 �B6r2ÞðB2r	 � r3Þ þB5r	ðB1r2 �B3Þ
ðB3 �B1r2ÞðB6r2 �B4Þ þB5r	ðB2r	 � r3Þ þ

2kp

r	0
;

ðk ¼ 0;1;2; . . .Þ
ð23Þ

Let us define h	 ¼
1

r	0

ðB4 � B6r2ÞðB2r	 � r3Þ þ B5r	ðB1r2 � B3Þ
ðB3 � B1r2ÞðB6r2 � B4Þ þ B5r	ðB2r	 � r3Þ, we have

two sequence of delays sþk ¼ hþþ2kp
rþ

and s�k ¼ h�þ2kp
r1

for

which there are two purely imaginary roots of the (16). We

will now study how the real parts of the roots of (16) vary

as s varies in a small neighborhood of sþ and s�.
Let k ¼ nþ ir be a root of (16), then substituting k ¼

nþ ir in (18) and separating real and imaginary parts we

have,

G1ðn; r; sÞ ¼ n3 � 3nr2 þ B1ðn2 � r2Þ þ B2nþ B3

� e�nsðB4 þ B5nþ B6ðn2 � r2ÞÞcosrs
� e�nsðB5rþ 2B6nrÞsinrs;

G2ðn; r; sÞ ¼ �r3 � 3n2rþ 2B1nrþ B2r

þ e�nsðB4 þ B5nþ B6ðn2 � r2ÞÞsinrs
� e�nsðB5rþ 2B6nrÞcosrs;
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and J=

oG1

on
oG1

or
oG2

on
oG2

or

0

B
B
@

1

C
C
A.

Thus, we have, G1ð0; r	; s	Þ ¼ G2ð0; r	; s	Þ ¼ 0 and

jJjð0;r	;s	Þ [ 0. Hence by the implicit function theorem

G1ðn; r; sÞ ¼ G2ðn; r; sÞ ¼ 0.

Define n, r as a function of s in a neighborhood of

ð0; r	; s	Þ such that nþðsþk Þ ¼ 0, rþðsþk Þ ¼ rþ, j dnþds js¼sþ
k

[ 0 and n�ðs�k Þ ¼ 0, r�ðs�k Þ ¼ r�, j dn�ds js¼s�
k
\0.

This completes the proof of theorem. h

Stability of bifurcating periodic solution

In this section we are employing the explicit formulae sug-

gested by Hassard et al. Hassard et al. (1981) to determine

the direction, stability and the period of the periodic solutions

bifurcating from interior equilibrium R�. Following the

procedure of the computation in Hassard et al. (1981), we

compute (see Appendix A for details of the computation)

gðz; �zÞ ¼ g20ðhÞ
z2

2
þ g11ðhÞz�zþ g02ðhÞ

�z2

2
þ g21ðhÞ

z2�z

2
þ ::::::::;

where the first four coefficients that we need for deter-

mining properties of the Hopf bifurcation are of the form

g20 ¼
2
�d1
s0fD11 þ �q1

�D21 þ �q2
�D31g;

g11 ¼
1
�d1
s0fD12 þ �q1

�D22 þ �q2
�D32g;

g02 ¼
2
�d1
s0fD13 þ �q1

�D23 þ �q2
�D33g;

g21 ¼
2
�d1
s0fD14 þ �q1

�D24 þ �q2
�D34g;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð24Þ

Where the terms �d1, d11, d12, d13, d14, d21, d22, d23, d24, d31,
d32, d33 and d34 are calculated in Appendix A.

Thus, we can compute the following values:

c1ð0Þ ¼
i

2x�sk
g20g11 � 2jg11j2 �

ðjg02jÞ2

3

( )

þ g21

2
;

l2 ¼ �Refc1ð0Þg
RefdkðskÞ

ds g
;

b2 ¼ 2Refc1ð0Þg;

T2 ¼ �
Imfc1ð0Þg þ l2Imf

dkðskÞ
ds g

x�sk
; k ¼ 0; 1; 2; . . .

Theorem 5.1 l2 determines the direction of the Hopf

bifurcation: if l2 [ ðl2\0Þ, then the Hopf bifurcation is

supercritical (subcritical) and the bifurcating periodic

solutions exist for s2 [ s20ðs2\s20Þ; b2 determines the

stability of bifurcating periodic solutions: the bifurcating

periodic solutions are orbitally asymptotically stable (un-

stable) if b2\0ðb2 [ 0Þ; and T2 determines the period of

the bifurcating periodic solutions: the period increases

(decreases) if T2 [ 0ðT2\0Þ:

Numerical simulation

In this section, we give the numerical validation of some of

our results obtained analytically in above sections. For this

consider a numerical example to the model system (1),

dp

dt
¼ 1:75p� 0:05p2 � 2

p

10þ p
z;

dz

dt
¼ �zþ 2

p

10þ p
z� 1:45

z

20þ z
f � 0:0126

p

10þ p
z;

df

dt
¼ �0:1f þ 1:0

zðt � sÞ
20þ zðt � sÞ f ðt � sÞ � Ef 2;

8
>>>>>>><

>>>>>>>:

ð25Þ

Impact of nonlinear harvesting

The primary interest here is to find the impact of quadratic

harvesting of the fish population on the stability of the given

Plankton–fish system. We obtain numerically that when fish

population is harvested at low rate (E¼ 0:0001), given sys-

tem (1) exhibits chaotic dynamic with initial data pð0Þ ¼ 10,

zð0Þ ¼ 5 and f ð0Þ ¼ 3 as shown in Fig. 1. When, we further

increase the value of harvesting parameter E from 0.0001 to

0.09, Figs. 2 and 3 and 4 depicts that stability exchange takes

place by changing the state of the system from chaos to limit

cycle and finally to stable focus. In ecological sense, it means

that when the fish population is maintained between

E 2 ð0:0001; 0:1Þ, it has stabilizing effect on the phyto-

plankton (TPP)-zooPlankton–fish dynamic which is well

agreed with the experiment findings of Carpenter et al.

(1987), Leavitt and Findlay (1994), Pace et al. (1999),

Strock et al. (2013), Attayde et al. (2010). Figure 5 depicts

the existence of limit cycles around R� at E ¼ 0:15 and E ¼
1:0 and ecologically it implies the prevalence of bloom like

situations in plankton ecosystem. These results indicate that

the enhancement in harvesting of fish population induces

instability in the plankton system. Moreover, in case of

excessive harvesting, the entire fish population will be

elimination and phytoplankton-zooplankton population

coexist with the existence of limit cycles as depicted in Fig. 6.

The numerical results predicts some estimation of the har-

vesting parameter that will be helpful for regulating agencies

to formulate some harvesting policies of fisheries for coex-

istence of population in ecology. The equilibrium level of all

population at different harvesting rates along with nature of

stability around R� is given in Table 1.
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It is already well established that toxin has stabilizing

effect on the tri-trophic interaction system (Upadhyay and

Chattopadhyay 2005; Upadhyay et al. 2007; Upadhyay and

Rao 2009). But, in this research, we have shown that toxin

is not the only mechanism of inducing stability in the

Plankton–fish system rather harvesting the generalist

0
10

20
30

40

0

5

10

15

20
0

5

10

15

PZ

F

0
10

20
30

40

0

5

10

15

20
0

5

10

15

PZ

F

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

Time

P
op

ul
at
io
n

Fig. 1 System exhibits chaotic oscillation around R� at E ¼ 0:0001
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Fig. 2 Change in stability from chaos to limit cycle at E ¼ 0:01
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predator (fish) at appropriate level of harvesting can induce

stability and trigger new mechanism of controlling com-

plexity such as chaos in plankton system. Thus, our find-

ings show that fish may have stabilizing effects if it can be

harvested in the proposed harvesting range.

Delay induced instability

In the second part of this paper, we have considered the

digestion delay in zooPlankton–fish interaction. We consider

the given system in stable state by takingE ¼ 0:09 andkeeping

other parameters unchanged. From the sign of p ¼ 3:4729,

q ¼ �3:2571 and r ¼ 0:0808, Eq. (22) has two purely imag-

inary roots ir0	 with rþ ¼ 0:1612 and r� ¼ 0:0356. Now

from (23) the critical values of parameter delay at which sta-

bility exchange take place are given by sþ0 ¼ 1:013 and s�0 ¼
49:981 such that R� remain stable for s 2 ½0; 1:0Þ (see Fig. 7)

and is unstable when s 2 ð1; 49:981Þ. Thus numerical simu-

lation shows that the interior equilibriumconverges in the range

0\s\sþ0 and it loses stability when s passes through its crit-
ical value s0 and a Hopf bifurcation occur which is depicted in
Fig. 8. When the parameter s varies further from critical value

s0, it is observed that periodic oscillation appeared around E�

till s lies in the range sþ0 \s\s�0 (see Fig. 9) and regains its

stability for s[ s�0 (see Figs. 10, 11). The equilibriumpointR�

remains locally asymptotically stable whenever the delay

parameter lies in the range s�0 \s\sþ1 implies R� again

switches from stability to instability as s passes through

s ¼ sþ1 . Thus it is seen that a finite number of stability switches

for the given system occurs when delay varies continuously.

Thus it can be seen that there exist intervals of stability and

instability as delay parameter varies through its critical value.

Ecologically, it signifies the appearance and disappearance of

blooms in plankton ecosystem.

Finally the stability determining quantities for Hopf-

bifurcating periodic solutions at s ¼ s0 are given by

c1ð0Þ ¼ 1:6307eþ 009� 6:7954eþ 009i, l2 ¼ �1:5409e

þ011, b2 ¼ 3:2614eþ 009, T2 ¼ �3:7051eþ 009.

Hence, we conclude that the Hopf-bifurcation is sub-

critical in nature as well as the bifurcating periodic orbits

are unstable and decreases as delay increases further

through its critical value ‘s ¼ s0’.

Discussion and conclusion

The consequences of toxin liberation by phytoplankton are

of great interest due to its possible detrimental effect on

fisheries. The role of top predator on the stability of tri-

trophic food chain has been remained an interesting area of

research. In this paper the Plankton–fish interaction were
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Fig. 3 Change in stability from limit cycle to a stable focus at E ¼ 0:09
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Fig. 4 Time series graph shows the converges of solution trajectories

to R� at E ¼ 0:1
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studied in the context of obtaining the impact of quadratic

harvesting and time delay. We have assumed that the top

predator in the tri-trophic food chain is harvested through

non linear (quadratic) harvesting. We have analyzed the

given system with various ranges of harvesting parameter

keeping other parametric values fixed. It is found numeri-

cally that the chaotic oscillation has occurred in the range

0:0001�E\0:009 and when values of E is taken in

0:009�E� 0:01, these oscillations disappeared with the

existence of limit cycle. Again, for 0:09�E� 0:1, the

system converges to a stable focus from limit cycle which

shows that the harvesting of fish population induces the

stability in the plankton food chain and hence stimulate a

possible mechanism for controlling blooms in plankton

ecosystem. Our findings has shown that introduction of

nonlinear harvesting of fish population in Plankton–fish

interaction can be utilized as a controlling agent.

In the second part of the model system we have assumed

that the interaction of species in real life are not instanta-

neous rather it is delayed by time known as time delay. In

this paper we have assumed that the zooPlankton–fish

interaction are delayed by some time lag known as diges-

tion delay. The main interest of this part is to observe the

effect of this delay on the stability of the given system

brought by stocking of the fish population. It is found that

the given system remained asymptotically stable for delay
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Fig. 6 Time series graph shows that phytoplankton-zooplankton

coexist but fish population almost dies out at E ¼ 30

Table 1 Impact of Non-linear

Harvesting on stability of given

system around interior

equilibrium R�

Rate of harvesting, E Nature of system Stability

0.0001 System oscillate chaotically around R� Chaotic

0.01 System oscillate around R� ¼(29,3,4) Limit cycle

0.09 System converge to R� ¼(15.2,12.4,3.1) Locally stable

0.1 System converge to R� ¼(14.7,2.6,2.8) Locally stable

0.15 system oscillate around R� ¼(14.7,12.6,2.8) Limit cycle

1.0 system oscillate around R� ¼(14,16,1.6) Limit cycle

10.0 system oscillate around R� ¼(4,7,0.00) in pz-plane Unstable
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Fig. 5 Limit cycles oscillations of solution curves around R� at E ¼ 0:15 and E ¼ 1:0
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in the range 0� s� so (see Fig. 3). When delay ‘s’ passes
through its critical value ‘s0’ it is obtained that a phe-

nomenon of switching of stability arises i.e. there exist a

sequence of two time delays sþ0 ðk ¼ 0; 1; 2; . . .Þ and s�0
ðk ¼ 0; 1; 2; . . .Þ under certain parametric restrictions for

which the interior equilibrium point E� is stable whenever

s 2 ½0; sþ0 Þ [ ðs�0 ; sþ1 Þ [ � � � [ ðs�m�1; s
þ
mÞ, and unsta-

ble when s 2 ½sþ0 ; s�0 Þ [ ðsþ1 ; s�1 Þ [ � � � [ ðsþm�1; s
�
m�1Þ[

ðsþm ;1Þ. The above switching behavior of the system is

shown in numerical simulation performed in the above

section and it seems to be new findings in delayed Plank-

ton–fish interactions. Thus it can be concluded that diges-

tion delay has destabilizing effect on the TPP-

zooPlankton–fish interaction. Finally it can be predicted

that induction of stability by harvesting of top predator in

plankton food chain can be destabilized by digestion delay.

Appendix A

Let s ¼ sk þ l , �uiðtÞ ¼ uiðstÞ and utðhÞ ¼ uðt þ hÞ for h 2
½�1; 0� and dropping the bars for simplification of nota-

tions, system (15) becomes a functional differential equa-

tion in C ¼ Cð½�1; 0�;R3Þ as
_uðtÞ ¼ LlðutÞ þ f ðl; utÞ; ð26Þ

where uðtÞ ¼ ðu1ðtÞ; u2ðtÞÞT 2 R2 and Ll : C ! R3; f :

R
 C ! R2 are given, respectively, by
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Fig. 7 Stability of interior equilibrium R� at s ¼ 0:1
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Fig. 8 Hopf bifurcation in the form of limit cycle oscillation at s ¼ 1:0
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Llð/Þ ¼ ðsk þ lÞ½A11/ð0Þ þ A22/ð�1Þ�;

A11 ¼
a100 a010 0

b100 b010 b001

0 c010 c001

2

6
4

3

7
5; A22 ¼

0 0 0

0 0 0

0 c0010 c0001

2

6
4

3

7
5;

ð27Þ

and

f ðl;/Þ ¼ ðsk þ lÞ
a200/

2
1ð0Þ þ a110/ð0Þ/2ð0Þ

b200/
2
1ð0Þ þ b020/

2
1ð0Þ þ b110/1ð0Þ/2ð0Þ

c0020/
2
1ð�1Þ þ c0020/

2
3ð0Þ þ c0011/

2
1ð�1Þ/3ð�1Þ

2

6
4

3

7
5

ð28Þ

By Riesz representation theorem, there exists a function

/ðh; lÞ of bounded variation for h 2 ½�1; 0� such that

Llð/Þ ¼
Z 0

�1

dgðh; lÞ/ðhÞ for / 2 C ð29Þ

In fact, we can choose

/ðh; lÞ ¼ ðsk þ lÞ½A11dðhÞ � A22dðhþ 1Þ�; ð30Þ

where d denote the Dirac delta function.

For / 2 Cð½�1; 0�;R3Þ, define

AðlÞ/ðhÞ ¼
d/ðhÞ
dh

h 2 ½�1; 0Þ;
R 0

�1
d1ðs; lÞ/ðsÞ h ¼ 0

8
<

:

and

RðlÞ/ðhÞ ¼
0 h 2 ½�1; 0Þ;
f ðl;/Þ h ¼ 0

�

Then system (26) is equivalent to
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Fig. 9 Limit cycle at s ¼ 40.
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Fig. 10 Switch of stability from limit cycle to stable focus around s ¼ 50
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_uðtÞ ¼ AðlÞut þ RðlÞut; ð31Þ

For w 2 C1ð½0; 1�; ðRÞ�Þ, define

A�wðsÞ ¼
�dwðsÞ

ds
s 2 ð0; 1�;

R 0

�1
d1ðt; 0Þwð�tÞ s ¼ 0

8
<

:

and a bilinear inner product

\wðsÞ;/ðhÞ[ ¼ �wð0Þ/ð0Þ �
Z 0

�1

Z h

n¼0

�wðn� hÞdgðhÞ/ðnÞdn:

ð32Þ

where 1ðhÞ ¼ 1ðh; 0Þ. Then A(0) and A� are adjoint opera-

tors. From the results of last section,we know that	ir0sk are
the eigenvalues ofA(0) and�ir0sk are the eigenvalues ofA�.

Let qðhÞ ¼ ð1; a; bÞTeir0skh be the eigenvector of A(0)

corresponding to the eigenvalue ix0sk and q�ðsÞ ¼
Dð1; a0; b0Þeir0sks be the eigenvector of A� corresponding to

the eigenvalue �ir0sk, then

Að0ÞqðhÞ ¼ ixskqðhÞ;

It follow from the definition of A(0), Llð/Þ and gðh; lÞ that

½ðA11 þ A22e
�ir0s0Þ � ir0I�qð0Þ ¼ 0;

where I is identity matrix of order 2, that is,

a100 � ir0 a010 0

b100 b010 � ir0 b001

0 c010 þ c0100e
�ir0sk c001 þ c0001e

�ir0sk � ir0

0

B
@

1

C
A

1

a

b

0

B
@

1

C
A ¼

0

0

0

0

B
@

1

C
A;

Solving the above equations, we get

qð0Þ ¼
1

a

b

0

B
@

1

C
A ¼

1
ir0 � a100

a010
�b100 þ ðb010 � ir0Þða100 � ir0Þ

b001a010

0

B
B
B
B
@

1

C
C
C
C
A
:

From the definition of A�, we obtain

A�ðlÞwðsÞ ¼
Z 0

�1

dgðt; 0Þwð�tÞ ¼ AT
11wð0Þ þ AT

22wð�1Þ:

Since qðhÞ is the eigenvector of A� corresponding to -ir0sk,
then we have

A�q�ð0Þ ¼ �ir0skq
�ðhÞ;

or

½ðAT
11 þ AT

22e
ir0s0Þ þ ir0I�ðq�ð0ÞÞT ¼ 0;

where I is identity matrix of order 2, that is,

a100 þ ir0 b100 0

a010 b010 þ ir0 c010 þ c0100e
�ir0sk

0 b001 c001 þ c0001e
�ir0sk þ ir0

0

B
@

1

C
A

1

a0

b0

0

B
@

1

C
A ¼

0

0

0

0

B
@

1

C
A;

Solving the above equations, we get

q�ð0Þ ¼
1

a0

b0

0

B
@

1

C
A ¼

1

� a100 þ ir0
b100

�a010b100 þ ðb010 þ ir0Þða100 þ ir0Þ
b100ðc010 þ c0010e

�ir0skÞ

0

B
B
B
B
@

1

C
C
C
C
A
;

Now,

ðq�; �qÞ ¼ �d1½ð1; �a0; �b0Þð1;a;bÞ �
Z 0

�1

Z h

n¼0

ð1; �a0; �b0Þe�iðn�hÞr0skÞ

dgðhÞð1;a;bÞTeinr0sk �

¼ �d1½1þ a �a0 þ a �b0 �
Z 0

�1

ð1;a �a0; �b0Þheihr0skÞdgðhÞð1;a;bÞT �

¼ �d1½1þ a �a0 þ a �b0 þ sk �b
0ðac0010 þ bc0001Þe�ir0sk �:

In order to have ðq�; qÞ ¼ 1, we can choose d1 ¼
1

1þ �aa0 þ �bb0 þ b0skeix0skð�ac0010 þ �bc0001Þ
,

such that ðw;A/Þ ¼ ðA�w;/Þ.
or �ir0ðq�; �qÞ ¼ ðq�;A�qÞ ¼ ðA�q�; �qÞ ¼ ð�ir0q�; �qÞ ¼

ir0 ðq�; �qÞ
i.e. ðq�; �qÞ ¼ 0.
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Fig. 11 Another switch of stability from stable focus to limit cycle in

the interval s ¼ 60 to s ¼ 80
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Next we will compute the coordinates to describe the

center manifold C0 at l ¼ 0. Let ut be the solution of (31)

when l ¼ 0.

Define

zðtÞ ¼ \q�; ut [ ; Wðt; hÞ ¼ utðhÞ � 2RefzðtÞqðhÞg:
ð33Þ

On the center manifold C0, we have, Wðt; hÞ ¼ WðzðtÞ;
�zðtÞ; hÞ,

where

WðzðtÞ; �zðtÞ; hÞ ¼ W20ðhÞ
z2

2
þW11ðhÞz�zþW02ðhÞ

�z2

2
þ � � � ;

ð34Þ

z and �z are local coordinates for center manifold C0 in the

direction of q and q� respectively. Here we consider only

real solutions as W is real if ut is real. For the solution

ut 2 C0 of (31), since l ¼ 0, we have

_zðtÞ ¼ ix0skzþ �q�ð0Þf ð0;Wðz; �z; 0Þ þ 2ReðzqðhÞÞÞ
¼ ir0skzþ �q�ð0Þf0ðz; �zÞ;

This equation can be rewritten as

_zðtÞ ¼ ir0skzþ gðz; �zÞ;

where

gðz; �zÞ ¼ �q�ð0Þf0ðz; �zÞ;

¼ g20ðhÞ
z2

2
þ g11ðhÞz�zþ g02ðhÞ

�z2

2
þ g21ðhÞ

z2�z

2
þ ::::::::;

ð35Þ

From (33) and (34), we have

utðhÞ ¼ Wðt; hÞ þ 2RefzðtÞqðhÞg;

¼ W20ðhÞ
z2

2
þW11ðhÞz�zþW02ðhÞ

�z2

2
þ ð1; q1; q2ÞTeix0skhz

þ ð1; �q1; �q2ÞTe�ix0skh�zþ ::::

ð36Þ

Now from (28) and (35), it follows that

gðz; �zÞ ¼ sk �d1ð1; �a0; �b0Þ
a200u

2
1tð0Þ þ a110u1tð0Þu2tð0Þ

b200u
2
1tð0Þ þ b020u

2
2tð0Þ þ b110u1tð0Þu2tð0Þ

c0020u
2
2tð�1Þ þ c002u

2
3tð0Þ þ c0011u2tð�1Þu3tð�1Þ

2

6
4

3

7
5;

¼ sk �d1ð1; �a0; �b0Þ

D11z
2 þD12z�zþD13�z

2 þD14

z2

2
�zþ � � �

D21z
2 þD22z�zþD23�z

2 þD24

z2

2
�zþ � � �

D31z
2 þD32z�zþD33�z

2 þD34

z2

2
�zþ � � �

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

Or

gðz;�zÞ ¼ sk �d1½ðD11þ �a0D21þ �b0D31Þz2þðD12þ �a0D22þD32
�b0Þz�z

þ ðD13þD23�aþD11
�b0Þ�z2þðD14þ �aD24þD34

�bÞz
2

2
�z�:

ð37Þ

where

D11 ¼ a200 þ a110a; D12 ¼ 2a200 þ 2ReðaÞa110;
D13 ¼ a200 þ a110�a;

D14 ¼ ð2W1
20ð0Þ þ 4W1

11ð0ÞÞa200 þ a110ð�aW1
20ð0Þ

þ 2aW1
11ð0Þ þW2

20ð0ÞÞ þ 2W2
11ð0Þ

D21 ¼ b200 þ a2b020 þ b110a;

D22 ¼ 2b200 þ 2b020a�aþ 2ReðaÞb110;
D23 ¼ b200 þ b020�a

2 þ b110�a;

D24 ¼ ð2W1
20ð0Þ þ 4W1

11ð0ÞÞb200 þ b020ð2�aW2
20 þ 4aW2

11Þ
þ b110ð�aW1

20ð0Þ þ 2aW1
11ð0Þ þ 2W2

11ð0ÞÞ þW2
20ð0Þ;

D31 ¼ c0200a
2e2ir0sk þ c0020b

2 þ c0101abe
2iask ;

D32 ¼ 2c0200a�aþ 2c0020b
�bþ 2Reða�bÞc0101;

D33 ¼ c0200�a
2e�2ir0sk þ c0020

�b2 þ c0101�a�be
�2ir0sk ;

D34 ¼ c0200ðW2
20ð�1Þ�ae�ir0sk þ 2W2

11ð�1Þaeir0sk

þ 2aW2
11ð�1Þeir0sk þ W2

20ð�1Þ�ae�ir0skÞ
þ c0020ð2�bW3

20 þ 4bW3
11Þ þ c0101ðW2

20ð�1Þ�be�ir0sk

þ 2bW2
11ð�1Þeir0sk þ 2aW3

11ð�1Þeir0sk

þ �ae�ir0sk þ �ae�ir0skW3
20ð�1ÞÞ;

Comparing its coefficients with (35), we find

g20 ¼
2
�d1
s0fD11 þ �q1

�D21 þ �q2
�D31g;

g11 ¼
1
�d1
s0fD12 þ �q1

�D22 þ �q2
�D32g;

g02 ¼
2
�d1
s0fD13 þ �q1

�D23 þ �q2
�D33g;

g21 ¼
2
�d1
s0fD14 þ �q1

�D24 þ �q2
�D34g;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð38Þ

Since, W20 and W11 are in g21, we still to compute them.

Now from (31) and (33), we have

_W ¼ _uðtÞ � _zq� �_z�q

¼
Að0ÞW�2Ref �q�ð0Þf0qðhÞg h2 ½�1;0Þ
Að0ÞW�2Ref �q�ð0Þf0qð0Þgþ f0ðz;�zÞ h¼ 0

(

,Að0ÞWþHðz;�z;hÞ

ð39Þ

where

Hðz; �z; hÞ ¼ H20ðhÞ
z2

2
þ H11ðhÞz�zþ H02ðhÞ

�z2

2
þ ::::::::;

ð40Þ
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Substituting (40) into (39) and comparing the coefficients,

we get

ðAð0Þ � 2ix0skIÞW20ðhÞ ¼ � H20ðhÞ;
Að0ÞW11ðhÞ ¼ � H11ðhÞ;

ð41Þ

From (39) and for h 2 ½�1; 0Þ

Hðz; �z; hÞ ¼ � �q�ð0Þf0qðhÞ � q�ð0Þ �f0�qðhÞ;
¼� gðz; �zÞqðhÞ � �gðz; �zÞ�qðhÞ;

ð42Þ

Using (35) in (42) and comparing coefficients with (40), we

can obtain

H20ðhÞ ¼ �g20qðhÞ � �g02�qðhÞ; ð43Þ

and

H11ðhÞ ¼ �g11qðhÞ � �g11�qðhÞ; ð44Þ

From the definition of A(0), (41) and (43), we obtain

_W20ðhÞ ¼ 2ir0skW20ðhÞ þ g20qðhÞ þ �g02�qðhÞ;

Solving it and for qðhÞ ¼ ð1; q1; q2ÞTeir0skh, we have

W20ðhÞ ¼
ig20
r0sk

qð0Þeir0skh þ i�g02
3r0sk

�qð0Þe�ir0skh þ E1e
2ir0skh;

ð45Þ

Similarly, from (41) and (44) it follows that,

W11ðhÞ ¼ � ig11
r0sk

qð0Þeir0skh þ i�g11
r0sk

�qð0Þe�ir0skh þ E2;

ð46Þ

where E1 ¼ ðE1
ð1Þ;E1

ð2ÞÞT and E2 ¼ ðE2
ð1Þ;E2

ð2ÞÞT are

three dimensional constant vectors, and can be determined

by setting h ¼ 0 in Hðz; �z; hÞ.
Again from the definition of A(0) and (41), we have

Z 0

�1

d1ðhÞW20ðhÞ ¼ 2ir0skW20ð0Þ � H20ð0Þ; ð47Þ

and

Z 0

�1

d1ðhÞW11ðhÞ ¼ �H11ð0Þ; ð48Þ

where 1ðhÞ ¼ 1ð0; hÞ.
From (39), we know when h ¼ 0,

Hðz; �z; 0Þ ¼ �2Reð�q�ð0Þf0qð0ÞÞ þ f0ðz; �zÞ
¼ ��q�ð0Þf0qð0Þ � q�ð0Þ�f0�qð0Þ þ f0ðz; �zÞ;

That is,

H20ðhÞ
z2

2
þ H11ðhÞz�zþ H02ðhÞ

�z2

2
þ � � �

¼ � qð0Þ g20
z2

2
þ g11z�zþ g02

�z2

2
þ . . .

� �

� �qð0Þ �g20
�z2

2
þ �g11z�zþ �g02

z2

2
þ ::::

� �

þ f0ðz; �zÞ;

ð49Þ

From (33), we have

utðhÞ ¼ Wðt; hÞ þ 2RefzðtÞqðhÞg ¼ Wðt; hÞ þ zðtÞqðhÞ þ �zðtÞ�qðtÞ

¼ W20ðhÞ
z2

2
þW11ðhÞz�zþW02ðhÞ

�z2

2
þ ::::;

Thus we can obtain,

f0 ¼ 2sk

D11

D21

D31

2

6
4

3

7
5
z2

2
þ sk

D12

D22

D32

2

6
4

3

7
5z�zþ � � � ð50Þ

Comparing the coefficients in (49) and using (50), we get

H20ð0Þ ¼ � g20qð0Þ � �g02�qð0Þ þ 2sk

D11

D21

D31

2

6
4

3

7
5 ð51Þ

H11ð0Þ ¼ � g11qð0Þ � �g11�qð0Þ þ sk

D12

D22

D32

2

6
4

3

7
5 ð52Þ

Since ir0sk is the eigenvalue of A(0) corresponding to

eigenvector q(0), then

fir0skI �
Z 0

�1

eir0skhd1ðhÞgqð0Þ ¼ 0 and

f�ir0skI �
Z 0

�1

e�ir0skhd1ðhÞg�qð0Þ ¼ 0:

Substituting (45) and (51) into (47), we find

f2ir0skI �
Z 0

�1

e2ir0skhd1ðhÞgE1 ¼ 2sk

D11

D21

D31

2

6
4

3

7
5

or

2ir0 � a100 � a010 0

�b100 2ir0 � b010 � b001

0 � c010 � c0010e
�2ir0s0 � c001 � c0001e

�2ir0s0

2

6
4

3

7
5

E1 ¼
2D11

2D21

2D31

2

6
4

3

7
5
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or

E1 ¼ 2

D11

D21

D31

2

6
4

3

7
5

2ir0 � a100 � a010 0

�b100 2ir0 � b010 � b001

0 � c010 � c0010e
�2ir0s0 � c001 � c0001e

�2ir0s0

2

6
4

3

7
5

�1

Similarly, substituting (46) and (52) into (48), we obtain

a100 a010 0

b100 b010 b001

0 c010 þ c0010e
�2ir0sk c001 þ c0001e

�2ir0sk

2

6
4

3

7
5

E2 ¼ �
D12

D22

D32

2

6
4

3

7
5

or

E2 ¼
D12

D22

D32

2

6
4

3

7
5

a100 a010 0

b100 b010 b001

0 c010 þ c0010e
�2ir0sk c001 þ c0001e

�2ir0sk

2

6
4

3

7
5

�1

Finally, we can compute the following quantities:

c1ð0Þ ¼
ifg20g11 � 2jg11j2 � jg02j2

3
g

2r0sk
þ g21

2
;

l2 ¼ �Refc1ð0Þg
RefdkðskÞ

ds g
;

b2 ¼ 2Refc1ð0Þg;

T2 ¼ �
IfcðÞg þ lIfdkðskÞ

ds g
r0sk

; k ¼ 0; 1; 2; . . .
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