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Abstract Deforestation is a global phenomenon that

threatens not only biodiversity but also the livelihoods of

people who depend on them. Recent global analyses indi-

cates that this problem is growing, hence the growing need

to identify the underlying drivers in order to develop more

responsive policies. We present a machine learning-based

method which automatically identifies key drivers and

makes predictions from available spatial data in Swaziland

during the post millennium period. The efficient Bayesian

multivariate classifiers (EBMC) are used to learn feature-

selected Bayesian network (BN) models of deforestation

from multisource data. The EBMC models, learned using

the K2 and BDeu algorithms, were also used to predict the

probability or risk of deforestation in addition to providing

a directed acyclic graphical view of the key interacting

factors. These were compared with constraint and knowl-

edge-based BNs developed using the common EBMC-se-

lected variables. All the models performed consistently

well (log loss\0.3, AUC[0.8) when evaluated against

observed deforestation patterns. The knowledge-based and

constrained-based BNs performed well highlighting the

need for developing a causal structure of interactions

between variables. The findings indicate that deforestation

patterns are determined by an interaction of proximate and

underlying factors primarily fuelwood use, human popu-

lation density, human settlements, protection and land

ownership status. The findings indicate that, unless robust

conservation measures are put in place, deforestation is

likely to continue as more areas become vulnerable. The

models produced plausible results that can be used for

preventive planning and policy making.

Keywords Bayesian network � Deforestation � Efficient
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Introduction

Deforestation and forest degradation are the major drivers

of biodiversity loss in developing countries (Rolland et al.

2014). Furthermore, this results in loss of crucial ecosystem

services and compromised livelihoods for people who

depend on forest and woodlands for their survival.

Ecosystem services such as biodiversity protection, climate

regulation, carbon storage, sediment retention, water sup-

ply and pollination are some of those provided by tropical

forests (Foley et al. 2005) and required for the same agri-

cultural activities that tend to drive deforestation (Porro

et al. 2015). Deforestation has also been observed to be the

key contributor to carbon emissions (van der Werf et al.

2009). Hence, programmes such as the united nations

framework convention on climate change’s (UNFCCC)

reducing emissions from deforestation and forest degra-

dation and related activities (REDD?) mechanism have

been spearheaded (UNFCCC 2014). Addressing this

problem requires explicit characterization of the patterns

and drivers of deforestation so as to formulate mitigation

actions and to minimize the resultant carbon emissions.

Assessing the driving forces behind land change is key

for reducing the uncertainty regarding the spatial and

temporal occurrence of future deforestation and forest
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carbon loss (Bax et al. 2016). The interactions between the

causes of forest loss affect forest cover, and subsequently

have impacts on ecosystems services and the livelihoods of

the people who depend on tropical forests to survive (Foley

et al. 2005). This highlights the importance of studying the

causes of deforestation through spatial analysis so as to

better understand the dynamics of land use change. How-

ever, understanding of the causes of changes in the land-

scape is not a simplistic representations of a few driving

forces but involves complex analyses of area-specific

interactions among a large number of explanatory factors

(Kumar et al. 2015). Such drivers may include biophysical,

socioeconomic, political and/or institutional factors inter-

acting at different spatial and temporal scales (Geist and

Lambin 2002; Rudel 2007). The increasing availability of

earth observation data, open data and open-source analysis

tools present an opportunity to understand forest cover

change more efficiently than ever-before. Nonetheless, the

increasing volume and complexity of data requires the use

of techniques that can handle large multi-source and multi-

scale datasets.

Over the years researchers have employed various tech-

niques to estimate deforestation risk from possible under-

lying drivers. These include including statistical approaches,

machine learning (ML) and spatial modelling (Mayfield

2015). Traditional parametric approaches, usually in the

form of logistic regression, generalized linear or generalized

additive models, are widely used compared to machine

learning techniques such as Maxent (e.g., Aguilar-Amu-

chastegui et al. 2014). Conventional statistical approaches

and tools for estimation of deforestation risk, although use-

ful, have largely depended on technical expertise, which is

often lacking in developing countries (Romijn et al. 2015).

Furthermore, it may not be possible to simultaneously know

all the drivers and their relative influences on deforestation.

Machine learning algorithms, in particular, have the ability

to represent and generalize relationships in data, thereby

offering significant potential for dealing efficiently with

large datasets (Committee on needs and research require-

ments for land change modeling et al. 2014).

Machine learning approaches have been found appro-

priate for situations where data concerning observed pat-

tern are available but theory concerning process is scant

(Committee on needs and research requirements for land

change modeling et al. 2014). Compared to statistical

approaches, such algorithms do not require strong mathe-

matical assumptions to express a relationship between the

target variable (deforestation) and predictor variable(s).

Furthermore, interpretation of the model structure and

performance of some traditional and machine learning

approaches is difficult. Therefore, methods that are readily

available, can be easily interpreted, can be run iteratively

and updated are required for understanding deforestation.

In this study, we propose and test a new approach for

identifying high deforestation risk areas and the underlying

causes. This approach is tested in Swaziland where, to date,

the drivers of deforestation have not been spatially and

explicitly studied. We employ an approach based on

Bayesian networks (Pearl 1988) which has largely been

used in the analysis of high-dimensional datasets and can

automatically select the relevant variables in addition to

estimating deforestation probabilities. Although BNs have

been used for land change modelling (e.g., Aalders 2008;

McCloskey et al. 2011; Krüger and Lakes 2015), most of

the studies used a minimal set of expert selected predictor

variables. Using available landsat satellite imagery-derived

deforestation and other ancillary data for Swaziland, we

test the machine learning approach to BN model develop-

ment from data.

The objectives of this study are to use machine learned

Bayesian networks to (1) identify factors that are associ-

ated with direct deforestation drivers, on deforestation in

Swaziland, and to (2) predict the risk of deforestation status

of forests and woodlands. Within the context of this study,

we define deforestation as the removal of primary forests

and woodlands with tree cover of more than 30 %.

Methods

Study area

The study was carried out in Swaziland, southern Africa

(centred on 26.5 �S and 31.5 �E) (Fig. 1) with an area

totalling 17,365 km2. The country is characterized by a

combination of mountainous areas to east, undulating hills

in the central parts, and relatively flat terrain and an undu-

lating plateau to the east. The altitude of the area ranges

from a lot of 40 m rising to a peak of 1862 m above sea

level resulting in relatively dry to humid climates charac-

terized by distinct wet warm summers and dry cold winters.

Mean annual rainfall varies considerably from year to year,

averaging at about 1500 mm in the western part of the

country decreasing to 500 mm in the southeast where

drought is prevalent. Conversely, mean annual temperature

varies from 17 �C in the northwest rising up to 22 �C in the

southeast with some localized variations caused by topo-

graphic features. The country’s natural ecosystems also

tend to follow the altitudinal and climatic gradients.

The underlying geology, coupled with the topography

and climate, invariably influences the various land capa-

bilities and agro-ecological zones with differentiated suit-

ability for varying land uses such as human settlement,

grazing, wildlife, irrigation agriculture, livestock ranching,

and subsistence agriculture, amongst others (Remmelzwaal

and Dlamini 1994). These land uses are practiced under
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communal Swazi National Land (approximately 52 % of

total land area held in trust by the King) and Title Deed

Land, which constitutes about 47 % of total land area

(Remmelzwaal and Vilakati 1994). Crown land (govern-

ment land) and concession land are two other minor cate-

gories, which cover less than a percent of the country’s

surface area. Such a heterogeneous landscape with steep

environmental gradients and varying land uses provides a

good opportunity investigate their effects on forest cover

dynamics.

Data

The data on forest cover loss was obtained from the global

forest change database (GFCD, obtained through the

Google Earth Engine (http://earthenginepartners.appspot.

com/science-2013-global-forest). This forest loss dataset,

which is the only publicly available dataset available for

the country, is based on Hansen et al.’s (2013) analysis of

Landsat satellite images for the period between 2000 and

2014. The procedure from the GFCD is based on tree

canopy cover in the year 2000, defined as percent canopy

closure for all vegetation taller than 5 m in height. Binary

maps of forest loss are produced by identifying pixels with

a change from non-zero to zero percent tree cover. Con-

versely, forest gain during the same period is defined as the

inverse of forest loss. We used the R package gfcanalysis

(Zvoleff 2015) to download, extract and analyses the forest

loss data for Swaziland. A threshold of 30 % tree cover

was set to differentiate forest and non-forest areas.

All forest loss pixels which had forest gain during the

period under review were not regarded as deforestation par-

ticularly because nearly all of those were within forest plan-

tations where there is a cycle of harvesting and replanting.

However, a few areas within the plantations experienced nett

loss due to factors such as fires and those pixels were identi-

fiable and were retained. Through a review of literature on

deforestation processes and with our knowledge of the local

environment, we identified a total of 120 variables as possible

explanatory factors at the national level (see Supplementary

material 1 for datasets used and their characteristics). All the

variables were then rescaled to a uniform 30 arc-second

(*800 m) resolution grid size for the analysis. All the spatial

analysis and visualization was done using the QGIS software

(QGIS Development Team 2012).

Bayesian networks

In modelling deforestation with a BN, the aim is to derive a

directed acyclic graph with the target (deforestation) and

the explanatory variables represented as nodes connected

by edges or arcs following dependencies. Bayesian think-

ing lies in the interpretation of Bayes’ theorem or law

(Eq. 1): given deforestation D and evidence e such that

P(e) = 0 and P(D) = 0, then:

PðDjeÞ ¼ PðejDÞPðDÞ
PðeÞ : ð1Þ

The theorem (Eq. 1) asserts that the probability of an

deforestation event (or hypothesis) D conditioned upon

Fig. 1 Location map of the

study area
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some evidence e is equal to its likelihood P(e|D) times its

probability prior to any evidence P(D), normalized by

dividing by P(e) so that the conditional probabilities of all

hypotheses sum to 1. The term P(D|e) is often known as the

conditional probability or posterior (or a posteriori) prob-

ability of deforestation D given e while P(e|D) is the

likelihood of e given a deforestation event D. The term

P(D) is the prior or marginal probability of deforestation.

Given the conditional probability formulation, it is now

possible to define what it means for deforestation and an

explanatory variable to be conditionally independent. The

events D and e are independent if P(D|e) = P(D) and

P(e|D) = P(e). It follows then that if both P(D) and

P(e) are positive, then both P(D|e) and P(e|D) imply the

other. This notion of conditional (in)dependence is funda-

mental to BNs and the interpretation of probabilistic

relationships.

A BN is essentially a graphical representation of a

probability distribution over a set of variables X = {X1,-

X2,…,Xn}, n C 1. A BN consists of two parts,

B = hG,Hi, where G is a directed network structure in

the form of a directed acyclic graph (DAG), and H is a

set of the local probability distributions for each

node/variable, conditional on each value combination of

the parent nodes. The graphical component of BNs,

G makes them a class of probabilistic graphical models

for reasoning under uncertainty, where the nodes repre-

sent variables (which can be discrete and/or continuous)

and the arcs represent direct (and sometimes causal)

connections and (in)dependencies between the linked

variables. Those variables that are not linked directly in

the graph are considered conditionally independent of

each other. The second part of the BN, H represents the

conditional probability distributions which models the

quantitative strength of the connections or dependencies

between variables. These are represented as conditional

probability tables (CPTs), allowing probabilistic beliefs to

be updated automatically as new information becomes

available.

BN learning from consists of learning both the param-

eters and the structure or DAG. Hence, BNs provide a

flexible method for probabilistic graphical modelling of

highly interacting variables. Daly et al. (2011), Koski and

Noble (2009) and Bielza and Larrañaga (2014) provide

detailed reviews of contemporary approaches to and issues

on learning BNs from data, the former focusing on the

widely used discrete BN classifiers. In order to learn the

Bayesian network structure from data, the algorithm

approximates the likely graphical model by searching the

space of possible networks via single-arc changes that

improves some score. Alternatively, the structure can be

based on some constraint put on the relationship between

the selected variables.

The EBMC approach

Since there are many possible predictors of the complex

deforestation pattern in Swaziland, it becomes difficult to

ascertain which of them are better predictors. Hence, we

sought for a method that can simultaneously select highly

predictive variables whilst also modelling the interactions

between them. Hence, the efficient Bayesian multivariate

classifier (EBMC) algorithm (Cooper et al. 2010; Jiang

et al. 2014) was chosen because it selects predictors from

high dimensional data, and then uses the selected predictors

in a BN classifier to perform inference and prediction.

This algorithm searches over a number of possible BN

models to find one that is highly plausible given the

training data and prior probabilities (Cooper et al. 2010). It

starts by scoring all models in which a single variable is the

parent of the deforestation node D, using either a K2 or a

BDeu score. The model containing the highest scoring

variable becomes the initial model. The algorithm then

determines which variable when added as a parent of D to

the first model yields the highest scoring second model. If

the second model has a higher score than the first model,

the new BN model is retained. This process is repeated

using a greedy search by adding variables to the model as

long as there is an increase in the K2 or BDeu score. If

there is no further increase in the score, the algorithm then

searches for a variable which when removed increases the

score, and the variable whose removal increases the score

the most is excluded. More variables are removed until

removal of a variable does not increase the score. The

algorithm then makes the variables in the final model

children of D and create edges or links between them. The

resultant BN produced by the EBMC algorithm is an

augmented naı̈ve BN which shows interactions or proba-

bilistic relationships amongst the selected variables

(Cooper et al. 2010).

The EBMC, therefore, searches over hybrids of Baye-

sian rules and augmented naı̈ve BNs using prequential

scoring in conjunction with either the BDeu or K2 scoring.

The algorithm can be thought of as always searching for an

additional rule that improves the prediction of the target

variable in light of the selected predictor variables. The

EBMC can also be viewed as a greedy search strategy that

maximizes the score of a Markov blanket (Pearl 1988) of

the target node D. The Markov blanket of the target node D

consists of its direct parents, its direct successors, and all of

its direct parents’ direct successors within the given BN

(Pearl 1988). Markov blankets have been shown to yield

highly effective probabilistic predictions (Aliferis et al.

2010). This method differs from other BN-learning algo-

rithms in that ordering of the features is not required in

addition to an augmented Naı̈ve Bayes representation of

the learned BN structure from a subset of selected features.
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We also tested a constraint-based approach, the inductive

causation (ICS) algorithms (Verma and Pearl 1992) which

takes into account latent variables to produce a BN with

undirected, unidirected and bidirected arcs (Daly et al. 2011).

This algorithm is a variant of the Spirtes, Glymour, Scheines

(SGS) algorithm (Spirtes et al. 1993), which first generates an

undirected graph that models dependencies between vari-

ables. Hence, the ICS algorithm is optimized for recovering

the causal structure as opposed to finding an optimal classifier.

TheBayesian scoremetricwas used to learn the ICS algorithm

using the variables selected by the EBMC algorithm. Finally,

we developed a domain knowledge-supported BN using

information from literature to determine the causal linkages.

All the analyses were done using the waikato environment for

knowledge analysis (WEKA) open-source data mining

package version 3.9 (Hall et al. 2009).

Model validation and evaluation

A total of ten runs of tenfold cross-validationwere performed

for each of the K2 and BDeu scoring approaches and the ICS

and knowledge-supported BN models thereby ensuring that

the final calibration of every model used all of the data

available. K-fold testing is more reliable with large data sets

and is one of the recommended approaches for evaluating

BN model prediction performance (Marcot 2012). More-

over, tenfold cross-validation has been found to be the right

number to get the best estimate of error in addition to sup-

porting theoretical evidence (Witten et al. 2011). Cross-

validation is used to provide an out of sample evaluation

method which repeatedly splits the data in training and val-

idation sets. A BN structure is evaluated by estimating the

network’s parameters from the training set and the resulting

BN’s performance determined against the validation set. The

average performance of the BN over the validation sets in

turn provides a metric for the quality of each network.

The logarithmic loss (or log loss) was selected to eval-

uate model performance because of its suitability and

reliability for tasks where posterior probability values are

an important consideration (Marcot 2012). The log loss is

also an evaluation metric whose value is only determined

by the probability of the outcome that actually occurs

(Cowell et al. 1993). This was calculated using the Eq. 2

(Pearl 1988; Morgan and Henrion 1990).

Logarithmic loss ¼ 1

n

Xn

i¼1

Xm

j¼1

yij � ln Pij

� �
; ð2Þ

where n is the number of cases or instances in the test set,

m is the number of class labels or states, ln is the natural

logarithm, yij is 1 if observation i is in class j and 0

otherwise, and pij is the predicted probability that obser-

vation i belongs to class j.

The log loss, which has scores between 0 and infinity (or

1 if using a logarithm base of 2), is a cross-entropy estimate

which measures the additional penalty for using an

approximation instead of the true model. A value of zero

indicates the lowest penalty whereby the network’s prob-

ability distribution totally matches the true distribution. In

addition to the log loss, we also estimated the area under

the receiver operating characteristic (ROC) curve (AUC)

(Hand 1997) of each model as a performance evaluation

criteria.

Variable importance

The relative importance of each of the selected predictor

variables was measured by computing its mutual infor-

mation or entropy reduction (Pearl 1988) with the target

node (deforestation). Given a probability distribution p

defined over two sets of variables X and Y, the mutual

information between X and Y, which is measured in bits, is

given as:

IðX; YÞ ¼
X

x;y

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ

� �
; ð3Þ

where p(x) and p(y) are the probability densities of X and

Y, and p(x, y) is the joint probability density; which can

also be expressed in terms of entropy as:

IðX; YÞ ¼ HðXÞ þ HðYÞ � HðX; YÞ; ð4Þ

where H(X) and H(Y), are the entropies of X and Y,

respectively, and H(X,Y) is the joint entropy of X and Y.

The mutual information extracts the relevant informa-

tion that variable Y contains about X and is a very good

measure of the average number of bits needed to convey

the information X contains about Y and vice versa. As such,

the mutual information is able to detect non-linear depen-

dencies among variables that are undetectable using con-

ventional measures (Guyon and Elisseeff 2003). It ranges

from zero when the variables are independent and attains a

maximum of 1 when one variable is a deterministic func-

tion of the other. The sensitivity analysis helps in validat-

ing the obtained relationships with the observed spatial

patterns and domain knowledge. Furthermore, the mutual

information indicates the potential of an explanatory vari-

able to reduce the uncertainty in the target variable (Krüger

and Lakes 2015).

Results

The 2000–2014 deforestation map of Swaziland as derived

from the GFC dataset is as shown in Fig. 2. It is evident

that the deforestation is complex and widespread in the
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country covering most parts of the country albeit with

localized hotspots. Fig 3 shows the BN models learned

using K2 and BDeu scoring of the EBMC algorithm in

addition to the ICS algorithm and the domain knowledge.

In total, 17 variables were included in the final models of

both scoring metrics from the original 120 variables. The

K2 and BDeu scoring approaches produced slightly dif-

ferent structures although both selected 14 similar vari-

ables. The performance of all the BN learning approaches

also produced accurate models as demonstrated by the

AUC higher than 0.8 and logarithmic loss values lower

than 0.3 (Fig. 4). The knowledge-supported BN, developed

using the variables commonly selected by both the BDeu

and K2 scoring approaches, outperformed the machine-

learned BNs. However, the performance of the score-based

algorithms was very similar with marginally better AUC

and log loss values for the BDeu model.

Both proximate and underlying causes of deforestation

are revealed through the selected variables from the BN

models. The sensitivity analyses indicate that the per-

centage of people using fuelwood for cooking is the

strongest deforestation risk factor followed by human

population density, land use, human settlement density,

protection (conservation) status and land tenure (Fig. 5).

All the BN models generally produced a similar trend

regarding the relative strengths of these drivers in deter-

mining the spatial patterns of deforestation in Swaziland.

Notably, both EBMC-learned BNs were predominantly

augmented naı̈ve Bayes in nature showing only a few

interacting factors thereby indicating strong independence

relationships between the features. For instance, the K2-

derived BN indicated that land tenure interacts with cattle

density and slope aspect whilst protection status interacts

with wildfire frequency to determine forest cover loss.

Similarly, the BDeu-derived BN also indicates the inter-

action of protection status and wildfire frequency, whilst

additionally showing an interaction between cation

exchange capacity at higher soil depths and proximity to

major (perennial) rivers. The ICS algorithm produced the

most complex network with feedback loops and bidirected

arcs, highlighting the complex interaction of the selected

drivers.

Despite differences in performance between the differ-

ent modelling approaches, there are no discernible differ-

ences in the BDeu and K2 prediction maps (Fig. 6).

However, the results from the ICS and knowledge-based

models are visibly different from those of the BDeu and K2

algorithms. Notably, large areas have high posterior

deforestation probabilities in the BDeu and K2 prediction

maps compared to the ICS and knowledge-based predic-

tions. The highly vulnerable areas tend to cluster around

observed deforestation sites, which suggests that the causal

BNs have better generalization capability compared to the

EBMC-derived augmented naive Bayes classifiers. This

also indicates that the generalization capability of the

EBMC algorithm is improved by recognizing and

accounting for the significant influence of all dependencies

amongst causal factors.

Nevertheless, a mean deforestation map (Fig. 7)

derived from the mean of all four models shows that large

areas of forest are at risk of possible loss. This map can

be interpreted as the probability of reduction of tree cover

and height to below 30 % and 5 m, respectively. Areas

that are highly vulnerable are as driven by the selected

key factors particularly areas outside protected areas

including forests that are in close proximity to major

rivers and near existing human settlements and sugarcane

plantations particularly in the central and eastern parts of

the country. Protected (gazetted) areas have conspicuously

low risks of deforestation as well as areas under conser-

vation management albeit with some risk for certain areas

closer to existing sugarcane plantations. The elevated risk

in plantation forests and other wattle forests to the west of

the country can be attributed to the cycle of harvesting

and replanting which the models indicate as possible

forest removal.
Fig. 2 Deforestation map derived from the GFC dataset for Swazi-

land. Black pixels represent areas where deforestation has occurred
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Discussion

Model performance and prediction maps

A spatially explicit analysis of deforestation and the anal-

ysis of proximate and underlying drivers is required for

addressing local characteristics in forest cover change

modelling. The EBMC technique was able to use high

dimensional spatial data without a separate feature selec-

tion pre-processing step to select variables that are key

drivers of deforestation. Although BNs do not allow for

cyclic links, the ICS algorithm produced a causal BN with

bidirected arcs resulting in feedback loops. This, we

believe, represents a more realistic depiction of the inter-

action of the selected causal factors in determining defor-

estation in Swaziland. The performance of the ICS and

knowledge-based BN highlights the importance of causal-

ity or a causal structure in modelling deforestation. The

derived BNs form the basis for efforts to communicate

ideas about the complexity of the observed deforestation

patterns and processes. They also act as graphical

illustrations of what is both previously known and

unknown about the drivers of deforestation and their

interactions.

The derived deforestation risk maps provide a useful

tool for proactive planning and policy making. Although

there were differences in the prediction maps, these were

largely differences in the probability distributions while

the spatial patterns were generally similar. These differ-

ences can be attributed to the differences in the network

structures. The predominantly naı̈ve nature of the EBMC-

derived maps resulted in possible overestimation of

deforestation risks for large areas. On the other hand, the

causal structure-based ICS and knowledge-based models

were more constrained and predicted relatively lower risks

in some areas with the exception of specific hotspots such

as areas in close proximity to major rivers and near major

water reservoirs. Hence, including more interactions

among the drivers of deforestation resulted in probabilities

that closely match to the observed forest loss. This

observation is also supported by the log loss values which

reflect lower prediction penalties for the ICS and

Fig. 3 Bean plots of

logarithmic loss (a) and AUC

(b) for the four BN models
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knowledge-based models. In a study using BNs for min-

eral prediction and species distribution modelling,

respectively, Porwal et al. (2006) and Aguilera et al.

(2010) also observed that including more arcs between

variables improved the spatial prediction performance.

The BN-based probabilistic approach, therefore, enables

the communication of deforestation vulnerability in dif-

ferent parts of the country resulting from the various

driving factors. The posterior probability maps also show

possible development paths, including the uncertainties

related to the prediction models. The deforestation risk

has serious negative implications for the majority of the

Swazi population who direct and indirectly depend on

forests for most basic necessities such as food, medicine

(a) (b)

(c) (d)
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Fig. 4 Bayesian networks for the EBMC learned using the BDeu (a) and K2 scoring methods (b) together with the BNs learned using ICS

algorithm (c) and domain knowledge (KB) (d). Full variables names and abbreviations are shown in Supplementary material 1

Fig. 5 Relative influence

(mutual information) of selected

variables on deforestation

patterns. Full variables names

and abbreviations are shown in

Supplementary material 1

cFig. 6 Deforestation posterior probability (risk) maps from the

EBMC learned using the BDeu (a) and K2 scoring methods (b) the
ICS algorithm (c) and domain knowledge (d)
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and shelter let alone the broader suite of ecosystem ser-

vices and carbon stocks that are under threat.

Whilst the findings present new evidence to the defor-

estation processes in Swaziland, the selected factors are

consistent with previous observations elsewhere in the

world. The complexity of the drivers of deforestation

makes them location-specific because a variable affecting

deforestation in an area may not do so in another. While we

developed and compared data-driven and knowledge-based

BNs, the findings indicate the added value of combining

data-driven models with expert or domain knowledge to

improve the deforestation models and their predictions.

The usefulness of BNs is largely in their ability to facilitate

the integration of expert knowledge and empirical data

whilst also graphically showing the (e.g., sampling data).

In addition to the improved performance of the knowledge-

supported model, the model was also easy to interpret and

important relationships between proximate and underlying

causes and deforestation could be easily visualised.

Deforestation drivers

The key drivers of deforestation in Swaziland are revealed

by the models. Fuelwood harvesting is the primary driver

in the country and is known to causes forest degradation in

human-dominated landscapes (Specht et al. 2015). Fuel-

wood collection is a key driver that can also be seen along

major (tourist) roads where indigenous trees are cut to sell

to passers-by (mainly city dwellers) as firewood (Stringer

2009; Manyatsi and Hlophe 2010). The 2012 National

Energy Balance showed that 53 % of the energy

consumption was biomass comprising mainly of fuelwood

(30 %) used in households (Government of Swaziland

(GOS) 2012). Ngwenya and Hassan (2005) estimated that

an average of 376 kg/annum was being extracted per per-

son and is exacerbated by the large populations in smaller

areas of natural forest and woodland that have very low

regeneration capacity. Earlier findings by Wheldon (1990)

and Lasschuit (1994) indicated that there is a general

fuelwood deficit in the country whilst Allen et al. (1988)

projected that the central part of the country would expe-

rience fuelwood deficits as early as the 1990s.

Land use is another major driver as indicated by the

analysis. A multitude of policies and legislations concern-

ing land resources management exists in the country and

fragmented within various institutions. Among others, laws

and regulations connected to the use and management of

land has had a significant catalytic effect on deforestation

processes in Swaziland. These have significant implications

on major proximate drivers such as human settlements

encroachments, infrastructure development projects and

agricultural developments. Recently, Bailey et al. (2015)

noted an increase in cropland area in areas outside protected

areas in the north-eastern part of the country. The almost

non-existence of forest loss within protected areas high-

lights their role, especially through legal gazetting and

enforcement, in the avoidance of deforestation in areas that

would have otherwise been deforested. This important role

of protected areas as a buffer against deforestation has been

observed in many parts of the world (Spracklen et al. 2015).

It is therefore necessary that protected area expansion and

other area based conservation strategies are urgently tar-

geted towards the identified localities with higher defor-

estation risk. This is also important for policy- and decision-

making especially within the framework of biodiversity

conservation and international climate change mitigation

policies, such as REDD?.

The land tenure system influences the spatial patterns

and types of human population density, land use and sub-

sequently the forest utilization processes in the country. A

majority of the country is designated as Swazi National

Land (SNL) held in trust for the nation by the King

(Mavimbela et al. 2010) and carries approximately three

quarters of the population through communal customary

tenure (Xaba and Masuku 2013). Such land is administered

by chiefs and governed through customary rules. The rest

of the land is title deed land (TDL) where exclusive access

rights are defined and typically allocated to corporate

actors (Mushala et al. 1994) and affluent individuals. The

decisions on the allocation or distribution of land, usually

taken based on human population pressure and subsistence

requirements, influenced the landscape. Robinson et al.

(2013) found that tenure security improves forest cover in

the tropics. On the other hand, tenure insecurity,

Fig. 7 Mean deforestation risk map derived from averaging the

posterior probability all the Bayesian network models
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particularly in communal lands, might increase deforesta-

tion. Dlamini and Geldenhuys (2011) observed that the

land tenure system in Swaziland invariably affects the use

and management of edible and medicinal non-timber and

timber forest resources particularly in communal areas.

This has implications for the majority of the Swazi popu-

lation who directly and indirectly depend on forests and

woodlands for most basic necessities such as food, medi-

cine and shelter.

The expansion of the human population and settlements

especially in close proximity to major roads is another key

deforestation driver. With an increase in urbanisation,

deforestation would occur and these would also be associ-

ated with rural population growth. Such deforestation also

occurs in peri-urban areas and within main transportation

corridors between major cities and towns. The growing

urban population encourages people to make increasing use

of fuelwood for cooking and heating (Rudel 2013). With

increasing improvement in the country’s road and other

linear infrastructure network, accessibility to these areas is

also gradually improving, thereby opening up forests to

illegal and unregulated activities such as land speculation

and destructive exploitation (Laurance et al. 2009). Such

disturbances can increase the vulnerability of forests to more

anthropogenic and natural disturbance. For instance, new

roads facilitate access to previously intact forests as more

settlements are established onmountainous terrain and in the

more fertile riverine ecosystems. Human settlements are also

often accompanied by the construction of electrical power

and telephone lines, the maintenance of which requires

clearcutting of 10 to 30 m strips of vegetation.

It is important to also note that human settlements,

especially in rural areas, is often accompanied by the cre-

ation of slash-and-burn agricultural fields within soils that

are more fertile and have low clay content thereby exac-

erbating the deforestation problem. This is particularly

important to note because over 70 % of the Swazi popu-

lation and households rely on agricultural output as a major

source of income and food security (Masuku et al. 2015).

Another growing problem is the illegal cultivation of

marijuana (predominantly Cannabis sativa) in various parts

of the country during which patches of forest are cleared

particularly within perennial river valleys (pers. obs.).

Uncontrolled fires are also an increasing problem which

results in the loss of large tracts of forests, both indigenous

and man-made (Dlamini 2010). Forests that have been

burned before are more likely to be deforested because the

initial fires tend to thin out the canopy and add combustible

material. Such forests are also often adjacent to fire-

maintained rangelands and therefore frequently exposed to

ignition sources. As a result, subsequent forest fires burn

with increased intensity resulting in net loss of forest cover

in the affected areas. Even though our results indicate high

deforestation risks in man-made forests, we do believe that

these are both sustainably managed and have higher

regeneration rates after harvesting. Black wattle (Acacia

mearnsii) and some Eucalyptus species, for instance, have

even been particularly observed to be highly invasive due

to their rapid growth rate and uncontrolled spread into

other natural vegetation (Kotzé et al. 2010). Also associ-

ated with fires is the slash-and-burn practice through which

patches of forest are cleared for both subsistence crops and

illegal marijuana or cannabis cultivation.

Agricultural activities are the dominant land uses driv-

ing deforestation in sub-Saharan Africa (Angonese and

Grau 2014). Livestock production is also one of the main

agricultural activities in Swaziland, with small farmers

owning about more than three quarters of the total cattle

population in the country (Swaziland Environment

Authority 2012). This high density of cattle, particularly in

communal areas, results in overgrazing and land degrada-

tion. High consumption rates of plant cover by livestock

also reduces protective plant vigour and regrowth capacity.

Other indirect effects include soil compaction due to

trampling which, when excessive (particularly along cattle

trails and near diptanks, homesteads and water points), may

cause run-off and gully erosion (Tefera 2013), thereby

accentuating the problem. Roques et al. (2001) also

observed that high browsing pressure by goats in com-

munal land may suppress the recruitment of some tree

species, resulting in an unsustainable population structure

with limited regeneration of the population.

The importance of clay content at 30–60 cm depth point

to the significance of soil characteristics in influencing land

use particularly agricultural practices such as subsistence

crop farming and commercial agriculture. Areas with low

clay content have relatively higher deforestation probabil-

ities. The role of slope aspect is also notable and probably

links to its influence on the topo-edaphic and hydrological

properties of the landscape thereby influencing both agri-

cultural suitability and vulnerability to deforestation. For

instance, Murdoch (1968) and Nixon (2006) note that clay

loams to clay soils with moderate organic matter content,

which usually occur in mid-slope positions on well-drain-

ing gentle slopes, are one of the best soils which produce

higher sugarcane yields. Tefera (2013) also notes that

human settlement-associated livestock density and land

form/aspect may affect vegetation changes and subsequent

vulnerability to degradation.

The importance of proximity to major water sources is

primarily an indicator of the effect of the growth of the

export sugarcane plantation economy. Conversion of forest

land to agriculture is primarily attributed to clearings for

sugar cane, business and residential structures and water

supply projects (DANCED 2000). This is driven by the

demand for land resources required for establishment of
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sugarcane to sustain the global agricultural commodity

trade. A visual analysis of the maps indicates that the

construction of the Maguga dam to the north of the country

and the Lubovane dam in the eastern central part of the

country have induced further clearing of natural forests for

sugarcane and resettlement of people previously residing in

the inundated areas. These government-led developments

are implemented through the Swaziland water and agri-

cultural development enterprise (SWADE) through support

to local communities to engage in commercial small-holder

agricultural activities, particularly sugarcane. Such expan-

sive irrigation programmes are supported by sectoral poli-

cies such as the Comprehensive Agriculture Sector Policy

(2005), the National Food Security Policy (2005) and the

Swaziland National Irrigation Policy (2005). As more dams

and sugarcane development projects are anticipated, it is

expected that the situation will worsen particularly in the

predicted high risk areas in close proximity to major rivers

where perennially flowing water can be easily abstracted or

dammed and soils and topography are suitable.

Although least important of the selected variables,

proximity to major tourism routes was another key factor in

determining deforestation in the country. This could be an

indirect indicator of the effect of traffic flows on such routes

which increase both the demand and supply of fuelwood to

major cities and tourism activity centres. In addition, the

development of the tourism industry helps to provide job

opportunities, and the steady population growth coincides

with a continuous increase in the built-up area.

Even though forests provide a number of valuable goods

and services to the Swazi populace, the high returns from

non-forest land uses sets the protection of forest ecosystems

at a disadvantage and act as incentives for deforestation as

similarly observed by Kanninen et al. (2007). The situation

is challenging particularly in Swaziland given the country’s

climatic and phytogeographic settings which exposes the

central and eastern regions to the impacts of drought and

desertification. Nevertheless, the observed deforestation

trends should not be confused with the observed increase in

woody plant cover in some parts of the country and the

region. Such a phenomenon, which is observed for certain

woody plant species, is a result of both bush encroachment

and alien plant invasion. Deforestation can create gaps and

disturbances that facilitate invasion by prevalent species

such as Dichrostachys cinerea, Chromolaena odorata and

Lantana camara which have high-growth rates.

Conclusion and recommendations

Understanding the process of forest trajectories is vital for

informing forest management and conservation policy and

for an efficient targeting of interventions. This is

particularly true for REDD? and climate change adapta-

tion initiatives that rely on the formulation of effective and

equitable mechanisms to reduce forest carbon loss.

Deforestation in Swaziland is a result of a complex inter-

play of proximate drivers that are triggered by underlying

drivers such as demand generated for land by agricultural

activities and infrastructure development; demand for for-

est products, government policies for ensuring food secu-

rity and meeting the rising demand for energy and

infrastructure. Accentuating the problem are underlying

drivers such as permissive government (land use) policies,

population growth, and land tenure. Encroachment by

peripheral communities, catalysed by the population size

and limited enforcement of environmental laws have

encouraged deforestation.

The control or reversal of deforestation can, therefore,

be achieved by addressing the drivers identified to be

currently contributing to deforestation in the country. The

promotion of alternative energy efficient and renewable

sources should be encouraged to reduce the dependence on

the use of firewood. Reducing deforestation would also

require creating and strengthening inhibitors of deforesta-

tion such as protected areas and forest reserves as well as

strengthening participatory forest restoration and protected

area expansion programmes. It is imperative, therefore, that

the country enhances the land use planning process in

addition to identifying and implementing appropriate

market-based instruments to mitigate harmful effects of

development projects on forest resources. Other proposed

measures include strengthening the existing procedures of

environmental impact assessments and strategic environ-

mental assessments particularly for developments targeted

at the vulnerable areas. This should be accompanied by

strengthening the monitoring and enforcement capacity of

relevant conservation, environmental and land manage-

ment agencies. Furthermore, efforts should be made to

remove incentives such as subsidies which enhance the

drivers of deforestation.
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Kotzé I, Sibandze P, Beukes H, van den Berg E, Weepener H, Newby

T (2010) Surveying and mapping the distribution and intensity of

infestation of selected category 1 invasive alien plant species in

Swaziland. Agricultural Research Council—Institute for Soil,

Climate and Water, Pretoria
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