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Abstract Climate impact studies especially in the field of

hydrology often depend on climate change projections at

fine spatial resolution. General circulation models (GCMs),

which are the tools for estimating future climate scenarios,

run on a very coarse scale, so the output from GCMs need

to be downscaled to obtain a finer spatial resolution. This

paper aims to present GIS platform as a downscaling

environment through a suggested algorithm, which applies

statistical downscaling models to multidimensional GCM-

Ensembles simulations. Climate change projections for the

Shannon River catchment in Ireland were developed for

several climate variables from multi-GCM ensembles for

three future time intervals forcing by different Represen-

tative Concentration Pathways (RCP): all these processes

are implemented in a GIS platform through designed and

developed GIS-based algorithm. This algorithm is used as a

downscaling tool in GIS environment, which is unprece-

dented in literature. Statistical downscaling methods were

used in the projection process after a particular verification

and performance evaluation using several techniques such

as Taylor diagram for each GCM-ensembles within inde-

pendent sub-periods. The established statistical

relationships were used to predict the response of the future

climate from simulated climate model changes of the

coarse scale variables. Significant changes in temperature,

precipitation, wind speed, solar radiation and relative

humidity were projected at a very fine spatial scale. It was

concluded that the main source of uncertainty was related

to the GCMs simulation and selection. In addition, it was

obvious to conclude that GIS platform is an efficient tool

for spatial downscaling using raster data forms.

Keywords Climate change · RCP · GCM · Ensembles ·

Shannon · GIS · Downscaling

Introduction

During the last half century, the global climate has expe-

rienced warming because of the continuous increase of

greenhouse gases concentrations in the atmosphere, which

have been attributed to human activities (Stocker et al.

2013b). Continued increases in greenhouse gas emissions

at or above current rates will cause further warming during

the 21st century which has been predicted to be greater

than that observed during the 20th century (Stocker et al.

2013b; Solomon 2007). Projections of future climate

change under scenarios obtained using climate system

models have important practical significance, particularly

for climate impact assessment studies and future emission

control strategies (Stocker et al. 2013b; Xiaoge et al. 2013).

General circulation models (GCMs) are an essential tool

in order to understand and help to predict the impacts of

climate change. These numerical coupled models combine

several earth systems including the atmosphere, oceans,

land surface and sea-ice and offer considerable potential

for the study of climate change and variability (Fowler

et al. 2007). These climate models have been evolving
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steadily over the past several decades and in addition, are

the most adapted tools for studying the impact of climate

change at a regional scale. Recently, fully coupled Atmo-

sphere–Ocean GCMs, along with transient methods of

forcing the concentration of greenhouse gases, have

brought considerable improvement in the results obtained

from climate model (Tripathi et al. 2006).

Modelling the impacts of climate change onto different

environment systems requires high-resolution regional data

for future scenarios of temperature and precipitation and

other climatic factors (Salathe et al. 2007). The current

resolution of the GCMs, on average, is more than two polar

degrees on the earth’s surface for both directions in each

pixel, which is close to a few hundred kilometres between

grid points. Hence, GCMs typically provide output at grid

boxes, which are tens of thousands of square kilometres in

area, whereas the scale of interest with respect to most

environmental system impact studies is of the order of a

few hundred square kilometres, or even less.

Several downscaling methodologies have thus been

developed to deal with this problem of mismatch of

spatial scales (Tripathi et al. 2006), such as dynamical

downscaling [regional climate models (RCMs)] and sta-

tistical downscaling methods. RCMs are developed based

Fig. 1 Map of the Shannon

catchment with the Shannon

River, climate stations and the

catchment surface elevation

highlighted
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Fig. 2 General framework flowchart

Table 1 Multi-GCM ensembles

models details
GCM Institution Resolution

CSIRO-MK3.0 CSIRO, Australia 175 km 9 175 km

MIROC-H Centre for Climate Research, Japan 100 km 9 100 km

HADGEM1 Hadley Centre, UK 125 km 9 125 km

NCAR-CCSM National Centre for Atmospheric Research, USA 125 km 9 125 km

CanESM2 Canadian Climate Centre, Canada 128 km 9 128 km

Table 2 climate models validation statistical tests results

Predictands Method Predictors R R2 Ad-R2 SE

Temperature Delta-change Temperature 0.97 0.95 0.94 0.02

Precipitation Delta-change Precipitation 0.97 0.94 0.93 1.58

Wind speed Multiple regression model Temperature and precipitation 0.96 0.93 0.92 0.71

Solar radiation Multiple regression model Temperature and precipitation 0.95 0.91 0.89 5952.5

Relative Humidity Multiple regression model Temperature and precipitation 0.87 0.78 0.73 1.75
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on dynamic formulations using initial and time-dependent

lateral boundary conditions of GCMs to achieve a higher

spatial resolution at the expense of limited area mod-

elling. The main problem of RCMs is the computational

cost and so it is only available for limited regions.

Moreover, despite improvements, outputs of RCMs are

still too coarse for some practical applications, such as

hydrological catchment impact studies, which need local

and site-specific climate scenarios. Hence, statistical

downscaling techniques have been developed to overcome

these challenges (Chen et al. 2011; Quintana Segui et al.

2010; Seguı́ et al. 2010; Willems and Vrac 2011). In such

environmental system impact studies, the emission sce-

nario and the GCM are the main sources of uncertainty

(Maurer and Hidalgo 2008; Boé et al. 2007).

Unfortunately, each step of the downscaling procedure

also has associated uncertainties which all add up and

constitute a cascade of uncertainty that must be taken into

account (Seguı́ et al. 2010; Quintana Segui et al. 2010).

Recently, a set of scenarios known as representative

concentration pathways (RCPs) have been adopted by cli-

mate researchers to provide a range of possible futures for

the evolution of atmospheric composition. These RCPs

have started to replace earlier scenario-based projections of

atmospheric composition. For example, the RCPs are being

used to drive climate model simulations as part of the

World Climate Research Programme’s Fifth Coupled

Model Intercomparison Project (CMIP5) and other com-

parison exercises (Meinshausen et al. 2011; Moss et al.

2008, 2010; Taylor et al. 2009b, 2012). Since climate

Fig. 3 Taylor diagram for the mean temperature, precipitation, wind

speed, solar radiation and relative humidity of each forced RCP for

the median (50 %) and 3rd quartile 75 % ensembles. The horizontal
and vertical axes represent the ratio of the standard deviations of the

reference and simulated fields. The radial axis indicates the spatial

correlation between the reference and simulated fields. The distance

between the origin and any point is proportional to the RMSE

102 Page 4 of 21 Model. Earth Syst. Environ. (2016) 2:102

123



change projections obviously depend on the climate model

results, the scientific community have set up an interna-

tional project to compare these models. The various phases

of the CMIP have grown steadily as testified both in terms

of participants’ number and scientific impacts (Dufresne

et al. 2013).

The River Shannon, the focus of this study, is the largest

transboundary river system and catchment in the island of

Ireland and one of the most important water and power

resources in the Republic of Ireland. The Shannon river

basin district (Fig. 1), defined according to the objectives of

Water Framework Directive (Directive 2000), includes an

area of about 18,000 km2 and covers around 20 % of Ire-

land island, mostly in the lowland central area of the

Republic of Ireland but with a small part (6 km2) of the

upper River Shannon basin extending across the border to

Northern Ireland. It has been estimated that there are more

than 1600 lakes in the river basin district. The area includes

about 73 % agricultural land and 12 % wetland, mostly

peatland habitat (McCarthy et al. 2008, Gharbia et al. 2016;

Assessment 2012, 2013).

The River Shannon (Fig. 1) drains an area of approxi-

mately 11,700 km2, before flowing into the sea at Limerick.

The gradient is remarkably low, with the river rising at

about 152 m above sea level and then flowing southwards

with only a 12-m drop in altitude over 185 km, before

finally descending more rapidly to sea level (Gharbia et al.

2016; Assessment 2012, 2013; McCarthy et al. 2008). The

potential impacts of climate change are of most concern

where water resources are either heavily allocated or par-

ticularly vulnerable to changes in rainfall (Kulkarni et al.

2011), in addition to risks due to extreme events (Engler

and Werner 2015). In the Shannon catchment, the possi-

bility of reduction in water availability or the possibility of

future flooding scenarios as result of higher intensity

rainfall events (due to climate change) may affect surface

water and groundwater use which can severely impact

upon human life and livelihoods. This therefore gives a

strong justification to choose the Shannon as a study area.

In this study, climate change projections for the Shan-

non River catchment will be presented for several climate

variables (temperature, precipitation, wind speed, solar

Table 3 Monthly absolute values box-whisker plots for each predicted year and baseline variables

Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the

interquartile range from the 25th and 75th percentiles, outliers are represented by dots; crosses represent sample means; bars indicate 95 %

confidence intervals of the means; data points are plotted as open circles
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radiation and relative humidity) from multi-GCM ensem-

bles for three future time intervals using a range of

different representative concentration pathways (RCPs)

(Moss et al. 2010). This paper presents the innovative use

of a geographical information system (GIS) as a down-

scaling environment, which is unprecedented in literature.

The projection process used a statistical downscaling pro-

cedure based on statistical relationships linking a set of

large-scale atmospheric variables to regional climate vari-

ables in an observational calibration period. After a

particular verification and performance evaluation using

several techniques (such as the Taylor diagram for each

GCM-ensemble within independent sub-periods), the

established statistical relationships were used to predict the

response of future regional climates from the simulated

changes to the large-scale variables in the climate model.

This paper aims to present GIS platform as a downscaling

environment through a suggested algorithm, which applies

statistical downscaling models to multidimensional GCM-

Ensembles simulations. Applying such algorithm on GIS

platform provides a wide range of output formats for the

datasets, which can be used in most of the impact models

without any extra effort in formatting the output datasets.

Materials and methods

As shown in the general framework flowchart in (Fig. 2),

multi-stage formulation modelling was carried out entirely

within the GIS environment in order to evaluate the per-

formance of climate model multi-GCM ensembles and

thereby adequately describe the future climate over Shan-

non river basin. A GIS-based python algorithm was

developed to implement downscaling and the performance

evaluation, which is described in this section.

A set of weather variables (temperature, precipitation,

wind speed, solar radiation and relative humidity) were

downscaled from climate change models at high quality

resolution (cell size 50 m 9 50 m) from the GIS model and

projected to three future time periods, the 2020s, 2050s and

Table 4 Monthly differences from baseline values box-whisker plots for each year of predicted variables

Center lines show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the

interquartile range from the 25th and 75th percentiles, outliers are represented by dots; crosses represent sample means; bars indicate 95 %

confidence intervals of the means; data points are plotted as open circles
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2080s. Climate change models based on two different RCPs

(using radiative forcing of 4.5 and 8.5 W/m2, respectively)

were produced from median and 3rd quartile simulation

results of multi-GCM ensembles. These ensembles simula-

tions were calculated from the overlay process for GCMs

datasets after fixing the temporal scale for each GCM to a

monthly time scale. The median and 3rd quartile simulation

results were used because it was recommended in the liter-

ature that these simulations have the optimal minimum

uncertainty in projections of risk from climate change

(Araújo et al. 2005). The performance evaluation process for

climate model results using the Taylor diagram and different

statistical tests then lead to the development of high spatial

resolution projected maps for temperature, precipitation,

wind speed, solar radiation and relative humidity.

This section presents the data, methods and the devel-

oped GIS-based python algorithms used in the downscaling

procedure.

Model data

Observed daily data for precipitation, temperature, wind

speed, solar radiation and relative humidity were obtained

from all available stations (96 station) in the Shannon

Catchment from the national Irish meteorology organisation

(Met Éireann), for the period1961–2014 (Fig. 1). The selected

stations are generally at low elevations and can be considered

of high quality, data being collected by experienced meteo-

rological officers.Although therewere somemissing readings

in the data, their number were not so large as to be statistically

significant and so they were excluded from the data set used.

For baseline calculation purposes, data from 1961 to 2000

were used and the remaining data from 2000 to 2014 were

used for the calibration and evaluation processes.

Large-scale surface and atmospheric data were obtained

from the datasets of the International Centre for Tropical

Agriculture (CIAT) and the CGIAR Research Program on

Climate Change, Agriculture and Food Security (CCAFS)

(Mitchell and Osborn 2005; Ramirez and Jarvis 2008;

Wilby and Wigley 1997). Standardised reanalysis variables

were then used as candidate predictor variables to calibrate

the transfer functions, linking the large-scale surface and

atmospheric variables to the observed stations data.

GCM data were obtained, for five models from the

Hadley Centre, Canadian Centre for Climate Modelling

and Analysis, Centre for Climate Research in Japan, the

Commonwealth Scientific and Industrial Research Orga-

nization and National Centre for Atmospheric Research,

USA for both representative concentration pathways RCP

4.5 and RCP 8.5. The datasets exist on grid resolutions as

illustrated in Table 1, and were obtained for the grid box

representing Ireland in the GCM domain. These GCMs

Fig. 4 Precipitation long-term average for the baseline and projection periods according to different representative concentration pathways
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have been chosen because they have been used individu-

ally before in UK and Ireland and because they have the

smaller spatial grid size among the available GCMs.

Selecting representative concentration pathways
(RCPs)

The RCPs are four greenhouse gas concentration trajec-

tories adopted by the IPCC for its Fifth Assessment Report

(AR5) (Stocker et al. 2013b). The four RCPs, RCP2.6,

RCP4.5, RCP6.0, and RCP8.5, are named after a possible

range of radiative forcing values in the year 2100 of 2.6,

4.5, 6.0, and 8.5 W/m2, respectively. RCPs are defined as

follows: peaks in radiative forcing at 3 W/m2 before 2100

and decline for RCP 2.6; stabilization without overshoot

pathway to 4.5 W/m2 at 2100 for RCP 4.5; stabilization

without overshoot pathway to 6 W/m2 at 2100 for RCP 6.0;

and rising radiative forcing pathway leading to 8.5 W/m2

in 2100 for RCP 8.5 (Riahi et al. 2007; Kurosawa 2004;

Clarke et al. 2007; Smith and Wigley 2006; Whetton et al.

2006; Van Vuuren et al. 2007, 2011).

Modelling the response for any environmental system

according to changes makes more sense if the worst case

and the middle case were used as forcing cases for mod-

elling process. Hence, RCP 4.5 and RCP 8.5 were used in

this study as forcing scenarios for climate models (Stocker

et al. 2013b; Solomon 2007; Meinshausen et al. 2011,

Taylor et al. 2009a; Kattenberg et al. 1996; Giorgi et al.

2001; New and Hulme 2000).

Modelling procedures and downscaling

Although global simulations indicate coarse grid patterns

of change associated with natural and anthropogenic cli-

mate forcing, they cannot capture the detailed effects of

narrow mountain ranges, complicated land/water interac-

tions, or variations in land-use. Statistical or empirical

downscaling is an alternative approach for obtaining

regional-scale climate information from large-scale sim-

ulations to bridge the gap between global climate models

and local impacts. Statistical downscaling has an impor-

tant advantage over a regional model or dynamical

downscaling: it is computationally efficient and allows

the consideration of a large set of climate scenarios.

However, statistical downscaling of future climate sce-

narios must be based on predictors that can capture the

effects of climate change, and not just of climate vari-

ability. The main idea behind statistical downscaling is to

use statistical relationships to link resolved behaviours in

GCMs with the climate in a study area. This approach

encompasses a range of statistical techniques as simple

linear regression, delta change method, multiple regres-

sion, weather generators, canonical correlation analysis T
ab
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and artificial neural networks (Salathe et al. 2007; Kat-

tenberg et al. 1996; Giorgi et al. 2001; Hewitson and

Crane 2006; Joubert and Hewitson 1997; von Storch et al.

1993; Crane and Hewitson 1998).

The GIS based approach proposed in this paper

employed statistical downscaling; in specific, two different

techniques were used according to the suitability to the

targeted climatic datasets:

1. The delta change method was used to downscale

temperature and precipitation because of the high

quality data and continuous readings for these datasets;

2. Multiple regression models were used to predict wind

speed, solar radiation and relative humidity using both

the temperature and precipitation predictands for each

model in order to prevent the uncertainty related to

some missing readings in the same predictors data.

Fig. 5 Average precipitation

(mm/year) changes from the

baseline period for each

simulated scenario over the

Shannon catchment

Fig. 6 Temperature long-term average for the baseline and projection periods according to different representative concentration pathways
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GIS-based python algorithm

This paper presents a GIS-based python algorithm for

GCM-Ensembles downscaling and performance evaluation

simulations. This algorithm uses GIS as the platform for

the simulation process through spatial geo-processors. The

algorithm loops through a process to downscale the climate

variable and evaluate the performance of the designed

GCM-ensemble experiment. The observed weather data for

Shannon, GCMs data and the selected RCPs are employed

as a case study for different experiments using this GIS-

based algorithm.

The algorithm spatial simulation steps are as follow:

1. Choose the GCMs that participated in the ensem-

bles, as described in the previous Sections.

2. Choose the forcing RCPs targeted for each exper-

iment, as described in Sect. 2.2.

3. Feed the multidimensional files for each global

model experiment into the algorithm, as based on the

GCMs simulation data.

4. Calculate the mean temporal scale for each simulated

multidimensional file of each GCM experiment, in

order to fix the temporal resolution between all the

experiments that participated in the ensemble, (i.e. all

GCMswere set to a commonmonthly temporal scale).

5. Resample the grid size for each gridded file result

from each experiment to unify the large scale

resolutions, in order to have the same pixel size

for each gridded file per experiment.

6. Overlay, a spatial operation in which two or more

grids registered to a common coordinate system are

superimposed for the purpose combine them in the

same tabulated dataset, the simulated grids for all

GCMs that participated in the experiments.

7. Run a sub-algorithm for the geo-statistical simula-

tion for each experiment in order to calculate the two

targeted grids weights [50 % (median) and 75 %

ensembles]. Different GCMs produce several regio-

nal climate results even when run with the same

emissions data (Stocker et al. 2013a; Solomon 2007;

Meinshausen et al. 2011; Taylor et al. 2009a;

Kattenberg et al. 1996; Giorgi et al. 2001; Hulme

and Carter 1999), however, many impact studies

employ only one climate change scenario, based on

one emissions scenario, derived by single GCM.

From a risk assessment perspective this could be

considered unsound. Ensembles or weighting of the

downscaled results, were used in this GIS-based

algorithm to overcome this risk in climate change

projections. This ensembles or weighting was based

on the individual GCM’s ability to reproduce the

properties of the observed climate. The modified

T
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impacts relevant climate prediction index is

weighted based on the individual GCMs ability to

reproduce the properties of the observed climate and

is derived from the root-mean-square difference

between modelled and observed climatological data

(Hulme and Carter 1999; Wilby and Harris 2006),

median and 75 percentile (3rd quartile), assessed

over the baseline period. The median and 75

percentile ensembles, produced from the weighted

median and 75 percentile results for multi-GCM

described above, were developed for Shannon

catchment and assessed over the baseline using the

developed GIS-based algorithm.

8. Choose the downscaling method for each climatic

variable in each experiment. In this case study, the

GIS-based algorithm that was developed applies the

delta change method and multiple regression models

as selected statistical downscaling methods under GIS

platform. The delta method or change factor is the

ratio between GCM simulations of future and current

climate with resepct to precipitation and it is the

difference between GCM simulations of future and

current climate with respect to temperature. It is used

as a multiplicative factor to obtain future regional

conditions so that the differences between the control

and future GCM simulations are applied to baseline

observations by adding or scaling the mean climatic

to each time step. The method assumes that GCMs

more accurately simulate relative change more than

absolute values. In addition, the change factors only

scale the mean, maximum and minimum of the

climatic variables, ignoring changes in variability and

assuming the spatial pattern of climate will remain

constant. In the delta change method, the predictor is

the currently observed value for the same predictand

variables. The predictor multiplies with the change

factor, which is the ratio between the simulated values

from the GCM output for the current period and the

future. More generally, the predictor and predictand

need to be the same variable (Fowler et al. 2007;

Fig. 7 Average temperature

(°C) changes from the baseline

period for each simulated

scenario over the Shannon

catchment

Fig. 8 Average solar radiation

(j/cm2) changes from the

baseline period for each

simulated scenario over the

Shannon catchment
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Prudhomme et al. 2002; Diaz-Nieto and Wilby 2005;

Hay et al. 2000). Transfer function is a term used to

describe methods that directly quantify a relationship

between the predictand and a set of predictor

variables (Giorgi et al. 2001). Multiple regression

models are constructed using grid cell values of

atmospheric variables as predictors for the surface

climatic variables. There have been a number of

recent innovations in this type of downscaling

method such as the use of a logistic regression model

for daily precipitation probability and a generalized

linear model to predict the number of wet days in the

Ebro Valley in Spain (Abaurrea and Ası́n 2005).

Multiple regression models exist when there are two

or more predictor variables (such as coarse gridded

rainfall and temperature), which act as the input

signal for the regional climate. A method called

forwarded selection is the most common method used

to establish a multiple regression equation in which

the predictor variable that explains the most variance

is first identified. The remaining variables are then

classified and the variable that most reduces the

remaining variance is selected. This method has been

used which has resulted in relative humidity, solar

radiation and wind speed variables being eliminated

from regression models and it has been concluded

that the temperature and precipitation variables

should be used in the regression models. This

procedure is repeated in order to get the most

appropriate variable until no further improvement is

obtained. The most essential assumption behind the

regression models is that they are symmetrically

distributed around the mean or normally distributed

without any skew (Hay and Clark 2003; Zorita and

Von Storch 1999).

9. Run a sub-algorithm for the selected downscaling

method for the specific experiment with the

observed data as input.

10. Evaluate the results for each experiment through

statistics and Taylor diagram.

Results and discussions

Validation and performance evaluation

In order to validate the climate models results, observed

data for each modelled climate variable for the 1961–2014

periods were used for the validation process. High corre-

lations were obtained for climate models validation as

shown in Table 2 which illustrated statistical tests results

(R2 values) for all modelled variables for the Shannon
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catchment. These statistics are for monthly time steps and

averaged for all stations.

For the climate models and ensembles performance

evaluations, Taylor diagrams and box-whisker plots have

been prepared for each modelled monthly climate variable.

Taylor diagrams (Taylor 2001) provide an efficient way of

graphically summarizing how closely a model or ensemble

fits observations. The similarity between two patterns is

quantified in terms of their correlation, their root-mean-

square difference and the amplitude of their variations. In

this paper Taylor diagrams have been used to validate and

evaluate the performance of climate models and their

ensembles predictions.

In the Taylor diagram (Fig. 3), statistics for 20 models

were computed with a coloured point assigned to each

model. The position of each point appearing on the plot

quantifies how closely the model’s simulated results match

the observations. First of all, it can be seen that the pattern

correlations are generally high (higher than 0.7 in all

cases). Secondly, one can notice that the variance is gen-

erally underestimated by the models, whatever the climatic

variable, RCP or ensemble. This was actually expected

from the high values of R-square for the validation period.

It is also interesting to note that there is high coherence

between the models: i.e. they share similar qualities or

deficiencies (see the clusters of colour points for each cli-

matic variable).

Also for the multi-GCM ensembles performance evalua-

tion, (Tables 3, 4) were developed for each projected climatic

variable and for each climate scenario for both absolute values

and changes frombaseline values, respectively.Each table has

20 box-whisker diagrams in which the centre lines show the

medians, the box limits indicate the 25th and 75th percentiles

as determined by R software, the whiskers extend to 1.5 times

the interquartile range from the 25th and 75th percentiles,

outliers are represented by dots, crosses represent sample

means, bars indicate 95 % confidence intervals of the means,

and notches are defined as ±1.58 9 inter quartile range/sqrt

(n) and represent the 95 % confidence interval for each med-

ian. Non-overlapping notches give 95 % confidence that two

medians are different. It is clear that the absolute values and

the changes from baseline values for each climate variable

increase with increasing projected years and by moving from

left to right in each table from RCP 4.5 (50 %) to RCP 8.5

(75 %). This is valid for all variables except wind speed.

Climate change projections

So far, the studies in literature addressing climate change

downscaling in Ireland have used only one GCM (Ellis

et al. 2007; Wang et al. 2006; Sweeney et al. 2003; Lindner

et al. 2010; Bastola et al. 2011; Araújo et al. 2005; Berry

et al. 2002) and the IPCC forth assessment report (AR4)

emission scenarios (Change, 2007; Pachauri and Reisinger

Fig. 9 Solar radiation long-term average for the baseline and projection periods according to different representative concentration pathways
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2007). It also should be noted that these studies completed

the downscaling using a coarse resolution and they did not

address such a wide range of climate variables as presented

in this research. Fealy and Sweeney (2008) illustrates one

technique for downscaling GCM output for a selection of

sites in Ireland using a weighted ensemble mean, derived

from multiple GCMs for a high emissions scenario (A2).

The study acknowledges inherent weaknesses due to lack

of performance evaluation for the downscaling method. It

also uses one AR4 emission scenario without any com-

parison with other scenarios and it ignores the need for a

fine scale resolution results. In this paper, in addition to a

performance evaluation for the used methodologies and

GIS platform, the obtained projections are presented for

the future climate over the river Shannon catchment. In

this section, climate projections for three time intervals

2020, 2050 and 2080, which refers to 12 months in each

period, (a summary of 1275 high-resolution (50 m 9 50 m)

resultant maps, 255 for each climate variable including the

predicted seasonal maps for each climate variable) were

illustrated and compared with the baseline period (1961–

2000), in order to assess the differences and changes in

climate for temperature, precipitation, solar radiation, rel-

ative humidity and wind speed. Four different scenarios,

RCP ensembles (RCP 4.5 (50 %), RCP 4.5 (75 %), RCP

8.5 (50 %) and RCP 8.5 (75 %) were used to force these

results, as discussed previously.

Precipitation

The spatial variation of precipitation is influenced by many

different natural aspects such as elevation. Precipitation time

series grids were derived by averaging gridded data over the

Shannon catchment according to different scenarios and

ensembles, as previously discussed. Figure 4 shows series of

projected high-resolution precipitation maps for the Shannon

catchment and Table 5 shows quantitative statistics for each

map. Trends in precipitation show greater regional variation

than temperatures, with occasional conflicting trends from

stations which are geographically relatively close. However,

there is evidence of an increase in the quantity of precipitation

in general, as shown in Fig. 5, which illustrates that RCP 8.5

(75 %) would predict the highest future precipitation quanti-

ties over the catchment. Tables 8, 9 show seasonal

precipitation raster maps statistics for baseline and projected

periods according to different RCPs.

Temperature

Projected time series maps for temperature were compared

with long-term observed temperature 1961-2014 and the

results of the projected maps are shown in Fig. 6 and Table 6

with the mean changes in temperature from baseline periodT
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shown in Fig. 7. In general, the results for all the ensembles

simulations show that temperature will increase every year.

Again RCP 8.5 (75%) has the highest increasing rate (1.85 °C
in 2080 as average over Shannon catchment), which is con-

sistent with the global rise in air temperatures. All seasons

show an increase in temperature with the highest increases

occurring in the spring and summer. Tables 10, 11 show

seasonal temperature raster maps statistics for baseline and

projected periods according to different RCPs.

Solar radiation

As shown in Fig. 8, Table 7 and Fig. 9 for solar radiation,

all simulations indicate that there will be a significant

increase in solar radiation over the Shannon catchment

with such an incremental increase obvious when moving

from RCP 4.5 (50 %), RCP 4.5 (75 %), RCP 8.5 (50 %) to

RCP 8.5 (75 %), respectively.

Fig. 10 Average relative

humidity (%) changes from the

baseline period for each

simulated scenario over the

Shannon catchment

Fig. 11 Relative humidity long-term average for baseline and projection periods according to different representative concentration pathways
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Relative humidity

The relative humidity simulation results are shown in

Table 12, Figs. 10, 11, which all indicate a fluctuation in

values but with slight increases dominant over the Shannon

catchment. Again, predicted increases are clear when

moving from RCP 4.5 (50 %), RCP 4.5 (75 %), RCP 8.5

(50 %) to RCP 8.5 (75 %), respectively.

Wind speed

The wind speed simulation results shown in Table 13,

Fig. 12, and Fig. 13 all indicate a fluctuation in values but

with slight decreases in wind speed over the Shannon

catchment. Again, this incremental decrease is clear when

moving from RCP 4.5 (50 %) to RCP 4.5 (75 %) to RCP

8.5 (50 %) to RCP 8.5 (75 %).

Conclusions

This paper, in addition to performance evaluation for the

methodologies and GIS platform used, presents the sig-

nificant changes in temperature, precipitation, wind speed,

solar radiation and relative humidity, which are projected

for three future time intervals 2020, 2050 and 2080 using a

multi model ensemble approach forced by AR5 RCPs.

This paper aims to present GIS platform as a down-

scaling environment through a suggested algorithm, which

applies statistical downscaling models to multidimensional

GCM-Ensembles simulations. Applying such algorithm on

GIS platform provides a wide range of output formats for

the datasets, which can be used in most of the impact

models without any extra effort in formatting the output

datasets.

This paper demonstrates the use of a GIS platform with

raster data as a powerful multidimensional downscaling

tool, which gives the ability to spatially link all the vari-

ables that participated in the downscaling process. The GIS

platform also allows for the control of these links through

the geo-statistical processors, in order to derive very fine

scale data for future-projected changes in climate. The

ability of using geo-statistical processors in a GIS platform

is of crucial importance for the assessment process in

complex hydrological systems (such as large catchments)

to estimate how much confidence can be achieved in cli-

mate change projections and subsequent impact

assessments.

There are many sources of uncertainty in climate pro-

jection studies. The main source is related to the GCM

simulation and selection, which often needs to be taken

into account. The study shows that the differences between

ensembles mainly depend on the original GCMs that wereT
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used in the ensembles. In this study, the comparisons

between ensembles forced by two different RCPs show that

there are some agreements in the climate change signal

simulation in the study area. However, it is not easy to

locate the changes with spatial precision and accuracy

especially for precipitation, which makes the use of such

results for decision-making by relevant stakeholders and

practitioners problematic.

The study shows that downscaling is a sensitive step

when only one climate model is used for climate change

simulations because of the wide uncertainty related to the

choice of GCM. This paper suggests that multi-climate

models should be applied as an ensemble under the GIS

environment for climate change simulations, especially for

hydrological impact studies, as the output results formats

from the GIS platform can be used directly in the hydro-

logical models, as raster or victor data formats.

Using a GIS platform as a downscaling environment

gives the ability to capture different seasonality and spatial

patterns within climate variables. For example, the study of

Fig. 12 Average wind speed

(km/h) changes from the

baseline period for each

simulated scenario over the

Shannon catchment

Fig. 13 Wind speed long-term average for baseline and projection periods according to different representative concentration pathways
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temperature in this paper shows that there are important

differences between the ensembles results, especially in

summer months. These differences may be of interest

because of how they affect the accuracy of simulations in

hydrological models.

Generally, it can be concluded that the uncertainty

related to the downscaling process is lower than the

uncertainty related to the RCP selection. Further work is

still needed in the area of climate projections using a GIS

platform, especially in the context of linking climate

change simulations with hydrological physical-based

models.
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