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Abstract In this paper, A predator–prey model with

square root functional response for herd behaviour of prey

incorporating predator harvesting is proposed and anal-

ysed. The predator population is provided with alternative

resource. The proposed model is demonstrated in respect of

theoretical as well as numerical results. The Pontryagin’s

maximum principle is used to characterized the optimal

harvesting strategy. Bifurcation study with the variation of

harvesting effort and alternative resource are done in

respect of numerical simulation. Simulation results show

that suitable alternative resource has the capability to

prevent predator extinction risk at higher harvesting level.

The proposed model and obtaining results are usable in the

field of conservation of biology.

Keywords Predator–prey � Square root response function �
Alternative resource � Harvesting � Extinction � Bifurcation

Introduction

The study of predator–prey system with different ecologi-

cal phenomena becomes a great popularity in ecological

science. In ecological system, each of the population sys-

tems take various strategy viz. refuging, grouping, etc. for

searching of food sources and for defensive purposes. So,

the construction of mathematical models depend on various

ecological factors and parameters. Huge number of

predator–prey systems were investigated and studied the-

oretically as well as numerically incorporating various

ecological phenomena. Mainly mathematical models of

predator–prey systems depend on the interaction of prey

and predator population. Functional relationship between

predator and prey population are the central themes in

mathematical ecology. Most of the models were used

simple common type of Holling functional responses (cf.

Tang et al. 2014; Lu and Zhang 2010; Tang et al. 2014;

Zhang et al. 2012, 2014; Jana et al. 2015; Moussaoui and

Bouguima 2014; Gakkhar and Gupta 2016). Recently,

Sahoo and Poria proposed predator–prey models with

general Holling type of interactions (cf. Sahoo and Poria

2014). They established that oscillatory coexistence and

stable state of a system were dramatically changed

depending on general Holling parameter values. Therefore,

a suitable and proper choice of functional response is

required to make a model more realistic. Ajraldi et al.

(2011) considered predator–prey systems in which inter-

action terms use the square root of the prey population

rather than simply the prey population. Such predator–prey

model is considered in which the prey exhibits herd

behaviour, so that the predator interacts with the prey along

the outer corridor of the herd of prey. Actualy in real sit-

uation, a class of prey population exhibits herd behaviour

so that the capturing rate of prey by predator is different
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than normal situation. For an instants the capturing rate of

zooplankton by a fish in a ocean is greater than the cap-

turing rate of phytoplankton by fish. In this case phyto-

plankton behaves herd behaviour then zooplankton. The

use of the square root properly accounts for the assumption

that the interactions occur along the boundary of the pop-

ulation. As a mathematical consequence of the herd

behaviour of prey, we consider in this paper a predator–

prey model with square root functional response of prey

population. Therefore, the predator–prey model with

square root functional responses of a logistic prey (x), and

predator (y) is of the form (Braza 2012):

dx

dt
¼ xð1 � xÞ �

ffiffiffi

x
p

y

1 þ a
ffiffiffi

x
p ; ð1Þ

where ‘‘t’’ is time. The constant ‘‘c’’ is the consumption

rate of predator. The parameter ‘‘s’’ represents the death

rate of predator and ‘‘a’’ is the half saturation constant. In

order to preserve the biological meaning of the model, the

parameters are assumed to be strictly positive. The pro-

posed model may be entirely fitting for herbivorous on a

large savanna and their large predators.

Harvesting has a strong impact on the dynamics of

predator–prey system. In recent years the growing demand

for more resources/foods has reported in over exploitation of

several biological resources. Therefore there is a need for a

sustainable development strategy in various spheres of

human activity to protect ecosystems. In particular bioeco-

nomic modeling is concerned with scientific management of

the exploitation of renewable resources like fisheries and

forestry (cf. Makinde 2007). Hence harvesting of the

ecosystems has been of interest to both economists and

ecologists for some time now. Dynamics of predator–prey

models with harvesting were studied extensively by several

researchers (cf. Sahoo and Poria 2013,2014; Kar and Ghosh

2012; Sahoo 2012). The above studies motivate us to focus

on the predator–prey model with predator harvesting. We

now incorporate the constant harvesting effort ‘‘e’’ on

predator population in the model (1) and we obtain

dx

dt
¼ xð1 � xÞ �

ffiffiffi

x
p

y

1 þ a
ffiffiffi

x
p ;

dy

dt
¼ c

ffiffiffi

x
p

y

1 þ a
ffiffiffi

x
p � sy� ey:

ð2Þ

In the absence of harvesting, predator population can be

free from extinction risk; however, harvesting can lead to

the incorporation of a positive extinction probability. If a

population is subjected to a positive extinction rate then

harvesting can drive the population density to a danger-

ously low level at which extinction becomes sure no matter

how the harvester affects the population afterwards. To

prevent the extinction risk of predator population, the extra

alternative resource/alternative food is required. One rele-

vant work regarding alternative food source is done by

Spencer and Collie (1996) establishing a model of prey-

predator fish with alternative prey in presence of harvest-

ing. Recently, many researchers (cf. Sahoo and Poria 2014;

Sahoo 2012; Kar and Chattopadhyay 2010; Moitri et al.

2015) investigated harvested predator–prey system with

alternative prey. We now introduce some alternative

resource(A) to predator population in to the model (2) and

the model (2) is modified into the form

dx

dt
¼ xð1 � xÞ �

ffiffiffi

x
p

y

1 þ a
ffiffiffi

x
p ;

dy

dt
¼ cy

A
ffiffiffi

x
p

1 þ a
ffiffiffi

x
p þ �ð1 � AÞ

� �

� sy� ey;

ð3Þ

where ‘‘A’’ is a time independent constant parameter and its

origin is the alternative resource. The parameter ‘‘�’’ char-

acterizes as the consumption rate of alternative resource. If

A ¼ 1, the predator depends only on the prey species and thus

it is clear that the system (2) is a special case of system (3).

Notice that if A ¼ 0, the predator populations grow without

any interaction and the growth rate of the predators are

determined by alternative prey. In such case, the predation

pressure is completely removed and predator populations

evolve in presence of alternative resource only. But such

decoupled system is out of our interest. A predator which

alternates between two sources of food can be represented

within 0\A\1 and 0\�\1. We analyse the system (3) by

considering a ¼ 0 as well as a 6¼ 0 to observe complete

dynamics of the model. Therefore, incorporating the above

fact, the model (3) with a ¼ 0 becomes

dx

dt
¼ xð1 � xÞ �

ffiffiffi

x
p

y;

dy

dt
¼ cy A

ffiffiffi

x
p

þ �ð1 � AÞ
� �

� sy� ey:

ð4Þ

The systems (3) and (4) have to be analysed with initial

conditions xð0Þ[ 0, yð0Þ[ 0.

In this paper, we first consider predator–prey models in

presence of alternative resource to predator subjected to

predator harvesting. We investigate the effects of harvest-

ing as well as the effects of supplying alternative resource

into the models. Our main objective is to survive predator

population from extinction in supplying alternative

resource. Actually, our target is to control the predator

population in presence of alternative resource and har-

vesting. The section-wise split of this paper is as follows:

In Sect. 2, the positivity, boundedness, stability of equi-

libria and monotonic behaviours are studied theoretically.

Bionomic equilibrium point is constructed in Sect. 3. The

optimal control strategy is studied in Sect. 4. Section 5

illustrates some of the key findings through numerical

simulations. We draw a conclusion in Sect. 6.
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Theoretical studies

Theoretical dynamics of the system (3)

In this subsection, we now analyse the full system (3)

analytically.

Positive invariance

System (3) may be written in the matrix form as _�X ¼ Gð �XÞ
with �Xð0Þ ¼ �X0 2 R2

þ, where �X ¼ ðx; yÞT 2 R2
þ and Gð �XÞ

is given by

G ¼ Gð �XÞ ¼
xð1 � xÞ �

ffiffiffi

x
p

y

1 þ a
ffiffiffi

x
p

cy
A
ffiffiffi

x
p

1 þ a
ffiffiffi

x
p þ �ð1 � AÞ

� �

� sy� ey

0

B

B

B

@

1

C

C

C

A

;

where G : Cþ ! R2 and G 2 C1ðR2Þ.
It is easy to show that whenever �Xð0Þ 2 R2

þ such that

Xi ¼ 0 then Gið �XÞjXi¼0 � 0 (for i = 1,2). Thus any solution

of G ¼ Gð �XÞ with �X0 2 R2
þ , say �XðtÞ ¼ �Xðt; �X0Þ, is such

that �XðtÞ 2 R2
þ for all t[ 0 (cf. Nagumo 1994).

Boundedness

Theorem 2.1 All solutions of the system (3) which start in

R2
þ are uniformly bounded if sþ e[ �cð1 � AÞ satisfies.

Proof Let (x(t), y(t)) be any solution of the system (3)

with positive initial conditions.

Let us consider that

v ¼ xþ 1

Ac
y;

i:e:;
dv

dt
¼ dx

dt
þ 1

Ac

dy

dt
:

Using equations of (3), we have

dv

dt
¼ xð1 � xÞ �

ffiffiffi

x
p

y

1 þ a
ffiffiffi

x
p þ 1

Ac
cy

A
ffiffiffi

x
p

1 þ a
ffiffiffi

x
p þ �ð1 � AÞ

� �

� sþ e

Ac
y:

i.e.,
dv

dt
¼ �ð1 � xÞ2 � xþ 1 þ y

Ac

c�ð1 � AÞ � s� eð Þ:

i.e.,
dv

dt
� � xþ y

Ac
sþ e� c�ð1 � AÞð Þ

� �

þ 1:

Thus,
dv

dt
� � Lvþ 1; where L ¼ min f1; sþ e� �cð1 � AÞg;

provided sþ e[ �cð1 � AÞ: Hence,
dv

dt
þ Lv� 1:

Applying the theory of differential inequality Birkhoff

and Rota (1982) we obtain 0\v\ 1�e�Lt

L
þ vðxð0Þ;

yð0ÞÞe�Lt.

For t ! 1, we have 0\v\ 1
L
. Hence all the

solutions of (3) that initiate in R2
þ are confined in the

region T ¼ fðx; yÞ 2 R2
þ : v ¼ 1

L
þ n; for any n[ 0g. h

Note: The condition sþ e[ �cð1 � AÞ implies that

1 � sþe
c� \A\1. Therefore, for uniformly bounded solu-

tions of the system (3), depends on alternative food

depends on harvesting effort (e).

Existence and local stability criteria of equilibrium points

System (3) possesses following equilibrium states:

(a) The trivial equilibrium state is ET � ð0; 0Þ. An

eigenvalue associated with the Jacobian matrix at

E0 is 1, positive, for which ET is an unstable equi-

librium point.

(b) The axial equilibrium state is EA � ð1; 0Þ. The

Jacobian matrix at the equilibrium point EA is

JðEAÞ ¼
�1

�1

1 þ a

0 c
A

1 þ a
þ �ð1 � AÞ

� �

� s� e

0

B

B

@

1

C

C

A

:

The eigen values of JðEAÞ are �1 and

cð A
1þa

þ �ð1 � AÞÞ � s� e. The axial equilibrium

point EA is stable if sþ e[ Ac
1þa

þ c�ð1 � AÞ � s,

otherwise EAð1; 0Þ is unstable.

(c) The interior equilibrium state is E� � ðx�; y�Þ, where

x� ¼ sþe�c�ð1�AÞ
Ac� ðsþeÞ�c�ð1�AÞð Þa

� �2

, y� ¼
ffiffiffiffiffi

x�
p

ð1 � x�Þð1 þ
a
ffiffiffiffiffi

x�
p

Þ: The Jacobian matrix at E� is given by

JðE�Þ ¼
c11 c12

c21 c22

� �

;

where, c11 ¼ 1 � 2x� � y�

2
ffiffiffi

x�
p

ð1þa
ffiffiffi

x�
p

Þ2, c12 ¼ �
ffiffiffi

x�
p

1þa
ffiffiffi

x�
p ,

c21 ¼ Acy�

2
ffiffiffi

x�
p

ð1þa
ffiffiffi

x�
p

Þ2,

c22 ¼ c A
ffiffiffi

x�
p

1þa
ffiffiffi

x�
p þ �ð1 � AÞ

� �

� s� e ¼ 0. The

characteristic equation of the Jacobian matrix at E�

is given by k2 þH1kþH2 ¼ 0,

where,H1 ¼ �c11,H2 ¼ �c12c21.

It is clear that c12\0, and c21 [ 0. Hence the system (3)

is stable if H1 [ 0, and H2
1 � 4H1H2\0: Thus E� �

ðx�; y�Þ will be stable if H1 [ 0 i.e., if

2x� [ ð1 � x�Þð1 þ a
ffiffiffi

x�
p

1þa
ffiffiffi

x�
p Þ.
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Monotonic dynamics

Proposition 2.1 Equilibrium level of prey biomass of the

system (3) decreases monotonically with the increase of

alternative resource A if Ac�\1 and increases with the

increase of harvesting effort e.

Proof Now, x� ¼ 1
A2

sþe
c
� �ð1 � AÞ

� �2
. Differentiating x�

with respect to A we get

dx�

dA
¼ 2

sþ e� c�ð1 � AÞð ÞðAc2�� cÞ
Ac� ðsþ eÞaþ c�ð1 � AÞað Þ3

\0; provided if, Ac�\1:

Again Differentiating x� with respect to e we get

dx�

de
¼ 2Ac

sþ e� c�ð1 � AÞ
Ac� ðsþ eÞaþ c�ð1 � AÞað Þ3

 !

[ 0; since x� is positive:

Hence the proof is completed.

Proposition 2.2 Equilibrium level of predator biomass of

the system (3) is an increasing function of alternative

resource A, but is an decreasing function of e if

a\ 3x��1
2
ffiffiffi

x�
p

ð1�2x�Þ.

Proof We have, y� ¼
ffiffiffiffiffi

x�
p

ð1 � x�Þð1 þ a
ffiffiffiffiffi

x�
p

Þ Differen-

tiating y� with respect to A we get

dy�

dA
¼ ð1 þ a

ffiffiffiffiffi

x�
p

Þð1 � 3x�Þ
2
ffiffiffiffiffi

x�
p þ a

2
ð1 � x�Þ

� �

dx�

dA
[ 0; provided, a\

3x� � 1

2
ffiffiffiffiffi

x�
p

ð1 � 2x�Þ
:

Again, differentiating y� with respect to e we have

dy�

de
¼ ð1 þ a

ffiffiffiffiffi

x�
p

Þð1 � 3x�Þ
2
ffiffiffiffiffi

x�
p þ a

2
ð1 � x�Þ

� �

dx�

de
\0; provided, a\

3x� � 1

2
ffiffiffiffiffi

x�
p

ð1 � 2x�Þ
:

Hence the proof is completed.

Therefore, from the above Propositions, it is clear that

systems biomass of the system (3) depends on supply of

alternative resource A and harvesting effort e. h

Extinction criterion for predator

Lemma 2.1 If e[ c
A
ffiffiffiffiffiffi

xðrÞ
p

1þa
ffiffiffiffiffiffi

xðrÞ
p þ �ð1 � AÞ

� �

, then

limt!1yðtÞ ¼ 0.

Proof The second equation of the system (3) is given by

dy

dt
¼ c

A
ffiffiffiffiffiffiffiffi

xðrÞ
p

1 þ a
ffiffiffiffiffiffiffiffi

xðrÞ
p þ �ð1 � AÞ

 !

� s� e

 !

y:

Therefore,
dy

y
� c

A
ffiffiffiffiffiffiffiffi

xðrÞ
p

1 þ a
ffiffiffiffiffiffiffiffi

xðrÞ
p þ �ð1 � AÞ

 !

� e

 !

dt:

That is, yðtÞ� yðt0Þexp
Z t

t0

� e� c
A

ffiffiffiffiffiffiffiffi

xðrÞ
p

1 þ a
ffiffiffiffiffiffiffiffi

xðrÞ
p þ �ð1 � AÞ

 ! !

dr

 !

:

Thus, limt!1yðtÞ ¼ 0, provided e[ c

A
ffiffiffiffiffiffi

xðrÞ
p

1þa
ffiffiffiffiffiffi

xðrÞ
p þ �ð1 � AÞ

� �

. h

Theoretical studies of the system (4)

First we study the system (4) theoretically to obtain the

existence and stable conditions. The functions of the right

hand side of the system (4) are continuous and have con-

tinuous partial derivatives on the state space

R2
þ ¼ fðxðtÞ; yðtÞÞ : xðtÞ� 0; yðtÞ� 0g. Therefore, they are

Lipschitzian on R2
þ and hence the solution of the system (4)

with positive initial conditions exist and unique. Moreover,

following Cao et al.( 2012), it is easy to show that the state

space R2
þ is an invariant domain of the system (4).

In the following Section, positivity and boundedness of

solution of the system (4) are to be established. The

boundedness may be interpreted as natural restrictions to

unlimited growth as a consequence of limited resources (cf.

Gakkhar and Singh 2012).

Positive invariance

System (4) can be written in the matrix form as _�X ¼ Fð �XÞ
with �Xð0Þ ¼ �X0 2 R2

þ, where �X ¼ ðx; yÞT 2 R2
þ and Fð �XÞ

is given by

F ¼ Fð �XÞ ¼ xð1 � xÞ �
ffiffiffi

x
p

y

cy A
ffiffiffi

x
p

þ �ð1 � AÞð Þ � sy� ey

� �

;

where F : Cþ ! R2 and F 2 C1ðR2Þ.
It can be shown that whenever �Xð0Þ 2 R2

þ such that

Xi ¼ 0 then Fið �XÞjXi¼0 � 0 (for i = 1,2). Now any solution

of F ¼ Fð �XÞ with �X0 2 R2
þ , say �XðtÞ ¼ �Xðt; �X0Þ, is such

that �XðtÞ 2 R2
þ for all t[ 0 (cf. Nagumo 1994).
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Boundedness

Theorem 2.2 All solutions of the system (4) which start

in R2
þ are uniformly bounded if sþ e[ �cð1 � AÞ holds.

Proof Let (x(t), y(t)) be any solution of the system (4)

with positive initial conditions.

Let us assume that w ¼ xþ 1
Ac
y,

i:e:;
dw

dt
¼ dx

dt
þ 1

Ac

dy

dt
:

Using equations of (4), we have

dw

dt
¼ xð1 � xÞ �

ffiffiffi

x
p

yþ
ffiffiffi

x
p

y� ðsþ eÞ
Ac

yþ �
ð1 � AÞ

A
y;

i.e.,
dw

dt
� � hðxþ yÞ � ðx� 1Þ2 þ 1;

where h = minf1; sþ e� �cð1 � AÞg, provided sþ e[
�cð1 � AÞ.

Therefore,
dw

dt
þ hw� 1:

Applying the theory of differential inequality (Birkhoff and

Rota 1982) we obtain 0\w\ 1�e�ht

h þ wðxð0Þ; yð0ÞÞe�ht.

For t ! 1, we have 0\w\ 1
h.

Hence all the solutions of the system (4) that initiate in

R2
þ are confined in the region

S ¼ fðx; yÞ 2 R2
þ : w ¼ 1

h þ g; for any g[ 0g. This

proves the theorem. h

Note: The condition sþ e[ �cð1 � AÞ implies that

1 � sþe
c� \A\1. Therefore, for uniformly bounded solu-

tions of the system (4), supply of alternative food and

harvesting effort (e) depend on each other.

Existence and local stability criteria of equilibrium points

System (4) possesses following three equilibrium states:

(a) The trivial equilibrium state is E0 � ð0; 0Þ. An

eigenvalue associated with the Jacobian matrix at

E0 is 1, positive, for which E0 is an unstable equi-

librium point.

(b) The axial equilibrium state is E1 � ð1; 0Þ. The

Jacobian matrix at the equilibrium point E1 is

JðE1Þ ¼
�1 �1

0 c Aþ �ð1 � AÞð Þ � s� e

� �

:

The eigenvalues of JðE1Þ are -1 and

cðAþ �ð1 � AÞÞ � s� e. The axial equilibrium point

E1 is stable if e[Acþ c�ð1 � AÞ � s. If the condi-

tion is violated, then E1 is a saddle point.

(c) The interior equilibrium state is E2 � ðx�; y�Þ, where

x� ¼ 1
A2

sþe
c
� �ð1 � AÞ

� �2
, y� ¼ 1

c3A3 ½ðsþ eÞ � �ð1 �

AÞ�:½A2� ðsþ eÞ � c�ð1 � AÞg2�. The equilibrium

state E2 exists if c�ð1 � AÞ\sþ e\Acþ
c�ð1 � AÞ. The Jacobian matrix at E2 is given by

JðE2Þ ¼
A11 A12

A21 A22

� �

;

where, A11 ¼ 1 � 2x� � y�

2
ffiffiffi

x�
p , A12 ¼ �

ffiffiffiffiffi

x�
p

,

A21 ¼ Acy�

2
ffiffiffi

x�
p , A22 ¼ c½A

ffiffiffiffiffi

x�
p

þ �ð1 � AÞ� � s� e ¼ 0.

The characteristic equation of the Jacobian matrix at

E2 is k2 þ X1kþ X2 ¼ 0, where, X1 ¼ �A11,

X2 ¼ �A12A21.

It is obvious that A12\0, and A21 [ 0. Hence the system

(4) is stable if X1 [ 0, and X2
1 � 4X1X2\0: Thus E2 will

be stable if X1 [ 0 i.e., e[ Ac
ffiffi

3
p þ �cð1 � AÞ � s.

Monotonic dynamics

Proposition 2.3 Equilibrium level of prey biomass

(x) decreases monotonically with the increase of alternative

resource A if sþ e[ c� and increases with the increase of

harvesting effort e if sþ e[ c�ð1 � AÞ.

Proof Now, x� ¼ 1
A2

sþe
c
� �ð1 � AÞ

� �2
. Differentiating x�

with respect to A we get

dx�

dA
¼ �2

A3

sþ e

c
� �

� �2

� 2

A2
�
sþ e

c
� �

� �

\0; if sþ e[ c�:

Differentiating x� with respect to e we have

dx�

de
¼ 2

A2c2
sþ e� c�ð1 � AÞð Þ[0; if sþ e[ c�ð1 � AÞ:

Hence the proof is completed. h

Proposition 2.4 Equilibrium level of predator biomass

(y) of the system (4) is an increasing function of with

respect to alternative resource A if Ac\
ffiffiffi

3
p

and sþ e[ c�,

but is an decreasing function of e if Ac\
ffiffiffi

3
p

and

sþ e[ c�ð1 � AÞ.

Proof We have, y� ¼
ffiffiffiffiffi

x�
p

ð1 � x�Þð1 þ a
ffiffiffiffiffi

x�
p

Þ Differen-

tiating y� with respect to A we get

dy�

dA
¼ ð1 � 3x�Þ dx

�

dA
;

since dx�

dA
\0. Therefore, dy�

dA
[ 0, if sþ e[ c� and Ac\

ffiffiffi

3
p

:
Again, differentiating y� with respect to e we have

dy�

de
¼ ð1 � 3x�Þ dx

�

de
;

since dx�

de
[ 0. Therefore, dy�

de
\0, if sþ e[ c�ð1 � AÞ and

Ac\
ffiffiffi

3
p

:

Hence the proof is completed.
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Therefore, from the above Propositions, it is clear that prey

and predator biomass of the system (4) depends on supply of

alternative resource A and harvesting effort e. h

Extinction criterion for predator

Lemma 2.2 If e[ cfA
ffiffiffiffiffiffiffiffi

xðrÞ
p

þ �ð1 � AÞg, then limt!1
yðtÞ ¼ 0.

Proof The second equation of the system (4) is given by

dy

dt
¼ cfA

ffiffiffiffiffiffiffiffi

xðrÞ
p

þ �ð1 � AÞg � s� e
� �

y;

Therefore,
dy

y
� cfA

ffiffiffiffiffiffiffiffi

xðrÞ
p

þ �ð1 � AÞg � e
� �

dt:

i.e., yðtÞ� yðt0Þexp
Z t

t0

� ðsþ eÞ � cfA
ffiffiffiffiffiffiffiffi

xðrÞ
p

þ �ð1 � AÞg
� �

dr

� �

:

Thus, limt!1yðtÞ ¼ 0, provided e[ cfA
ffiffiffiffiffiffiffiffi

xðrÞ
p

þ �

ð1 � AÞg.

h

Bionomic equilibrium

The term bionomic equilibrium is an amalgamation of

biological equilibrium and economic equilibrium. The

biological equilibrium of the system (3) satisfy the

equations

dx

dt
¼ dy

dt
¼ 0: ð5Þ

The economic equilibrium is said to be achieved when TR

(total revenue obtained by selling the harvested predator y)

equals to TC (the total cost for the effort devoted to har-

vesting). At first, we consider the term e to be the non-

dimensional measure of the harvesting effort, p is the

constant price per unit biomass, h is the constant cost of

harvesting effort and x is the economic constant. Therefore

the economic rent (net revenue) at any time is given by

pðy; eÞ ¼ TR� TC ¼ ðp� xeyÞey� he: ð6Þ

For convenience, we take p and h to be constant. So, the

economic equilibrium can be obtained from the Eq. (5) and

using the equation of zero profit line

pðy; eÞ ¼ 0: i.e., ðp� xeyÞey� he ¼ 0;

Therefore, xey2 � pyþ h ¼ 0:
ð7Þ

Thus, using the Eqs. (5) and (7) one can obtain the feasible

economic equilibrium ðx̂; ŷÞ. The optimal economic rent is

calculated in the next section.

Optimal control strategy

The main aim of this section is on the profit-making

aspect of the model (3). It is a thorough study of the

optimal harvesting strtegy to minimize the profit earned

by harvesting biomass considering quadratic costs and

conservation of predator. It is assumed that price is a

function which decreases with the increase of harvested

biomass. Thus, to maximize the total discounted net

revenues from the model (3), the optimal control

problem can be formulated (cf. Chakraborty et al. 2012)

as

JðeÞ ¼
Z tf

t0

e�dt½ðp� xeyÞey� he�dt; ð8Þ

where d is the instantaneous annual discount rate. The

problem (8) can be solved by using Pontryagins maximum

principle subject to model (3) and control constraints

0� e� emax. The convexity of the objective function with

respect to e, the linearity of the differential equations in the

control and the compactness of the range values of the state

variables can be combined to give the existence of the

optimal control.

Assume that ed is an optimal control harvesting with

corresponding states xd, yd. We consider Adðxd; ydÞ as

optimal equilibrium point. Now derive optimal control ed
such that

JðedÞ ¼ max fJðeÞ : e 2 Ug, where U is the control set

defined by U ¼ fe : ½t0; tf � ! ½0; emax�j e is Lebesgue

measurable}.

The Hamiltonian of this optimal control problem is of

the form

H ¼ ðp� xeyÞey� heþ k1fxð1 � xÞ �
ffiffiffi

x
p

y

1 þ a
ffiffiffi

x
p g

þ k2fcy
A
ffiffiffi

x
p

1 þ a
ffiffiffi

x
p þ �ð1 � AÞ

� �

� sy� eyg;

where k1, k2 are adjoint variables. Here the initial

transversality conditions give kiðtf Þ ¼ 0; i ¼ 1; 2:

Now, it is possible to find the characterization of the

optimal control ed. On the set t : 0\edðtÞ\emax, we have
oH
oe

¼ py� 2xy2e� h� k2y.

At Adðxd; ydÞ and e ¼ edðtÞ we have

oH

oe
¼ pyd � 2xy2

ded � h� k2yd ¼ 0: ð9Þ

Therefore, ed ¼
pyd � h� k2yd

2xy2
d

: ð10Þ

Now, the adjoint equations at the point Adðxd; ydÞ are
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dk1

dt
¼ dk1 �

oH

ox
jAd

;

¼ dk1 � k1 1 � 2xd �
yd

2
ffiffiffiffiffi

xd
p ð1 þ a

ffiffiffiffiffi

xd
p Þ2

 !"

þk2

Acyd

2
ffiffiffiffiffi

xd
p ð1 þ a

ffiffiffiffiffi

xd
p Þ2

 !#

; ð11Þ

dk2

dt
¼ dk2 �

oH

oy
jAd

;

¼ dk2 � k2

Ac
ffiffiffiffiffi

xd
p

ð1 þ a
ffiffiffiffiffi

xd
p Þ

� �

þ �ð1 � AÞ � ðsþ edÞ
� �	

� k1

ffiffiffiffiffi

xd
p

1 þ a
ffiffiffiffiffi

xd
p � � ped � 2xe2

dyd
� �

: ð12Þ

The two Eqs. (11) and (12) are first order simultaneous

differential equations and it is easy to get the analytical

solution of the equations with the help of initial conditions

kiðtf Þ ¼ 0; i ¼ 1; 2. Using the value of k2 and Eqs. (5) and

(9), we can get the feasible optimum harvesting equilib-

rium ðxd; ydÞ. Therefore the optimum economic rent or net

revenue at any time is obtained using the value of yd from

the Eq. (6). In this regard, it is important to note that we

have formulated the optimal control problem considering

harvesting effort as control parameter. We summarize the

above study by the following theorem.

Theorem 4 There exists an optimal control ed and cor-

responding solutions of the system (3), the equilibrium (xd,

yd) maximizes J(e) over U. Furthermore, there exists

adjoint functions k1, k2 and k2 satisfying Eqs. (11) and

(12) with transversality conditions kiðtf Þ ¼ 0; i ¼ 1; 2.

Moreover, the optimal control is given by ed ¼ pyd�h�k2yd
2xy2

d
.

Numerical studies

The numerical simulations of the system (3) (for a 6¼ 0)

and the system (4) (for a ¼ 0), are demonstrated with a set

of fixed parameter values c ¼ 1; s ¼ 0:56 and � ¼ 0:95,

most of which are taken from Braza (2012). The remaining

two parameters A (0\A\1) and ‘‘e’’ are varied through-

out the simulations.

Numerical results for a ¼ 0

We first simulate the dynamics of the predator popula-

tion of the system (4) without alternative resource (i.e.,

for A ¼ 1) for different harvesting effort (e) presenting in

Fig. 1. Figure 1a displays that prey and predator popu-

lation have stable dynamics for e ¼ 0:1. When ‘‘e’’ is

increasing, predator density decreases (Fig. 1b). We also

observe that the predator population will extinct in the

system after e� 0:44 (Fig. 1c, d). So we now study to

observe the effects of alternative resource (A) when

e� 0:44. The effects of alternative resource (A) is rep-

resented in Fig. 2 fixing harvesting effort at e ¼ 0:44.

From Fig. 2, it is evident that the predator population

has also extinction risk in presence of alternative

resource. Figure 2 shows that alternative resource has no

capability to prevent the extinction or extinction risk

with this harvesting.

Numerical results for a 6¼ 0

We now study the dynamics of the system (3) for dif-

ferent harvesting effort e in absence of alternative

resource (i.e., A ¼ 1) taking a=0.2 and it is presented in
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Fig. 1 Dynamics of the system (4) taking a ¼ 0, c ¼ 1, s ¼ 0:56, � ¼ 0:95 and A ¼ 1 with various harvesting effort e ¼ 0:1 for (a), e ¼ 0:4 for

(b) , e ¼ 0:44 for (c) and e ¼ 0:8 for (d). Figure depicts that predator population has extinction risk for higher harvesting effort
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Fig. 3. Figure 3(a) depicts that prey and predator pop-

ulation have stable dynamics for e ¼ 0. The density of

predator population decreases for increase rate of har-

vesting ðe ¼ 0:25Þ (Fig. 3b). It is evident that predator

populations will have extinction when e� 0:275 (Fig. 3c,

d). Now the bifurcation diagram of the system (3) with

respect to harvesting effort ‘‘e’’ is presented in Fig. 4 in

absence of alternative resource (A = 1). From Fig. 4, we

observe that predator population will extinct for

e� 0:275, whereas prey population exists in their highest

density level. The dynamics of the system (3) in

presence of alternative resource is presented in Fig. 5

fixing harvesting effort at e ¼ 0:3. Figure 5a–c depicts

that the predator populations survive in the system in

presence of alternative resource (A) . Predator population

will have extinction in presence of alternative resource

(Fig. 4d). It is clear from Fig. 5 that the predator population

will survive for 0:27�A\0:79. Therefore, predator pop-

ulation of the system (3) will exist for suitable supply of

alternative resource (A). The arbitrary supply of alternative

resource may have opposite effect (Fig. 5d). The role of

alternative resource (A) is presented in Fig. 6 through
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Fig. 2 Dynamics of the system (4) taking a ¼ 0, c ¼ 1, � ¼ 0:95,

s ¼ 0:56 and e ¼ 0:44 in presence of alternative resource A ¼ 0:2 for

(a), A ¼ 0:4 for (b) , A ¼ 0:6 for (c) and A ¼ 0:9 for (d).

Figure displays that predator extinction risk deos not reduce for

higher harvesting effort and presence of alternative resource
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Fig. 3 Dynamics of the system (3) taking a ¼ 0:2, c ¼ 1, � ¼ 0:95, s ¼ 0:56 and A ¼ 1 with various harvesting effort e ¼ 0 for (a), e ¼ 0:25 for

(b) , e ¼ 0:275 for (c) and e ¼ 0:9 for (d). It is evident that predator population has extinction risk for higher harvesting rate
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bifurcation analysis for fixed harvesting effort e ¼ 0:3.

From Fig. 6, one can observe that predator survives for

0\A\0:79 and have extinction for A� 0:79. The func-

tional relation of minimum level of alternative resource

(A) with maximum harvesting effort (e) is presented in

Fig. 7. Figure 7 displays that one can choose the suit-

able alternative resource for survival of predator population

when harvesting effort becomes high.

Dynamics for seasonal harvesting

We now focus on the dynamics of the system (3) when

harvesting is time dependent. In reality, parameter values

are not fixed, should be variable. In different season,

harvesting may be changed with time. So, we now

consider that harvesting depends on seasonality. We

replace harvesting effort e by eð1 þ d1cos/tÞ in the

model (3), where ‘‘d1’’ represents amplitude of oscilla-

tion and ‘‘/’’ represents angular frequency of oscillation.

We draw a bifurcation diagram of the system (3) with

respect to e in absence of alternative resource (A ¼ 1)

for s ¼ 0:56, c ¼ 1, � ¼ 0:95, d1 ¼ 0:1 and / ¼ 0:5 in

Fig. 8. From Fig. 8, we observe that the predator pop-

ulation oscillates within 0� e\0:28 and have extinction

for e� 0:28. Taking e ¼ 0:3 as fixed, we plot the

dynamics of the system (3) with respect to alternative

resource A in figure 9. Figure 9 shows that predator

population will survive within 0\A\0:79 and will

extinct for 0:79�A� 1. Therefore, one can conclude

that alternative resource has a capability to prevent the

extinction probability of predator incorporating time

dependent harvesting effort.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Harvesting effort e

P
o

p
u

la
ti

o
n

s

 A=1

 prey

 predator

e=0.275

a=0.2

Fig. 4 Bifurcation of the
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harvesting effort e without
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predator population will extinct

for e� 0:275
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Fig. 5 Dynamics of the system (3) taking a ¼ 0:2, c ¼ 1, � ¼ 0:95,

s ¼ 0:56 and e ¼ 0:3 in presence of alternative resource A ¼ 0:22 for

(a), A ¼ 0:5 for (b) , A ¼ 0:7 for (c) and A ¼ 0:79 for (d).

Figure displays that predator population will survive in the system

for higher harvesting rate with suitable supply of alternative resource
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Results for optimal harvesting strategy

The effects of variation of constant price per unit biomass

of catch (p) and alternative resource (A) on optimal control

of harvesting effort ed in the model (3) is described in the

Fig. 10. Figure 10 displays that optimal harvesting effort

ðedÞ decreases with time. But for smaller to higher price

rate, the level of optimal harvesting effort ðedÞ increases

(Fig. 10a) when supply of alternative resource is fixed. On

the other hand for a fixed price rate, the level of ed
increases with respect to rapid supply of alternative

resource. Therefore, it is clear that maximum level of

harvesting, depends on market price value as well as supply

of alternative resource.

Conclusion

We have proposed a predator–prey model with predator

harvesting in presence of alternative resource. We have

first studied the conditions of preliminary properties like

positivity, boundedness, stability of equilibrium points etc.

for both models. The bionomic equilibrium of the system is

obtained and the optimal control strategy is also studied.

The theoretical results are verified through numerical

simulations. Bifurcation analysis is presented with the

variation of harvesting effort as well as alternative

resource. From bifurcation analysis, we observe that

predator population will extinct for e� 0:275 in absence of

alternative resource (Fig. 4). On the other hand, Fig. 6

depicts that predator population exists positively for

0\A\0:79 for fixed harvesting effort e ¼ 0:3 and will

have extinction risk for A� 0:79. Therefore, a suit-

able supply of alternative resource can prevent the

extinction risk of predator. A dynamical behaviour of the

predator population of the system (3) in e� A plane is

plotted in Fig. 7 and it shows that one can choose the

minimum level of suitable alternative resource for higher

harvesting rate. We have also presented the system

dynamics with time varying harvesting effort in Figs. 8

and 9. Figures 8 and 9 show that system has similar

dynamics in presence of time varying harvesting effort

with time independent harvesting effort. Lastly, we have

described the result of optimal harvesting effort in

Fig. 10 to observe the effects of alternative resource and

market price rate.

Thus, we observe that a supply of suitable alternative

resource A can reduce the predation pressure on prey as

well as remove extinction possibility of predator
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Fig. 6 Bifurcation of the

system (3) with respect to
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A� 0:79
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Figure depicts that one can choose the suitable minimum level

alternative food for higher harvesting rate
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population. In this paper, we assume that the supply of

alternative resource is not dynamic, but maintained at a

specific constant level. This simplification is justified for

many arthropod predators, because they can feed on plant-

provided alternative resources such as pollen or nectar (cf.

Baalen et al. 2011). This model is especially important in

such systems in which more energy enters the food web

from alternative resource. The results may be applicable in

the field of conservation of biological as well as fishery.
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