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Abstract In the present study, an epidemic model is pro-

posed with maturation delay and latent period of infection,

keeping in view the childhood disease dynamics and

studied the asymptotic behavior of the model for all the

feasible equilibrium states. The criterion for local stability

of the system around steady states are established in terms

of delay, latent period and system parameters. Further

explored the possibility of Hopf bifurcation at the endemic

equilibrium state and threshold is determined. We also

performed the sensitivity analysis of the state variables at

the endemic equilibrium state with respect to the model

parameters and identified the respective sensitive indices.

Further numerical simulations have been carried out to

justify our analytic findings.

Keywords Epidemic model � Maturation delay � Latent
period of infection � Hopf bifurcation � Sensitivity analysis

Introduction

Epidemics is defined as a rapid spread of a infectious dis-

ease that infects a large portion of the population in a

particular region and this study of disease dynamics is a

dominating theme for many biologists and mathematicians

(Singh et al. 2016; Samanta 2010; Zhang et al. 2013; Xu

and Ma 2010; Zhou and Cui 2011; Kang and Fu 2015;

Upadhyay and Roy 2014; Bansal and Meyers 2012; Liu

et al. 2013; Gao et al. 2013; Tharakaraman et al. 2013;

Chao et al. 2012; Safi and Gumel 2013; Hu et al. 2012,

2014; Alexander and Moghadas 2005; Kaddar et al. 2010;

Zhang et al. 2009; Samsuzzoha et al. 2013; Sahu and Dhar

2012; He et al. 2013; Sun et al. 2011; Liu et al. 2007;

Tchuenche et al. 2011; Liu and Cui 2008; Cui et al. 2008a,

b; Funk et al. 2009). Further, there are a number of diseases,

which affects mostly the children, for example, Rubella,

Measles, Chickenpox, Polio, Mumps, etc., because pre-

mature (child) population is more prone to the diseases than

the mature (adult) population Reef et al. (2002). Therefore,

in disease dynamics the population can be divided into two

major categories: pre-mature population and mature popu-

lation. The pre-mature population takes a constant time to

become mature and this constant time is called maturation

delay. Also, in disease dynamics, disease cannot spread

instantaneously, it will take some time in the host body

before the outbreak and that time period is known as the

latent period of the particular disease. The simplest disease

models cannot capture the rich variety of dynamics and the

inclusion of temporal delays in these models makes them

more realistic (Beretta and Takeuchi 1995; Brauer 1990; Jin

and Ma 2006; Ma et al. 2004).

Keeping in view of the childhood disease dynamics, in

this paper, we proposed and analyzed an epidemic model

incorporating maturation delay and latent period of
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infection. This paper is organized as follows: in Sect. 2,

formulation of epidemic model is presented. In Sect. 3,

positivity and boundedness of the system has been

obtained. In Sect. 4, the system is analyzed for the

asymptotic stability at all the feasible equilibrium states

and obtained the conditions for the existence of Hopf

bifurcation at the endemic equilibrium state. In Sect. 5, the

sensitivity analysis of the state variables at endemic equi-

librium state with respect to model parameters is per-

formed. In Sect. 6, we presented some numerical

simulations to support our analytical findings and in the last

section, a brief conclusion is given.

Formulation of mathematical model

The assumptions of the proposed model are:

(i) The population exhibit age structure and the total

population at time t is divided into three mutually

exclusive compartments, namely, pre-mature (P),

mature (M) and infected (I).

(ii) s1 is maturation delay (i.e. the pre-mature period)

and d1 is the death rate of pre-mature population.

The transformation from pre-mature to mature

population is ce�d1s1Mðt � s1Þ, where c is the birth
rate of pre-mature, who was born at time t � s1
and survive at time t.

(iii) s2 is a latent period of infection.

(iv) No vertical transmission of the disease from

mature to pre-mature compartment.

(v) Treatment limitation is shown as the overcrowd-

ing in disease compartment.

(vi) Resource limitation is shown as the overcrowding

in mature compartment.

The proposed system is of the form:

dP

dt
¼ cM � d1P� ce�d1s1Mðt � s1Þ � aPðt � s2ÞI; ð1Þ

dM

dt
¼ ce�d1s1Mðt � s1Þ � d2M � b1M

2; ð2Þ

dI

dt
¼ aPðt � s2ÞI � d3I � b2I

2; ð3Þ

with initial conditions:

PðhÞ ¼ /1ðhÞ; MðhÞ ¼ /2ðhÞ; IðhÞ ¼ /3ðhÞ;
/1ð0Þ[ 0; /2ð0Þ[ 0; /3ð0Þ[ 0;

where h 2 ½�s; 0� and /1ðhÞ, /2ðhÞ, /3ðhÞ 2 Cð½�s; 0�;
R3
þÞ, the Banach space of continuous functions mapping

the interval ½�s; 0� into R3
þ, where R3

þ ¼ fðx1; x2; x3Þ :
xi � 0; i ¼ 1; 2; 3g:

Here d2 and d3 are the death rates of mature and infected

populations respectively; a is the rate of infection to the

pre-mature individuals; b1 and b2 are respectively the

overcrowding rates of mature and infected individuals.

Positivity and boundedness of the system

We state and prove the following lemmas for the positivity

and boundedness of the solution of the system (1) (2) (3):

Lemma 1 The solution of the system (1)-(3) with initial

conditions are positive, for all t� 0.

Proof Let (P(t), M(t), I(t)) be a solution of the system

(1)-(3) with initial conditions. Let us consider I(t) for

t 2 ½0; s��, where s� ¼ minfs1; s2g. We obtain from the

equation (3) that

dI

dt
� � d3I � b2I

2;

it follows that

IðtÞ� d3Ið0Þ
b2Ið0Þðed3t � 1Þ þ d3ed3t

[ 0:

For t 2 ½0; s��, the equation (2) can be rewritten as

dM

dt
� � d2M � b1M

2;

which implies that

MðtÞ� d2Mð0Þ
b1Mð0Þðed2t � 1Þ þ d2ed2t

[ 0:

The equation (1) for t 2 ½0; s�� can be rewritten as

dP

dt
� � d1P� ce�d1s1Mðt � s1Þ � aPðt � s2ÞI;

which evidences that

PðtÞ ¼ e�
~I Pð0Þ �

Z t

0

ce�d1s1Mðr � s1Þe~Idr
� �

[ 0;

where ~I ¼
R t

0
ðd1 þ aIðsÞÞds:

In the similar way, we can treat the intervals

½s�; 2s��; ::::; ½ns�; ðnþ 1Þs��; n 2 N. Thus by induction,

we establish that PðtÞ[ 0;MðtÞ[ 0 and IðtÞ[ 0 for all

t� 0. h

Lemma 2 The solution of the system of equations (1)-(3)

with initial conditions is uniformly bounded in X, where

X ¼ ðP;M; IÞ : 0�PðtÞ þMðtÞ þ IðtÞ� k2

k1

� �
;

k1 ¼ minfd1; d2; d3g and k2 ¼ c2

4b1
.
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Proof Let VðtÞ ¼ PðtÞ þMðtÞ þ IðtÞ. Calculating the

derivative of V(t) with respect to t, we have

dVðtÞ
dt

¼ cM � d1P� d2M � b1M
2 � d3I � b2I

2

� cM � d1P� d2M � b1M
2 � d3I:

Taking k1 ¼ minfd1; d2; d3g, we obtain that

dVðtÞ
dt

þ k1V � cM � b1M
2:

There exists a positive constant k2 ¼ c2

4b1
, such that

dVðtÞ
dt

þ k1V � k2:

Thus we get

0\VðtÞ�Vð0Þe�k1t þ k2

k1
:

As t ! 1, we have

0�VðtÞ� k2

k1
:

Therefore, V(t) is bounded. So, each solution of the system

(1)-(3) is bounded. h

Dynamical behavior of the system

The system (1)-(3) has three non-negative equilibrium

points:

(i) Trivial equilibrium E0ð0; 0; 0Þ always exists.
(ii) Boundary equilibrium E1ðP1;M1; 0Þ exists, if (H1)

holds, where P1 ¼
c 1�e�d1s1ð Þ ce�d1s1�d2ð Þ

b1d1
, M1 ¼

ce�d1s1�d2ð Þ
b1

and

ðH1Þ : s1\
1

d1
ln

c
d2

� �
:¼ s10:

(iii) Endemic equilibrium E�ðP�;M�; I�Þ exists, if

(H1), (H2) and (H3) holds, where M� ¼
ce�d1s1�d2

b1
; I� ¼ aP��d3

b2
and P� satisfy

AP�2 � BP� � C ¼ 0

and

A ¼ a2b1;

B ¼ ab1d3 � d1b1b2;

C ¼ b2c 1� e�d1s1
� 	

ce�d1s1 � d2
� 	

:

Here

ðH2Þ : B2 þ 4AC� 0; ðH3Þ : P� [
d3

a
:

Now, if ðH1Þ holds, then M�, P� are positive and

P� is uniquely defined by P� ¼ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ4AC

p

2A
. Also

P� is real if (H2) holds. Further I
� is positive if

(H3) holds.

Now, the transcendental polynomial equation of the second

degree

k2 þ pkþ r þ ðskþ qÞe�ks ¼ 0; ð4Þ

has been studied by Ruan (2001) and the following results

have been discussed:

(A1) pþ s[ 0;

(A2) qþ r[ 0;

(A3) either s2 � p2 þ 2r\0 and r2 � q2 [ 0 or ðs2�
p2 þ 2rÞ2\4ðr2 � q2Þ;

(A4) either r2 � q2\0 or s2 � p2 þ 2r[ 0 and ðs2 � p2

þ2rÞ2 ¼ 4ðr2 � q2Þ;
(A5) either r2 � q2 [ 0, s2 � p2 þ 2r[ 0 and ðs2 � p2

þ2rÞ2 [ 4ðr2 � q2Þ.

Lemma 3 (see Ruan (2001)) For equation (4);

(i) If (A1)-(A3) holds, then all the roots of (4) have

negative real parts for all s� 0.

(ii) If (A1), (A2) and (A4) hold and s ¼ sþj , then

equation (4) has a pair of purely imaginary roots

�iwþ: When s ¼ sþj then all roots of (4) except

�iwþ have negative real parts.

(iii) If (A1), (A2) and (A5) hold and s ¼ sþj (s ¼ s�j
respectively) then equation (4) has a pair of purely

imaginary roots �iwþ (�iw�; respectively). Fur-

thermore s ¼ sþj (s�j ; respectively), then all roots

of (4) except �iwþ (�iw�, respectively)have

negative real parts.

Now, we will discuss the local behavior of all the

equilibrium points of the system (1)-(3).

Theorem 1 The local behavior of different equilibria of

the system (1)-(3) is as follows;

(i) If s1 � s10; then trivial equilibrium E0 is locally

asymptotically stable for all s2 and if s1\s10; then
it is unstable.

(ii) If ðH1Þ and ðH4Þ holds, then boundary equilibrium

E1 is locally asymptotically stable for all s2;
otherwise it is unstable.
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(iii) If ðH1Þ-ðH3Þ and ðH5Þ holds, then the endemic

equilibrium E� is locally asymptotically stable for

all s2; otherwise it is unstable.

Proof

(i) The characteristic equation for E0ð0; 0; 0Þ is
ðkþ d1Þðk� ce�d1s1e�ks1 þ d2Þðkþ d3Þ ¼ 0:

ð5Þ

Clearly k ¼ �d1; k ¼ �d3 are negative eigen-

values. If ce�d1s1 � d2, then all the eigenvalues of

(5) have negative real part. Therefore, the equi-

librium E0ð0; 0; 0Þ is locally asymptotically stable,

if ce�d1s1 � d2, that is, if

s1 �
1

d1
ln

c
d2

� �
¼ s10:

Thus, if s1 � s10, then the equilibrium E0ð0; 0; 0Þ
is locally asymptotically stable for all s2. More-

over, E0ð0; 0; 0Þ is unstable for all s1\s10,
because one of the eigenvalues of (5) has positive

real part.

(ii) The characteristic equation for E1ðP1;M1; 0Þ is
ðkþ d1ÞF1ðkÞF2ðkÞ ¼ 0; ð6Þ

where F1ðkÞ ¼ k� aP1 þ d3; F2ðkÞ ¼ k� ce�d1s1

e�ks1 þ d2 þ 2b1M1. Now d2 þ 2b1M1 � ce�d1s1

e�ks1 [ 0, if ðH1Þ holds. Further d3 � aP1 [ 0, if

ðH4Þ holds, where
ðH4Þ : aP1\d3:

Thus, if ðH1Þ and (H4) holds, than all the eigen values

of (6) have negative real parts and hence non-nega-

tive equilibrium E1ðP1;M1; 0Þ is locally asymptoti-

cally stable for all s2, otherwise it is unstable.
(iii) The characteristic equation of the Jacobian matrix

at the equilibrium point E�ðP�;M�; I�Þ can be

written as:

ðkþ AÞFðkÞ ¼ 0; ð7Þ

where

FðkÞ ¼ ðkþ b2I
�Þðkþ d1 þ ae�ks2 I�Þ þ a2I�P�e�ks2

and

A ¼ ce�d1s1ð2� e�ks1Þ � d2:

Here A[ 0 if ðH1Þ holds. From (7), we obtain that

k ¼ �A or FðkÞ ¼ 0. If FðkÞ ¼ 0, then we have

ðkþ b2I
�Þðkþ d1 þ ae�ks2 I�Þ þ a2I�P�e�ks2 ¼ 0:

ð8Þ

Separating real and imaginary parts of (8) after

substituting k ¼ nþ ix, we obtain

G1G2 � xH ¼� a2I�P�e�ns2cosxs2;

G1H þ xG2 ¼a2I�P�e�ns2sinxs2;

where

G1 ¼ nþ b2I
�;

G2 ¼ nþ d1 þ aI�e�ns2cosxs2;

H ¼ x� aI�e�ns2sinxs2:

Thus we have

ðG1G2Þ2 þ ðxHÞ2 þ ðG1HÞ2

þ ðxG2Þ2 ¼ ða2I�P�Þ2e�2ns2 :
ð9Þ

Now we assume that (H5): b2d1 [ a2P�. We have

to show that n is negative. If possible, suppose that
n� 0: We have

G1 ¼ nþ b2I
�;G2 ¼ nþ d1

þ aI�e�ns2cosxs2 [ nþ d1:

Therefore

ðG1G2Þ2 [ ða2I�P�Þ2e�2ns2 ;

which is a contradiction of (9). Therefore, n\0 if

ðH5Þ holds. Thus, each solution of (8) has negative
real part, if ðH5Þ holds. Therefore, the endemic

equilibrium E�ðP�;M�; I�Þ is locally asymptoti-

cally stable if ðH1Þ-ðH3Þ and (H5) holds for all s2:

h

Next, we will discuss the behavior of (1)-(3) taken all

possible cases of s1 and s2. From (8), we have

k2 þ A1kþ A2 þ ðB1kþ B2Þe�ks2 þ Ce�ks1 ¼ 0; ð10Þ

where

A1 ¼ d1 þ b2I
�;

A2 ¼ b2d1I
�;

B1 ¼ aI�;

B2 ¼ ab2I
�2 þ a2I�P�;

C ¼ 0:

Case I: If s2 ¼ 0, then we get

k2 þ ðA1 þ B1Þkþ ðA2 þ B2Þ ¼ 0: ð11Þ

In this case, all the roots of (11) have negative real parts

and therefore, the endemic equilibrium E�ðP�;M�; I�Þ is

locally asymptotically stable.

Case II: If s2 [ 0, then we get

k2 þ pkþ r þ ðskþ qÞe�ks2 ¼ 0; ð12Þ
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where

p ¼ d1 þ b2I
�;

r ¼ b2d1I
�;

s ¼ aI�;

q ¼ ab2I
�2 þ a2I�P�:

We have

qþ r ¼ ab2I
�2 þ a2I�P� þ b2d1I

� [ 0;

pþ s ¼ d1 þ b2I
� þ aI� [ 0;

s2 � p2 þ 2r ¼ �d21 � ðb22 � a2ÞI�2;
r2 � q2 ¼ ðb2d1I�Þ2 � ðab2I�2 þ a2I�P�Þ2:

We have s2 � p2 þ 2r\0; if (H6) holds and r2 � q2 [ 0; if

(H7) holds, where

ðH6Þ : ða2 � b22ÞI�2\d21;

ðH7Þ :
d3

a
\P�\

1

2a
ðd3 þ

b2d1
a

Þ:

Using Lemma 3, if ðH6Þ and ðH7Þ holds, then all the roots

of (1)-(3) have negative real parts for all s2 and hence

E�ðP�;M�; I�Þ is locally asymptotically stable.

Further r2 � q2\0; if (H8): P
� [ 1

2a ðd3 þ
b2d1
a Þ holds.

Using Lemma 3, if ðH8Þ holds, then the system (1)-(3)

has a pair of purely imaginary roots.

Put k ¼ iw in (12), we get

ðiwÞ2 þ pðiwÞ þ r þ ðiwsþ qÞe�iws2 ¼ 0:

Equating real and imaginary parts, we get

�w2 þ r þ sw sinws2 þ q cosws2 ¼ 0; ð13Þ

pwþ sw cosws2 � q sinws2 ¼ 0: ð14Þ

Solving (13) and (14), we get

sinws2 ¼
sw3 þ ðpq� rsÞw

s2w2 þ q2
; ð15Þ

cosws2 ¼
ðq� psÞw2 � qr

s2w2 þ q2
; ð16Þ

and

w4 þ ðp2 � 2r � s2Þw2 þ ðr2 � q2Þ ¼ 0: ð17Þ

We define

FðwÞ ¼ w4 þ ðp2 � 2r � s2Þw2 þ ðr2 � q2Þ ¼ 0:

Now, Fð0Þ ¼ ðr2 � q2Þ\0, if (H8) holds. By Descartes’

rule of sign, there is at least one positive root of FðwÞ ¼ 0.

Let w0 is the positive root of FðwÞ ¼ 0:

From (16), we get

sþ2k ¼
1

w0

cos�1 ðq� psÞw0
2 � qr

s2w0
2 þ q2

� �
þ 2kp

� �
;

where k ¼ 0; 1; 2; ::::
Now, differentiating (12) with respect to s2, we get

dk
ds2

¼ kðskþ qÞe�ks2

2kþ p� ðskþ qÞs2e�ks2 þ se�ks2
:

At k ¼ iw0 and s2 ¼ sþ20, we have

Re
dk
ds2

� ��1

¼ ðsw0pþ 2w0qÞcosw0s2 þ ðpq� 2sw2
0Þsinw0s2 þ s2w0

w0ðq2 þ s2w2
0Þ

:

ð18Þ

Simplifying (18), we have

Re
dk
ds2

� ��1
" #

s2¼sþ
20

6¼ 0;

for pq[ 2sw2
0, which is one of the sufficient condition.

Theorem 2 Let ðH1Þ-ðH3Þ holds. For the system (1)-(3),

we have

(i) If ðH6Þ and ðH7Þ holds, then the endemic equilib-

rium E�ðP�;M�; I�Þ is locally asymptotically

stable for all s2:
(ii) If ðH8Þ holds, then the endemic equilibrium

E�ðP�;M�; I�Þ is locally asymptotically stable for

all s2 2 ½0; sþ20Þ; and unstable when s2 � sþ20:

Sensitivity analysis

In this section, we perform the sensitivity analysis of

the endemic equilibrium with respect to model parame-

ters, for a particular set of parameters c ¼ 0:8; a ¼ 0:09;

b1 ¼ 0:2; b2 ¼ 0:3; d1 ¼ 0:05; d2 ¼ 0:01; d3 ¼ 0:01; s1 ¼
12:2 and s2 ¼ 7:23. The normalized sensitive indices of

the endemic equilibrium with respect to parameters are

shown in Table 1. From the Table 1, it is observed that c;
b2; d3 have a positive impact on the P� and the rest of the

parameters have a negative impact. Moreover c and a are

most sensitive parameter to P�, hence, the significant

change in P� is observed by small changes in these

parameters. Again c and b1 are most sensitive parameters

to both M� and I�.
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Numerical simulations

We perform the numerical simulations of the system (1)-

(3) keeping the parameters c ¼ 0:8, a ¼ 0:04, b1 ¼ 0:8,

b2 ¼ 0:3 as fixed and varying the parameters d1, d2 and d3.

We use initial population sizes as P0 ¼ 0:3; M0 ¼ 0:9 and

I0 ¼ 0:4.

The trivial equilibrium E0ð0; 0; 0Þ is locally asymptoti-

cally stable for the parameter values d1 ¼ 0:3, d2 ¼ 0:01

and d3 ¼ 0:09, when s1 ¼ 15� �s10 ¼ 14:6 and s2 ¼ 7:2

(see Fig. 1). For the same set of parametric values the

boundary equilibrium E1ðP1;M1; 0Þ is locally asymptoti-

cally stable when s1 ¼ 12:2\�s10 ¼ 14:6 and s2 ¼ 7:2 as

shown in Fig. 2. Further, the endemic equilibrium

E�ðP�;M�; I�Þ is locally asymptotically stable when s1 ¼
11:2\�s10 ¼ 13:86 and s2 ¼ 7:2 for parameter values

d1 ¼ 0:2, d2 ¼ 0:05 and d3 ¼ 0:01 (see Fig. 3). These

results show that the Theorem 1 is true.

Again, we take parameter values as d1 ¼ 0:05,

d2 ¼ 0:01, d3 ¼ 0:01 and s1 ¼ 12:2. The endemic equi-

librium E�ðP�;M�; I�Þ is stable when s2 ¼ 7:2\sþ20 ¼ 7:25

as shown in Fig. 4. Further, E�ðP�;M�; I�Þ is unstable and

Hopf bifurcation appears when s2 ¼ 7:35� sþ20 ¼ 7:25 as

shown in Fig. 5, which is in accordance with the results

stated in Theorem 2.

Table 1 The sensitivity indices cxiyj ¼
oxi
oyj

	 yj
xi
of the state variables of

the system (1)-(3) to the parameters yj for the parameter values c ¼
0:8; a ¼ 0:09; b1 ¼ 0:2;b2 ¼ 0:3; d1 ¼ 0:05; d2 ¼ 0:01; d3 ¼ 0:01;
s1 ¼ 12:2; s2 ¼ 7:2

Parameter ðyjÞ cP
�

yj
cM

�
yj

cI
�
yj

c 1.17394 1.02355 1.20326

a �0.829488 0 0.17477

b1 �0.58014 �1 �1.59463

b2 0.409629 0 0.41986

d1 �0.111654 �0.624364 �0.114443

d2 �0.0136606 �0.0235471 �0.0140018

d3 0.0102307 0 �0.0144893
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Fig. 1 E0 is stable for parameter values c ¼ 0:8; a ¼ 0:04; b1 ¼
0:8;b2 ¼ 0:3; d1 ¼ 0:3; d2 ¼ 0:01; d3 ¼ 0:09; s1 ¼ 15[ �s10 ¼ 14:6
and s2 ¼ 7:2
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Fig. 2 E1 is stable for parameter values c ¼ 0:8; a ¼ 0:04; b1 ¼
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Fig. 3 E� is stable for parameter values c ¼ 0:8; a ¼ 0:04; b1 ¼ 0:2;
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Conclusions

In this paper, an epidemic model for childhood disease

with maturation delay and latent period of infection is

proposed. The asymptotic stability of the model is inves-

tigated at all the feasible equilibrium states. The existence

of Hopf bifurcation at the endemic equilibrium state is

explored. The endemic equilibrium is locally asymptoti-

cally stable for all s2 2 ½0; sþ20Þ, and exhibits Hopf bifur-

cation, when the latent period (s2) is greater than or equal

to some critical value (sþ20) under specific conditions.

Finally, the normalized forward sensitivity indices are

calculated for state variables at endemic equilibrium with

respect to various parameters. Numerical simulations of the

system are performed with a particular set of parameters to

justify our analytic findings.
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