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Abstract The present study focuses on temperature

variations during the past 21 years (1990–2010) using data

obtained from San Joaquin River (Old River Station), to

calculate the rate of temperature variation. The rate of

temperature change (R) is calculated by adding up the

difference between each year’s mean temperature and that

of the previous years. According to our calculation R

equals to 0.0354 �C/year, which means that if the local

conditions would exist, we will have 3.54 �C temperature

rise within the next 100 years. Using the resource we cal-

culated mean temperature for the past 21 years, which was

equal to 17.12 �C, meaning that the mean temperature of

the year 2100 will be around 20.5 �C, which will be

incredibly high. We also made an ANN model (and ran it

using MATLAB) to regenerate the missing data. The

model is a feed-forward network with back propagation

neurons trained by the Levenberg–Marquardt algorithm,

with 4 layers containing 25 neurons. After making the

model and before using it, we tested the model with

existing data and compared the results that showed unex-

pected high correlation of 99 %.

Keywords Climate change � MATLAB � Artificial neural

networks � Modeling

Introduction

The subjects of ‘‘global warming’’ and ‘‘climate change’’

have become part of both the popular lexicon and the public

discourse. Applied environmental modeling has grown into a

popular solution for today’s environmental crises (Ehte-

shami et al. 1991; Ehteshami and Biglarijoo 2014; Yousefi

et al. 2015). Discussions of global warming often evoke

passionate responses and fierce debate between adherents to

different views of the threat posed (Mann 2009; Zwolsman

and Van Bokhoven 2007). There is a strong scientific con-

sensus that the global climate is changing and that human

activity contributes significantly (WMO 2013). It’s also

caused by increasing concentrations of greenhouse gases

produced by human activities such as the burning of fossil

fuels and deforestation. Today we can clearly see that the

average temperature of Earth’s atmosphere and oceans has

increased since the late nineteenth century and the temper-

ature rise is projected to continue. Since the early twentieth

century, Earth’s mean surface temperature has increased by

about 0.8 �C (1.4 �F), and about two-thirds of that increase

has occurred since 1980 (IPCC 2011). There are numerous

models that have been made to predict the temperature (and

its changes) in the next century. These models generate

various results that depend on sensitivity of the model to the

input parameters and also on the degree that human activities

increase the level of greenhouse gases. Doran and Zimmer-

man (2009) in the Proceedings of the National Academy of

Sciences of the United States reviewed publication and

citation data for 1372 climate researchers. He concluded that

97–98 % of the most active climate researchers support the

reality of human-caused climate change (Anderegga et al.

2010). Yet another survey reviewed articles published

between 1993 and 2003 with the keyword being the phrase

‘‘global climate change’’. It found that none of the 928
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articles identified rejected the fact that humans have caused

global warming. A 2009 survey by the American Geophys-

ical Union found that 82 % of the 3000 responding Earth

scientists, and 97.4 % of climate scientists, believe that

human activity contributes to climate change (Doran and

Zimmerman 2009).

There is no doubt that the primary cause of global

warming is the concentration of greenhouse gases that is

increasing and there are many scenarios for predicting the

amount of that increase. However, according to an average

scenario, carbon dioxide levels will increase by more than

double from their pre-industrial level of roughly 280 ppm

in the atmosphere to about 700 ppm. Such an increase in

greenhouse gas concentration would, in turn, lead to global

warming of between 2 and 4 �C, depending on the model

(Mann 2009). Climate change can have many negative

effects on the life of humans and the other creatures. For

example, climate change increases water resources stress in

some parts of the world where the runoff decreases,

including around the Mediterranean basin, in parts of

Europe, Central and Southern Americas, and Southern

Africa. In other water-stressed parts of the world, particu-

larly in Southern and Eastern Asia, climate change

increases in runoff, but this may not be very beneficial in

practice because the increase tends to come during the wet

season and the extra water may not be available during the

dry season (Arnell 2004).

In additional to impacts of climate change on the

quantity of water resources, surface water quality is also

affected by climate change (Delpla et al. 2009). According

to what we said, there is a serious need to know the exact

behavior of the climate. Even more than that, we must

know the future prospect of the Earth’s climate and tem-

perature (including with regard to oceans and atmosphere).

We must also analyze the related data and make

model(s) to better understanding the changing climate

behavior and finally (and in an ideal situation) control the

unwanted impacts of climate change (by removing their

causes). To monitor changes in the temperature, many

scientific works have been done every year. For example,

(Gutzler 2007), checked the temperature data for New

Mexico in the twentieth century (1900–2005), noting that

the total global temperature change in the twentieth century

was about 1 �F. According to some models for the 21st

century, the global rise in annual temperature has been

predicted at 3–7 �F. There are also representative charts

that show increasing temperature in New Mexico during

the present century. Some researchers have concentrated on

the impacts of global warming in the past and the future.

Other investigators, including (Arnell 2004), have studied

the subject form a different angle. He worked on the effect

of the population on water stress. He did not consider the

impact of climate changes in the final result as he thought

that in the absence of climate change, the future population

in water-stressed watersheds would depend on population

scenario. As a result, he concluded that by 2025, the pop-

ulation in these watersheds will range from 2.9 to 3.3 bil-

lion people. He also analyzed the data produced by

scenarios which were constructed using six climate models,

run with the SRES (Special Report On Emissions Scenar-

ios) to calculate changes in 30-year mean value of climate

change pertaining to 1961–1990 by the 2020s

(2010–2039), 2050s (2040–2069) and 2080s (2070–2099).

Finally he came up with the following conclusions. Firstly,

climate change increases water resources stress in some

watersheds, but decreases it in others. And secondly, the

estimated impact of climate change on global water

resources depends least on the rate of future emissions, and

most on the climate model that was used to estimate

changes in climate. The assumed future population also

plays a role. By the 2020s, 53–206 million people will

move into the water-stressed category, while between 374

and 1661 million people are projected to experience an

increase in water stress. Areas with an increase in water

resources stress include the watersheds around the

Mediterranean, in Central and Southern Africa, Europe, as

well as Central and Southern America. Areas with an

apparent decrease in water resources stress are concen-

trated in South and East Asia. Memzel and Matovelle

(2010) also worked on the current and future situation of

blue water availability, by reviewing its seven case

scenarios.

According to what we have said so far, analyzing tem-

perature data is necessary, So we try to find the most occur

rate of temperature changing per year (�C/year) would be

able to show how the climate changes. A problem which

probably happens when we analyze data is the loss of some

necessary data in the information that we have obtained

from various sources. If we just ignore the missing data, it

can cause errors in the precision of our results. So it is

better to reproduce the missing data one way or another. To

do this, we can use models that have been already made

[even by other researcher(s)]. However, even in this case,

the difference between conditions of the model project and

your project will lead to some errors. To obtain more

accurate results, we can make a model based on the

available data in order to estimate the missing data. Also,

to make extra confidence about the results, we can take

advantage of so many works that have been so far done on

climate change based on Artificial Neural Network (ANN)

model. Trigo and Palutikof (1999) proposed a non-linear

neural network model that was initialized using output

from general circulation model to build scenarios for daily

temperature changes in Coimbra, Portugal, both for the

present time (1970–1979) and the next decade

(2090–2099). Hilbert and Ostendorf (2001) used an
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artificial neural network coupled with regional GIS (geo-

graphic information system) to assess the potential impacts

of climate change on a complex landscape of tropical

forests. (Knutti et al. 2003) proposed a neural network-

based climate model substitute that increases the efficiency

of large climate model ensembles by at least an order of

magnitude. They used the observed surface warming dur-

ing the industrial period and estimates global ocean

warming as constraints for the ensemble. Elgaali and

Grasia (2004) investigated the possible effects of climate

change on surface water supplies used for irrigation in the

Arkansas River basin using ANN model. Dibike and

Coulibaly (2006) explained the application of temporal

neural networks to downscale the output of global climate

models (GCMs). ZeLin et al. (2010) presented a review-

paper which showed usage of ANN in various fields related

to the global warming. Of course, this was not a ‘modeling’

paper and our primary goal is to investigate changes in

temperature during the past 21 years (1990–2010) in San

Joaquin River basin in order to calculate the rate of tem-

perature change per year (�C/year) according to the tem-

perature data collected for these years. At first, we

calculated every day’s mean temperature to reduce the

complications of the problem. Then, we calculated the

mean temperature of each year followed by estimating the

difference between each year’s temperature and the pre-

vious years. Then, we divided the results by the difference

between those 2 years to get the rate of temperature change

(�C/year). At last, we summarized the calculated rates and

divided them by their number (210).

Methods and materials

A rise in surface water temperature has been observed

since the 1960s in Europe, North America and Asia

(0.2–2 �C), mainly due to atmospheric warming as a result

of increasing solar radiation (Bates et al. 2008). In Euro-

pean rivers Van Vliet and Zwolsman (2008) observed an

average increase in water temperature of around 2 �C in

Rhine and Meuse rivers after the severe drought of 2003.

Every year, many researchers have been carried out on the

issues of climate change and global warming, but because

of the importance of these issues, we must update our data

on the temperature changing behaviors, and these behav-

iors should be gradually changed in the course of time. In

this paper, we have checked 21-year data related to the San

Joaquin River’s Old Station, in the form of continuous time

series data. Our job was to check the temperature changes

continuously and analyze those changes in order to predict

future trends as much as possible. The climate is being

directly observed by thousands of weather stations; mea-

suring instruments are carried into the upper atmosphere by

balloons, kites, airplanes and rockets; merchant ships take

measurements of the atmosphere and the oceans; wind

profilers, radar systems and other specialized sensors are

used; a globally-coordinated fleet of Argo buoys is moni-

toring sea temperatures and currents; and remote sensing

satellites are measuring clouds, temperature, water vapor,

atmospheric chemistry, sea level, ice caps, forest cover,

and other global climate variables. High-speed telecom-

munication systems and the Internet distribute vast

amounts of data from these instruments to data processing

and research centers. These climate observations show a

clear warning signal that is greater than what can be

attributed to non-human causes (such as volcanoes) (WMO

2013). In this project, we checked more than 735,000 items

of temperature (T) (�C) data pertaining to 1990–2010 of the

San Joaquin River’s Old Station through continuous time

series data in the category of ‘‘TB95740’’ (http://

www.water.ca.gov\WaterDataLibraryContinuousTimeSeries-

Data.htm). They register T data every 15 min, 24 h a day.

So, we have 35,040 (365 9 24 9 4) items of T data for

every year and we checked for 21 years. Therefore, we

have a total of 735,840 (21 9 35,040) items of data to

check. But some data are missing (more than 45,000 data,

see Table 1). These means that more than 3 % of data was

missed, for example, in the year 2005, 17,750 items of data

were missed. Therefore, we must regenerate the missing

data to get reliable results. To regenerate these data, we

have used an ANN model to estimate the missing data. At

first, we converted the hourly data into daily data:

To have a better and more accurate ANN model, the

degree of relationship between input parameters and the

number of data items has the most powerful impact on the

precision of the model. Since we use data points on a daily

basis and there is very high variation in temperature

changes during a day, this issue reduces the strength of

Table 1 The number of missed

data for every year
Year 2010 2009 2008 2007 2006 2005 2004

Number of missed data 1 0 0 2 2 17,570 0

Year 2003 2002 2001 2000 1999 1998 1997

Number of missed data 0 875 1132 1025 6911 4848 0

Year 1996 1995 1994 1993 1992 1991 1990

Number of missed data 0 0 1921 0 0 2074 9161
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relationship among data sets. In addition, we must judge

temperature variations by using mean data and the mean

value of their variations too. In this way, we will be able to

use the mean value of daily data (Ti, j) to make a model and

evaluate the temperature variations. Therefore, we will

have:

Ti;j ¼
X96

k¼1

Ti;j;k

96
ð1Þ

Ti;j: Daily mean value of T in the j’th year and i’th day

(i ranges from 1 to 365 and j ranges from 1990 to 2010).

Ti;j;k: Data point of T in the j’th year and i’th day and the

time of k

As said before, some data is missing. Therefore, to

calculate the number and the addresses of Ti, j (s), we wrote

a visual basic micro program within the Excel software. In

this program, we considered a condition that if the data

pertaining to a day which is missing; we should suppose

the whole data for that day to be missing. On the whole, we

have 7665 Ti, j (s), but the number of the missing data

stands at 493, and we need them to increase the accuracy of

our model. The following section explains how to make an

ANN model to estimate the missing data.

Model development

The Neural network method is a modern Technique in the

field of engineering that simulates human brain working

system. Data recording in human brain occurs through

electrochemical massages and brain works as a data pro-

cessor with parallel structure. It is made up of 1011 related

neurons with 1016 connections (Menhaj 2008). The power

of memory and senses depend on the dynamic, complicated

and constantly changing neuron relations. The intelligence

and ability of learning by humans is made possible through

relations among neurons. A neuron is a nonlinear compo-

nent of a neural network, serving as a sophisticated non-

linear system with a huge number of nonlinear relations.

When a neural network is installed on hardware, the cells

that are positioned on a level (layer) can answer simulta-

neously to all inputs on that level. This peculiarity is the

cause of increased processing rate. Each cell operates

independently and the total behavior of the network comes

from local behaviors of the cells. This property renders

local errors ineffective on the output results. In other word,

cells correct local errors of the other cells. The neural

networks have the ability of dynamic learning and also

have parallel structure, so these networks are suitable for

controlling problems. In particular, they are used for

complicated systems that are impossible or hard to be

simulated.

MLF (multi-layer feed-forward) networks trained with

back-propagation algorithm are among the most popular

kinds of networks (Ehteshami et al. 2016; Salami and

Ehteshami 2015, 2016; Tamás 2010; Daniel et al. 1997;

Carpenter 1989). Neuron is the smallest data processing

unit that is the base of neural networks operations. You can

see a single input neuron in Fig. 1, a and p are the input and

the output signals are scalars (vectors). The effect of P on

A is determined by the w scalar (matrix), (Carpenter 1989).

Product of this summarization is n, which would be the

pure input for transfer (activation) function (F), (Chitsazan

et al. 2013; Steyl 2009) and so the output of neuron would

be calculated as:

a ¼ f wp þ bð Þ ð2Þ

The parameters b and w are adjustable and the activation

function can be also chosen by the designer of the network.

Training means that b and w would change many times in a

direction to get closer to a desired relation between inputs

and outputs. The activation function (f) can be linear or

non-linear. Function (f) would be chosen according to the

defined problem. A few sample functions are shown in

Fig. 2.

A neuron normally has more than one input. Figure 3

shows a neuron that has a number of R inputs. The input
Fig. 1 A simple neuron model

Fig. 2 Transfer functions
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vector is shown by p, while pi (i = 1, 2… R) Values are

the elements of this vector. Wis is compounding the weight

matrix. All of the elements of p vector multiply in the

related element of w matrix to form the bios (b), (Abraham

2005; Menhaj 2008).

The input (n) calculated as:

n ¼
XR

i¼1

piw1;i þ b ¼ w½ � � p þ b ð3Þ

and:

p ¼ p1; p2; . . .; pR½ �T; w ¼ w1;1; . . .;w1;R

� �
ð4Þ

And the form of the output will be like below:

a ¼ f w � p þ bð Þ ð5Þ

A single layer network with S neurons and R inputs is

shown in Fig. 4.

Learning rules

We define the learning rule as a process for correcting

(improving) weights and biases. We have two kinds of

learning rules (functions): supervised and unsupervised. In

the supervised mode, e.g. perceptron, we compare the

network output with learning examples (which is related to

the input data). Unsupervised learning method is being

used mainly for division problems.

Feed-forward networks

Architecture of the network: A basic architecture contains

three types of layers: input layer, hidden layer and output

layer. The input layer is responsible for introducing input

data, and hidden layer(s) is a place for performing pro-

cesses. The output layer produces the results (Rounds

2002; Fausett 1994; Dowla and Rogers 1995; Gurney 1999;

Haykin 1994; Patterson 1996). In Fig. 5, a five-layer feed

forward network with three hidden layers is demonstrated.

Each layer can contain different numbers of neurons.

In the feed-forward networks data stream signal always

goes straight forward, from the input side to the output

site. The process can be done in many units (i.e., layers)

(Chitsazan et al. 2013). And we don’t have a return data

stream here. For training by constant stream of data,

network changes weights and biases in each step and

compares the output layer with answers (supervised

mode). In the next step of training, weights and biases are

changed to minimize the error. You would see a two-layer

(tansig/pureline) network in Fig. 6. This network can be

used for estimating any function with any number of

rupture points.

Fig. 3 A neuron with R inputs

Fig. 4 S neuron with R inputs

Fig. 5 A network with five

layers

Fig. 6 A three-layer feed-

forward network
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Results and discussion

To start the calculations, we can use a two-layer model.

Then, we calibrate weight and bias matrixes (by guessing)

as follows according to (Menhaj 2008; Syozil et al. 1997).

To reduce the error and have the required precision, a is the

learning rate (a[ 0) and the number of each step could be

one:

w
ðlþ1Þ
i;j ¼ w

ðlÞ
i;j � a

oeðw; bÞ
ow

ðlÞ
i;j

ð6Þ

b
ðlþ1Þ
i;j ¼ b

ðlÞ
i;j � a

oeðw; bÞ
ob

ðlÞ
i;j

ð7Þ

oeðw; bÞ
ow

ðlÞ
i:j

¼ 1

m

Xm

i¼1

o

ow
ðlÞ
i:j

e w; b; xi; yðiÞ
� �" #

þ awðlÞ
i;j ð8Þ

oeðw; bÞ
ob

ðlÞ
i;j

¼ 1

m

Xm

i¼1

o

ob
ðlÞ
i;j

e w; b; xi; yðiÞ
� �" #

þ abðlÞi;j ð9Þ

The scale of precision (in supervised mode) will be the

quantity of mean square error (MSE) where ti is the answer

(matrix) and ai (matrix) is the output of the network:

mse ¼ 1

m

Xm

i¼1

e2 ¼ 1

m

X

i¼1

ti � aið Þ2 ð10Þ

MATLAB is used for calculations (Chitsazan et al.

2013; Chu et al. 2013). We found optimum conditions for

designing the model, which are shown in Table 2.

We took two major parameters, namely the year (i) and

the number of days (in that year) (j), as input data and the

Ti, j (s) as output data. By doing this, we can input the

address (es) of the missed data in the model and the model

will give us the missed Ti, j (s). After making the model,

we choose one data series from each year to test the model.

The model’s results and the real data have been shown in

Table 3 and Fig. 7, which can also indicate the efficiency

and accuracy of the model:

The results produced by the model are very close to the

real data (Fig. 7) and the mean error is 0.02, which is very

low and makes our model seem very reliable. Our model is

very precise, but in some years, like 2005, more than half

of the needed data is missing and the other half (or exist-

ing) data shows abnormal changes, which directly impact

the model’s results. But being smart enables this model to

maintain the mean value of all the data permanently, as is

evident by very small amount of error that it makes. So, we

can trust the model results and calculate the amount and the

rate of temperature changes with the help of the data

generated by the model. In another case, to make sure

about its precision for the years 1999, 1998, 1990 and

2005, which account for the highest amount of missed data,

we removed them from the data schedule and carried out

the calculations without them. After making sure about the

model’s precision, we can regenerate the missed Ti, j (s) by

using the model and to do that, we enter missed data

addresses into the model. After regenerating the missing

data, we placed every set of data in its right place (using a

Table 2 Design parameters of

optimum NETWORK
Number of layers 4 A 0.001

Number of neurons in each layer 25, 25, 25(1) a-dec 0.1

Training algorithm LM a-inc 10

Transfer function Tansign a-max l010

Performance function Mse epoches 1000

Adaption learning function Learngdm(2) Goal(Error) 0

Table 3 The model results and pilot data

Year Day Pilot Tij Estimated Tij Eror

2010 11 18.06 18.22 -0.15

2009 254 21.80 21.87 -0.08

2008 114 8.98 8.42 0.56

2007 102 8.31 7.50 0.81

2006 91 11.53 11.35 0.17

2005 32 6.36 6.57 -0.22

2004 300 26.84 26.95 -0.11

2003 256 21.92 22.41 -0.49

2002 271 24.76 25.12 -0.36

2001 69 11.95 11.82 0.13

2000 53 15.94 16.18 -0.23

1999 321 18.40 18.36 0.04

1998 68 11.30 11.40 -0.09

1997 110 8.08 8.04 0.04

1996 307 26.21 25.44 0.77

1995 85 8.20 8.71 -0.51

1994 105 7.22 8.18 -0.96

1993 116 10.72 9.88 0.84

1992 169 15.46 15.84 -0.38

1991 62 7.35 7.03 0.32

1990 153 10.23 9.83 0.40
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micro program within the Excel environment). The mean

temperature for every year has been shown in the following

Table 4 and Fig. 8.

Now we have all the data we need. There are many ways

to calculate the rate (R) of temperature change per year

(�C/year). Table 5 shows the simulation results. However,

in our opinion, the best way is to calculate the difference

between every year’s mean temperature and other years.

Then, we must divide the result (value) to the time interval

that separates those 2 years according to the following

formula:

Ri;j ¼
Ti � Tj

i� j
; i[ j; 1990� i; j� 2010 ð11Þ

Ti: The mean temperature in year i (�C), Ri;j: The rate of

variation in the i’th year’s temperature compared to the j’th

year’s temperature (�C/year).

Now we can summarize all the Ri, j (s) and then divide

the result to the number of existing Ri, j (s):

R ¼

P2010

i¼1990

P2010

j¼1990
Ri;j

n
; i[ j ð12Þ

R: Rate of the temperature change according to 1990–

2010 data n: Number of existing conditions for i[ j(Ri, j

(S)) which equals to 210. And we will have R = 0.0354

(�C/year).

Conclusion

According to the current research study and also the values

given in the Table 5, R will be equal to 0.0354 (�C/year),

which means that if the existing conditions continue in the

way they did during the past 20 years, we will have a

temperature rise of about 3.54 �C during the next

100 years. There is no need to explain that this amount of

temperature rise is very high and may pose a serious threat

to the life of humans and other creatures on earth. IPCC

presented a model that estimated temperature changes

during the current century will be:

– 2.6–4.6 �C for low predictions, and

– 3.7–6.5 �C for high predictions (Meehl and Stocker

2007).

Our result also matches the IPCC model. A more

important issue is that the rate of temperature changes in

the San Joaquin River basin is higher than the global value.

In addition, we observed that how ANN models can be

used for accurate regeneration of the missing data. Our

Fig. 7 Pilot and estimated data

Table 4 The mean temperature for every year

Year 2010 2009 2008 2007 2006 2005 2004

Tmi 16.76 18.00 17.62 17.50 16.48 19.19 17.80

Year 2003 2002 2001 2000 1999 1998 1997

Tmi 18.16 18.04 17.50 16.52 13.20 15.99 17.47

Year 1996 1995 1994 1993 1992 1991 1990

Tmi 17.29 16.14 17.55 17.58 18.43 16.77 15.57

Fig. 8 The mean temperature

for every year
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research highlights is as follows: (1) we represent a new

formula (number 11) to show the average rating of tem-

perature changing. (2) we use an ANN model to regenerate

missing data. And (3) it is the first time that the temperature

study was performed in the current area.
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