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Abstract Salinization and alkalization of land resources are

the major obstacles to their optimal usage in many arid and

semi-arid regions of the world, including Iran, since poten-

tial evapotranspiration is more noteworthy than precipitation

in these areas. The amount of water that enters the soil is low

and this results in salt accumulation in soils, which makes

the soil infertile. Moreover, existence of salts, for example,

sodium, in soils causes dispersion of soil particles and soil

degradation, and intensifies soil erosion too. Monitoring

exchangeable sodium percentage (ESP) variability in soils is

both time-consuming and costly. However, in order to

estimate the amounts of amendments and land management,

it is necessary to know ESP variation and values in sodic or

saline and sodic soils. Thus, introducing a method, which

utilizes easily obtained indices to estimate ESP indirectly is

more optimized and economical. Input and output data, i.e.,

ECe (dS m-1), clay (%), pH and ESP (%) were collected

and measured from 100 soil samples in light of a stratified

random sampling from Mashhad Plain, Khorasan-e-Razavi

Province, Northeast Iran. This study aims to propose some

models to estimate ESP by easily obtained properties of soil.

In this regard, the efficiency of artificial intelligence-based

(AI) models (i.e., Artificial Neural Network, ANN, and

Adaptive Neuro-Fuzzy Inference System, ANFIS) was

investigated and compared. Accuracy results showed that

owing to highest R2 and the lowest mean square error

(MSE), ANFIS model predictions were superior to the MLP

model for indirect estimation of soil exchangeable sodium

percentage.

Keywords Artificial intelligence � Prediction �
Exchangeable sodium percentage � Mashhad plain � Iran

Introduction

Precision agriculture practices in arid and semi-arid areas

like Iran require periodic information on soil salinity and

alkalinity, which are the most essential issues threatening

sustainable agricultural management (Keshavarzi and Sar-

madian 2012; Kilic and Kilic 2007; Omran 2008). The

amount of agricultural lands having salinity and alkalinity

problems increase continuously as identified with climate,

topography, groundwater level and quality of irrigation

water (Postel 1989; Ayers and Westcot 1989; Kilic and

Kilic 2007). The most widely recognized reasons of

salinity and alkalinity are low precipitation, high evapo-

transpiration, and low quality of irrigation water. Saline

soils contain soluble salts in adequate amounts to interfere

the growth of most crop plants, yet they do not contain

enough exchangeable sodium to adjust soil characteristics

(Kilic and Kilic 2007). However, alkali soils incorporate

exchangeable sodium in a sufficient quantity to interfere

with the growth of most crops (Bohn et al. 1985).
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Soluble salts influence the productivity of soils in two

principal ways: changing the osmotic potential of soil

solution and increasing the content of exchangeable

sodium, which produces in many soils an unfavorable

physical condition (Pozdnyakova and Zhang 1999). There

is a close relationship between soil properties and salinity

and alkalinity (Kilic and Kilic 2007), which is related to

soil texture, water content and bulk density (Pozdnyakova

and Zhang 1999). Salinity stress poses three challenges,

including water shortage (drought stress), ionic toxicity,

and nutrient imbalances to crops (Sarani et al. 2015). The

presence of abundant ions in the root zone causes the

absorption and effectiveness of nutrients to decrease

greatly, and on the other hand, increases absorption of any

unnecessary elements (Pessarakli 1991). Saline soils have

increased significantly in Iran and throughout the world.

Approximately 44.5 M ha of arable lands is influenced by

dry land salinity in Iran (Banaei et al. 2005; Sarani et al.

2015). Moreover, the application of irrigation water of low

quality may result in increasing soil salinity. Management

of irrigated arid and semiarid soils and land application of

industrial and food processing wastes often requires fre-

quent monitoring of soil salinity and sodicity variation.

Such monitoring practices are feasible and economical

only where simple, straightforward, and rapid methods are

accessible.

Despite the increasing prevalence of salinity worldwide,

the estimation of exchangeable cation concentrations in

saline soil remains problematic. In this situation, it is

desirable to determine relationships among soil salinity

indices. Soil electrical conductivity (EC), as a suitable in-

dex, which is reliable, cheap, and can be measured fast, has

long been utilized by several researchers (Auerswald et al.

2001; Seilsepour and Rashidi 2008a; Adhikari et al. 2011).

On the contrary, monitoring the changes of soil sodicity is

costly in addition tedious. For saline or saline-sodic soils

that are undergoing the amendment procedure, or when

applying high sodium adsorption ratio (SAR) irrigation

water or wastes, it is necessary to monitor the status of soil

exchangeable sodium percentage (ESP) or SAR frequently.

This, alongside pH and EC monitoring, is advisable for

selecting and adjusting water and waste, estimating the

amount of amendments and management practices (Rob-

bins 1993). The SAR and ESP are two acknowledged

indices for evaluating the degree of soil sodicity. The soil

ESP is obtained by Eq. (1):

ESP ¼ Naexchangeableðme=100g soilÞ
CECðme=100g soilÞ � 100 ð1Þ

As shown in Eq. (1), determining the cation exchange

capacity (CEC) is necessary for estimating soil ESP. The

CEC measurement in the laboratory is very costly and

time-consuming, and contains errors (Rashidi and

Seilsepour 2008; Seilsepour and Rashidi 2008b, 2008c). In

order to conquer the aforementioned issues, presenting a

method that could utilize another parameter to calculate

ESP in an indirect manner is more optimized and eco-

nomical as well. Statistical methods have been widely used

to model and predict the soil ESP from easily obtained

indices. Robbins and Meyer (1990) predicted ESP from pH

and EC in sodic and highly weathered soils of Australia

and reported that this technique is economic, time-efficient,

and potentially able to calculate ESP from pH and EC data.

Farahmand et al. (2012) found nonlinear relationship in

salt-affected soils of the Tabriz plain, Iran. Al-Busaidi and

Cookson (2003) proposed an equation based on EC for

saline soils in Oman. Sodicity is one of the properties of

salt-affected soils and high values of exchangeable sodium

are an indication of sodic soils.

Modeling ESP in the soil is important in numerous

applications of soil science. Therefore, it is essential and

inescapable to know ESP values in order to carry out

suitable prevention measures and estimate the amounts of

amendments for taking care this issue, which result in

improving soil quality and sustainable agriculture devel-

opment. Traditional determination methods which are

lengthy, labor-intensive, and insufficiently accurate appear

to be increasingly irrelevant to many users and does not

have a market with land managers and policy makers

(Omran 2008). A reliable and environmentally friendly

method is needed to rapidly detect and analyze soil ESP. A

growing demand for development of cost-effective meth-

ods for detecting and quantifying ESP in soil with reliable

precision, lead us to a research objective, which aims to

suggest some models to estimate ESP by easily obtained

soil properties. In this regard, the efficiency of artificial

intelligence-based models (i.e., Artificial Neural Network,

ANN, and Adaptive Neuro-Fuzzy Inference System,

ANFIS) was investigated and compared.

Materials and methods

Multi-layer perceptron (MLP)

A detailed background of ANN models can be found in

Haykin (1999). However, in brief, ANNs composed of

three distinct types of layers; one input layer, one or more

hidden layers and one output layer. Each layer comprises

of various straightforward processing elements called

neurons or nodes. Data enters an ANN through the nodes of

the input layer. The input layer nodes distribute the input

information to the next layer (i.e., the first hidden layer).

The hidden and output layer nodes process all incoming

signals by applying factors to them (termed weights). Each

layer also has an additional element called a bias. Bias
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nodes simply output a signal to the nodes of the current

layer. All inputs to a node are weighted, combined and then

processed through a transfer function that controls the

strength of the signal released through the node’s output

connections. Some of the most popular transfer (activation)

functions are Sigmoid, Gaussian, Hyperbolic Tangent and

Hyperbolic Secant (Malekmohammadi et al. 2011). Multi-

layer perceptron (MLP) is one of the commonly utilized

ANN approaches for prediction studies. Figure 1 demon-

strates the structure of an MLP neural network model. In

this figure i, j and k denote input layer, hidden layer and

output layer neurons, respectively, and w is the applied

weight by the neuron. The gradient descent, conjugate

gradient, Levenberg–Marquardt, etc. learning algorithms

can be utilized for training the MLP model (Kisi et al.

2015; Barzegar and Asghari Moghaddam 2016). The

explicit expression of an output value of a three-layered

MLP is given by Nourani et al. (2013), Barzegar and

Asghari Moghaddam (2016) and Barzegar et al. (2016b):

yk ¼ f0
XMN

i¼1

Wkj:fh
XNN

i¼1

WjiXi þWj0

 !
þWk0

" #
ð2Þ

where, Wji is a weight in the hidden layer connecting the

ith neuron in the input layer and the jth neuron in the

hidden layer, Wj0 is the bias for the jth hidden neuron, fh is

the activation function of the hidden neuron, Wkj is a

weight in the output layer connecting the jth neuron in the

hidden layer and the kth neuron in the output layer, Wk0 is

the bias for the kth output neuron, f0 is the activation

function for the output neuron, Xi is ith input variable for

input layer and yj is computed output variable. NN and MN

are the number of the neurons in the input and hidden

layers, respectively.

Adaptive neuro-fuzzy inference system (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) was

introduced by Jang (1993) as a neural network functionally

equivalent to a Sugeno type inference model. ANFIS uti-

lizes a feed-forward network to search for fuzzy decision

rules that perform well on a given task. Utilizing a given

input–output data set, ANFIS creates a FIS for which

membership function parameters are adjusted using either a

back propagation algorithm alone or a combination of a

back propagation algorithm and a least-squares method

(Abdulshahed et al. 2015). This allows the fuzzy systems to

learn from the data being modeled. The equivalent ANFIS

architecture of the Sugeno inference system appears in

Fig. 2. The entire system comprises of five layers, and the

relationship between the input and output of each layer is

summarized as follows (Barzegar and Asghari Moghaddam

2016):

Layer 1 Every node i in this layer is an adaptive node

with a node output, O, defined by:

O1;i ¼ lAi
xð Þ for i ¼ 1; 2; or

O1;i ¼ lBi�2
yð Þ for i ¼ 3; 4

ð3Þ

where, x (or y) is the input to the node, and Ai (or Bi-2) is a

fuzzy set associated with this node, and characterized by

the shape of the node’s membership function (l). This

function must be continuous and piecewise differentiable,

such as, for example, a Gaussian function. If such is used as

a membership function, lAi
xð Þ can be computed as:

lAi
xð Þ ¼ e�

1

2

x� Ci

ri

� �2

ð4Þ

where, {ri, ci} are parameter sets.

Parameters in this layer are referred to as premise (an-

tecedent) parameters.

Layer 2 Every node in this layer is a fixed node labeled

as P, which multiplies the incoming signals and output

product. For instance,

O2;i ¼ wi ¼ lAi
xð Þ � lBi

yð Þ i ¼ 1; 2 ð5Þ

with each output node representing the firing strength of a

rule.

Layer 3 Every node in this layer is a circular node

labeled as N. The ith node calculates the ratio of the ith

rule’s firing strength to the sum of all rules’ firing strengths.

O3;i ¼ �w ¼ wi

w1 þ w2

i ¼ 1; 2 ð6Þ

This layer’s outputs are termed normalized firing

strengths.

Layer 4 Node i in this layer computes the contribution of

the ith rule towards the model output, with the following

node function:
Fig. 1 Schematic diagram of a feed-forward MLP neural network

(Barzegar and Asghari Moghaddam 2016)
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O4;i ¼ �wifi ¼ �wi pixþ qiyþ rið Þ ð7Þ

where, wi is the output of layer 3 and {pi,qi,ri} is the

parameter set. Parameters in this layer are referred to as

consequent parameters.

Layer 5 The single node in this layer is a fixed node,

labeled P that computes the overall output as the sum-

mation of all incoming signals.

O5;i ¼
Xi¼2

i¼1

�wifi ¼
Pi¼2

i¼1 wifiPi¼2
i¼1 wi

ð8Þ

Model performance criteria

The following statistical indicators were selected in the

performance evaluation of constructed models (Barzegar

et al. 2016c):

1. Coefficient of determination (R2), and

2. Mean square error (MSE).

R2¼
XN

i¼1

ðPi� �PÞðOi� �OÞ
" #2 XN

i¼1

ðPi� �PÞ2ðOi� �OÞ2
" #�1

ð9Þ

MSE ¼ N�1
XN

i¼1

ðPi � OiÞ2
" #

ð10Þ

where, N is the number of observations, Pi is the pre-

dicted values, Oi is the observed data, and Pand O are

the mean values for Pi and Oi, respectively. The

coefficient of determination (R2) measures the degree

of correlation among the observed and predicted val-

ues. R2 values range from 0 to 1, with 1 indicating a

perfect relationship between the data and the line

drawn through them, while 0 represents no statistical

correlation between the data and the line. The MSE

evaluates the variance of errors independent of the

sample size. MSE indicates the discrepancy between

the observed and predicted values. A perfect fit

between observed and predicted values would have an

MSE of 0.

Site description

The present study was conducted in Mashhad Plain with an

area of 6131 km2, Khorasan-e-Razavi Province, Northeast

Iran (Fig. 3). The study area is located between latitude

35�590N to 37�040N and longitude 58�220E to 60�070E. The
general physiographic trend of the plain extends in a NW–

SE direction with an average of 160 km in length sur-

rounded by the two mountainous zones of Kopet-dagh

northward and Binaloud southward based on a visual

interpretation of the satellite imagery and field observa-

tions. The topographic elevation values of the study area

vary between 900 and 1500 m.a.s.l., while the main

topographical elevation ranges over 1200 m.a.s.l.

Geologically, the main alluvial nature of the plain has

developed into a thick sediment-dominated environment

belonging to the quaternary period. The main soil textures

are loam, sandy loam and sandy clay loam. The dominant

soil types include calcaric cambisols, gypsic regosols,

calcaric regosols and calcaric fluvisols, which cover pedi-

ment plains, plateau and upper terraces and gravelly col-

luvial fans, respectively. The study area consisted of six

cities with a population of about 2,481,290 and 519 vil-

lages with a population of about 422,610, scattered over the

plain. The main land use practiced in the study area is

irrigated farming around the Kashfrod River, with a semi-

arid climate, mean annual precipitation of 222.1 mm and

mean annual temperature of 15.8 �C. The rainiest month is

March (44.8 mm) and the driest month is September

(1.2 mm).

Fig. 2 A typical ANFIS

architecture (Jang 1993)
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Data collection, field sampling and laboratory

analysis

Utilizing the stratified random sampling, 100 soil samples

were collected from 0 to 30 and 30 to 60 cm depth. The

collected soil samples were air dried, crushed and sieved

using a 2 mm sieve size and subsequently subjected to

analysis. The laboratory tests on the soil samples, including

particle size distribution (i.e., clay, silt and sand fractions)

and measurement of soil ECe (EC of saturated soil paste

extract) and pH were performed in accordance with Sparks

et al. (1996). Before selection of inputs and output variable,

data points were tested through Kolmogorov–Smirnov test.

Outliers were separated and data normality was confirmed.

After data processing and outlier elimination, the data

number reduced to 98 points, which were processed further

using the MLP and ANFIS models. Data points were ran-

domized by Excel software and 65 % of the data was

applied as training data, while remaining 20 and 15 % were

utilized as a test and validation data, respectively. The

cross validation technique (Fijani et al. 2013; Barzegar

et al. 2016a, b) was utilized to divide the data set. Data

Fig. 3 Location and geographical position of the study area

Table 1 Descriptive statistics

of data sets utilized for training

and testing

Variable Minimum Maximum Mean SD Range Correlation with ESP

Training data

ECe (dS m-1) 0.01 16.00 2.11 2.38 15.99 0.825**

Clay (%) 4.00 41.00 19.21 7.43 37.00 0.267**

pH 7.70 8.40 8.10 0.12 0.70 -0.309**

ESP (%) 0.28 23.08 4.96 4.52 22.80 1

Testing data

ECe (dS m-1) 0.04 15.84 2.05 2.42 15.80 0.836**

Clay (%) 6.00 39.00 19.15 7.51 33.00 0.275**

pH 7.74 8.36 8.07 0.14 0.62 -0.302**

ESP (%) 0.31 15.00 4.80 4.47 14.69 1

SD standard deviation

** Significant at 0.01 level
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points were standardized for equalization before the mod-

els training, which prevents excessive shrinking weights.

The data points were converted between 0 and 1 numbers

for most of the output threshold functions were found

within this range. In order to cover all possible ranges of

the data pattern, data division was carried out randomly, as

mentioned before. The applied data were then normalized

using the following equation to fix them between (0, 1):

ynormal ¼ ðy0 � yminÞ=ðymax � yminÞ ð11Þ

where, ymax and ymin represent the maximum and minimum

values of each record, and y0 shows the observed (recor-

ded) values. Some descriptive statistics including minimum

and maximum values, mean values, standard deviation

(SD) and the range of the data utilized as well as the cor-

relation coefficient between the ESP and the considered

input variables for both training and testing data sets are

listed in Table 1.

Fig. 4 Training state and performance of the developed MLP neural network model for prediction of ESP (%)
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Model development

MLP model

To build up a three-layered ANN model, three inputs,

including ECe (dS m-1), clay (%) and pH were used in the

first layer and the ESP (%) as output was utilized in the last

layer. The feed-forward neural network was trained with

Levenberg–Marquardt algorithm (trainlm). The number of

hidden neurons in MLP models was chosen via a trial and

error method (Belayneh et al. 2014, 2016; Adamowski and

Sun 2010; Barzegar et al. 2016a, b). However, Wanas et al.

(1998) and Mishra and Desai (2006) empirically consid-

ered the equations, e.g. log (N), where N is the number of

training samples and 2n ? 1, where n is the number of

input neurons to determine the number of hidden neurons.

In this study, the optimal number of hidden neurons was

determined to be between log (N) and (2n ? 1). By uti-

lizing the Wanas et al. (1998) method, two hidden neurons

and by using the Mishra and Desai (2006) method, seven

hidden neurons were considered; thereafter the optimal

number was chosen via trial and error. The number of

neurons in the hidden layer was 3.

TANSIG and PURELIN functions were utilized as the

transfer functions in the hidden layer. The performance

plot (Fig. 4) demonstrates the value of the function, in

terms of training, validation, and testing behaviors,

versus the iteration number. The best validation perfor-

mance was at epoch 10 based on the mean square error

equal to 5.1179. The magnitude of the gradient and the

number of validation checks used to terminate network

training are illustrated in Fig. 4. At an epoch of 16

iterations, the gradient was 0.17546, barely above the

1 9 10-1 threshold below, which training will stop, and

at six, the validation checks indicated training should

stop. When the training of the model was completed, the

testing data set serves as model input and ESP values

were predicted.

ANFIS model

To build up the ANFIS model, hybrid algorithm which is

the combination of the least-squares method and the

back propagation gradient descent method was applied

to optimize and adjust the Gaussian membership func-

tion parameters and coefficients of the output linear

equations (Zounemat-Kermani and Teshnehlab 2008;

Fijani et al. 2013). In this study, the Gaussian member-

ship function was used because it generated the least

error in the fuzzification of the data collected for the

components. The number of epochs and error tolerance

were set to 500 and 0, respectively. Fuzzy subtractive

clustering, based on a measure of the density of data

points in the feature space (Chiu 1994), was used to

establish the rule-based relationship between the input

Fig. 5 Sugeno-FIS generated Gaussian membership functions for input variables of the ANFIS model

Table 2 The results of the proposed models in the training and

testing steps for prediction of ESP (%)

Model Training step Testing step

R2 MSE (%) R2 MSE (%)

MLP 0.9099 5.0184 0.8429 5.3611

ANFIS 0.9236 4.7120 0.8964 5.0935
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and output variables. The best ANFIS model perfor-

mance was achieved after 100 epochs of training when

the clustering radius was set to 0.5. Three Gaussian

membership functions were extracted for the input

variables of the ANFIS model (Fig. 5).

Results and discussion

The performance of MLP and ANFIS models was com-

pared in this part of the study. After training the proposed

model, the models were tested with 20 testing samples. The

Fig. 6 Scatter plots of target versus output in training (left) and testing (right) steps for MLP model

Fig. 7 Scatter plots of target versus output in training (left) and testing (right) steps for ANFIS model
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results of the developed models in the training and testing

steps are presented in Table 2. Figures 6 and 7 demonstrate

the scatter plots of the target versus output in training and

testing steps for MLP and ANFIS models.

Both of the models for the prediction of ESP revealed

satisfactory results in terms of the statistical performance

criteria. Therefore, these models were acceptable for pre-

diction of ESP in the Mashhad plain, Northeast Iran. The

proposed models obtained relatively lower prediction errors

in training step as compared to the testing step indicated that

these models exhibited relatively better generalization as

compared to the prediction. The R2 and MSE values of the

MLP model in training step were 0.9099 and 5.0184 percent,

respectively, whereas those were 0.8429 and 5.3611 percent,

in the testing step. In the training step, the ANFIS model

resulted in the R2 of 0.9236 and MSE of 4.7120 percent,

whereas, for the testing data, the corresponding values were

0.8964 and 5.0935 percent, respectively. The ANFIS model

performance was slightly better than the MLP model. This

result concurs with the studies of Barzegar et al. (2016a, b),

Rajaee et al. (2009), Adamowski and Chan (2011), Nourani

et al. (2011), Moosavi et al. (2013), Fijani et al. (2013),

Emamgholizadeh et al. (2014) and Parmar and Bhardwaj

(2015). This may be related to the effect of fuzzification of

the input through membership functions (Barzegar et al.

2016a, b). It was concluded that the ANFIS model outper-

formed another developed model and this result was related

to dimensional independence, global optimum and higher

generalization capability of the ANFIS.

Conclusions

In the present study, two AI models including Multi-layer

Perceptron (MLP) and Adaptive Neuro-Fuzzy Inference

System (ANFIS) were assessed for the prediction of soil

Exchangeable Sodium Percentage (ESP) in the Mashhad

plain, Northeast Iran based on ECe (dS m-1), Clay (%) and

pH. The coefficient of determination (R2) and mean square

error (MSE) were utilized to evaluate the model’s perfor-

mance. The R2 and MSE values of the MLP model in testing

step were 0.8429 and 5.3611 percent, respectively, whereas

those were 0.8964 and 5.0935 percent, respectively for the

ANFIS model. The ANFIS model outperformed the MLP

model in the prediction of ESP values based on performance

criteria. This was attributed to the effect of fuzzification of

the input through membership functions.
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