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Abstract The accurate estimation of available soil phos-

phorus (ASP) is required for the effective management of

environmental resources and improving agricultural pro-

ductivity. Direct measurement of ASP at large scales is

time-consuming and expensive. Therefore, many empirical

models or pedotransfer functions (PTFs) have been

developed to obtain ASP. This study introduces a new

model that estimates ASP from easily measurable soil

properties by using the multi-objective group method of

data handling (mGMDH) approach. Organic carbon, clay

content, calcium carbonate equivalent, pH and ASP were

obtained from 100 soil samples, which were collected by

the stratified random sampling strategy in Mashhad Plain,

Khorasan-e-Razavi Province, Northeast Iran. The

suggested model for the prediction of ASP generated sat-

isfactory results in terms of the statistical performance

criteria. The coefficient of determination (R2) and mean

square error (MSE) values of the mGMDH model in

training step were 0.606 and 4.9671 mg kg-1, respectively,

whereas those were 0.504 and 5.6685 mg kg-1, in the

testing step. It was concluded that only 50 % of variations

of ASP could be described by selecting easy-to-measure

soil variables and owing to the key role of phosphorus in

soil fertility and precision agriculture, the other related

factors such as terrain attributes and fertilizer management

should also be considered as they influence the distribution

of the soil phosphorus.

Keywords Group method of data handling � Prediction �
Available soil phosphorus � Mashhad plain � Iran

Introduction

Phosphorus (P) is an essential nutrient for plants, which is

found in various forms in the soil. After nitrogen (N), P is

one of the most important elements required by the plants

and it is involved in processes such as photosynthesis, cell

respiration and cell division (Whiteny 1988). Total phos-

phorus (TP) concentration in soils ranges from 10 to

1000 g kg-1, depending on the soil horizon, soil substrate,

pedogenic processes, and land use types and its intensity

(Kruse et al. 2015). Mineral forms of phosphorus in soils

usually exist as a primary mineral such as apatite,

hydroxyapatite and oxy-apatite, and hydrated oxides of

iron, aluminum and manganese where P is insoluble (Grant

et al. 2005). The available forms present in the soil solution

significantly influence crop production. Moreover, soil P

dynamics is influenced by soil physical and chemical
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properties and farming practices. A better understanding of

the factors controlling its distribution and availability is

required to manage P nutrition for cropping systems (Roger

et al. 2014). Several factors can affect the amount of

available P to plants. Organic matter, soil pH, lime, and the

presence of iron and aluminum oxides are the main factors

affecting available soil P (ASP) for plants (Freeman and

Rowell 1981; Mohebbi Sadegh 2014). It is noteworthy to

mention that even sandy soils fix high amounts of P

because of quick reaction of P with Fe, Al and Ca, which

precipitate as insoluble forms (Sarhadi-Sardoui et al.

2003). Havlin et al. (1999) demonstrated that by adding

lime to the soil the amount of available P could be sig-

nificantly reduced, indicating the availability of phosphorus

in calcareous soils, which is a challenge for plant nutrition.

As large amount of phosphorus fertilizer is added in cal-

careous soils of Iran consistently, investigation of the

effective factors on P availability is a prerequisite to decide

on soil P management.

The development of models, which simulate soil pro-

cesses expanded rapidly in recent years. They are meant for

the improvement and understanding of important processes

and acts as a tool for clarifying or predicting problems

related to agricultural activities and the environment

(McBratney et al. 2002). Efforts to predict and assess the

spatial distribution of soil P have been well established.

However, traditional ways to explore soil P variation have

no longer been considered appropriate since it is labor

intensive, time consuming and lacks spatial exhaustive-

ness. Therefore, the potential of other methods for soil P

prediction needs to be explored. Determination of ASP at

large scales is time-consuming and expensive (Keshavarzi

et al. 2015). Hence, many empirical models or pedotransfer

functions (PTFs) have been developed to assess soil P

(Keshavarzi et al. 2015).

An artificial neural network (ANN) is a computational

structure inspired by the study of biological neural pro-

cessing. ANN generally consists of many interconnected

processing elements widely known as neurons. The two

important elements of neural networks are types of neural

interconnection arrangements available and different

algorithms used to set the strength of the connections.

These algorithms are used to model the complex interac-

tion of the environmental systems’ interactions. It allows

modeling of complex systems without requiring the

explicit formulation of the relationships that may exist

between variables (Omran 2012). ANNs are successfully

applied for the estimation of several difficult-to-measure

soil characteristics (Merdun et al. 2006; Landeras et al.

2008; Keshavarzi et al. 2015). One of the advantages of

using ANN compared with conventional models is that it

does not require determining a specific function to express

the relationship between input and output, which is

achieved by the training process (Schaap and Bouten

1996). These methods to estimate difficult-to-measure soil

characteristics such as P could save time and are inex-

pensive (Keshavarzi et al. 2015). The most common

models in the estimation of difficult-to-measure soil char-

acteristics are multivariate regression equations that are

used and developed by various researchers (McBratney

et al. 2002). However, the models developed for one region

may not be applicable to another (Wagner et al. 2001).

The inherent complexity in designing feed-forward

ANNs in terms of understanding the most appropriate

topology and coefficients has a great impact on their per-

formance (Neyshaburi et al. 2015). In the case of weight or

coefficient training procedure, the gradient descent algo-

rithm (i.e. back propagation) is the most popular one

(Nariman-Zadeh et al. 2005). It is believed that such

learning algorithms are often trapped in a local minimum

and are incapable of finding a global minimum due to

multimodality and/or non-differentiability of many error

functions (Porto 1997). There have been many efforts to

deploy population-based stochastic search algorithms such

as evolutionary methods to design ANNs since it would be

particularly useful for dealing with complex problems

having large search spaces with many local optima

(Ivakhnenko 1971). Evolutionary methods are effective

tools for system identification (Kristinsson and Dumont

1992; Liu and Kadirkamanathan 1999) that generate

polynomial neural networks to model either simulated or

experimental data of any kind (Ahmadi et al. 2007).

In recent years, the use of ANNs leads to successful

application of different algorithms in which group method

of data handling (GMDH) algorithm is one. The GMDH

algorithm is a self-organizing approach by which gradually

complicated models are generated based on the evaluation

of their performances on a set of multi-input single-output

data pairs. Along with artificial neural networks (ANNs)

and genetic programming (GP), GMDH is a data driven

technique suitable for automatic generation of models

linking the input and output variables. Pachepsky et al.

(1998), who were the pioneers of using GMDH in soil

science, developed point PTFs from data on soil texture,

bulk density, penetration resistance, and water content at

different suction values to predict the soil water retention

curve (SWRC). Pachepsky and Rawls (1999) applied the

GMDH technique to investigate the effect of data grouping

on the improvement of PTF accuracy and reliability.

Ungaro et al. (2005) compared the point and parametric

PTFs developed by ANNs and GMDH and found that

GMDH-driven point PTFs performed better with the

exception of water content at 1500 kPa. For the parametric

PTFs, ANNs provided satisfactory results, but were less

accurate at the training step. The GMDH procedure has

also been successfully employed by Wösten et al. (2001),
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Tomasella et al. (2003), and Nemes and Rawls (2006) to

build PTFs for soil hydraulic properties.

As corroborated in the aforementioned literature review,

multi-objective group method of data handling (mGMDH)

has not yet been commonly used to estimate available soil

P. Therefore, the objective of this research is to introduce

mGMDH to demonstrate its potential in the development

of PTFs and estimation of available soil P. In the GMDH

procedure, only one objective function should be mini-

mized while in the mGMDH two or more objective func-

tions should be simultaneously minimized that may lead to

different results (Neyshaburi et al. 2015). Thus, the main

objective of this study is to employ mGMDH to derive

PTFs for modeling of ASP using easy-to-measure soil

properties.

Materials and methods

Study area and data used

The present study was conducted in Mashhad Plain with an

area of 6131 km2, Khorasan-e-Razavi Province, Northeast

Iran (Fig. 1). The study area is located between latitude

35�590N to 37�040N and longitude 58�220E to 60�070E. The
general physiographic trend of the plain extends in a NW–

SE direction with an average of 160 km in length sur-

rounded by the two mountainous zones of Kopet-dagh

northward and Binaloud southward based on a visual

interpretation of the satellite imagery and field observa-

tions. The topographic elevation values of the study area

vary between 900 m a.s.l and 1500 m a.s.l, while the main

topographic elevation ranges over 1200 m a.s.l.

Geologically, the alluvial plain has developed into a

thick sediment-dominated environment belonging to the

quaternary period. The soil textures are loam, sandy loam

and sandy clay loam. The dominant soil types include

calcaric cambisols, gypsic regosols, calcaric regosols and

calcaric fluvisols, which cover pediment plains, plateau

and upper terraces and gravelly colluvial fans, respec-

tively. The study area consists of six cities with a popu-

lation of about 2,481,290 and 519 villages with a

population of about 422,610, scattered over the entire

plain. The main land use practiced in the study area is

irrigated farming around the Kashfrod River, character-

ized by semi-arid climate with mean annual precipitation

of 222.1 mm and mean annual temperature of 15.8 �C.
The maximum rainfall is received in the month of March

(44.8 mm) and the minimum in September (1.2 mm).

Utilizing the stratified random sampling, 100 soil samples

were collected from 0 to 30 and 30 to 60 cm depth. The

collected soil samples were air dried, crushed and sieved

using a 2 mm sieve size and subsequently subjected to

analysis. The laboratory tests on the soil samples,

including particle size distribution (i.e., clay, silt and sand

fractions) and determination of soil organic carbon (OC),

calcium carbonate equivalent (CCE), pH and ASP were

carried out as described by Sparks et al. (1996). Data were

tested for normality through Kolmogorov–Smirnov test.

Logarithmic transformation was performed for OC and

ASP data, which were processed further using the

mGMDH models (Fig. 2).

Fig. 1 Location and geographical position of the study area
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After data processing and data normality confirmation,

data points were randomized and 80 % of the data was

applied as training data, while remaining 20 % was uti-

lized as a test data, respectively, using cross validation

technique (Fijani et al. 2013; Barzegar et al. 2016a, b),

which was utilized to divide the data set. Data points were

standardized for equalization before the models’ training,

which prevents excessive shrinking weights. The data

points were converted between 0 and 1 as most of the

output threshold functions, which were found within this

range. In order to cover all possible ranges of the data

pattern, data division was carried out randomly, as men-

tioned earlier.

The applied data were then normalized using the fol-

lowing equation to fix them between (0,1).

ynormal ¼ ðy0 � yminÞ=ðymax � yminÞ ð1Þ

where, ymax and ymin represent the maximum and minimum

values of each record, and y0 shows the observed (recor-

ded) values.
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Fig. 2 Distribution plots (histogram), cumulative frequency plots and box-and-whisker plots of transforming variables
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The group method of data handling (GMDH)

In this approach, GMDH was used to circumvent the dif-

ficulty of knowing a prior knowledge of the mathematical

model of the process being considered. Therefore, it can be

used to model complex systems without having specific

knowledge of the systems (Müller and Lemke 2000;

Neyshaburi et al. 2015). The main idea of GMDH is to

build an analytical function in a feed forward network

based on a quadratic node transfer function whose coeffi-

cients are to be obtained using a regression technique.

Different from the other machine learning approach,

GMDH is a self-organizing inductive modeling technique

based on explicit polynomial regression algorithms. The

method selects automatically the essential input variables

and builds a hierarchical, polynomial regression given a

degree of complexity specified by the user. Different from

ANNs techniques, which are essentially deductive in their

nature, the GMDH technique, as GP (Parasuraman and

Elshorbagy 2007), does not require an arbitrary, a priori

structure of the network connecting inputs and outputs. The

structure of the model and the dependence of outputs on the

most significant inputs are found generating a network

structure based on the characteristics of the data set during

the estimation process itself; the GMDH networks can then

be considered as universal structure identificators (Ungaro

et al. 2014).

Accuracy and reliability criteria

The following statistical indicators were selected in the

performance evaluation of constructed models (Barzegar

and Asghari Moghaddam 2016):

1. Coefficient of determination (R2), and

2. Mean square error (MSE).

R2 ¼
XN

i¼1

ðPi � �PÞðOi � �OÞ
" #2 XN

i¼1

ðPi � �PÞ2ðOi � �OÞ2
" #�1

ð2Þ

MSE ¼ ½N�1
XN

i¼1

ðPi � OiÞ2� ð3Þ

where, N is the number of observations, Pi is the predicted

values, Oi is the observed data, and �P and �O are the mean

values for Pi and Oi, respectively. The coefficient of

determination (R2) measures the degree of correlation

among the observed and predicted values. R2 values range

from 0 to 1, with 1 indicating a perfect relationship

between the data and the line drawn through them, while 0

represents no statistical correlation between the data and

the line. The MSE evaluates the variance of errors inde-

pendent of the sample size. The MSE indicates the

discrepancy between the observed and predicted values. A

perfect fit between observed and predicted values would

have an MSE of 0 (Barzegar et al. 2016c).

Model development

Multi-objective group method of data handling

Four characteristics, including OC (%), clay (%), CCE (%),

and pH were used as the input variables and the ASP

(mg kg-1) as output was utilized in the mGMDH models.

By means of a GMDH algorithm, a model can be repre-

sented as a set of neurons at which different pairs in every

layer are connected through a quadratic polynomial and,

thus, produce new neurons in the next layer. Such

description can be used in modeling to connect inputs to

outputs. The formal definition of the identification problem

is to find an approximate relationship between a set of input

variables (x1, x2, x3,…, xn) and an output variable y

(Neyshaburi et al. 2015). Therefore, the mathematical

description can be fully represented by a system of partial

quadratic polynomials (Eq. (4)):

ŷ ¼ a0 þ a1xi þ a2xij þ a3xixj þ a4x
2
i þ a5x

2
j ð4Þ

Consisting of only two variables (neurons) that predict

output ŷ for a given set of input variables (x1, x2, x3,…, xn)

as close as possible to its actual value y (Atashkari et al.

2005; Neyshaburi et al. 2015). The GMDH algorithm used

multi-objective optimization. A complete overview of

mGMDH algorithms was given by Atashkari et al. (2005).

In multi-objective optimization problems, there are several

objective or cost functions (a vector of objectives) to be

optimized (minimized or maximized) simultaneously.

These objectives often conflict with each other so that as

one objective function improves, another deteriorates.

Therefore, there is no single optimal solution that is best

with respect to all the objective functions. Instead, there is

a well-known set of optimal solutions called Pareto optimal

solutions (Coello and Christiansen 2000) for multi-objec-

tive optimization problems (Bayat et al. 2011).

In general, the vector X� ¼ ½X�
1 ;X

�
2 ;X

�
3 ; . . .;X

�
n �

T
can be

optimized for:

FðXÞ ¼ ½f1 Xð Þ; f2 Xð Þ; . . .; fk Xð Þ�T ð5Þ

Subject to m inequality constraints gi(X):

gi Xð Þ� 0 ði ¼ 1; . . .;mÞ ð6Þ

and p equality constraints hj(X):

hjðXÞ ¼ 0 ðj ¼ 1; . . .; pÞ ð7Þ

where, T is the transpose sign, X([ Rn) is the vector of

decision or design variables, and F(X)([ Rk) is the vector of

objective functions, which must be minimized or

Model. Earth Syst. Environ. (2016) 2:157 Page 5 of 9 157

123



maximized. It is assumed, however, that, all of the objec-

tive functions are to be minimized without loss of gener-

ality (Atashkari et al. 2005; Bayat et al. 2011; Neyshaburi

et al. 2015). Two of the objectives were trained and testing

mean squared errors, which required minimization. Evo-

lutionary algorithms were used for multi-objective opti-

mization because of their natural properties which is

suitable for these types of problems. Genetic algorithms

were used in a mGMDH neural network for each neuron

searching its optimal set of connections to the preceding

layer (Atashkari et al. 2005; Neyshaburi et al. 2015).

Results and discussion

Table 1 shows the descriptive statistics including mini-

mum, maximum, mean, standard deviation (SD) and the

range of the data utilized as well as the correlation coef-

ficient between the ASP. Also, input variables for both

training and testing data sets are listed in Table 1. After

training the proposed model, the model was tested using 20

samples. The results of the developed models in the

training and testing steps are presented in Figs. 3 and 4.

Figure 5 demonstrates the scatter plots of the target versus

output in training and testing steps for mGMDH models.

Table 2 shows the statistical performance criteria used

to evaluate the model. The suggested model for the pre-

diction of ASP generated satisfactory results in terms of the

statistical performance criteria. Therefore, this model was

acceptable for prediction of ASP in the Mashhad plain,

Northeast Iran. The proposed model obtained relatively

lower prediction errors in training step as compared to the

testing step indicating that this model exhibited relatively

better generalization as compared to the prediction. The R2

and MSE values of the mGMDH model in training step

were 0.606 and 4.9671 mg kg-1, respectively, whereas

those were 0.504 and 5.6685 mg kg-1, in the testing step.

This result concurs with the studies of Atashkari et al.

(2005), Bayat et al. (2011) and Neyshaburi et al. (2015). It

was concluded that this may be related to the embedded

genetic algorithm and automated selection of essential

input variables, and builds polynomial equations for the

modeling.

When using mGMDH models to predict the ASP, the

relations between characteristics need to be described by

well-defined equations. The choice of training and test data

set as a part of the data mining process can lead to more

accurate of the mGMDH model in predicting ASP. How-

ever, the generality offered by the GMDH in this study is

still limited by some issues. The first issue is the choice of

soil for estimations in which soil properties influence the

prediction results. In most calcareous soils of Iran that are

evolved in arid and semi-arid regions, a large amount of

ASP is retained by the reactions of absorption and illuvi-

ation of carbonate minerals (Musavi and Sepehr 2013).

Second, chemistry of P in soils is very complicated because

inorganic P can react with elements such as calcium, iron

and aluminum and convert them to phosphates. Addition-

ally, organic P can be found with a variety of shapes and

resistant to microbial degradation in soil (Soltani et al.

2011). Therefore, the variation in the amount of OC and the

lime in the study area can make a difference to the amount

of P in soils (Keshavarzi et al. 2015). Third, the clay

content, Fe and Al oxides enhance P sorption (Singh and

Gilkes 1991; Freese et al. 1992; Frossard et al. 1995),

whereas soil OC has the reverse effect (Dubus and Becquer

2001). Demaria et al. (2013) emphasized that soil pH and

metal ions have a significant effect on soil P contents and

Table 1 Descriptive statistics

of data sets utilized for training

and testing

Variable Minimum Maximum Mean SD Range Correlation with ASP

Training data

OC (%) 0.11 1.61 0.49 0.26 1.50 0.368**

Clay (%) 4.00 41.00 19.24 7.39 37.00 0.251*

CCE (%) 4.90 39.70 21.74 8.65 34.80 -0.112**

pH 7.70 8.40 8.10 0.12 0.70 -0.283**

ASP (mg kg-1) 1.20 33.50 7.75 6.71 32.30 1

Testing data

OC (%) 0.14 1.58 0.46 0.29 1.44 0.350**

Clay (%) 6.00 38.00 19.10 7.31 32.00 0.273*

CCE (%) 7.50 36.00 20.68 8.44 28.50 -0.129**

pH 7.72 8.34 8.02 0.10 0.62 -0.280**

ASP (mg kg-1) 2.80 17.90 6.94 5.82 15.10 1

SD standard deviation

* Significant at 0.05 level

** Significant at 0.01 level
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the variation in phosphorus contents might be due the

variation in soil properties since soil OC and clay distri-

bution were considerably different in the studied area.

Fourth, land use may affect the relationship among vari-

ables, which was also demonstrated by similar results (Jia

et al. 2011; Lemercier et al. 2008; Reijneveld et al. 2010).

Fig. 3 Measured and predicted

ASP (mg kg-1) using the

mGMDH model in the training

step

Fig. 4 Measured and predicted

ASP (mg kg-1) using the

mGMDH model in the testing

step

Fig. 5 Scatter plots of the

target versus output in training

(left) and testing (right) steps for

mGMDH model
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Finally, topography influences soil properties due to local

re-distribution of water, solar radiation and soil material

(Gessler et al. 2000; Kozar et al. 2002).

Conclusions

The mGMDH was successfully used and assessed for the

prediction and modeling of available soil phosphorus

(ASP) in the Mashhad plain, Northeast Iran based on easy-

to-measure soil properties. The soil properties used are OC

(%), Clay (%), CCE (%), and pH. The coefficient of

determination (R2) and mean square error (MSE) were

utilized to evaluate the model’s performance. The R2 and

MSE values of the mGMDH model in testing step were

0.504 and 5.6685 mg kg-1, respectively. From the results,

it was concluded that mGMDH can be used for the esti-

mation of ASP and is recommended for analysis due to its

capability and better performance.
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