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Dynamics of a food chain model with herd behaviour of the prey
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Abstract Many prey populations live in herds and so, in

spite of all individuals, only the members of outer surface

interact with other species. To represent such prey-predator

interaction ‘square root functional response’ is more suit-

able. In this paper, dynamical complexities of a three

species food web is investigated where the prey species

shows a herd behaviour. Boundedness and stability analy-

sis is carried out. Bifurcation analysis is presented. Our

analytical findings are verified through computer

simulations.

Keywords Food chain model � Herd � Boundedness �
Persistence � Stability � Hopf-bifurcation

Introduction

Ever since the pioneering work of Lotka (1925) and Vol-

terra (1926), most of the researches in biomathematics had

been devoted to prey-predator system. Biomathematicians

remained silent about three-species systems for a long time.

The reason may be the insufficiency of mathematical tools

to handle the increasing number of differential equations.

However, urge for incorporating more species had been felt

day by day. Prince et al. (1980) remarked that, the study of

community behaviour with the help of mathematical

models must be based on at least three trophic levels and

hence more focus should be made to study the complex

behaviour exhibited by deterministic models consists of

three and more trophic levels. In reality, different three-

species system have become the focus of considerable

attention in their own right. For example, in waste treat-

ment process, food chain of waste-bacteria-ciliates has got

the attention of researchers (Li and Kuang 2000). The tri-

trophic food chain of tea plant-pest-predator (or, pathogen)

has emerged for biological control of tea pests (Kabir

2001). Some mathematical models for tri-trophic food

chains have been developed and studied in recent past but

their is no denying that theoretical studies on such systems

are still largely lacking. Some theoretical works on food

chain models may be found in the papers of Freedman and

Waltman 1977, Gard (1980), Freedman and So (1985),

Takeuchi et al. (1992), Freedman and Ruan (1992), Ruan

(1993), McCann and Yodzis (1995), Boer et al. (1999),

Kuznetsov et al. (2001), Chauvet et al. (2002), Hsu et al.

(2001), Maiti and Samanta (2005), Maiti et al. (2006),

Pathak et al. (2009).

Among many factors involved in prey-predator models

the crucial one is the ‘functional response’. Depending

upon the behaviour of populations, more suitable func-

tional response has been developed as a quantification of

the relative responsiveness of the predation rate to change

in prey density at various populations of prey. In this

connection, Holling family of functional responses (Hol-

ling 1959a, b, 1965) are the most focused, and in particular,

the Holling type-II functional response has served as basis
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for a very large literature in prey-predator theory (Maiti

and Samanta 2005; Arditi and Ginzburg 1989; Arditi and

Saiah 1992; Abrams and Ginzburg 2000; Ruan and Xiao

2001; Murray 2002). The Holling type-II functional

response includes the fact that a single individual can feed

only until the stomach is not full, and so a saturation

function would be better to describe the intake of food.

This is similar to the concept of the ‘law of diminishing

returns’ borrowed from operations research, via a hyper-

bola rising up to an asymptotic value. In other words, the

functional response would be of the following form

FðXÞ ¼ aX
1 þ ThaX

;

where X(T) is the prey density at time T, a is the search

efficiency of the predator for prey, Th is the average han-

dling time for each prey.

Previous scholarships

In natural ecosystems, most of the prey populations live

forming groups, and all members of a group do not interact

at a time (Bera et al. 2015, 2016). Major predators of zebra,

buffalo, kongoni, toki and Thomsons gazelle are hyena,

wild dog, lion, leopard and cheetas and so they form groups

for defence against predators. The underlying reasons for

group formation more likely depend upon self-defence,

group-defence, group alertness within a group and speed, to

avoid being killed by a predator (Khan et al. 2004). Models

of group formation are used to study environmental and

social forces, and individual decision rules that lead to

formation of swarms, flocks, schools, herds, and other

groups (DeAngelis and Mooij 2005). It is pointed out by

Fryxell et al. (2007) that group formation profoundly

reduce food intake rates below the levels expected. As a

consequence, suitable form of functional response was

searched for to describe the social behaviour of such

populations. Freedman and Wolkowitz (1986) discussed

the characteristics of group defense in this regard. To

explore the consequence of forming spatial group of fixed

shape by predators, Cosner et al. (1999) made the

assumption that the number of predators in a shape is

proportional to the area of the group in two dimension, and

to its volume in three dimension. As a result, the encounter

rate EðX; YÞ ¼ aXY should change its form to EðX; YÞ ¼
aY

ffiffiffiffi

X
p

in two dimension, and in three dimension it should

be EðX; YÞ ¼ aYX
2
3. Recently Ajraldi et al. (2011) argued

that when prey population exhibit herd behaviour, the

functional response should be in terms of square root of

prey population. They also claimed that on a large savanna,

the herbivorous and their large predators entirely fit their

suggested model. Their work, in which the prey population

assumed to form a herd in defense or searching for food

purpose, lead to some unexpected behaviours, particularly

near origin. Using the form of the Holling type-II func-

tional response, Braza (2012) developed a new functional

response, where the prey density term was replaced by its

square root.

Objectives

In this work, we have presented the dynamical behavior

of a three-species food chain model with a mixed selec-

tion of functional response. Our study includes bound-

edness, stability and bifurcation analysis. The rest of the

paper is structured as follows. A brief sketch of the

construction of the model and the biological relevance of

it have been stated. Next, boundedness of the basic

deterministic model is discussed and then the boundary

equilibrium points and their stability analysis have been

analyzed. The necessary and sufficient condition for the

existence of the interior equilibrium point and the con-

ditions for its stability are derived. Criteria for Hopf

bifurcation near interior equilibrium has also been stud-

ied. Computer simulation of a variety of numerical solu-

tions of the underlying system is presented. At the end

general discussions on the results and biological impli-

cations of our mathematical findings have been presented.

Here our objectives are to enrich the dynamics of a three-

species predator-prey system with herd behaviour among

the habitat of the prey population which help us to get

better understanding of the interaction between prey,

middle predator and superpredator in a real ecosystem. It

is assumed that the prey is consumed by middle predator

and middle predator by superpredator.

Materials and methods

Before we introduce the mathematical model, let us

describe the basic assumptions that we made to formulate

it.

1. The biological system we consider is composed of a

singe prey population whose density is denoted by X.

There is a middle predator and a superpredator (or top

predator), whose population density are Y and Z

respectively. The behavior of the entire community is

assumed to arise from the coupling of these three

populations, where Y is the only predator for prey

population X, and superpredator Z has only food

resource Y.

131 Page 2 of 9 Model. Earth Syst. Environ. (2016) 2:131

123



Prey speciesðXÞ
+

Middle predator speciesðYÞ
+

Superpredator speciesðZÞ

2. We assume that in the absence of the predators the

prey population density grows according to a logistic

curve with carrying capacity KðK[ 0Þ and with an

intrinsic growth rate constant rðr[ 0Þ.
3. In prey-predator relationship, functional response is

the key term. Most of the food chain models consid-

ered in ecological literature are constructed with same

type functional response on predation of prey by

middle predator or of middle predator by superpreda-

tor. But a mixed selection of functional response would

be perhaps more realistic. We assume that the prey

population live in herds. To model this herd behaviour

we consider the modified square root functional

response mentioned earlier (Braza 2012). The middle

predator and the superpredator interaction is assumed

to be governed by the usual Holling type-II functional

response.

The above considerations motivate us to introduce the

following tri-trophic food chain model under the frame-

work of the following set of nonlinear ordinary differential

equations:

dX

dT
¼ rX 1 � X

K

� �

� a1

ffiffiffiffi

X
p

Y

1 þ T1a1

ffiffiffiffi

X
p ;

dY

dT
¼ c1a1

ffiffiffiffi

X
p

Y

1 þ T1a1

ffiffiffiffi

X
p � d1Y � a2YZ

1 þ T2a2Y
;

dZ

dT
¼ c2a2YZ

1 þ T2a2Y
� d2Z:

ð1Þ

Here the parameters a1, a2 are the search efficiencies, and

T1, T2 are the handling times of the middle predator and

superpredator, respectively. The parameters c1 and c2

denote the biomass conversion factors for prey population

to middle predator and for middle predator to superpreda-

tor, respectively. Natural death rates for middle predator

and superpredator are denoted by d1 and d2, respectively.

The model we have just specified has ten parameters,

which makes analysis difficult. To reduce the number of

parameters and to simplify the system a little bit, we

nondimensionalize the system (1) with the following

scaling:

x ¼ X

K
; y ¼ Y

K
; z ¼ Z

K
and t ¼ rT :

Then the system (1) takes the form (after some

simplification),

dx

dt
¼ xð1 � xÞ � a

ffiffiffi

x
p

y

1 þ b
ffiffiffi

x
p ;

dy

dt
¼ c

ffiffiffi

x
p

y

1 þ b
ffiffiffi

x
p � dy� pyz

1 þ my
;

dz

dt
¼ qyz

1 þ my
� ez;

ð2Þ

where

a ¼ a1

ffiffiffiffi

K
p

r
; b ¼ T1a1

ffiffiffiffi

K
p

; c ¼ c1a1

ffiffiffiffi

K
p

r
; d ¼ d1

r
; e ¼ d2

r
;

p ¼ a2K

r
; q ¼ c2a2K

r
; m ¼ T2a2K:

Boundedness

Biological validity of a mathematical model is firstly decided

by its boundedness. It refers that the solutions of the system

will remain in some feasible region forever. The following

theorem gives a criterion for boundedness of the system (2).

Theorem 4.1 All solutions of the system (2) that start in

R3
þ are uniformly bounded.

Proof Let (x(t), y(t), z(t)) be any solution of the system (2).

Since

dx

dt
� xð1 � xÞ;

we have

lim sup
t!1

xðtÞ� 1:

Suppose

W ¼ c

a
xþ yþ p

a
z:

Then

dW

dt
� c

a
x� dy� pe

q
z

� 2c

a
� dW ; where d ¼ minf1; d; eg:

Therefore

dW

dt
þ dW � 2c

a
:

Applying a theorem on differential inequalities (Birkhoff

and Rota 1982), we obtain

0�Wðx; y; zÞ� 2c

ad
þWðxð0Þ; yð0Þ; zð0ÞÞ

edt
;

and for t ! 1;

0�W � 2c

ad
:
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Thus, all the solutions of (2) enter into the region

B ¼ ðx; y; zÞ : 0�W � 2c

ad
þ �; for any �[ 0

� �

:

Hence the theorem. h

Boundary equilibria and stability

In the analysis of systems of differential equations it is

useful to consider solutions that do not change with time,

that is, for which

dx

dt
¼ 0;

dy

dt
¼ 0 and

dz

dt
¼ 0:

Such solutions are called equilibria, steady states or fixed

points provided they lie in feasible region. System (2) always

has the trivial equilibrium point E0ð0; 0; 0Þ and the axial

equilibrium point E1ð1; 0; 0Þ. The third boundary equilib-

rium point E2ðx̂; ŷ; 0Þ exists if and only if d\c=ð1 þ bÞ.
When this condition is satisfied, x̂, ŷ are given by

x̂ ¼ d2

ðc� bdÞ2
; ŷ ¼

cd ðc� bdÞ2 � d2
� �

aðc� bdÞ4
:

The system (2) can not be linearized at E0ð0; 0; 0Þ and

therefore local stability analysis at E0 can not be done

directly. But rescaling the variable x ¼ x2
1 the singularity

may be overcome (Ajraldi et al. 2011). The eigenvalues of

such transformed system being 1
2
;�d and �e; we may

conclude that, the trivial equilibrium E0ð0; 0; 0Þ has an

unstable manifold.

The axial equilibrium point E1ð1; 0; 0Þ has the varia-

tional matrix

VðE1Þ ¼

�1 � a

1 þ b
0

0
c

1 þ b
� d 0

0 0 �e

2

6

6

6

4

3

7

7

7

5

;

which has eigenvalues �1; ð c
1þb

� dÞ and � e. All the

eigenvalues be negative iff d[ c=ð1 þ bÞ. Hence the prey-

only equilibrium is stable when the middle predator death

rate d1 exceeds some threshold value d�1 ¼ c1a1

ffiffiffi

K
p

1þT1a1

ffiffiffi

K
p (in

terms of the original parameters of the system (2)).

The variational matrix VðE2Þ at the equilibrium point

E2ðx̂; ŷ; 0Þ is given by

VðE2Þ ¼

v1 � d

c
0

v2 0 � pŷ

1 þ mŷ

0 0 �eþ qŷ

1 þ mŷ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;

where v1 ¼ 1 � 2x̂� aŷ

2
ffiffi

x̂
p

ð1þb
ffiffi

x̂
p

Þ2 and v2 ¼ cŷ

2
ffiffi

x̂
p

ð1þb
ffiffi

x̂
p

Þ2. The

eigenvalues of this variational matrix are

k1;2 ¼ cv1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2v2
1
�4cdv2

p
2c

, and k3 ¼ �eþ qŷ
1þmŷ

:

Therefore the superpredator-free equilibrium is asymp-

totically stable if x̂ and ŷ exists along with the following

two conditions:

ðiÞ v1\0;

ðiiÞ aeðc� bdÞ4 � cdðq� meÞ ðc� bdÞ2 � d2
� �

[ 0:

The interior equilibrium point: its existence

and stability

Lemma 4.1 The first two components of the interior

equilibrium point E�ðx�; y�; z�Þ of the system (2) exist if

(i) q[me,

(ii) there exist some positive x1 satisfying the bi-

quadratic bx1
4 þ x1

3 � bx1
2 � x1 þ P ¼ 0, where

P ¼ ae=ðq� meÞ.
When these conditions are satisfied, then

x� ¼ x1
2

and

y� ¼ m

q� me
:

Furthermore, if x�ð1 � x�Þ[ ade=ðq� meÞ, then z� exists
and is given by

z� ¼ q

p

cx�ð1 � x�Þ
ae

� d

q� me

� �

:

The variational matrix of the system (2) at E� is given by

VðE�Þ ¼
a11 a12 0

a21 a22 a23

0 a32 0

2

6

4

3

7

5

;

where

a11 ¼ 1 � 2x� � 1 � x�

2ð1 þ b
ffiffiffiffiffi

x�
p

Þ
; a12 ¼ � a

ffiffiffiffiffi

x�
p

ð1 þ b
ffiffiffiffiffi

x�
p

Þ
;

a21 ¼ cð1 � x�Þ
2að1 þ b

ffiffiffiffiffi

x�
p

Þ
; a22 ¼ me

q
�d þ c

ffiffiffiffiffi

x�
p

1 þ b
ffiffiffiffiffi

x�
p

� �

;

a23 ¼ � pe

q
and a32 ¼ q� me

p
�d þ c

ffiffiffiffiffi

x�
p

1 þ b
ffiffiffiffiffi

x�
p

� �

:

The characteristic equation of VðE�Þ is

k3 þ A1k
2 þ A2kþ A3 ¼ 0;

where A1 ¼ �a11 � a22;A2 ¼ a11a22 � a12a21 � a23a32

and A3 ¼ a11a23a32:
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Now we have the following theorem guaranteeing the

local stability at E�.

Theorem 4.2 If E� exists with

ðiÞ 2ð2bx� þ a� bÞ
ffiffiffiffiffi

x�
p

þ 3x� � 1[ 0;

ðiiÞ P1c
2 þ P2cþ P3 [ 0;

where

then E� is locally asymptotically stable.

Proof For 2ð2bx� þ a� bÞ
ffiffiffiffiffi

x�
p

þ 3x� � 1[ 0, it is

obvious that A1 [ 0. It can be shown that A3 is always

positive for all possible values of parameters. And the

condition of the theorem gives

D ¼ A1A2 � A3 ¼ P1c
2 þ P2cþ P3

pq2
[ 0:

Hence the theorem follows from Routh–Herwitz crite-

rion. h

Bifurcation analysis

In some models, the stability switch of a system may occur

simply by changing a single parameter (when other parame-

ters remain unaltered). Hopf bifurcation is characterised by

the stability change of an equilibrium point accompanied by

small amplitude limit cycle behaviour around the equilibrium

point, as some parameter l (called bifurcation parameter) of

the system passes through a critical value l�. The Hopf

bifurcation theorem is stated below (Murray 2002).

Theorem 4.3 Let

dx

dt
¼ f ðx; lÞ

be a real system of ordinary differential equations in Rn

depending on some parameter l in an open interval I of R.

Assume that the components of function f are continuously

differentiable in all variables. Let Eðx�; lÞ be an equilib-

rium point of above system. Assume that the interior

equilibrium depends smoothly on some parameter l 2 I. If

there exists a l� 2 I such that

(i) a pair of complex eigenvalues of the variational

matrix V(E) of the equilibrium point E exists, say,

aðlÞ � ibðlÞ with aðlÞ; bðlÞ 2 R such that they

become purely imaginary at l ¼ l�, whereas the

other eigenvalues have negative real parts,

(ii) da
dl

h i

6¼ 0; then at l� there is a Hopf bifurcation.

Hopf bifurcation theorem has long played a vital role in

the dynamics of two-species models. Some three-species

models are also cultured by this theorem but there is no

denying that for most three-species models it is really

difficult to check those conditions involving eigenvalues of

the variational matrix. Liu (1994) derived a criterion of

Hopf bifurcation without using the eigenvalues of the

variational matrix. We state below the result of Liu for a

general three-species system.

Theorem 4.4 If the characteristic equation of the equi-

librium point is given by k3 þ A1ðlÞk2 þ A2ðlÞkþ
A3ðlÞ ¼ 0; where A1ðlÞ;A3ðlÞ;DðlÞ ¼ A1ðlÞA2ðlÞ �
A3ðlÞ are smooth functions of l in an open interval about

l� 2 R such that

ðiÞ A1ðl�Þ[0;A3ðl�Þ[0;Dðl�Þ ¼ 0;

ðiiÞ dD
dl

	 


l¼l�
6¼ 0; then a Hopf bifurcation occurs at l¼ l�

In our model (2) we consider the parameter c as the

bifurcation parameter. Using Liu’s criterion we have the

following theorem.

Theorem 4.5 Let E� exists with P1\0;P2 [ 0 and

P3 [ 0: Then a Hopf-bifurcation occurs at the unique

value c ¼ c� ¼ �P2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
2
�4P1P3

p
2P1

provided 2ð2bx� þ a� bÞ
ffiffiffiffiffi

x�
p

þ 3x� � 1[ 0.

Results: numerical simulation

Beside analytical studies numerical verification of various

results are not less important. It gives a touch of com-

pleteness to the analytical findings. Here we have pre-

sented computer simulations of the system using

MATLAB.

P1 ¼ mepqa12

ffiffiffiffiffi

x�
p

ð1 � x�Þ þ 2ax� meqðq� meÞa23 � pm2e2a11ð Þ
2að1 þ b

ffiffiffiffiffi

x�
p

Þ2
;

P2 ¼
pqa12ðqa11 � dmeÞð1 � x�Þ � 2a

ffiffiffiffiffi

x�
p

2dmeqðq� meÞa23 � 2dpm2e2a11 � mepqa2
11

� �

2að1 þ b
ffiffiffiffiffi

x�
p

Þ
;

P3 ¼ dmepqa2
11 þ d2 meqðq� meÞa23 � pm2e2a11

� �

;
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We choose the parameters as a ¼ 2:1, b ¼ 1, c ¼ 2,

d ¼ 1:1, e ¼ 0:2, p ¼ 2, q ¼ 1:9, m ¼ 0:4; and

ðxð0Þ; yð0Þ; zð0ÞÞ ¼ ð0:8; 0:2; 0:4Þ: Since d exceeds the crit-

ical value d� ¼ c=ð1 þ bÞ ¼ 1, as per discussion in section 4,

the prey-only equilibrium is stable. We have verified that both

the predator populations dies out and the prey population

approaches its equilibrium value in finite time (see Fig. 1).

For a ¼ 2:9; b ¼ 1:3; c ¼ 1:5; d ¼ 0:56; e ¼ 0:7;

p ¼ 2:6; q ¼ 1:6; m ¼ 0:4 with ðxð0Þ; yð0Þ; zð0ÞÞ ¼
ð0:6; 0:4; 0:2Þ we notice that the stability conditions dis-

cussed in Sect. 4 are verified as v1 ¼ �0:1743\0 and

aeðc� bdÞ4 � cdðq� meÞ ðc� bdÞ2 � d2
� �

¼ 0:4079[ 0:

This is depicted in Fig. 2 which shows that the super-

predator-free boundary equilibrium Eðx̂; ŷ; 0Þ is locally

asymptotically stable. Clearly x ! x̂ ¼ 0:5262; y ! ŷ ¼
0:2303 and z ! 0 in finite time.

If we take the parameters as a ¼ 1:8; b ¼ 0:89; c ¼
2:0; d ¼ 0:45; e ¼ 0:2; p ¼ 2:0; q ¼ 1:9; m ¼ 0:4; the

conditions of Lemma 5.1 are satisfied since me ¼
0:08\0:4 ¼ m; and we have x1 ¼ 0:9411 satisfying

bx4
1 þ x3

1 � bx2
1 � x1 þ P ¼ 0. As the existence criterion is

satisfied, the system (2.2) has an interior equilibrium

E�ðx�; y�; z�Þ ¼ ð0:8856; 0:1099; 0:2998Þ. Now conditions

of Theorem 4.2 for stability of E� are also satisfied as

ðiÞ 2ð2bx� þ a� bÞ
ffiffiffiffiffi

x�
p

þ 3x� � 1 ¼ 6:3366[ 0;

ðiiÞ P1c
2 þ P2cþ P3 ¼ 0:0509[ 0:

Therefore, for the above choice of parameters, E� is locally

asymptotically stable. The corresponding phase portrait for

different initial choices is presented in Fig. 3a. The paths

are clearly stable spirals converging to E�: Figure 3b shows

that x, y, z approach their equilibrium values in finite time

when ðxð0Þ; yð0Þ; zð0ÞÞ ¼ ð0:8; 0:2; 0:4Þ:
(It may be noticed that there are more than one positive

values of x1 satisfying bx4
1 þ x3

1 � bx2
1 � x1 þ P ¼ 0. But

the other values do not satisfy the stability criterion given

in Theorem 4.2. For the above choice of parameters, we

might obtain x1 ¼ 0:1764 also but P1c
2 þ P2cþ P3 ¼

�0:5659\0 for this value of x1).

We have considered the parameter c as the control to

break the stability of the system (2.2) near E�. If we take

values of all the parameters same as Fig. 3. (except that of

c), the computed critical value of c becomes c� ¼ 2:8892.

For c ¼ 2:0\c�, we have already seen that E� is locally

asymptotically stable (see Fig. 3). For c ¼ 3[ c� (with

other values unaltered) the stability of system (2.2) breaks

and the limit cycles grows out of E� (see Fig. 4a). Sus-

tained oscillations of x, y, z in finite time is shown in

Fig. 4b when c ¼ 3. A bifurcation diagram is also drawn by

taking c as the bifurcation parameter. It shows that

(x, y, z) approaches to a unique value for c\c� ¼ 2:8892:

Thereafter the stability breaks and the iterated values of

(x, y, z) approaches to different scattered values throughout

time (see Fig. 5).

Discussion and conclusion

The literature abounds with food chains where the prey

population exhibits herd behaviour. For example, in marine

ecology, the food chain of Pacific sardine (Sardinops
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Fig. 1 Here xð0Þ ¼ 0:8; yð0Þ ¼ 0:2; zð0Þ ¼ 0:4 and a ¼ 2:1; b ¼ 1;
c ¼ 2; d ¼ 1:1; e ¼ 0:2; p ¼ 2; q ¼ 1:9; m ¼ 0:4: It shows that the

axial equilibrium is locally asymptotically stable
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sagax)–Jack mackerel (Trachurus murphyi)–Swordfish

(Xiphias gladius) has got the attention of scientists (Neira

et al. 2004; Neira and Arancibia 2004). On the other hand,

the herd or schooling behaviour of the sardine is reported

by many researchers (Brehmer et al. 2007; Zwolinski and

Demer 2012).

In this paper, we have studied the dynamical beha-

viour of a tri-trophic food chain model where prey

population lives in herd. The characteristic of group-

living of prey population has been emphasized using

square root of prey density in the functional response.

The interaction between middle predator and super-

predator is assumed to be governed by Holling type-II

functional response. The model we have considered,

being bounded, is biologically well behaved. All pos-

sible trivial, axial or boundary equilibrium with criteria

for their existence and stability has been discussed. In

real environment, the coexistence of populations has

immense importance for ecological balance in nature.

From this viewpoint, study of the stability of the interior

equilibrium is emphasized. Bifurcation analysis has also

been carried out showing that the conversion rate of

prey biomass to that of middle predator may switch the

stability of the interior equilibrium. The analysis indi-

cates that if the middle predator is an aggressive con-

sumer, then it might cause ecological imbalance in
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initial choices showing that E� is locally asymptotically stable. b
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nature. Further studies are required to analyze the

dynamics of more realistic but complex systems, such

as delayed diffusive predator-prey system with herd

behavior.
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