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Abstract In the world’s water scarce regions, groundwater

as an important and strategic resource needs proper

assessment. An accurate forecasting needs to be performed

in order to make a better identification of fluctuating nature

of groundwater levels. In this study, groundwater level

fluctuations of Kabudarahang aquifer was synchronized

and verified. Investigation was conducted with usage and

application of time series models. Groundwater level data

during 2003–2014 are used for calibration and analyses

were performed using Box-Jenkins models. Residual error

analysis and comparison of observed and calculated

groundwater levels were performed. Then a prediction

model for groundwater level in Kabudarahang aquifer

developed. The model was used for predicting the

groundwater level during 2014–2017. Model results

showed that the groundwater level in this aquifer will

endure a 5 m decline for the next three upcoming years.

Keywords Time series � Modeling � Forecasting �
Groundwater level � Kabudarahang aquifer

Introduction

Proper management of water resources needs analysis of

different hydrological parameters dynamic and complex

nature. Groundwater level analysis requires design and

assessment in a proper development program. Water level

in aquifer is an important parameter in groundwater

hydrology; therefore a precise analysis of its temporal and

spatial changes can provide valuable information in the

aquifer system behavior (Aflatooni and Mardaneh 2011).

Groundwater level assessment is a main information source

about potential of hydrologic stress within a groundwater

system. Groundwater exploitation and land use data during

short term and long term periods are valuable in ground-

water system evaluations (Winter et al. 2000; Moon et al.

2004; Ahmadi and Sedghamiz 2007).

Models can act as illustrations of simple to complicated

hydrogeological occurrences in groundwater assessment

strategy (Ahmadi and Sedghamiz 2007; Salami and Ehte-

shami 2015; Ehteshami et al. 1991). A complex model

simulates actions and reactions within each natural process

such as groundwater (Ehteshami et al. 1991; Ehteshami

et al. 2013; Ehteshami and Biglarijoo 2014). A sufficient

model selection has significant importance with regard to

many different aspects of groundwater resource manage-

ment strategy. Proposed models include Man-Kendal

method, t test and Cradock tests (Ehteshami et al. 2016),

artificial neural network approach (Polemio and Casarano

2008; Salami and Ehteshami 2016), and time series anal-

ysis methods like spectral and correlation analysis (Afla-

tooni and Mardaneh 2011; Nayak et al. 2006; Chen et al.
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2004; Lee et al. 2005), and moving average (Rajmohan

et al. 2007; Reghunath et al. 2005). In regions where

accurate hydrologic data are inaccessible the groundwater

level fluctuations can be predicted using stochastic meth-

ods like principle component analysis (PCA) and cross

correlation analysis methods (Moustadraf et al. 2008).

Conceptual and physical models are the main tools for

representing the hydrological variables and perceiving

physical processes in a system (Anderson and Woessner

1992). Groundwater systems not only have a dynamic

nature but also change in response to climatic stresses and

anthropologic activities (Alley et al. 2002). Human induced

stresses on groundwater resources include population

growth, increasing agricultural productions and rapid

expansion of urban areas (Gunatilaka 2005). The main

human intervention in groundwater resources is excessive

extraction or overuse of resources, particularly in vast

urban areas of several Asian countries like China, India,

Indonesia, Nepal, Philippine, Thailand and Vietnam

(UNEP 2002, ADB 2007, WEPA 2007). While physical

modeling is suitable in data scarce conditions, presence of

several factors such as anthropologic effects (human

interferences) makes accurate determination of hydrologi-

cal parameters so difficult, therefore application of time

series models in these environments are preferred (Kim

et al. 2005). A number of time series methods are used in

various groundwater studies in order to analyze ground-

water data in response to independent stresses (Ganoulis

and Morel-Seytoux 1985; Gurdak et al. 2007; Perry 1994;

Perry and Hsu 2000; Yu and Chu 2012).

In order to evaluate the groundwater potential often a

systematic approach with ability of trend decomposition,

analysis of time series and frequency analysis and com-

paring between various types of data and frequencies in

hydrologic setting and between different basins is required

for local and regional assessments (Hanson et al. 2004). A

coherent and reasonable decomposition method can sepa-

rate and quantitatively analyze the effects of independent

factors on groundwater and also identify the relations and

complexities between such parameters in hydrological

processes and climatological changes (Hanson et al. 2004;

Mayer and Congdon 2008). Various frequency analysis

methods can extract seasonal characteristics. Detrending is

the process of eliminating a trend from a time series in

order to remove a property that can cause long-term effects

on time series such as groundwater extraction and irriga-

tion application of groundwater which can lead to irregu-

larities in some embedded cyclic signals (Hanson et al.

2004; Gardner and Heilweil 2009; Prinos et al. 2002).

There are number of different methods and techniques

for analyzing groundwater table fluctuation through prob-

ability characteristics, time series methods, synthetic data

generation, multiple regression, group theory, pattern

recognition and neural network methods (Adhikary et al.

2012). A time series model can be defined as an empirical

model for stochastic modeling and forecasting temporal

behavior of hydrologic systems (Brockwell and Davis

2002). The stochastic time series models are useful and

popular tools for medium-range forecasting and synthetic

data generation. Several stochastic time series models

including the Markov, Box- Jenkins (BJ) Seasonal

Autoregressive Integrated Moving Average (SARIMA),

deseasonalized Autoregressive Moving Average (ARMA),

Periodic Autoregressive (PAR), Transfer Function Noise

(TFN) and Periodic Transfer Function Noise (PTFN), can

be used for these purposes (Box et al. 2008). The Markov,

ARMA and SARIMA models are univariate models and

the PAR, TFN and PTFN models are multivariate models.

Furthermore, the PAR and PTFN models are periodic

multivariate models (Hipel and Mcleod 1994).

The selection of a proper modelling method for a par-

ticular problem depends on many factors such as the

number of series that are being modelled, required accu-

racy, modelling costs, ease of model usage and results

interpretation, etc. (Mondal and Wasimi 2007) Several

applications of all of these models for analysis of fluctua-

tions of groundwater level over time are vastly used in

several groundwater hydrology applications (Mondal and

Wasimi 2006). Furthermore, they have extensive use in

various areas of science and engineering such as forecast-

ing of river discharge and synthetic data generation (Salas

and Obeysekera 1982; Mondal and Wasimi 2003) stream

flow and water quality data prediction (Mondal and

Wasimi 2005; Kurunc et al. 2005). Water resource moni-

toring and assessment (Mondal and Wasimi 2003) and

drought period simulation (Durdu 2010). When a relatively

few number of series need to be modeled and a large

expenditure of time and effort can be justified using the BJ

Method (Seasonal ARIMA) is of priority (Mondal and

Wasimi 2007). The purpose of this study is to develop

SARIMA models for application in groundwater level

fluctuation modeling by developing equations through

usage of seasonal ARIMA algorithms.

Materials and methods

Study area

Kabudarahang as one of the main aquifers in Northern part

of Hamedan County covers 3448 Km2 of Gharachay river

basin. The Kabudarahang County with an average altitude

of 1680 m above mean sea level is located at approxi-

mately 35�1203000 north latitude, 48�4302600 east longitude

within a 60 km distance from the capital city of the

Hamdan province, Iran with an area of 1186 Km2. The
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mean annual regional precipitation for a recorded 36 years

is 332.7 mm (Fig. 1).

Time series modeling

Time series modeling or in other words describing the

behavior of a time series in mathematics language includes

three common steps: identifying the experimental model,

estimating the model parameters (fitting), and verification

of the model. In order to proper identification of an

experimental model, it is recommended that at least 50

observations of the regarded series must be available. In

analyzing hydrological and environmental time series with

application of stochastic and statistical theories it is

assumed that all variables have a normal distribution. First

step in modeling a time series is to draw it as a time series

Fig. 1 The status of study region
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diagram which can give a boost for identification of trends,

variance non-stationarity, seasonality (periodicity) and

other types of irregularities in data.

Most of time series data doesn’t follow a normal dis-

tribution, thus before any modeling or analyzing processes

they need to be normalized by means of transfer functions

(Fig. 2). As a pretreatment step, a variety of different

transfer functions and statistical tests are available to pre-

pare data before any modeling which includes Box- Cox

transformation and non-stationarity in mean or variance.

These tests can be categorized in two main groups: inde-

pendence tests (for time), and normal distribution tests.

Also prior to any modeling process the conditions of time

series are tested for goodness of fit, well-fitting criteria,

level of reliability and statistical parameters limits.

Tests of independence

For modeling the irregular (random noise) component, the

time series should be time independent, which means each

value should be independent from its previous and subse-

quent values. For instance, after removing the trend, sea-

sonality and shock components, the mean annual

precipitation should be independent of previous and the

next year mean precipitation in order to be time indepen-

dent. Correlogram (autocorrelation function) is a useful

device for describing the behavior of stationary processes

which can determine if they are independent of time. In

fact the autocorrelation function shows the variations of

autocorrelation coefficients through different time lags.

The autocorrelation coefficient at lag K that is the corre-

lation between Xt and Xtþk can be shown by rk which is:

rk ¼
Ck

C0

¼
PN�K

t¼1 Xt � �Xð Þ Xtþk � �Xð Þ
PN

t¼1 Xt � �Xð Þ2
; ð1Þ

where Ck ¼ E Xtþk � �Xð Þ Xt � �Xð Þ½ �ð Þ is defined as autoco-

variance function and therefore C0 also can be defined as

the variance of the time series. The Anderson method,

turning point method and Porte Manteau method are three

principal methods for analyzing time independency of time

series and to diagnose independency of time in periodic

series the cumulative period gram method can be used.

Anderson test of independence in time

In this method confidence limits of 95 and 99 % for the

autocorrelation coefficient are defined as:

r k 95%ð Þ ¼ �1 � 1:645
p

N � k � 1ð Þð Þ= N � kð Þ; ð2Þ

rk 99%ð Þ ¼ �1 � 2:326
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � k � 1

p

N � k
; ð3Þ

where N is the number of the sample and k is the lag. The

autocorrelation functions within these limits are indepen-

dent of time and else they have time dependency. It is

noteworthy to mention that if for each value of k, rk ¼ 0 it

implies that the time series is quite independent of time or

serially independence (Yurekli et al. 2004).

Ests of normality

There are several methods to check the normality of time

series, one of which is a common method that is to plot the

time series in a normal probability plot and checking if the

plots form a straight line. If they form a rather straight line

it implies that the time series has a normal distribution,

otherwise the normality assumption is refuted. In addition

to this method, the two tests of Chi square test and skew-

ness test are applicable for examining normal distribution

of time series. The normal distribution of groundwater data

is tested by Chi square test as follows.

Chi square test

This method is preferably used for clustered data. At first

the normal distribution function is fitted to the sample time

series, and then the goodness of fit is quantitatively eval-

uated as probability percentile. When Xt denote the sample

time series with the mean �X and variance r̂. This series can

be classified into k groups with the attributed probability of
1
k

for each in an ascending manner. The values ofFig. 2 Functional diagram of the Box-Jenkins modeling strategy
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u1; u2; u3; . . .; uk�1 for the cumulative probability of
1
k
; 2
k
; 3
k
; . . .; k�1

k
can be obtained from the normal distribution

table. Therefore the following values can be calculated

using the obtained values from the table and the mean and

variance of the sample time series such as:

X
0

1
¼ �X þ r̂u1; ð4Þ

X
0

2
¼ �X þ r̂u2; ð5Þ

X
0

3
¼ �X þ r̂u3; . . .; X

0

k�1
¼ �X þ r̂uk�1: ð6Þ

Let Ni denote absolute frequency of the ordered sample

series for group i. Therefore the number of points which are

expected to set in each group is equal to N
k
. Now Chi square

test with freedom degree of (k-2) is applied considering the

confidence level of a. Finally the normality of the sample

time series can be evaluated by comparing the results with

the following value:

v2 ¼
Xk

i¼1

Ni � N
k

� �2

N
k

� � : ð7Þ

In this case, if the value v2
1�a K � 2ð Þ obtained from the

Chi square table is greater than v2 from the formula, the

normal assumption for distribution of time series Xt is true,

otherwise the assumption of normal distribution is refuted

(Karamouz et al. 2012). Summary of Properties of

autoregressive (AR), moving average (MA), and mixed

autoregressive moving average (ARMA) processes show

that in Table 1.

Drawing graphs of the ACF and PACF

The autocorrelation function (ACF) and partial autocorre-

lation function (PACF) are useful tools for identifying

models. The type and order of the process can be deter-

mined by means of graphical analysis using these dia-

grams. In practice, to obtain a useful estimate of the

autocorrelation function, a minimum sample population

(n = number of observations) of 50 is recommended

(Mondal and Wasimi 2003) and the ACFs and PACFs

should be calculated and depicted for k = 1, 2, 3, …, K

where K is not larger than n
4
, for a more reliable identifi-

cation of the model. For a given observed time series of

Z1; Z2; . . .; Zn, the sample ACF is defined by:

qk ¼ ĉk

ĉ0

¼
Pn�k

t¼1 Zt � �Zð Þ Ztþk � �Zð Þ
Pn

t¼1 Zt � �Zð Þ : ð8Þ

Hence, the graph in which q̂k is plotted against k is

known as the sample correlogram. To calculate the sample

PACF (/̂kk), (Chandler and Scott 2011) represents fol-

lowing equations: T
a

b
le

1
S

u
m

m
ar

y
o

f
p

ro
p

er
ti

es
o

f
au

to
re

g
re

ss
iv

e
(A

R
),

m
o

v
in

g
av

er
ag

e
(M

A
),

an
d

m
ix

ed
au

to
re

g
re

ss
iv

e
m

o
v

in
g

av
er

ag
e

(A
R

M
A

)
p

ro
ce

ss
es

A
R

(p
)

M
A

(q
)

A
R

M
A

(p
�q

)

M
o

d
el

w
t
¼

/
1
w
t�

1
þ
��
�þ

/
p
w
t�

p
þ
a
t

w
t
¼

a
t
�
h 1
a
t�

1
�
��
��

h q
a
t�

q
w
t
¼

/
1
w
t�

1
þ
��
�þ

/
p
w
t�

p
�
h 1
a
t�

1
þ
��
�

�
h q
a
t�

q
þ
a
t

A
u

to
co

rr
el

at
io

n

F
u

n
ct

io
n

(A
C

F
)

In
fi

n
it

e:
d

am
p

ed

E
x

p
o

n
en

ti
al

s
an

d
/o

d
am

p
ed

si
n

ce

w
av

es
:

T
ai

ls
o

ff

F
in

it
e:

cu
ts

o
ff

af
te

r

q
la

g
s

In
fi

n
it

e:
d

am
p

ed

E
x

p
o

n
en

ti
al

s
an

d
/o

r
d

am
p

ed
si

n
ce

w
av

es
:

T
ai

ls
o

ff

P
ar

ti
al

au
to

co
rr

el
at

io
n

F
u

n
ct

io
n

(P
A

C
F

)

F
in

it
e:

cu
ts

o
ff

af
te

r

p
la

g
s

In
fi

n
it

e:
d

am
p

ed

E
x

p
o

n
en

ti
al

s
an

d
/o

r
d

am
p

ed
si

n
ce

w
av

es
:

T
ai

ls
o

ff

In
fi

n
it

e:
d

am
p

ed

E
x

p
o

n
en

ti
al

s
an

d
/o

r
d

am
p

ed
si

n
ce

w
av

es
:

T
ai

ls
o

ff

Model. Earth Syst. Environ. (2016) 2:90 Page 5 of 10 90

123



^phikþ1;kþ1 ¼
q̂kþ1 �

Pk
j¼1 /̂kjq̂kþ1�j

1 �
Pk

j¼1 /̂kjq̂j

; ð9Þ

and:

ûkþ1;j ¼ ûkj � ûkþ1;kþ1ûk;kþ1�j: ð10Þ

The ACF and PACF diagrams of groundwater level

fluctuation time series of Kabudarahang plain are shown in

Fig. 3.

Model selection

Selecting the most reliable modeling technique between

several available models for seasonal forecasting and

analyzing requires an inductive approach. The techniques

are such as: (1) exponential smoothing; (2) Markov mod-

els; (3) decomposition and trend extrapolation method; (4)

Holt–Winters method; and (5) Box-Jenkins Seasonal

Autoregressive Integrated Moving Average (SARIMA).

The model selection depends on many factors such as:

number of series to be forecasted, required accuracy of

forecasts, model facility and proficiency, modeling costs,

interpretative outputs, etc.

Decomposition method

An alternative way of modeling time series data is based on

the decomposition of the model into trend, seasonal, and

noise components. The classical decomposition partitions a

signal into three elemental components called trend, peri-

odicity and random or irregular components and can be

written in multiplicative form as

xt ¼ mt � st � yt: ð11Þ

X is the time series data, mt is the trend component, st is the

periodic component, and yt is random noise or irregular

component. There are a number of techniques available to

evaluate trends within datasets. The simplest way is to

apply a simple linear regression analysis or some low-order

polynomial regression (Durbin 1960). Moving average, e.g.

a 12-month moving average, is an alternative detrending

method to remove small-scale structures, e.g. noises, and

short periods from a time series.

In extrapolation of trend curves method for decompo-

sition of time series, a trend line is fitted to the smoothed

data using the least squares regression. Then the series

become detrended by either dividing the data by the trend

component (multiplicative model) or subtracting the trend

component from the data (additive model). However,

Minitab trend analysis tool uses the multiplicative model

by default. Subsequently a centered moving average with a

length equal to the length of the seasonal cycle is applied to

smooth the detrended data. At the next step the raw sea-

sonal values are calculated by either dividing the moving

average into multiplicative model or subtracts it from the

additive model. The median of the raw seasonal values for

corresponding periods of time in the seasonal cycles are

determined and adjusted to constitute the seasonal indices

which are used to seasonally adjust the data. Therefore, the

seasonal adjustment procedure is applied at this step by the

iterative application of moving averages according to

sequence of the seasonal adjustment procedure (Chatfield

2011).

Seasonal ARIMA model:

SARIMA(p,d,q) 3 (P,D,Q)s

ARIMA models generally have both non-seasonal and

seasonal components. The general non-seasonal ARIMA

model is AR to order p and MA to order q and operates on

the dth difference of the time series zt; thus, a model of the

ARIMA family is classified by three parameters (p, d, q)

that can have zero or positive integral values. have gen-

eralized the ARIMA model to deal with seasonality and

have defined a general multiplicative seasonal ARIMA

model, commonly known as a seasonal ARIMA model. In

this study the general mixed seasonal model is denoted as:

ARIMA(P,D,Q)s. Where, P = order of the seasonal

autoregressive process, D = number of seasonal differ-

encing, Q = order of the seasonal moving average and

s = the number of the seasonality. The seasonal ARIMA

model described as ARIMA (p, d, q).(P, D, Q)S, where (p,

d, q) non-seasonal part of the model and (P, D, Q) seasonal

part of the model with a seasonality S, can be written as:

/p Bð ÞPhip Bsð ÞrdrD
S zt ¼ hq Bð ÞHQ Bsð Þat: ð12Þ

where, /(B) and /(B) are polynomials of order p and q,

respectively; U Bsð Þ and H Bsð Þ are the polynomials in Bs of

degrees P and Q respectively; p equals order of non-sea-

sonal autoregressive operator; d equals, number of regular

differencing; q order of the non-seasonal moving average;

P order of seasonal autoregression; Q order of seasonal

moving average. The ordinary and seasonal difference

components are designated by:
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Fig. 3 Time series of observed groundwater level fluctuations in

Kabudarahang aquifer
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rd ¼ 1 � Bð Þd
and rD

s ¼ 1 � Bsð ÞD: ð13Þ

In derivations of d and D; B is the backward shift

operator, d is the number of regular differences, D is the

number of seasonal differences, S = seasonality. Zt

denotes observed value at time t, where t = 1, 2…k; and

at is the Gaussian white noise or estimated residual at

time t.

Holt–Winters forecasting method

Exponential smoothing can be easily generalized to time

series which include trends and seasonal changes. This

practice is known as Holt-Winters method and was intro-

duced by Winters and Chatfield to describe trend and

seasonal components which are synchronized using expo-

nential smoothing algorithms (Montgomery et al. 2008).

By assuming that observed parameters are monthly and mt

represents average estimation, rt represents trend estima-

tion (expected increase or reduction per month in current

average) and St represents seasonal operating of month t. In

this case since every new observation is possible, all three

components are synchronized. If seasonal variations are

multiplicative, synchronizing equations would be (Mondal

and Wasimi 2005):

mt ¼ axt=st�1;2 þ 1 � að Þ mt�1 þ rt�1ð Þ; ð14Þ

st ¼ bxt=mt þ 1 � bð Þst�1;2; ð15Þ

rt ¼ c mt � mt�1ð Þ þ 1 � cð Þrt�1; ð16Þ

where xt denotes the latest observation and a, b, c are

constants which 0\a; b; c\1, so the predictions about

time t are:

X̂ t; hð Þ ¼ mt þ hrtð Þst�1;2þh; h ¼ 1; 2; . . .; 12ð Þ: ð17Þ

If variations are cumulative, seasonal equations would

be:

mt ¼ aðxt � st�1;2Þ þ 1 � að Þ mt�1 þ rt�1ð Þ; ð18Þ

st ¼ b xt � mtð Þ þ 1 � bð Þst�1;2; ð19Þ

rt ¼ c mt � mt�1ð Þ þ 1 � cð Þrt�1; ð20Þ

To see whether the cumulative seasonal variable is

better or the multiplicative seasonal variable, data diagram

should be tested. Therefore, if the time series exhibits an

obvious trend or seasonal pattern it indicates that the

appropriate model is chosen. Moreover, if the seasonal

period doesn’t include 12 months observations, the equa-

tions should be corrected. Basic values of st; r; mt can be

selected in a relatively inexperienced way using data of

first two years considering three constants a; b; c with the

difference of minimum quantity equals to
PN

i¼2;5 e
2
i .

Model verification

In order to evaluate the models the following indicators are

used:

SSE ¼
Xn

i¼1

Tactual�Tforecastð Þ2; ð21Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Tactual�Tforecastð Þ2

n

s

; ð22Þ

MAE ¼
Pn

i¼1 Tactual�Tforecastj j
n

: ð23Þ

As it is presented the minimum residuals are belonging

to the SARIMA(1, 1, 0)(1, 1, 1)12 model which has the best

fitting to observed data.

Results and discussion

A comparative study on state-of-the-art prediction tools such

as Box-Jenkins and Holt-Winters have been used to evaluate

groundwater level fluctuations. Also, the extrapolation of

trend curve was performed to smooth the detrended data.

The assumption of zero constant term (Constant, SAR, AR)

proved to be acceptable considering satisfactory statistical t

test and P test values. Therefore the model can be reliably

fitted without a constant term in order to represent stochastic

trends. For instance, for some SARIMA models P value is

greater than 0.05. Thus the assumption of H0 : h0 ¼
0; H1 : h1 ¼ 0; H2 : h2 ¼ 0 should be accepted with

95 % confidence level, for other models also the zero

assumption of constant term and SAR and AR coefficients

are reasonable since the modeled differencing series has a

nearly zero mean. In order to evaluate the eligibility of the

model a residual analysis of the fitted model performed.

Residual analysis results of the fitted model in the Kabu-

darahang plain’s hydrographs are shown in Table 2. The

normal probability plot and histogram of residual values

confirm that the normal assumption can be accepted.

Similarly, these verifications have been applied on other

models too. Furthermore, the Porte-Manteau method is

used as a more formal method for model verification which

is based on autocorrelation of residuals. These results for

different models are evaluated. Since the p value, consid-

ering different lags for the model, is desirably more than

0.05 the assumption of zero autocorrelations up to lag 48 is

acceptable such as, H0 : q1 ¼ q2 ¼ � � � ¼ q48 ¼ 0ð Þ.
Finally the Akaike criterion is used for model selection.

Considering Akaike standard as:

AIC ¼ n� ln r̂2 þ 2 K þ 1ð Þ; r̂2 ¼ SSE

n
: ð24Þ
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Therefore SARIMA(1,1,0)(1,1,1)12 selected as the best

model among other seasonal models of Box-Jenkins for

groundwater level simulation due to smaller Akaike value

in comparison with other models(Tables 3, 4).

The results of evaluated models and the real values of

groundwater level (during 2003–2014) and anticipated

values (during 2014–2017), Holt model, extrapolation of

trend and Box-Jenkins model for level changes, SAR-

IMA(1,1,0)(1,1,1)12 model reveals more correlation

between measured groundwater level fluctuation data and

simulated values (Tables 3, 4). Figure 4 shows measured

and forecasted groundwater depths. As it is shown, the

selected models predict an overall decreasing trend in mean

ground water levels which results in a 5 m decline during

three upcoming years. The forecasted results and measured

data show a good agreement (R2 = 98 %).

Conclusions

This study presents a data conservative approach of time

series modeling to evaluate the groundwater fluctuations

in semi-arid area of Kabudarahang plain. Several

stochastic models were developed for groundwater

Table 2 Model verification: evaluating the goodness of fit

Model SSE RMSE MAE

SARIMA(1,1,0)(1,1,1)12 27.3227 0.346936 0.2145

Holt-winters 67.5346 0.545444 0.40476

Decomposition 388.856 1.308825 1.02995

Table 3 Estimates of fitting ARIMA(1,1,0)(1,1,1)12 model to

Kabudarahang plain groundwater level data

Model term Estimate Standard error t p

AR1 -0.0512 0.0712 -0.72 0.472

SAR12 -0.0344 0.0835 -0.41 0.681

SMA12 0.9128 0.0532 17.17 0.000

Constant -0.0004352 0.0003580 -1.22 0.225

Lag 12 24 36 48

Chi square 7.4 16.1 26.9 29.7

DF 8 20 32 44

P value 0.496 0.712 0.723 0.951

Differencing: 1 regular, 1 seasonal of order 12

Number of observations: original series 240, after differencing 227

Residuals: SS = 0.297838; MS = 0.001336; df = 223

Modified box-pierce (Ljung-box) Chi square test

Table 4 Akaike information

criterion analysis for seasonal

ARIMA models

Model n SSE (r̂)2 k AIC value

SARIMA(0,1,1)(1,1,0)12 227 0.297836 0.001312053 2 -1500.41

SARIMA(1,1,0)(1,1,0)12 227 0.366473 0.001614419 2 -1453.33

SARIMA(1,1,1)(1,1,1)12 227 0.297696 0.001311436 4 -1496.52

SARIMA(1,1,1)(1,1,0)12 227 0.298423 0.001314639 3 -1497.96

SARIMA(1,1,0)(0,1,1)12 227 0.298433 0.001314683 2 -1499.95

SARIMA(0,1,1)(0,1,1)12 227 0.297831 0.001312031 2 -1500.41

SARIMA(1,1,1)(0,1,1)12 227 0.297838 0.001312062 3 -1498.41

SARIMA(0,1,1)(1,1,1)12 227 0.000100094 4.40943E-07 3 -3314

SARIMA(1,1,0)(1,1,1)12 227 0.000104857 4.61925E-07 3 -3303.44
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assessment. Then, after data preparation, diagnostic

checking, and model verification, by usage of Akaike

criteria, adequate model was selected. Consequently, the

selected model was used to forecast the groundwater

table for the next 3 years. As it is discussed the seasonal

ARIMA algorithms proved to be a useful tool for simu-

lation and short-term forecasting with a reasonably high

correlation coefficient of 98 % to the measured data

considering their dynamic and complex nature of

groundwater. The presented results may be useful for

regulatory agencies to make the best use of funds avail-

able for monitoring groundwater level fluctuations.
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