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Abstract Landslide as one of the natural hazards has

always caused huge financial losses and fatalities. Hence

the goal of the present article is improvement in the pre-

diction results of landslide occurrence in Tutkabon region

in Gilan Province (Iran). For this purpose the Dempster–

Shafer theory of evidence together with analyses and

techniques of geospatial information systems (GIS) have

been implemented for modeling and considering the

uncertainties inherent in data selection. Also the parame-

ters of slope, height, morphological conditions, earth cur-

vature and distance to river and proximity to faults are

taken as effective factors in landslide occurrence. Using the

Dempster–Shafer theory, the belief, unbelief and uncer-

tainty values for sub classes of each parameter are calcu-

lated separately and in continuation, utilizing the spatial

information system, the landslide occurrence risk maps for

each of these values are prepared at the study area. Finally

for assessment of the results, the locations of landslide

occurrence at the study area and the risk belief map are

compared to each other. The results indicate that 65% of

the landslides occur at the very high hazard class. Also

assessing the results a value of AUC = 0.74 was obtained

for the area under the prediction rate curve of the belief

map.

Keywords Dempster–Shafer theory � Landslide �
Uncertainty � GIS techniques

Introduction

Landslide is one of the most important natural hazards

which occurs all around the world and causes huge eco-

nomic damages in the infrastructure like roads, buildings

etc. Hence identifying susceptible areas for occurrence of

this phenomenon could be effective in risk prediction and

planning and consequently reducing losses (Guzzetti et al.

2006). There are many parameters involved in landslide

and as whole include the two internal and external groups.

The internal components indicate constant characteristics

of the area including the slope, direction of slope, soil type,

height, earth curvature etc. On the other hand occurrence of

the earthquake and precipitation and as whole the factors

which are not constant and predictable are those which are

among the external parameters. The studies have shown

that landslide occurrence depends upon two factors and

among them the external parameters are time-dependent

and their examination requires complete information on

their temporal and spatial distribution. For this reason in

assessing the possibility of landslide occurrence and ulti-

mately preparing the corresponding risk map, only the

internal parameters are utilized (Bui et al. 2016).

With respect to the impact of various parameters in

occurrence of this phenomenon and need for preparation of

the spatial distribution maps per each of these parameters

and combining them, use of the spatial information system
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as a powerful tool in processing spatial data is indispens-

able. In the past decades various models have been pre-

sented for combining the spatial layers including the fuzzy

sets theory, probability theory, artificial neural networks.

For example Ermini et al. (2005), Gomez and Kavzoglu

(2005), Caniani et al. (2008), Pradhan (2010), Wu et al.

(2013), Aghdam et al. (2016), and Bui et al. (2016)

incorporating the artificial neural networks and fuzzy

deduction system combined the spatial layers for prediction

of the landslide. Also Dahal et al. (2008) utilized the

probability theory for weighing the effective parameters

and preparation of the risk map. Likewise Ozdemir (2011)

has implemented the Bayesian method.

Sharma et al. (2012) used the entropy model for hazard

classification of a region in India. Also Pourghasemi et al.

(2012) investigated occurrence of landslide in the region of

Safarood and implemented the conditional probability and

entropy models for this purpose. Among other methods one

could refer to the logistic regression model which has been

utilized by Bui et al. (2011), Chauhan et al. (2010), and

Devkota et al. (2013) the precision of this model is com-

pared to other methods like Shannon’s entropy and con-

ditional probability theory methods. Albeit a similar

comparison is made by Felicı́simo et al. (2013), but here

they have also implemented classification methods in their

comparison. Generally, in all models first the spatial maps

corresponding to each of the effective layers are prepared

and then by combining them using the mentioned methods,

the landslide occurrence risk maps are produced.

In many research works the multi-criteria assessment

methods have been implemented, among them one could

refer to the research conducted by Yilmaz (2009), Pradhan

(2010), Akgun (2012), Quan and Lee (2012), Kayastha

et al. (2013), Lallianthanga et al. (2013), Wu et al. (2014),

Najafabadi et al. (2016), Pourghasemi and Rossi (2016),

and Karlsson et al. (2016). In all of these studies the

integration of Analytic Hierarchy Process and spatial

information systems is used for preparation of the landslide

occurrence risk map. In other research works Yao et al.

(2008) and Ballabio and Sterlacchini (2012) have utilized

the support vector machine for this purpose. Among other

methods we could refer to the research conducted by

Althuwaynee et al. (2012) in which the evidence theory is

used for classification of hazard susceptible areas.

Analysis of the impact of uncertainty in landslide pre-

diction is among important issues which has less been dealt

with in previous studies and in these research they have

generally contented with preparation of the landslide

occurrence risk maps. In this article utilizing the Dempster–

Shafer theory which is a recognized theory in issues of

uncertainty, in addition to preparing the landslide occurrence

risk map for the study area, the impact of uncertainty on the

Fig. 1 General plan of the

study area
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results is investigated in spatial form. Among distinguished

advantages of this method, with respect to other methods, is

calculation of the uncertainty in occurrence of the expected

results so that itmodels inherent uncertainty and limitation of

human cognition concerning his surrounding world. In this

article the landslide occurrencemap is used formodeling and

assessment of the results. In the Dempster–Shafer theory

method a number of points are foreseen for training and

preparation of the map and the remaining points are used for

assessment of the results. Finally for overall assessment of

the results the prediction rate curve is utilized and the area

under the aforementioned curve is considered as the overall

precision parameter in prediction.

In continuation, the study area and implemented data are

presented in section two and the method of research is

presented in section three. Also section four includes the

research results and discussion, and at the final section the

conclusion is presented.

Study area and used data

The study area in this article is Tutkabon basin which is

located in Gilan Province, south of Rasht City and north

east of Roodbar town in Iran. This basin is located at

49�3002200–49�5100200 longitude and 36�4204400–36�5401500
latitude. This basin covering an area of 43011 ha. is limited

to Deilaman basin from the north and to Siahrood basin

from the east and south and to Sefidrood River from the

west. Tutkabon River is comprised of two rivers of Seidan

Fig. 2 Used layers
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and Amarloo which are joined near Dashtvil village and

formed Tutkabon River. At Tutkabon basin there are two

cities of Tutkabon and Barehsar and a few villages with

250 households. Darfak Mountain with a height of 2720 m

is located at the northern side of the basin and is the largest

mountain of the area. Figure 1 shows the study area.

The information layers used in this article include the 7

layers of aspect, slope, geomorphology, earth curvature,

distance to river, proximity to faults, and elevation. For

calculating the slope and earth curvature layers use has

been made of Digital Elevation Model (DEM) of the study

area. Figure 2 shows the used data in this article. In this

article, each layer is classified based on its importance and

condition of the area (Althuwaynee et al. 2012). Also use

has been made of the landslide occurrence map for

assessment of the results implementing the Dempster–

Shafer theory method which depicts 48 points of landslide

occurrence in the study area. Figure 3 shows the location of

landslide occurrence points in the study area.

Research method

The goal of this article is to assess the risk associated with

landslide occurrence in the study area with respect to the

impact of uncertainty on the results. For this purpose the

Dempster–Shafer theory has been utilized which is a

widely accepted method for investigation of uncertainty.

Fig. 2 continued
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The process of performing this article is in this way that

first the intended area is specified and the needed spatial

layers which include 7 layers of effective parameters in

occurrence of a landslide and also a layer of landslide

occurrence points have been prepared using the spatial

information systems. The next stage includes the process of

preparing landslide risk map and assessing the impact of

uncertainty on the results utilizing the above mentioned

method. At this stage using the Dempster–Shafer theory,

the belief, unbelief and uncertainty mass functions are

defined considering the landslide occurrence points.

Applying these functions on the spatial data of the used

parameters and combining them, the belief, unbelief and

uncertainty maps are obtained where each of these maps

represents a significant level of landslide occurrence

probability. At the end the obtained results are compared

using the prediction rate curve.

Dempster–Shafer theory

The Dempster–Shafer theory of evidence was first pre-

sented by Shafer in the year 1976 and has been used as a

mathematical model for spatial integration and preparation

of mineral potential maps. The most important advantage

of the Dempster–Shafer theory of evidence is its capability

of being used for investigation of the uncertainty concept

and discusses over the existing beliefs about a situation or a

set of situations. Beliefs over the events are not identical

but implementing this theory one could investigate and

combine the existing evidences of the situations in a similar

method. The output results of this theory include the belief,

unbelief, uncertainty and plausibility sets (Olteanu-Rai-

mond et al. 2015; Shi 2009). The primary concepts needed

for the Dempster–Shafer theory are the recognition

framework, power set and mass function. Assume that h is

a finite set of elements. An element could be a proposition

or a goal, h is called the recognition framework. The power

set of h which is represented by XðhÞ, indicates sets of

different combinations of the h elements and also the

empty set ;ð Þ. The mass function which is denoted by m is

defined by Eq. (1) (Shi 2009).

m : X hð Þ ! 0; 1½ �; m Uð Þ ¼ 0;
X

A�X hð Þ
m Að Þ ¼ 1 ð1Þ

The mass function, m, is called the basic probability

assignment function. If set A is a sub-set of the power set h,
then m Að Þ indicates the share of set A from all the corre-

sponding and available evidences and supports the claim

about a specific element of h which belongs to set A. In this
theory the belief function is defined according to Eq. (2).

Bel : X hð Þ ! 0; 1½ �; Bel Að Þ ¼
X

B�A

m Bð Þ ¼ 1 ð2Þ

Also the plausibility function is defined by Eq. (3)

where A is the complement of set A.

Pl : X hð Þ ! 0; 1½ �; Pl Að Þ ¼ 1� Bel �Að Þ ð3Þ

In Eq. (2), the criterion Bel Að Þ measures the probability

which should be among the elements in A and means the

combination of all beliefs which precisely belong to the

elements in sub set A. Also in Eq. (3), the criterion Pl Að Þ
measures the maximum probability which could be dis-

tributed among the elements of A and represents the

combined beliefs which are in union with the elements of

sub set A. For this purpose the power sets and recognition

sets are defined according to Eq. (4).

m : 2h ¼ U; sp; sp; h
� �

; h ¼ sp; sp
� �

ð4Þ

where parameter �sp indicates the probability of non-oc-

currence of landslide in pixel p. Also parameter sp indi-

cates the probability of landslide occurrence in pixel p. In

most spatial studies which have utilized the Dempster–

Shafer theory, weighing of the effective layers is done by

the specialists and for their combination the Dempster’s

orthogonal rule is implemented and the partial effects of

sub classes are not included in the risk analysis. To deal

with this issue in the present research the opinions of

specialists have not been implemented but the existing

data corresponding to the cases of landslide occurrence

were considered in determination of the mass function and

this is the advantage of the current research. Thus mod-

eling and definition of the mass function would not be

dependent upon the specialists’ opinions, which them-

selves possess uncertainties and are related to their

experiences.

Obviously the most important part in utilizing the

Dempster–Shafer theory is the way of determining the

mass function for calculation of the belief, unbelief and

Fig. 3 Landslide occurrence points in the study area
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uncertainty values. For this purpose in the present research

the likelihood ratio function was used for determination of

mass function. Thus implementing the landslide occurrence

map, two functions were defined for stating the probability

of occurrence (belief) and probability of non-occurrence

(unbelief) in the future. Assume that in the present research

L layers are selected for investigation of landslide occur-

rence probability where each layer includes j sub-classes.

Each of these layers is taken as instance and the likelihood

ratio function for landslide occurrence is defined by

Eqs. (5) and (6).

k Sp
� �

Eij
¼

N L\Eijð Þ
N Lð Þ

N Eijð Þ�N L\Eijð Þ
N Að Þ�N Lð Þ

ð5Þ

In this relationship N Lð Þ denotes the total number of

land slide occurrences in the study area, N L\Eij

� �
denotes

the number of landslide occurrence in sub-class j of layer i,

N Að Þ denotes the total number of pixels in the area and

N Eij

� �
denotes the number of pixels in sub-class j of layer

i. In this relationship the numerator indicates the ratio of

landslides occurred in sub-class j of layer i and the

Table 1 The values calculated

by similarity proportion

function

Layer name Subclass Belief Disbelief Uncertainty

Slope angle \10 0.27 0.339 0.394

10–15 0.29 0.329 0.392

15–21 0.52 0.526 0.289

21–29 0.207 0.207 0.553

[29 0 0 1

Slope direction North 0.162 0.105 0.773

North–East 0.067 0.112 0.820

East 0.173 0.106 0.721

South–East 0.122 0.108 0.77

South 0.129 0.107 0.764

South–West 0.122 0.11 0.77

West 0.123 0.108 0.769

North–West 0.054 0.115 0.832

Curvature of the earth Concave 0.356 0.403 0.241

Flat 0 1 0

Convex 0.405 0.104 0.491

Elevation (m) \200 0.164 0.225 0.581

200–300 0.352 0.188 0.460

300–500 0.467 0.139 0.394

500–800 0.256 0.195 0.549

800–1200 0.072 0.207 0.721

1200–1600 0 0 0.1

[1600 0.041 0.204 0.754

Distance to fault (m) \300 0.116 0.099 0.713

300–750 0.135 0.089 0.766

750–1100 0.164 0.1 0.747

1100–1600 0.11 0.101 0.79

1600–2200 0.096 0.099 0.803

2200–3000 0.018 0.105 0.783

3000–4200 0.072 0.103 0.823

4200–7000 0.086 0.1 0.811

[7000 0.087 0.102 0.81

Distance to River (meters) \50 0.22 0.129 0.651

50–100 0.15 0.143 0.707

100–200 0.083 0.154 0.763

200–350 0.065 0.15 0.785

[350 0 0 1
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denominator also indicates the ratio of the areas of this sub-

class in which no landslide has occurred to the total area of

this sub-class. Finally this relationship is used for produc-

ing the belief values. Likewise for obtaining the unbelief

values, the likelihood function is defined for probability of

non-occurrence of landslide according to Eq. (6).

k sp
� �

Eij
¼

N Lð Þ�N L\Eijð Þ
N Lð Þ

N Að Þ�N Lð Þ�N Eijð ÞþN L\Eijð Þ
N Að Þ�N Lð Þ

ð6Þ

In this relationship the numerator indicates the ratio of

class Eij where no landslide has occurred to the total

number of landslides and the denominator also indicates

the areas outside of sub-class Eij where landslide has not

occurred. The second stage is normalization of output

values from the two mass functions. For this purpose the

output values per each pixel are divided by the values

obtained from pixels of sub-class j of layer i. Finally the

mass function m hð ÞEij
is calculated to determine the

uncertainty from Eq. (7).

mðhÞEij
¼ 1� mðSpÞEij

� m sp
� �

Eij
; m Sp

� �
Eij

¼
k Sp
� �

EijP
j k Sp
� �

Eij

; m sp
� �

Eij
¼

k sp
� �

EijP
j k sp
� �

Eij

ð7Þ

where the m hð ÞEij
value represents the mass function to

calculate the uncertainty.

Results and discussion

Investigation and analysis of uncertainty in landslide

occurrence in spatial terms needs preparation of the

uncertainty map for the study area. For this purpose and for

Fig. 4 The belief map for landslide occurrence

Fig. 5 The disbelief map for landslide occurrence

Fig. 6 The uncertainty map for landslide occurrence

Fig. 7 The belief map together with the landslide occurrence places

and fault lines
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preparation of landslide occurrence risk map, the Demp-

ster–Shafer theory was implemented in this article and with

respect to the relationships given in Sect. 3.1, the belief,

unbelief and uncertainty values are calculated for each of

these classes and the results are given in Table 1.

After calculation of the belief, unbelief and uncertainty

values using the presented mass functions and imple-

menting the Dempster–Shafer combination rule for each

pixel, ultimately the three belief, unbelief and uncertainty

maps were produced. These maps are presented in Figs. 4,

5 and 6.

As is seen in these figures, the produced maps are

classified in 5 categories. In the belief map (Fig. 4) the

maximum hazard of landslide occurrence belongs to the

north western and central parts of the study area which

include the medium and sharp slopes (10�–25�) and also

medium to low height regions and the minimum hazard

values belong to the higher heights and also plain regions.

In the unbelief map (Fig. 5) the minimum values belong to

areas where they have high belief values. In this map,

dispersion of the hazard classes is greater with respect to

the belief map and this issue is in direct relation with the

location of landslide occurrence points which are selected

randomly for educational purpose. But the largest values

are observed in higher heights and also around the rivers.

Due to the direct relationship between the landslide and

distance to the faults, it is expected that the near fault areas

fall in the higher hazard class. But examination of the

presented hazard classes together with the fault lines shows

that this has not fully occurred. So that in the central and

western parts, nearly the areas near the faults belong to the

higher hazard classes. But the southern and eastern faults of

the area belong to the medium to the low hazard class and

also the areas near the northern fault are located in the very

low hazard class. This issue is due to non-occurrence of

landslide in these areas. In this respect the geological map

of the study area is effective and could not be overlooked.

Because these regions are located in the high heights and

according to the geomorphologic map, the area has rocky

and stable layers.

Likewise in the uncertainty map (Fig. 6); those areas

have the maximum values which belong to the low and

very low classes in the belief and unbelief maps. These

areas are those which are located at high heights and also

around the rivers. Among these regions one could refer to

the northern and southern parts of the area which are col-

ored in black in Fig. 6. These areas had the lowest values in

the belief and unbelief maps and are specified in white

color. This map is among the important and unique out-

comes of the Dempster–Shafer method and it could be

implemented in determining the priorities for planning of

landslide occurrence hazard.

When investigating the landslide hazard, the main goal

is to find areas with maximum probability of occurrence.

But notwithstanding what kind of method is implemented

for this purpose, assessment of the results is of vital

importance. Finally for assessment of the utilized method,

23 points which were not used in the training process were

implemented as assessment points. Among these, 18 points

belonged to the very high and high risk classes which

indicate that about 65% of the estimated landslides belong

to these two classes. Also the 5 remained points belonged

to other classes. Figure 7 presents the landslide occurrence

points together with the belief map and the faults of the

area.

Examining the output map for the belief values, the ratio

of pixels corresponding to each class were extracted and

the results are given in Fig. 8. Thus the highest percentage

of the study area was located in the low class and after that

the medium, very low, high and very high classes are

ranked, respectively.

In addition to the above assessment, in this section also

use has been made of the prediction rate curve for

assessment of the results e. As is seen in Fig. 9, more than

30 cases of landslides are located at the 40% of the study

area and dispersion of the landslide points in the higher

hazard classes confirms this issue. In this diagram the

horizontal axis represents the area ratio in percentage form

of the study area, where the lower values correspond to the

classes with higher rates of hazard and with increase in the

percentage value of the area, the classes with lower rates of

hazard are added cumulatively to this value so that

Fig. 8 Comparison of the pixels in the belief map

Fig. 9 The prediction rate curve using the belief map

188 Page 8 of 10 Model. Earth Syst. Environ. (2016) 2:188

123



ultimately the value equal to unity would represent the

entire area. Also the value obtained in this article for AUC

(area under the curve) using the belief map is 0.74 which

with respect to the limited number of landslide occurrences

is a high precision value and indicates good efficiency of

the Dempster–Shafer theory of evidence in prediction of

the landslide occurrence.

Conclusion

With respect to concerns over the issue of landslide occur-

rence and its devastating consequences, identifying areas

susceptible to this event is of vital importance. On the other

hand the impact of uncertainty in the information layers being

used and the expected results could not be overlooked. In this

article to prepare the landslide occurrence risk map and also

precise investigationof the impact of spatial uncertainty on the

results, the Dempster–Shafer theory is implemented. That is

while in the previous studies various methods were incorpo-

rated for producing maps without taking into account the

uncertainty. So in this article through definition of a unique

mass function first the belief, unbelief and uncertainty values

for each of the sub-classes were calculated separately. Then

implementing the Dempster–Shafer’s rule of combination of

evidences, the corresponding values of different parameters

for preparation of the belief, unbelief and uncertaintymaps are

combined separately and the corresponding maps are pre-

pared. To validate the results, a comparison was made

between the landslide occurrence points and the hazard clas-

ses in the belief map. Also the prediction rate curve and the

area under this curve was utilized as the precision parameter.

Assessment of the results indicates the high accuracy and

precision of this method in predicting landslide occurrence.

The results of this article could be implemented in decision

making and management of the land use and urban planning.

Considering that the results of this article indicate the direct

impact of uncertainty on the results, it would result in reduced

error in decision making.
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