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Abstract Uniaxial compressive strength (UCS) is one of

the most widely used and important rock mechanical

parameters in rock engineering. The main objective of the

present study was to evaluate the ability of artificial

intelligence models including multi-layer perceptron

(MLP), Sugeno fuzzy logic (SFL), Mamdani fuzzy logic

(MFL), adaptive neuro-fuzzy inference system (ANFIS)

and support vector machine (SVM) to predict the UCS of

travertine rocks in the Azarshahr area (NW Iran). To

attempt this objective, 85 core samples of travertine rock

were collected from the study area and the laboratory tests

were performed to determine the P-wave velocity [Vp (km/

s)], porosity (n %), Schmidt rebound hardness (Rn) and

UCS of the rocks at the Rock Mechanics Laboratory in the

Tarbiat Modares University. The data set including Vp

(km/s), n % and Rn as the inputs and UCS as the output

were divided into training (80 % of dataset) and testing

(20 % of dataset) subsets to construct the models. The

coefficient of determination (R2), root mean square error

(RMSE) and mean absolute error (MAE) were used to

evaluate the models performance. The models accuracy

followed the order SVM[ANFIS[SFL[MLP[
MFL. The SVM model with RBF kernel function yielded

the highest R2 (0.9516), and the lowest RMSE (2.14 MPa)

and MAE (1.351 MPa) in the testing step. Accuracy results

indicated that SVM model predictions were better than

MLP, SFL, MFL and ANFIS models for prediction of UCS

of travertine rocks.

Keywords Artificial intelligence � Uniaxial compressive

strength � Prediction � Travertine rocks � Azarshahr � Iran

Introduction

Uniaxial compressive strength (UCS) of intact rocks is an

important and pertinent property for characterizing rock

mass. UCS is included as a main input parameter for rock

mass characterization, rock classification and failure cri-

teria (Dehghan et al. 2010; Beiki et al. 2013). This

parameter is widely used in geological, geotechnical,

geophysical and petroleum engineering projects. A UCS

test requires high quality core samples with regular

geometry. Standard cores cannot always be extracted from

weak, highly fractured, thinly bedded, foliated and/or

block-in-matrix rocks (Ceyran 2014). To overcome this

difficulty, various predictive models based on index tests,

including mineralogical-petrographic analyses, physical

properties, an elastic wave velocity test and basic

mechanical tests have been developed by many researchers

(Gokceoglu 2002; Sonmez et al. 2006; Dehghan et al.

2010; Yilmaz 2009; Zhang et al. 2012; Ceryan et al. 2012;

Mishra and Basu 2012, 2013; Singh et al. 2012; Nefesli-

oglu 2013; Yesiloglu-Gultekin et al. 2013; Ceyran 2014;

Armaghani et al. 2016).

Traditionally, statistical methods such as simple and

multiple regression techniques are used to found predic-

tion models (Rzhevsky and Novick 1971; Horsrud 2001;

Beiki et al. 2013). The use of these relations is often the

only way to estimate strength parameters in many situa-

tions due to the absence of core for laboratory tests. The
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basis for these relations is the fact that many of the same

factors that affect UCS also affect other physical proper-

ties. In general, these existing empirical equations give

good results only in similar rocks and their reliability for

other rocks should be considered with caution. In other

words, most of the empirical equations are not sufficiently

generic to fit all the data published on UCS and physical

properties and they are not open to the general purpose

use (Beiki et al. 2013).

In addition to these conventional methods, new tech-

niques for estimating the UCS have also garnered consid-

erable attention. Various researchers have utilized soft

computing methods to estimate UCS from some rock index

properties including point load, p-wave velocity and Sch-

midt hammer hardness (Yesiloglu-Gultekin et al. 2013;

Gokceoglu 2002; Dehghan et al. 2010). Sarkar et al. (2010)

conducted artificial neural network (ANN) model to predict

the UCS and shear strength of different types of rocks

using dynamic wave velocity, Is(50), slake durability index

and density. Verma and Singh (2013) proposed an ANFIS

model for predicting p-wave velocity and they emphasized

that neuro-fuzzy method shows a good potential to model

complex, nonlinear and multivariate problems. Singh and

Verma (2012) performed a comparative analysis of intel-

ligent algorithms to correlate strength and petrographic

properties of some schistose rocks. Cevik et al. (2011)

applied the results of laboratory experiments and a neural

network to estimate the UCS of certain clay-bearing rocks.

Singh et al. (2012) generalized regression neural network

approach and adaptive neuro-fuzzy inference systems for

prediction of UCS of rocks. Gokceoglu et al. (2009) con-

structed rule-based fuzzy models and multiple regression

analyses to estimate the UCSs of certain clay bearing

rocks. Yagiz et al. (2012) examined the effects of the

cycling integer of a slake durability index test on intact

rock behavior and estimated certain rock properties, such

as the UCS, from rock index parameters using an ANN and

regression techniques. They stated that the slake durability

index (Id4), p-wave velocity, density and Schmidt hammer

values of rocks may be used for estimating the UCS of

rocks. Armaghani et al. (2016) applied three non-linear

prediction tools, namely non-linear multiple regression

(NLMR), ANN and ANFIS, for estimating UCS of granitic

rocks and compared their performances. They found that

the prediction performance of the ANFIS models was

higher than ANN and NLMR models.

The main purpose of this study is to evaluate the per-

formance of artificial intelligence (AI) models including

Multi-layer perceptron (MLP), Sugeno fuzzy logic (SFL),

Mamdani fuzzy logic (MFL), Adaptive neuro-fuzzy infer-

ence system (ANFIS) and support vector machine (SVM)

to predict the UCS of travertine rocks in the Azarshahr

area, northwest of Iran.

Materials and methods

Multi-layer perceptron

A detailed background of ANN models can be found in

Haykin (1999). However, in brief, ANNs composed of

three distinct types of layers; one input layer, one or more

hidden layers and one output layer. Each layer consists of

a number of simple processing elements called neurons or

nodes. Information data enters an ANN through the nodes

of the input layer. The input layer nodes distribute the

input information to the next layer (i.e., the first hidden

layer). The hidden and output layer nodes process all

incoming signals by applying factors to them (termed

weights). Each layer also has an additional element called

a bias. Bias nodes simply output a signal to the nodes of

the current layer. All inputs to a node are weighted,

combined and then processed through a transfer function

that controls the strength of the signal released through

the node’s output connections. Some of the most popular

transfer (activation) functions are Sigmoid, Gaussian,

Hyperbolic Tangent and Hyperbolic Secant (Malekmo-

hammadi et al. 2011).

Multi-layer perceptron (MLP) is one of the commonly

used ANN approach for prediction studies. Figure 1 shows

the structure of a MLP neural network model. In this Figure

i, j and k denote input layer, hidden layer and output layer

neurons, respectively, and w is the applied weight by the

neuron. The explicit expression for an output value of a

three layered MLP is given by Nourani et al. (2013),

Barzegar and Asghari Moghaddam (2016) and Barzegar

et al. (2016b):

yk ¼ f0
XMN

i¼1

Wkj:fh
XNN

i¼1

WjiXi þWj0

 !
þWk0

" #
ð1Þ

where Wji is a weight in the hidden layer connecting the ith

neuron in the input layer and the jth neuron in the hidden

layer, Wj0 is the bias for the jth hidden neuron, fh is the

activation function of the hidden neuron, Wkj is a weight in

the output layer connecting the jth neuron in the hidden

layer and the kth neuron in the output layer, Wk0 is the bias

for the kth output neuron, f0 is the activation function for

the output neuron, Xi is ith input variable for input layer

Fig. 1 Schematic diagram of a feed-forward MLP neural network
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and yj is computed output variable. NN and MN are the

number of the neurons in the input and hidden layers,

respectively.

Fuzzy logic

The fuzzy approach based on linguistic expressions include

uncertainty rather than numerical probabilistic, statistical

or perturbation approaches. Fuzzy logic (FL) theory,

introduced by Zadeh (1965), is an outgrowth of classical

set theory. In fuzzy set theory, the requirement of sharp

boundaries of classical sets is abandoned, and the mem-

bership of an object is not a matter of either affirmation or

denial, but it is in general a matter of degree (Demico and

Klir 2004). Fuzzy sets also have ambiguous boundaries and

gradual transitions between defined sets, which are appro-

priate to deal with the nature of uncertainty in system and

human errors (Pulido-Calvo and Gutiérrez-Estrada 2009).

The degree of membership in fuzzy set is expressed in a

closed unit interval [0, 1]. The exact values of 0 and 1

represent the total denial and affirmation of the member-

ship, respectively (Ghiasi-Freez et al. 2012).

The main part of a fuzzy model is the fuzzy inference

system (FIS) in which a given inputs is formulated to an

output. Fuzzy logic could be constructed by the Mamdani

and Sugeno methods (Mamdani 1976; Sugeno 1985). The

most important differences among fuzzy inference systems

are the types of the output membership functions and the

implication methods. In Mamdani model the output

membership functions are fuzzy sets. After the aggregation

process, there is a fuzzy set for each output variable that

needs defuzzification (Barzegar et al. 2016b). This method

uses the min operation (^) as a fuzzy implication (Mamdani

and Assilian 1975; Mamdani 1976).

Let us suppose a rule base is given in the following

form:

Ri: If x is Ai and y is Bi then z is Ci, i = 1, 2,…, n

Then, Ri ¼ Ai ^ Bið Þ ! Ci is defined by:

lRi ¼ lðAi andBi!Ci
Þðx; y; zÞ ð2Þ

The input data x = x0, y = y0 pass through the rule,

above, to produce the final output, as below (Lee 2004):

lC0
i
zð Þ ¼ lAi

x0ð Þ ^ lBi
y0ð Þ

� �
! lCi

zð Þ
lC0

i
zð Þ ¼ ai ^ lCi

zð Þ
lC0 zð Þ ¼ lC1

zð Þ _ lC2
zð Þ ¼ a1 ^ lC1

zð Þ
� �

_ a2 ^ lC2
zð Þ

� �

lC0 zð Þ ¼ [n
i¼1 ai ^ lCi

zð Þ
� �

¼ [n
i¼1 lC0

i
zð Þ;C0 ¼ (

n

i¼1
C

0
i

8
>>>><

>>>>:

ð3Þ

A graphical illustration of MFL is shown in Fig. 2a.

Sugeno fuzzy inference system is similar to the Mam-

dani method in many aspects. In the first two parts of the

fuzzy inference process, fuzzifying the inputs and applying

the fuzzy operator are exactly the same. Moreover, all the

lemmas expressed for Mamdani fuzzy inference system are

the same for SFIS. The main difference between them is

that output membership functions are either linear or con-

stant in the Sugeno (1985) model.

Fig. 2 Graphical illustrations

of a MFL and b SFL models

(Barzegar et al. 2016b)
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A typical rule in a Sugeno fuzzy model has the form If

Input 1 = x0 and Input 2 = Y0, then z ¼ px0 þ qy0 þ r:

For a zero-order Sugeno model, the output level is a

constant p = q = 0. The output level, zi, of each rule, is

weighted by the firing strength ai of the rule. The final

output of the system is the weighted average of all rule

outputs, computed as follows:

Final output ¼
Xn

i¼1

aizi

,
Xn

i¼1

ai ð4Þ

A graphical illustration of SFL is shown in Fig. 2b.

Clustering of available data is essential for developing a

fuzzy modeling system. Fuzzy c-means (FCM) and subtrac-

tive clustering (SC) are two powerful fuzzy clustering tech-

niques, which could be used for the construction of Mamdani

and Sugeno models, respectively (Ghavidel and Montaseri

2014). Each of the clusters refers to amembership function for

generating the fuzzy ‘‘if–then’’ rules. The fuzzy system

makes a sum of all ‘then’ parts and uses a defuzzification

method to give the final output (Ghiasi-Freez et al. 2012).

Adaptive neuro-fuzzy inference system

The adaptive neuro fuzzy inference system (ANFIS) was

introduced by Jang (1993) as a neural network functionally

equivalent to a Sugeno type inference model. ANFIS uses a

feed-forward network to search for fuzzy decision rules that

perform well on a given task. Using a given input–output data

set, ANFIS creates an FIS for which membership function

parameters are adjusted using either a back propagation algo-

rithm alone or a combination of a back propagation algorithm

and a least-squares method (Abdulshahed et al. 2015). This

allows the fuzzy systems to learn from the data being modeled.

The equivalent ANFIS architecture of the Sugeno

inference system is shown in Fig. 3. The entire system

consists of five layers, and the relationship between the

input and output of each layer is summarized as follows:

Layer 1: Every node i in this layer is an adaptive node

with a node output, O, defined by:

O1;i ¼ lAi
xð Þ for i ¼ 1; 2; or

O1;i ¼ lBi�2
yð Þ for i ¼ 3; 4

ð5Þ

where, x (or y) is the input to the node, and Ai (or Bi-2) is

a fuzzy set associated with this node, and characterized

by the shape of the node’s membership function (l).
This function must be continuous and piecewise differ-

entiable, such as, for example, a Gaussian function. If

such is used as a membership function, lAi
xð Þ can be

computed as:

lAi
xð Þ ¼ e

�1
2

x�Ci
ri

� �2

ð6Þ

where, {ri, ci} are parameter sets.

Parameters in this layer are referred to as premise (an-

tecedent) parameters.

Layer 2: Every node in this layer is a fixed node labeled

as P, which multiplies the incoming signals and output

product. For instance,

O2;i ¼ wi ¼ lAi
xð Þ � lBi

yð Þ i ¼ 1; 2 ð7Þ

with each output node representing the firing strength of

a rule.

Layer 3: Every node in this layer is a circular node labeled

asN. The ith node calculates the ratio of the ith rule’s firing

strength to the sum of all rules’ firing strengths.

O3;i ¼ w ¼ wi

w1 þ w2

i ¼ 1; 2 ð8Þ

This layer’s outputs are termed normalized firing

strengths.

Layer 4: Node i in this layer computes the contribution

of the ith rule towards the model output, with the

following node function:

O4;i ¼ wifi ¼ wi pixþ qiyþ rið Þ ð9Þ

where, wi is the output of layer 3 and fpi; qi; rig is the

parameter set. Parameters in this layer are referred to as

consequent parameters.

Layer 5: The single node in this layer is a fixed node,

labeled P, that computes the overall output as the

summation of all incoming signals.

O5;i ¼
Xi¼2

i¼1

wifi ¼
Pi¼2

i¼1 wifiPi¼2
i¼1 wi

ð10Þ

Support vector machine

Support vector machine (SVM) is one of the soft com-

puting learning algorithms and is primarily used in pattern

recognition, prediction, classification, and regression

analysis and its application exhibited better performance

than the earlier developed methodologies, e.g. neuralFig. 3 A typical ANFIS architecture (Jang 1993)
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network and other conventional statistical models (Vapnik

et al. 1996; Joachims 1998; Huang et al. 2002; Shamshir-

band et al. 2015). The details of theory and evolution of

SVM developed by Vapnik can be found in (Vapnik and

Vapnik 1998; Vapnik 2000).

SVM was developed according to the statistical machine

learning development as well as structural risk minimiza-

tion to reduce the upper bound generalization error com-

pared to local training error, which is a common technique

in the previously used machine learning methodologies.

SVM functions according to Vapnik’s theory are rep-

resented in Eqs. (11–15). R = {xi, di}in is used to assume

a set of data points. xi indicates the input space vector of

the data sample. Also, di and n are the target value and data

size, respectively. SVM approximates the function as rep-

resented in Eqs. (11) and (12):

f xð Þ ¼ wu xð Þ þ b ð11Þ

RSVMs Cð Þ ¼ 1

2
kwk2 þ C

1

n

Xn

i¼1

L xi; dið Þ ð12Þ

In Eq. (11),u xð Þ indicates high dimensional space charac-

teristic that mapped the input space vector x. Also, w and b

are a normal vector and scalar, respectively. In addition,

C 1
n

Pn
i¼1 L xi; dið Þ stands error or risk. Factors b and w are

measured by minimization of regularized risk equation

following by introduction of positive slack variables ni and
ni* that indicate upper and lower excess deviation:

Minimize RSVMs w; nð�Þ
� � 1

2
kwk2 þ C

Xn

i¼1

ni þ n�i
� �

ð13Þ

Subject to
di � wu xið Þ þ bi � eþ ni
wu xið Þ þ bi � di � eþ n�i

�

ni; n
�
i � 0; i ¼ 1; . . .; l

ð14Þ

where 1
2
kwk2 is the regularization term, C represents the

error penalty feature utilized to control the trade-off

between the empirical error (risk) and regularization term,

e represents the loss function associated to approximation

accuracy of the trained data point and the number of factors

in the training data set which is defined as the l.

Optimality constraints and Lagrange multiplier which

can be used to solve Eq. (11) are consequently obtained

using a generic function as follows:

f x; bi; b
�
i

� �
¼
Xn

i¼1

bi � b�i
� �

K x; xið Þ þ b ð15Þ

In Eq. (15), K x; xið Þ ¼ u xið Þu xj
� �

and the term K is

defined as the kernel function, which is dependent on the

two inner vector xi and xj in the feature space u(xi) and

u(xj), respectively. The structure of the SVM model is

shown in Fig. 4.

The kernel function, denoted by K, as a straight-for-

ward computation technique (hereafter) can be used to

generate a nonlinear learning machine. The method is

employed to calculate the inner product in a feature

space that serve as a function to original input points.

The adaptability of SVM to use kernel functions is

important where it discreetly alters the information into

a higher dimensional feature space. The obtained results

in such a space typify the outcomes of the lower

dimensional, original input space (Shamshirband et al.

2015).

Sigmoid, lineal, polynomial, and radial basis functions

are the four basic kernel functions which are provided by

SVM. Over time, the radial basis function (RBF) has

been repeatedly proven to be the ideal function in its

category due to its ability for efficient, simple, reliable,

and adaptable computation for the purpose of optimiza-

tion especially for adaptability in handling the parame-

ters which are complex (Rajasekaran et al. 2008; Yang

et al. 2009; Wu and Wang 2009). Only the solution of a

set of linear functions are required for the training of

RBF kernel equation rather than the lengthy and com-

plicated demanding quadratic programming problem

(Shamshirband et al. 2014; Mohammadi et al. 2015).

Accordingly, the radial basis equation with parameter r
is adopted. The nonlinear radial basis kernel function is

defined as Eq. 16:

K xi; xj
� �

¼ exp �ckxi � xjk2
� �

ð16Þ

where xi and xj are vectors in the input space, i.e., vectors

of features computed from training or testing samples. In

addition, the accuracy of predictions using RBF kernel

function depends on the selection of its three factors (c, e,
and C).

Fig. 4 The structure of the SVM model
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Model performance criteria

The following statistical indicators were selected in the

performance evaluation of constructed models:

1. Coefficient of determination (R2);

2. Root Mean Square Errors (RMSE), and

3. Mean Absolute Error (MAE)

R2 ¼
XN

i¼1

Pi � P
� �

Oi � O
� �

" #2 XN

i¼1

Pi � P
� �2

Oi � O
� �2

" #�1

ð17Þ

RMSE ¼ N�1
XN

i¼1

Pi � Oið Þ2
" #0:5

ð18Þ

MAE ¼ Pi � Oij j
N

ð19Þ

where N is the number of observations, Pi is the predicted

values, Oi is the observed data, and P and O are the mean

values for Pi and Oi, respectively.

The coefficient of determination (R2) measures the

degree of correlation among the observed and predicted

values. R2 values range from 0 to 1, with 1 indicating a

perfect relationship between the data and the line drawn

through them, while 0 represents no statistical correlation

between the data and the line. The RMSE evaluates the

variance of errors independently of the sample size. RMSE

indicates the discrepancy between the observed and pre-

dicted values. A perfect fit between observed and predicted

values would have an RMSE of 0. MAE is the simplest

measure of prediction accuracy. It is used to measure how

close predicted values are to the measured values.

Study area and the data set

Fissure-ridge type travertines are exposed in extensive area

in Azarshahr area and eastern part of the Urmia Lake, NW

Iran. Some of the ridges are still active in the area indi-

cating active displacement along the faults in this region.

Quaternary active Sahand volcanic complex close to the

travertine ridges had reasonable influence on solution of

the Jurassic and Cretaceous carbonates and stained tra-

vertine layers. The location of the travertine rocks is shown

in the geological map of the study area (Fig. 5). Climate

changes, strongly affects the amount of water supply in

travertine ridges. This is well identified by inter-bedded

paleo-soil bands sub-horizontal to the travertine layers and

change of dip in travertine layers (Taghipour and Mohajjel

2013). The travertine facies are deposited at the outlet of

springs.

In this study, 30 travertine rock blocks from the Azar-

shahr area, each sample measuring approximately 40–40–

20 cm, were collected in the field for the rock mechanics

tests using the core-drilling machine at the Rock

Mechanics Laboratory in the Tarbiat Modares University.

A total of 85 core samples were prepared from the rock

blocks. The core samples had a ratio of length to diameter

of &2 and the edges of the cores were cut parallel and

smooth. The mechanical tests on the core samples includ-

ing porosity (n %), P-wave velocity [Vp (km/s)], Schmidt

rebound hardness (Rn) and UCS were performed by labo-

ratory tests in accordance with ISRM (1981). Figure 6

shows the UCS test setup and some of core samples used

for laboratory tests.

The data set including Vp (km/s), n % and Rn as the

inputs and UCS as the output were divided into training

(80 % of dataset) and testing (20 % of dataset) subsets to

develop the AI models for prediction of UCS. The cross

validation technique (Fijani et al. 2013; Barzegar et al.

2016a, b) was used to divide the data set. Some descriptive

statistics including minimum and maximum values, mean

values, standard deviation (SD) and the range of the data

utilized as well as the correlation coefficient between the

UCS and the considered input variables for both training

and testing data sets are listed in Table 1.

Input and output variables for AI-based modeling are

usually normalized by scaling between 0 and 1, to ensure

that all variables receive equal attention during the training

step of a model. The following simple linear mapping of

the variables is the most common method for this purpose:

XN ¼ X � Xmin

Xmax � Xmin

ð20Þ

Upon completing the training of the models, normalized

model outputs were denormalized to actual values:

X ¼ XN Xmax � Xminð Þ½ � þ Xmin ð21Þ

where XN is the normalized value of variable X, and

0 B XN B 1, while Xmax and Xmin are the maximum and

minimum value of variable X of the original data,

respectively.

Model development

MLP model

For the MLP model, the training set was further divided

into 80 % training and 20 % validation, so overall, 64 % of

the data was used for training, 16 % was used for valida-

tion, and 20 % was used for testing. To develop a three-

layered ANN model, three inputs including Vp (km/s), n %

and Rn were used in the first layer and the UCS as output
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Fig. 5 Geological map of the

study area
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was utilized in the last layer. The feed-forward neural

network was trained with Levenberg–Marquardt algorithm

(TrainLM). The number of hidden neurons for MLP

models was selected via a trial and error method (Belayneh

et al. 2014, 2016; Adamowski and Sun 2010; Barzegar

et al. 2016a, b). However, Wanas et al. (1998) and Mishra

and Desai (2006) empirically considered the equations e.g.

log (N), where N is the number of training samples and

2n ? 1, where n is the number of input neurons to deter-

mine the number of hidden neurons. In this study, the

optimal number of hidden neurons was determined to be

between log (N) and (2n ? 1). By using the Wanas et al.

(1998) method, two hidden neurons and by using the

Mishra and Desai (2006) method, seven hidden neurons

were considered; thereafter the optimal number was chosen

via trial and error. The number of neurons in the hidden

layer was 5. TANSIG and PURELIN functions were used

as the transfer functions in the hidden layer. The perfor-

mance plot (Fig. 7a) shows the value of the function, in

terms of training, validation, and testing behaviors, versus

the iteration number. The best validation performance was

at epoch 7 based on the mean square error equally to

9.4315 9 10-3. The magnitude of the gradient and the

number of validation checks used to terminate network

training are illustrated in Fig. 7b. At an epoch of 13

iterations, the gradient was 1.0112 9 10-3, barely above

the 1 9 10-4 threshold below which training will stop, and

at six the validation checks also indicated training should

stop. When the training of the model was completed, the

testing data set served as model input and UCS values were

predicted.

Fuzzy logic model

In the present study, two different types of fuzzy logic

model including Sugeno Fuzzy Logic (SFL) and Mamdani

Fuzzy Logic (MFL) models were used to predict USC of

the travertine rocks. The subtractive clustering method was

applied for classifying the input and output datasets in the

SFL model. The important parameter in subtractive clus-

tering which controls number of clusters and fuzzy if-then

rules is clustering radius (Barzegar et al. 2016a, b). This

parameter can take values between the range of [0, 1].

Specifying a smaller cluster radius (say 0.1) will usually

yield more and smaller clusters in the data resulting in

more rules. In contrast, a large cluster radius (say 0.9)

yields a few large clusters in the data resulting in few rules

(Chiu 1994). The optimal clustering radius was searched by

performing the clustering process several times and grad-

ually increasing the clustering radius from 0 to 1 and it was

Fig. 6 a The uniaxial

compressive strength test setup,

b some of core samples used for

laboratory tests

Table 1 Descriptive statistics

of data sets utilized for training

and testing

Minimum Maximum Mean SD Range Correlation

with UCS

Training data

Vp (km/s) 3.50 5.82 4.92 0.61 2.32 0.41

n % 0.49 9.80 4.99 3.16 9.31 -0.54

Rn 33.00 55.00 45.80 5.67 22.00 0.59

UCS (MPa) 37.50 67.50 54.90 9.73 30.00 1.00

Testing data

Vp (km/s) 3.30 5.58 4.53 0.74 2.28 0.62

n % 0.50 9.50 5.00 2.54 9.00 -0.66

Rn 35.00 55.00 43.50 6.52 20.00 0.54

UCS (MPa) 41.70 67.80 52.10 8.92 26.10 1.00
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selected at the minimum RMSE. The optimal clustering

radius was 0.48. Thus, the SFL model was established by

eight Gaussian membership functions (clusters) for input

and output data resulting in eight rules.

For MFL model, the FCM clustering method was used

for extraction of clusters and fuzzy if–then rules. The MFL

model was established by ten Gaussian membership func-

tions (clusters) for input and output data resulting in ten

rules.

ANFIS model

To develop the ANFIS model, hybrid algorithm which is

the combination of the least-squares method and the back

propagation gradient descent method was applied to opti-

mize and adjust the Gaussian membership function

parameters and coefficients of the output linear equations

(Zounemat-Kermani and Teshnehlab 2008; Fijani et al.

2013). In this study, the Gaussian membership function

was used because it generated the least error in the fuzzi-

fication of the data collected for the components. The

number of epochs and error tolerance were set to 500 and

0, respectively. Subtractive fuzzy clustering, based on a

measure of the density of data points in the feature space

(Chiu 1994), was used to establish the rule-based rela-

tionship between the input and output variables. The best

ANFIS model performance was achieved after 100 epochs

of training when the clustering radius was set to 0.5. Four

Gaussian membership functions were extracted for the

input variables of the ANFIS model (Fig. 8).

SVM model

In this study, the SVM model was developed in data

regression (DTREG) soft computing software. The models

were created by using Epsilon-SVR kernel type. The both

grid and pattern search and tenfold cross-validation re-

sampling method were employed to find optimal parameter

values. During grid search, the program (DTREG) evalu-

ates values of each parameter within the predefined search

area. On the other hand, a pattern search (also known as a

line search or a compass search) starts from the center of

the search area and tries steps in both directions for each

parameter. The center of search area is then moved to the

new point if a better model fit is obtained (Jain and Bhatia

2013; Sonebi et al. 2016). The process is repeated until the

specified tolerance rate is reached. Grid search is compu-

tationally expensive because the model must be evaluated

at many points within the grid for each parameter (Al-

Anazi and Gates 2010).

RBF kernel function was adopted for prediction of

UCS. Model parameters such as C with the search range

0.1–5000, kernel parameter c with 0.001–50, e (Epsilon)

with 0.001–100 were selected for the developing the SVM

model. The pattern search technique was selected with ten

search intervals and the tolerance for stopping the itera-

tive optimization process was considered 1e-008. During

the grid or pattern searches, cross-validation was per-

formed to evaluate the fitting of so as to avoid over fitting

of the model. The optimal values of parameters for the

SVM model were C = 1.389, c = 6.691 and e = 0.001.

After training the SVM model, the testing data set was

served to the model to predict the UCS of the travertine

rocks.

Results

The performance of MLP, SFL, MFL, ANFIS and SVM

models was compared in this part of the study. After

training the proposed models, the models were tested with

Fig. 7 Training state and performance of the developed MLP neural

network model for prediction of UCS of travertine rocks
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17 testing samples. The results of the developed models in

the training and testing steps are presented in Table 2. All

the models for the prediction of UCS revealed satisfactory

results in terms of the statistical performance criteria.

Therefore, these models were acceptable for prediction of

UCS of travertine rocks in the Azarshahr area. The pro-

posed models obtained relatively lower prediction errors in

training step as compared to the testing step indicated that

these models exhibited relatively better generalization as

compared to the prediction. The R2, RMSE, and MAE

values of the MLP model in training step were 0.9109,

2.9359 and 2.2024 MPa, respectively, whereas those were

0.838, 3.5162 and 2.2778 MPa, in the testing step. In the

training step, the SFL model resulted in the R2 of 0.9199,

RMSE of 2.5067 MPa, and MAE of 1.8028 MPa, whereas,

for the testing data, the corresponding values were 0.8492,

3.5152 and 2.598 MPa, respectively. The SFL model per-

formance was slightly better than MLP model, whereas, the

accuracy of the MFL model was less than MLP model.

The R2, RMSE, and MAE values of the ANFIS model in

training step were 0.9431, 2.3161 and 1.6298 MPa,

respectively, whereas those were 0.9061, 2.6839 and

1.6388 MPa, in the testing step. Generally, the ANFIS

model performed better than the MLP model in prediction

of UCS values based on performance criteria. This result is

concur with the studies of Barzegar et al. (2016a, b),

Rajaee et al. (2009), Adamowski and Chan (2011), Nourani

et al. (2011), Moosavi et al. (2013), Fijani et al. (2013),

Emamgholizadeh et al. (2014) and Parmar and Bhardwaj

(2015). This may be related to the effect of fuzzification of

the input through membership functions (Barzegar et al.

2016a, b).

The R2, RMSE, and MAE values of the ANFIS model

in training step were 0.9888, 1.0266 and 0.5813 MPa.

The SVM model with RBF kernel function provided the

best results in the testing step showing the highest R2

(0.9516), and the lowest RMSE (2.14 MPa) and MAE

(1.351 MPa). Measured and predicted values of UCS by

MLP, SFL, MFL, ANFIS and SVM models in the testing

step are compared in Fig. 9. It was concluded that the

SVM model outperformed the other developed models

and this result was related to dimensional independence,

Fig. 8 Sugeno-FIS generated Gaussian membership functions for input variables of the ANFIS model

Table 2 The results of the

proposed models in the training

and testing steps for prediction

of UCS (Mpa) of travertine rock

Model Training step Testing step

R2 RMSE (MPa) MAE (MPa) R2 RMSE (MPa) MAE (MPa)

MLP 0.9109 2.9359 2.2024 0.838 3.5162 2.2778

SFL 0.9199 2.5067 1.8028 0.8492 3.5152 2.598

MFL 0.8042 4.349 3.2672 0.7648 4.3756 2.783

ANFIS 0.9431 2.3161 1.6298 0.9061 2.6839 1.6388

SVM 0.9888 1.0266 0.5813 0.9516 2.14 1.351
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limited number of freedom, global optimum and higher

generalization capability of the SVM (Scholkopf and

Smola 2002; Leong et al. 2010). The models accuracy

followed the order SVM[ANFIS[ SFL[MLP[
MFL.

Conclusions

In the present study, five AI models including Multi-layer

Perceptron (MLP), Sugeno Fuzzy Logic (SFL), Mamdani

Fuzzy Logic (MFL), Adaptive Neuro-Fuzzy Inference

Fig. 9 Measured and predicted UCS (MPa) for travertine rocks using a MLP, b SFL, c MFL d ANFIS and e SVM models in the testing step
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System (ANFIS) and Support Vector Machine (SVM)

were evaluated for prediction of UCS of travertine rocks

in the Azarshahr area (NW Iran) based on Vp (Km/S),

n % and Rn. The coefficient of determination (R2), root

mean square error (RMSE) and mean absolute error

(MAE) were used to evaluate the models performance.

The R2, RMSE, and MAE values of the MLP model in

testing step were 0.838, 3.5162 and 2.2778 MPa, respec-

tively, whereas those were 0.9061, 2.6839 and

1.6388 MPa, respectively for the ANFIS model. The

ANFIS model outperformed the MLP model in prediction

of UCS values based on performance criteria. This was

attributed to the effect of fuzzification of the input

through membership functions. The SVM model with

RBF kernel function yielded the highest R2 (0.9516), and

the lowest RMSE (2.14 MPa) and MAE (1.351 MPa) in

the testing step. Accuracy results indicated that SVM

model predictions were better than MLP, FL and ANFIS

models. It was related to dimensional independence,

limited number of freedom, global optimum and higher

generalization capability of the SVM.
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