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Abstract Optimized management of water resources,

conservation and their quality increase is needful with data

existence in basis of situation, amount and distribution of

water chemical factors for example; electrical conductivity

(EC) in determined geographical region. Accuracy of

interpolation appropriate methods and variation map

preparation of groundwater quality variables is indepen-

dent to region conditions and existence of enough data.

That is true selection of interpolation methods is basic and

important step in management of groundwater resources.

EC is one of the important indicators for groundwater

quality evaluation. The objective of this research was to

determine the most suitable interpolation method and their

accuracy for analysis and checking spatial variation of

groundwater EC amount in central regions of Guilan pro-

vince, northern Iran. This investigation evaluated the

inverse distance weighting (IDW), global polynomial

interpolation (GPI), local polynomial interpolation (LPI),

radial basis function (RBF) and ordinary kriging (OK)

methods for estimation of groundwater EC in paddy fields.

In IDW method, for variable estimation used power value

1–5 that power value equal 1 was exact. Gaussian model

was the best one fitted on empirical semivariogram of

variable data in OK method. Standard statistical

performance evaluation criteria include root mean square

error (RMSE), correlation coefficient (R) and mean abso-

lute error (MAE) were used to control the accuracy of the

prediction capability of the developed methods. Results

showed that the best estimator was OK method which was

the most exact with regard to other methods for estimation

groundwater electrical conductivity.

Keywords EC � Geostatistics � GPI � IDW � LPI � Ordinary
kriging � RBF

Abbreviations

CV Coefficient of variation

EC Electrical conductivity

ER Effective range

IDW Inverse distance weighting

GPI Global polynomial interpolation

LPI Local polynomial interpolation

MAE Mean absolute error

OK Ordinary kriging

R Correlation coefficient

RBF Radial basis function

RMSE Root mean square error

RSS Residual sums of squares

SD Standard deviation

Introduction

Groundwater resource is commonly the most important

water resource in semi-arid and arid areas that are often

subject to water shortage. It plays a fundamental role in

supplying clean and safe water to competing uses for

domestic, industrial and agricultural sectors, and increasing

attentions are also paid to its significance for ecological
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integrity. However, groundwater aquifer systems always

feature complexity, high nonlinearity, being multi-scale

and random as a result of the frequent interactions between

surface water and groundwater as well as acute human

disturbance (Nourani et al. 2015; Han et al. 2016). Thus,

effective modeling techniques would be required for pro-

viding efficient ground water management strategies.

Sustainable groundwater quality is important for drink-

ing, irrigation and domestic purposes. Groundwater

resources are importance water resources for agricultural

uses and potation in Iran and many other countries that

have climate similarly to Iran climate. Beside pollution low

danger of these resources with regard to other resources is

caused in regions that surface water resources is enough, in

spite of groundwater resources are used for agricultural

uses. Waters pollution topic is explanation in developed

and development per condition countries. For example in

many cities of Iran, because potation water derived from

groundwater resources therefore should be noticed that

these resources not polluted with nitrate ion and other toxic

elements. These toxic agents can be produced from fertil-

izers, pesticides and sewage. Therefore during recent years,

increasing pollution and losing of water resources have

changed exploitation policy of water and soil resources.

Prior to the design of groundwater quality monitoring

networks, it is essential to investigate the spatial structure

of the groundwater quality variables to be monitored such

as electrical conductivity. Generally, the objective of

monitoring, introduces these variables. For example,

greater monitoring effort is required for groundwater to be

used for domestic (municipal) purposes than for agricul-

tural use. The aim of characterizing the spatial structure of

the variables is not only to assess their monitoring, which is

needed to assess the cost of monitoring, but also to give a

clear picture about their spatial variability or structure. The

spatial structure of the groundwater quality variables can

produce, for example, contour maps of the variable means.

These maps can be used for predicting and signifying

pollution areas. Accordingly, protection measures, man-

agement and planning decisions can be made to minimize

the deterioration in the polluted areas (Zehtabian et al.

2013; Shrestha et al. 2016).

Geostatistical methods were developed to create math-

ematical models of spatial correlation structures with a

variogram as the quantitative measure of spatial correla-

tion. The variogram is commonly used in geostatistics and

the interpolation technique, known as kriging, provides the

best, unbiased, linear estimate of a regionalized variable in

a no sampled location, where best is defined in a least-

squares sense. The emphasis is set on local accuracy, i.e.

closeness of the estimate to the actual, but unknown, value

without any regard for the global statistical properties of

the estimates. The kriging estimation variances are

independent of the value being estimated and are related

only to the spatial arrangement of the sample data and to

the model variogram. One development of geostatistics,

that has become more popular in the last decade, is the

stochastic simulation which represents an alternative

modeling technique, particularly suited to applications

where global statistics are more important than local

accuracy (Webster and Oliver 2008). Application of geo-

statistics techniques in hydrological sciences is a useful

approach to avoid some errors and increase of calculation

accuracy as well. In classic statistic samples taken from a

population are lack of spatial properties. Therefore the

calculated values of a parameter in a homogeny sample do

not include any information of the same parameter in

another sample with a defined distance. Geostatistics con-

sider the value as well as location of the sample. Then it is

possible to analyze value and location of the samples

together. To achieve this purpose it is necessary to relate

spatial properties (distance, direction) of different samples

using mathematical formula called spatial structure

(Babakhani et al. 2016).

Natural resources and environmental concerns, includ-

ing groundwater, have benefited greatly from the use of

Geographic Information System. One can use GIS to

integrate spatial data with other information. GIS is used

for analyzing and presenting the spatial information,

which facilitates the environmental protection, and

resource planning. GIS also help in finding the close

relationship between water quality and various natural or

anthropogenic activities (Dhanasekarapandian et al. 2016).

ArcGIS geostatistical analyst effectively bridges the gap

between geostatistics and GIS analysis (Kumar et al.

2007; Nas 2009). Geostatistical analysis has been useful

to determine water variables in space and time. Many

studies have successfully used interpolation techniques

with and without the use of the ArcGIS Geostatistical tool

(Nas 2009).

Obviously geostatistical methods use various variables

and then produce different results. In many causes a

method which is selected to reach the prediction process

but it is vital to find out the most appropriate interpolation

technique for precipitation prediction. The accuracy of

interpolation methods for spatially predicting soil and

water properties has been analyzed in several studies.

Safari (2002) used kriging method to estimate spatial

prediction of Groundwater in Chamchamal plain in west

of Iran. Results showed that suitable method of geo-

statistics to estimate one variable depends on variables

type and regional factors which influence this and any

selected method for given region cannot be generalized to

others. Nazarizadeh et al. (2005), used geostatistics

method to study spatial variability of Groundwater quality

in Balarood plain. Their results showed spherical model is
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the best model for fitting on experimental variogram of

EC variable. Ahmed (2002) used kriging method to esti-

mate total dissolution solid in Groundwater and demon-

strated accuracy of this method to prediction of total

dissolution solid.

Kriging techniques are employed to assess the spatial

dependencies of the water quality variables such as total

dissolution solid (Babakhani et al. 2016), groundwater

level (Ahmed 2002) and groundwater quality variables

such as NO3 and Cl- (Nas 2009). Sainato et al. (2003)

introduced kriging method as most acceptable and stron-

gest tool to interpolate data for preparation of contour

maps of groundwater. Zehtabian et al. (2013) used two

techniques including kriging and Weighted Moving

Average (WMA) for presenting spatial variation of

groundwater properties such as EC. Finally comparison of

the results using statistical techniques showed that kriging

technique performed better than WMA technique. Ordi-

nary kriging method was used by Nas (2009) in konya of

Turky, to produce the spatial pattern of groundwater

quality over the study area. The result of kriging inter-

polation showed that higher electrical conductivity is

clearly situated in the northeast of the study area. Mehr-

jardi et al. (2008) used IDW and kriging methods for

predicting spatial distribution of some Groundwater

characteristics such as: EC. Their results showed that for

interpolation of Groundwater EC, kriging method is

superior to IDW method. Baram et al. (2014) demon-

strated that analyzing vadose zone and groundwater data

by spatial statistical analysis methods can significantly

contribute to the understanding of the relations between

groundwater contaminating sources, and to assessing

appropriate remediation steps. Bodrud-Doza et al. (2016)

used ordinary kriging interpolation method for taking

initial decision of spatial distribution of groundwa-

terquality parameters. Their results represent that the

ordinary kriging technique is able to predict spatial vari-

ability more accurately for the study area with suit-

able semivariagram model. They reported that outcomes

of the study will provide insights for decision makers

taking proper measures for groundwater quality manage-

ment in central Bangladesh.

Groundwater monitoring can provide fundamental

information to sustainable water resource management.

The goals of groundwater monitoring can be ambient

resource condition, compliance, risk detection, and

research monitoring, or a combination of these. Land and

water management practices should be developed accord-

ing to results of continuous monitoring of water table depth

and groundwater qualities. In irrigated areas, monitoring

wells commonly used to evaluate spatial and temporal

changes in water table level and groundwater quality

(Kurunc et al. 2016).

Groundwater quality variables mapping is an important

tool for groundwater management and risk assessment. As

nearly years, dominant water of agricultural fields in Gui-

lan province was supplied by groundwater and in recent

decades, exploitation of water and soil resources has been

changed generally by excavation of many wells, deep and

mid-deep. Therefore, sustainable management of water and

soil resources requires being informed from changes of

Groundwater quality. The present study carried out with

objective to evaluate accuracy of different interpolation

methods include OK, IDW, RBF, LPI and GPI for pre-

diction of groundwater electrical conductivity parameter in

central areas of Guilan province in northern Iran.

Materials and methods

Study area

The study area is located between 49�, 310–49�, 450E lon-

gitude and 37�, 70–37�, 270N latitude in northern Iran

bordering to Caspian Sea in Guilan province. The climate

of the region is humid with the mean annual precipitation

of 1293.6 mm. The mean annual temperature of the region

and humidity are 15.8 �C and 75 %, respectively. The

annual evapotranspiration is 850 mm. The soil moisture

and temperature regimes of the region by means of IRAN

regimes maps are Udic or Aquic and Thermic, respectively.

The major geological formations are composed of thick

sedimentary and metamorphic rocks of Tertiary and Qua-

ternary periods. The coastal plain lying between Alborz

mountain ranges and Caspian Sea is composed of marine,

river and aeolian deposits of varying thicknesses. The

physiographical units of the region from south to north

direction are upper plateaus, river alluvial plains, river

bank, low lands and coastal lands, respectively. This

studying area is 40000 ha. 341 samples were collected

from groundwater randomly for determining electrical

conductivity. Figure 1 shows the study area and distribu-

tion of sampling points.

Interpolation methods

Inverse distance weighting (IDW)

The IDW is one of the mostly applied and deterministic

interpolation techniques in the field of soil science. IDW

estimates were made based on nearby known locations.

The weights assigned to the interpolating points are the

inverse of its distance from the interpolation point. Con-

sequently, the close points are made-up to have more

weights (so, more impact) than distant points and vice

versa. The known sample points are implicit to be self-
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governing from each other (Robinson and Metternicht

2006; Bhunia et al. 2016).

Z x0ð Þ ¼

Pn
i¼1

xi
h
b

ijPn
i¼1

1

hb
ij

ð1Þ

where, Z(x0) is the interpolated value, n representing the total

number of sample data values, xi is the ith data value, hij is the

separation distance between interpolated value and the

sample data value, and b denotes the weighting power.

Global polynomial interpolation (GPI)

Global polynomial fits a polynomial formula to the sample

points. Conceptually, global polynomial positions a plane

between the sample points. The unknown height is then

determined from the value on the plane that corresponds to

the prediction location. The plane may be above certain

points and below others. The goal for global polynomial is

to minimize errors. Global polynomial interpolation fits a

smooth surface that is defined by a mathematical function

(a polynomial) to the input sample points. The Global

polynomial surface changes gradually and captures coarse-

scale pattern in the data. Conceptually, Global Polynomial

interpolation is like taking a piece of paper and fitting it

between the raised points (raised to the height of value)

(Webster and Oliver 2008).

Local polynomial interpolation (LPI)

Local polynomial fits many smaller overlapping planes to

the sample points, and then uses the center of each plane as

the prediction for each location in the study area Local

polynomial interpolation creates a surface from many dif-

ferent polynomial formulas, each is optimized for a spec-

ified neighborhood, the neighborhood shape, maximum and

minimum number of points, and a sector configuration can

be specified, the sample points in a neighborhood can be

weighted by their distance from the prediction location

(Hani and Abari 2011).

Radial basis function (RBF)

Radial basis function methods are a series of exact inter-

polation techniques; that is, the surface must go through

each measured sample value. RBF methods are a form of

artificial neural networks. RBFs are like a rubber mem-

brane that is fitted to each of the measured data points,

while minimizing the total curvature of the surface and

exact method that means the surface must pass through

each sampled point (Lin and Chen 2004; Bhunia et al.

2016).

Ordinary kriging (OK)

Kriging is one of the most popular and robust interpolation

techniques among other techniques. It integrates both the

spatial correlation and the dependence in the prediction of

a known variable. Estimations of nearly all spatial inter-

polation methods can be represented as weighted averages

of the sampled data (Bodrud-Doza et al. 2016). The pres-

ence of a spatial structure where observations close to each

other are more alike than those that are far apart (spatial

autocorrelation) is a prerequisite to the application of

Fig. 1 Spatial distribution of sampling site and geographic location of studying area
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geostatistics. The experimental variogram measures the

average degree of dissimilarity between no sampled values

and a nearby data value, and thus can depict autocorrela-

tion at various distances. The value of the experimental

variogram for a separation distance of h (referred to as the

lag) is half the average squared difference between the

value at Z(xi) and the value at Z(xi ? h) (Eq. 2).

c hð Þ ¼ 1

2N hð Þ
XN hð Þ

i¼1

Z xið Þ � Z xi þ hð Þ½ �2 ð2Þ

where: N(h) is the number of data pairs within a given class

of distance and direction. If the values at Z(xi) and

Z(xi ? h) are auto correlated the result of Eq. 2 will be

small, relative to an uncorrelated pair of points (Wang and

Shao 2013).

Variogram plots (experimental variograms) were

acquired by calculating variogram at different lags. Gaus-

sian model was selected in order to model experimental

variogram and acquire information about the spatial

structure as well as the input parameters for kriging esti-

mation. The Gaussian model is defined as Eq. 3:

c hð Þ ¼ C0 þ C 1� exp � h2

a2

� �� �

ð3Þ

where: C0 is the nugget variance (h = 0), which represents

the experimental error and field variation within the min-

imum sampling spacing. Typically, the variogram increa-

ses with increasing lag distance to attain or approach a

maximum value or sill (C0 ? C) almost equivalent to the

population variance, i.e., priori variance. C is the structural

variance and a is the spatial range across which the data

exhibit spatial correlation. For Gaussian model, the prac-

tical range is defined as H3a (Dayani and Mohammadi

2010; Ducci et al. 2016).

From analysis of the experimental variogram, a suit-

able model (e.g. Gaussian, Spherical, and Exponential) is

then fitted, usually by weighted least squares, and the

parameters (e.g. range, nugget and sill) are then used in the

kriging procedure. The ratio of nugget effect to sill can

consider for evaluation of spatial structure of data. When

this ratio is smaller than 0.25 the concerned parameter has

a strong spatial steal structure, between 0.25–0.75 spatial

structure is middle, and when it is greater than 0.75 spatial

structures is weak (Shi et al. 2007). The first step for using

geostatistic methods is to study the existence of spatial

structure between data by analysis variogram. The condi-

tion of this analysis is that data must be normal. One of the

evaluation methods for nominate normality of data is usage

of skewness coefficient. When skewness coefficient is

lower than 0.5 there is no need to convert data, but if this

coefficient is between 0.5 and 1, and more than 1 for

normalizing data square root and logarithm must be used,

respectively (Robinson and Metternicht 2006). In order to

know the data were normal, Kolmogorov–Smirnov test was

used.

Performance evaluation criteria

Three different types of standard statistical performance

evaluation criteria were used to control the accuracy of the

prediction capacity of the models developed. These are

root mean square error (RMSE), the correlation coefficient

(R) and mean absolute error (MAE). Performance evalua-

tion criteria used in the current study can be calculated

using following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷið Þ2
s

ð4Þ

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Pn

i¼1 yi � ŷið Þ2
� �

Pn
i¼1 yi � �yið Þ2

� �

2

4

3

5

v
u
u
u
t ð5Þ

MAE ¼ 1

n

Xn

i¼1

yi � ŷij j ð6Þ

where; yi denotes the measured value, ŷi is the predicted

value, �yi is the average of the measured value, and n is the

total number of observations.

All statistical calculations were performed using

Microsoft Excel and SPSS 24. Geostatistical analyses and

generation of prediction maps of water EC were carried out

with GS? 9.0 (Gamma Design Software LLC., Plainwell,

MI) and ArcGIS 10.3.1 (ESRI, Redlands, CA, USA)

software.

Results and discussion

The use of current and traditional methods for investigation

of changes of spatial structure of groundwater quality

variables are expensive and time-consuming methods. On

the other hand classic statistics cannot consider spatial

changes of variables. Physical and chemical characteristics

of water resources change in time and place, even spatial

structure of water variables change in various geographic

directions. Therefore in this research geostatistical methods

are used to consider spatial structure and changes of

groundwater electrical conductivity. Some statistical char-

acteristics such as mean, standard deviation, minimum,

maximum, coefficient of variation, skewness, and kurtosis

are presented in Table 1 for the variable. In spite of data

skewness more than 0.5 but data had not normal distribu-

tion. Therefore, square root transform was used to nor-

malize data and its result is mentioned in Table 1 which
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showed data were normalized because the amount of

skewness was smaller than 0.5. The Kolmogorov–Smirnov

test also demonstrated transformed data had normal dis-

tribution. Also, an analysis trend was applied, which

determined there is no global trend for EC data.

Ordinary kriging technique for groundwater EC data

performed. As seen in the variogram results (Table 2;

Fig. 2) the most appropriate model fitted to groundwater

EC is Gaussian. This model fitted to empirical semivari-

ogram of groundwater EC include active lag distance

10,000, lag class distance interval (uniform interval) 800,

offset tolerance degree 22.5�, neighbors to include 20,

include at least 15 and sector type perpendicular tow line

i.e. add symbol. High R2 and low RSS of this fitted model

on empirical semivariogram implied that OK is the most

appropriate model among others. The ratio of nugget effect

to sill is smaller than 0.25 for variable; therefore Gaussian

fitted model has strong spatial steal structure (Shi et al.

2007).

Performed RBF model for groundwater EC data had

characteristics include kernel function spline with tension,

parameter 0.09, neighbors to include 16, include at least 12

and sector type circular. IDW method performed on EC

data with power values 1–5. Neighbors are 14 with at least

10 and sector type circular. In this method, the best and the

most accurate result derived from power value 1 than the

others. Characteristics of LPI technique used in this

research were include optimize weight distance with

weight 16,724.409, neighbors are 341 with at least 10 and

sector type multiple. This method had better result with

power value equal to 4 for prediction of EC data (Table 3).

While, the best export for GPI predictor model resulted

when power value equal to 6 was applied (Table 3).

Comparison of different interpolation techniques

In this study, ordinary kriging, IDW, RBF, LPI and GPI

were used to estimate groundwater electrical conductivity.

After evaluating different models, it was demonstrated that

the Gaussian model was the best suited for the variable and

therefore, it was selected as the best fitted model on the

data. Theory and empirical semivariogram were prepared

for the EC in GS? media as shown in Fig. 2.

The summary statistics for geostatistic method showed

that kriging with Gaussian model provides much better

estimation results for EC than other methods (Table 3), this

result was agree with findings of Babakhani et al. (2016).

Kriging is a widely used method of geostatistical

Table 1 Statistics of data used

in research
Variable Minimum Maximum Mean SD CV (%) Skewness Kurtosis

EC 0.50 1.70 0.98 0.24 24 0.66 0.03

ECa 0.71 1.30 0.98 0.12 12 0.35 -0.14

SD standard deviation, CV coefficient of variation
a Square root transform of EC

Table 2 Properties of used model in kriging method

Variable Method Model C0 (Nugget effect) C0 ? C (Sill) ER(m) C/(C0 ? C) R2 RSS

EC Kriging Gaussian 0.003 0.0121 8313.84 0.752 0.97 5.6 9 10-7

ER(m) effective range according to meter, RSS residual sums of squares

Fig. 2 Experimental semivariogram of groundwater EC and its fitted

model

Table 3 Evaluation results of prediction different methods

Model Power R RMSE MAE

Kriging – 0.87 0.123 0.090

RBF – 0.82 0.125 0.091

IDW 1 0.82 0.126 0.093

2 0.80 0.128 0.092

3 0.78 0.135 0.094

4 0.77 0.141 0.096

5 0.75 0.145 0.098

LPI 4 0.71 0.128 0.094

GPI 6 0.69 0.131 0.096
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interpolation that assumes that no regional trend exists in

the data. Comparison between the different methods was

carried out by MAE, R and RMSE statistical parameters.

RBF method has better result than IDW to simulate

groundwater EC variable. IDW with power value equal 1

has the exact result than LPI and GPI.

Results of current study showed strong spatial struc-

ture of the variable data but the most appropriate results

based on the statistical comparisons showed high capa-

bility of kriging technique because of statistical charac-

teristics ordinary kriging technique such as correlation

coefficient, root mean square error and mean absolutely

error were better than other predictor methods (Table 3).

Generally, our results were similar to Ahmed (2002),

Barca and Passarella (2008), Mehrjardi et al. (2008), Nas

(2009), Zehtabian et al. (2013) and Baram et al. (2014)

results.

The validation and the sufficiency of the developed

model variogram can be tested via a technique called cross

validation. Cross validation estimation is obtained by

leaving one sample out and using the remaining data. This

test allows assessing the goodness of fitting of the vari-

ogram model, the appropriateness of neighborhood and

type of kriging used. The interpolation values are compared

to the real values and then the least square error models are

selected for regional estimation (Leuangthong et al. 2004).

Cross validation result of predicted and measured EC data

in ordinary kriging method is presented in Fig. 3 and this

graph show well evaluation of estimation by using this

method.

Spatial variation maps of EC estimation by different

interpolation methods are shown in Fig. 4. Electrical con-

ductivity is higher in the north of studying area, Caspian

Sea coastal land and lowlands than the other studied area.

High EC in groundwater of coastal land is due to sea water

seepage effect (Sainato et al. 2003) and in lowland could be

emergent of accumulation surface string aqueous from

adjustment areas and irregular use of chemical fertilizers

(Raju et al. 2015). Therefore, we proposed to set effective

operations and to prevent increasing of groundwater EC in

lowlands and coastal land in these research areas. If

effective steps did not apply to control increasing of EC,

these lands would be degraded and agriculture operations

will not be economic in the future.

Improper and excessive use of irrigation water is one of

the major factors aggravating the groundwater salinity.

Chaudhuri and Ale (2014) reported that irrigation return

flow is a major mechanism of solute enrichment of

groundwater systems in agricultural regions in the Ogallala

aquifer and that evaporative enrichment of salts in the

upper part of soil profile and subsequent leaching of salts

with irrigation water is a major cause of salt enrichment of

shallow groundwater systems in Ogallala aquifer in the

United States. Moreover, chemical species causing ele-

vated EC and their potential sources should be identified to

mitigate their further damage on groundwater and soils.

Irrigation return flow had a diluting effect on groundwater

EC, as EC generally decreased following irrigation seasons

in lowlands that these results are in line with findings of

Liu et al. (2013) and Chaudhuri and Ale (2014). The US

Salinity Laboratory classified groundwater by EC

as\0.25 dSm-1 excellent, from 0.250 to 0.750 dSm-1

good, from 0.75 to 2.25 dSm-1 fair, and[2.25 dSm-1

poor (Kottureshwara et al. 2014). Our results exhibited that

majority of study area had a groundwater with a good EC

category, except some localities in the north of the study

area. Interactions of irrigation water with natural processes

should be recognized in groundwater salt enrichments.

Under irrigated intensive agricultural production, consid-

erable amount of salts may move beyond the root zone,

degrading below groundwater. Plants uptake nearly pure

water and leave salts behind (Chaudhuri and Ale 2014).

The salts then are transported to groundwater by perco-

lating water. During transportation, the salt rich percolating

water interacts with soil and rock constituents and releases

chemical species, further rising the salt concentration of

groundwater (Kurunc et al. 2016).

Conclusion

Electrical conductivity is a parameter related to total

dissolved solids (TDS). EC is actually a measure of

solution in terms of its capacity to transmit current. The

importance of EC and TDS lies in their effect on the

corrosion of a water sample and in their effect on the

solubility of slightly soluble compounds such as CaCO3.

In general, as TDS and EC increase, the corrosion of the

water increases. Therefore, study of spatial variation of

Fig. 3 The scatter plot of the measured versus predicted EC using the

ordinary kriging method
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groundwater EC is necessary for optimized management

of groundwater resources. According to evaluation crite-

ria, the accuracy of geostatistical methods in the estima-

tion of groundwater EC is assessed as very good. The

results showed that ordinary kriging can be applied as an

appropriate tool to estimate the EC of groundwater in

areas with data restriction. In this study, interpolation

methods especially OK showed amount of groundwater

EC was high in coastal land and lowlands than the other

regions, therefore effective actions should carry out to

prevent EC increasing. Generally, results of this research

indicated that geostatistics models are suitable for esti-

mation of groundwater quality.

Identification of spatial and temporal pattern of

groundwater salt concentration and groundwater salinity is

an important step in setting appropriate alternative man-

agement practices to protect land and soils against degra-

dation. The data obtained in this study may help mitigate

soil and groundwater degradation by climate change and

human influence. Exceptional attention should be taken at

locations with high groundwater EC contents. Results may

have important implications for similar climate, topogra-

phy, and soil conditions in other countries. It is important

to define effect of irrigation and agricultural return flow in

combination with chemical fertilizers on the quality and

quantity of groundwater in the study area. In addition,

impact of seawater intrusion from Caspian Sea via bed of

Anzali Lagoon should be monitored frequently to avoid

soil and groundwater degradation. Water quality of study

area rivers should be monitored in regard with climate

Fig. 4 Spatial distribution map of groundwater EC (dSm-1) by different methods
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change to avoid irreversible impact of irrigation on soils

and groundwater as already observed in many locations of

Iran.

Degraded groundwater quality by increased salinization

and salt ions of fertilizers was apparent from our results.

Combination of natural and anthropogenic processes

caused salinization in shallow groundwater in the study

area. In some instances, natural processes were triggered

by anthropogenic sources such as fertilizers, irrigation,

and domestic waste disposals. Our results showed that

elevated fertilizer salt ions concentrations and high

groundwater salinity are growing concern in the study

region. In addition to aquifer quality, shallow groundwater

contamination in the study region should be considered in

developing and implementing strategies for rural

developments.
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