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Abstract The application of artificial neural network

(ANN) has gained significant interest while modeling

various hydrologic processes. The main reason is the ANN

models have produced promising results without the

detailed information of watershed characteristics as

required in physics based models. Still, the uncertainty in

ANN models is a major issue that cannot be ignored. There

could be different forms to represent model uncertainty, in

which quantification of prediction interval for the model

output has been mostly reported. In this paper, three dif-

ferent methods [i.e. Bootstrap method, Bayesian Approach

and Prediction Interval (PI) method] were employed for

quantifying the prediction interval in ANN models. The

modeling procedure presented in this paper, is illustrated

through river flow forecasting using the data collected from

Kolar basin, India. The prediction interval was quantified

using the measures such as percentage of coverage and

average width. The comparison between these methods

indicated that PI method has resulted in relatively less

prediction and parameter uncertainty, besides the improved

model performance. In addition, the PI method produced

accurate prediction of hydrograph peak, which is a general

concern in ANN models.

Keywords Artificial neural network � Bayesian �
Bootstrap � Prediction interval � Uncertainty

Introduction

Hydrologic modeling and simulation techniques are pow-

erful tools for conceptualizing the hydrologic processes.

The model output is mainly used for assessing the influ-

ence/impact on water resources systems and for decision

making. The hydrologic models in general are classified

into theory driven and data driven models. The advantage

of using theory driven models lies in representing the

system completely or partially with physics based equa-

tions. In contrast, the data driven models do not consider

the underlying physics of the system. Hence, they model

the hydrologic processes usually with historically observed

time series data. Nevertheless, the results of data-driven

models have been proved to be promising and comparable

with theory-driven models. The major reasons can be

attributed to robustness and non-linear approximation of

data driven models, which has a flexibility to bring the

functional relationship among hydrologic variables. In this

context, the ANN based data driven models have gained

significant interest among hydrologists (Hsu et al. 1995;

Thirumalaiah and Deo 2000; Sharma et al. 2015). It may be

noted that the main objective of majority of earlier studies

pertained to train the ANN model for the point predic-

tion/forecasting of variables of interest. However, the point

prediction often fails to explain the inherent variability of

the system. Therefore, it is hard to trust the reliability of

ANN models. In addition, some of the other reasons could

be (1) the stochastic nature of ANN models do not produce

identical results (Elshorbagy et al. 2010a, b), (2) difficulty

in assigning the confidence interval to the output (Shrestha

and Solomatine 2006) and (3) lack of transparency

(Abrahart et al. 2010). In general, the variability/uncer-

tainty associated with hydrologic model prediction is

mainly influenced by the measurement error in model input
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and output variables, model parameters and the model

structure (Schoups and Vrugt 2010). The benefits of

uncertainty quantification in hydrologic models not only

help in selecting the appropriate model, but it also gives an

indication of best and worst scenarios, weak and strong

points of modeling (Srivastav et al. 2007).

Numerous methods have been reported in literature for

quantifying the uncertainty in hydrologic models. In gen-

eral, the methods are classified (Shrestha and Solomatine

2006) into (1) analytical methods, (2) approximation

methods, (3) simulation and sampling based methods, (4)

Bayesian methods, (5) methods based on analysis of model

errors, (6) fuzzy theory based methods. The assumption

and difficulty of applying these methods require the

information of probability distribution of parameters, sta-

tistical information of normality and homoscedasticity of

residuals, knowledge of membership functions.

The quantification of uncertainty in ANN models is

computationally a challenging task, possibly due to parallel

computing architecture and large degrees of freedom exist

in their development. Therefore, currently employed

uncertainty analysis methods in physics and conceptual

models cannot be applied directly to ANN models without

suitable modifications. Still, different methods for quanti-

fying the uncertainty of ANN models have been reported

such as ensemble based approach (Boucher et al. 2010),

Bayesian approach (Zhang et al. 2009), bootstrap approach

(Srivastav et al. 2007), heuristic method (Han et al. 2007),

fuzzy based approach (Alvisi and Franchini 2011). Despite

various methods to quantify uncertainty of neural network

based hydrologic model, each method has its own merits

and demerits while representing the uncertainty.

In this paper, comparisons between three different

uncertainty methods applied in ANN models have been

investigated. The methods include (1) Bootstrap method,

(2) Bayesian approach and (3) Prediction Interval (PI)

method. The rationale in selecting these methods is that

they use different mathematical formulation, principle and

assumption. It is demonstrated through river flow forecast

models using the data collected from Kolar basin, India.

The uncertainty in ANN models was assessed quantita-

tively using the indices called average width (AW) of

prediction interval and percentage of coverage (POC).

Based on the estimate, the effective method was identified

which produce narrow prediction interval, which also

includes more number of observed values within the pre-

diction interval of ANN model output. In addition, the

qualitative comparison was also carried out based on (1)

the difficulty of implementation, (2) computational effi-

ciency, (3) fulfilment of statistical and probabilistic

assumption, (4) parameter convergence and (5) meaningful

quantification and accuracy in predicting the peak flows.

Methodology

An ANN is a mathematical tool inspired by biological

neurons. It can be characterized as massively parallel

connections of neurons called nodes arranged in a layer.

The typical ANN architecture has input, hidden and output

layer. The input and output layer is problem dependent

where as the hidden layer is responsible for bringing suit-

able relationship between the inputs and outputs. There

could be one or several hidden layers depend on the

complexity of the problem. The connections are linked

through weights and biases, which are numerical values

estimated from training/calibration of ANN models (i.e.

parameters of the ANN). More details about the function-

ing of ANN are available in various literatures and are not

presented herein for brevity. In this section, the methods

employed for carrying out uncertainty analysis is explained

as follows.

In addition to that, a brief description is presented for the

ANN model development that includes input determina-

tion, data division and identification of ANN architecture.

It may be noted that this study considers only a parameter

uncertainty as a source of uncertainty while estimating the

model prediction interval; hence other sources are not

included in the analysis. However, other sources can also

be included, which is in general computationally intensive

(Zhang et al. 2011). Figure 1 shows the flowchart describ-

ing the overall methodology.

Bootstrap method

It has been emphasized that bootstrap is a simple method

to quantify the parameter and prediction uncertainty of

neural network (Srivastav et al. 2007). The advantage of

using the method does not require the assumption of

probability distribution of parameters or complex deriva-

tives of non-linear function. The quantification of uncer-

tainty is carried out training independent ANN models

through sampling subset of input–output patterns with

replacement (Srivastav et al. 2007) from the wholedata

set. Suppose, if ‘B’ such random samples are boot-

strapped each time from total available dataset, the simple

arithmetic average of prediction ŷi can be considered as

model output which corresponds to the ith input data

point ‘x’.

ŷi ¼
1

B

XB

b¼1

f ðxi; pbÞ ð1Þ

where pb denotes the parameter obtained from bth boot-

strap sample and f denotes the functional form of ANN

model.
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Bayesian approach

The traditional learning of ANN employs error mini-

mization function which attempts to find a set of deter-

ministically optimized weights. In contrast, the Bayesian

learning involves training the neural network for the

distribution of weights. This is carried out using Bayes’

theorem which optimizes weights (i.e. posterior distri-

bution) from the assumed prior distribution. The poste-

rior distribution is then used to evaluate the predictive

distribution of network outputs. According to Bayes’

rule, the posterior probability distribution of parameters

of ANN model ‘M’ given the input–output pattern (X, Y)

is,

pðhjX; Y ;MÞ ¼ pðX; Yjh;MÞpðhj;MÞ
pðX; Y jMÞ ð2Þ

where pðX; Y jMÞ is a normalization factor which ensures

the total probability is one. M denotes the model with

specified connection weights for selected network

architecture.

pðX; Y jh;MÞ represents likelihood of the parameter h, it
is assumed that the model residuals follow Gaussian dis-

tribution and this can be written as,

Fig. 1 Flow chart describing

methodology
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pðX; Y jh;MÞ1 exp � bjY � f ðX; hÞj2

2

 !
ð3Þ

pðhj;MÞ is the prior probability distribution of parameter h.
This is assumed to follow Gaussian distribution and it is

written as,

PðwÞ1 exp � ajwj2

2

 !
ð4Þ

where a, b are called hyper parameters of distribution

which follows Inverse-gamma distribution. These values

are updated using Bayes’s theorem given the input–output

patterns. The model prediction is integration of posterior

distribution of weight vectors given the data and is repre-

sented as

E½Ynþ1� ¼
Z

f ðXnþ1; hÞpðhjðX; YÞÞdh ð5Þ

Solving the above integral Eq. (5) analytically is compu-

tationally a challenging task. Therefore, it requires suit-

able sampling techniques to numerically solve. This study

used Marcov Chain Monte Carlo (MCMC) algorithm to

sample the parameters through initial and actual sampling

phase (Neal 1996). During initial sampling phase, only the

parameters of ANN were updated, however the hyper

parameters were fixed at certain values. This prevents

taking biased values of hyper parameter before ANN

parameter reaches reasonable values. Once these starting

values are fixed, actual sampling phase determines the

values of hyper parameters. This progressively changes the

shape of distribution and leads to posterior convergence of

ANN parameters. In such way, many combinations of

finally converged parameters from posterior distribution

were stored and that were used to predict the variable of

interest for the given input with quantified prediction

interval.

Prediction interval (PI) method

Since neural network calibrates its parameters based on

parallel computing, quantification of uncertainty along with

calibration is a difficult task, plausibly due to the com-

plexity in computations. Therefore the quantification of

uncertainty is generally carried out after the model cali-

bration. However in this method, the prediction interval of

the ANN model outputs was constructed during calibration

itself with a consideration of generating ensemble of pre-

dictions (Kasiviswanathan et al. 2013). A two stage opti-

mization procedure is envisaged for constructing the

prediction interval of ANN model outputs. During first

stage of optimization, the optimal weights of an ANN were

obtained. In the second stage, optimal variability of these

weights were identified that help generate ensembles with

minimum residual variance for the ensemble mean, while

ensuring a maximum of the measured data to fall within the

estimated prediction interval, whose width also is mini-

mized simultaneously. A genetic algorithm based opti-

mization method was applied to generate the desired

solution during stage I and II (Goldberg 1989). In which,

the number of iteration was fixed as 1000.

In theory, if the width of prediction band is wider, it

covers most of the observed values. However, in order to

include more observed values in the prediction band,

compromising on the width of the prediction band is not

desirable. Since these measures are conflicting, a desired

solution is to have maximum coverage with a narrow

prediction band. Therefore, the second stage optimization

is formulated as a multi-objective optimization problem

that considers both these measures of uncertainty. The two

uncertainty indices i.e. percentage of coverage (POC) and

average width (AW) are defined as follows.

POC ¼ 1

n

Xn

i¼1

ci

 !
� 100 ð6Þ

AW ¼ 1

n

Xn

i¼1

ŷUi � ŷLi
� �

ð7Þ

where n is the total number of patterns used for con-

structing the prediction interval; ŷUi and ŷLi are the upper

and lower bound estimation of the ith pattern; ci = 1 if the

observed values of target fall in the prediction band

ŷUi ; ŷLi
� �

, otherwise ci = 0. In addition to that, the mean

square error was used to preserve the shape of the hydro-

graph as well better convergence.

Suppose, if K individual networks derived, and ith pat-

tern has a predicted value ŷki obtained from the kth network

(k = 1, 2,…K) and yo is the observed flow value. The

ensemble average is considered to estimate the mean

square error with observed values and it is defined as:

MSE ¼ 1

n

Xn

i¼1

yoi �
1

K

XK

k¼1

ŷki

" #
i ¼ 1; 2; . . .. . .n ð8Þ

Model development

It can be seen from Fig. 1 that the prediction interval

method quantifies the uncertainty during calibration of

ANN, where as other two method estimates after the cal-

ibration. The initial step was to determine the significant

input variables for the ANN modeling (Sudheer et al.

2002). Generally some degree of a priori knowledge is

required to determine the initial set of candidate inputs

(e.g. Campolo et al. 1999; Thirumalaiah and Deo 2000).
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However, the relationship between the variables is not

clearly known a priori, and hence often an analytical

technique, such as cross-correlation, is employed (e.g.

Sajikumar and Thandaveswara 1999; Sudheer et al. 2002).

The major disadvantage associated with using cross-cor-

relation is that it is only able to detect linear dependence

between two variables, while the modeled relationship may

be highly nonlinear. Nonetheless, the cross-correlation

methods represent the most popular analytical techniques

for selecting appropriate inputs.

The following inputs were identified and patterns were

created based on the methodology suggested by Sudheer

et al. (2002): [R(t-9), R(t-8), R(t-7), Q(t-2), Q(t-1)], where

R(t) represents the rainfall, Q(t) represents the runoff at

time period ‘t’. The output of the network was considered

as Q(t). It may be noted that the present study considers

one step lead forecast for demonstrating the potential of

methods used for quantifying the prediction interval.

However, one can extend for the long lead time forecast in

order to analyze the uncertainty in models. The short lead

forecast should be accurate with less uncertainty and

mainly used for operating the hydraulic structures under

various flooding conditions. A total of 6525 patterns (in-

put–output pairs) were created from the available data of

three years for the study. Further, the data was split into

training (5500 sets) and validation (1025 sets) data sets for

the analysis. A single hidden layer was considered based on

various research studies conducted on this basin (Nayak

et al. 2005; Chetan and Sudheer 2006). As mentioned, the

number of hidden neurons in the network, which is

responsible for capturing the dynamic and complex rela-

tionship between various input and output variables, was

identified by various trials. The trial and error procedure

started with two hidden neurons initially, and the number

of hidden neurons was increased up to 10 with a step size

of 1 in each trial. The optimal number of hidden neurons

was found to be 3 after trial and error. The ANN network

structure used in this study is shown in Fig. 2. The fol-

lowing nomenclature is used to represent the links: for the

connection between input nodes and hidden nodes, the link

connecting I1 (input 1) to H1 (hidden node 1) is WI1H1, I1
to H2 is WI1H2, I1 to H3 is WI1H3 and so on; links con-

necting hidden nodes to the output node are designated as

WH1O1 (H1 to O1), WH2O1 (H2 to O1), and WH3O1 (H3 to

O1); the bias connection are represented as BH1 (at H1),

BO1 (at O1).

A sigmoid function was used as the activation function

in the hidden layer and linear function in output layer. As

the sigmoid function was used in the model, the input–

output variables have been scaled appropriately to fall

within the function limits using the range of the data. The

training of the ANN was carried out using genetic algo-

rithm. For each set of hidden neurons, the network was

trained in batch mode (offline learning) to minimize the

mean square error at the output layer. In order to check

any over-fitting during training, a cross validation was

performed by keeping track of the efficiency of the fitted

model. The training was stopped when there was no

significant improvement in the model efficiency, and the

model was then tested for its generalization properties.

The parsimonious structure that resulted in minimum

error and maximum efficiency during training as well as

validation was selected as the final form of the ANN

model.

The total number of ensemble of simulation for all the

methods was fixed as 100 as suggested by (Tiwari and

Adamowski 2013) so as to maintain the uniformity while

comparing the model performance and uncertainty. In the

case of bootstrap method, 4500 patterns were randomly

bootstrapped out of 5500 patterns available for training to

create ensemble of simulation. A total of 100 sets of

parameter were obtained through bootstrap sampling,

which leads to 100 ensemble of simulation. The ensemble

of simulation was then used to establish prediction interval

around the observed value and hence the uncertainty was

estimated using the measures POC and AW (Fig. 1). In the

case of Bayesian approach, the parameters of ANN were

optimized in the form of probability distribution function

(pdf). The prior pdf of parameters was assumed to be

uniform distribution and the samples of parameters were

generated to train ANN model. The distribution was then

updated using likelihood values of model under Bayes

theorem. The Markov chain Monte Carlo algorithm was

used to generate parameter samples repeatedly until it

converges. Through this procedure, the ensemble of

R(t-9)

R(t-8)

R(t-7)

Q(t-2)

Q(t-1)

Q(t)

Fig. 2 The final ANN architecture identified for Kolar Basin
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simulation was made which leads to predictive uncertainty

and which was quantified using POC and AW (Fig. 1).

In the case of prediction interval method, the first stage

optimization helps in identifying optimal set of determin-

istic parameters using Genetic algorithm. During the sec-

ond stage, the optimal weights obtained during Stage I

were perturbed to generate ensemble of simulation. As

mentioned, the multi-objective function is formulated with

an objective of generating ensemble of simulation which

has less uncertainty along with accurate prediction (Fig. 1).

Study area and data used

The presented method is demonstrated through a case study

of Indian Basin for flood forecasting. Hourly rainfall and

runoff data is collected during monsoon season (July,

August, and September) for 3 years (1987–1989). Note that

areal average values of rainfall data for three rain gauge

stations have been used in the study. The basin has a

complex topography which makes the non-linear response

of hydrology processes, hence suitable for demonstrating

the presented methods. Some of the previous studies have

been reported for developing various modeling procedures

using the data from this basin (Nayak et al. 2005; Chetan

and Sudheer 2006; Srivastav et al. 2007; Kasiviswanathan

et al. 2013).

The Kolar River is a tributary of the river Narmada that

drains an area about 1350 km2 before its confluence with

Narmada near Neelkant. An index map of the watersheds is

presented in Fig. 3. In the present study the catchment area

up to the Satrana gauging site is considered, which con-

stitutes an area of 903.87 km2. The 75.3 km long river

course lies between north latitude 22�090–23�170 and east

longitude 77�010–77�290.

Results and discussion

Evaluation of model performance

The performance of the ANN model developed using dif-

ferent methods was evaluated with the statistical measures

such as such as Correlation Coefficient (CC), Nash–Sut-

cliffe efficiency (NSE), Root mean square error (RMSE)

and Mean biased error (MBE). The summary statistics of

model performance is presented in Table 1. It may be

noted that listed performance indices values were estimated

for the ensemble mean generated from 100 simulations of

respective methods.

It can be seen from Table 1 that the bootstrap method

produced high amount of RMSE and MBE when com-

pared to the other two methods. This indicates an infe-

rior performance of bootstrap method. The reason for

such poor performance may be attributed to random

sampling of input–output patterns used for training

without maintaining the similar statistical characteristics

between the bootstrapped samples. The Bayesian and PI

Fig. 3 Map of the study area

(Kolar Basin)
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method produced a comparable performance during

calibration and validation periods. Further, the values of

CC and NSE during calibration and validation did not

show any significant change, which supports the con-

sistent performance of these methods. Consequently, the

Bayesian method has an NSE of 97.04 % in calibration

and 98.27 % in validation; the PI method has NSE of

97.13 % in calibration and 98.64 % in validation. The

positive values of MBE in calibration and validation

shows a consistent underestimation of model in the case

of Bootstrap and Bayesian approach. However, the PI

method produced a negative value of MBE in validation,

which shows slight over estimation of model. Overall,

the ensemble mean obtained through PI method closely

matches the observed values with comparable perfor-

mance than other two methods.

Parameter uncertainty

In this section, the parameter uncertainty estimated is

compared between the methods. It is known that stan-

dard deviation is a statistical measure which can be used

for assessing the variability or amount of uncertainty of

the parameters. The standard deviation of each parame-

ter of ANN model developed through different methods

is presented in Table 2. It was found that the parameter

uncertainty in Bootstrap method shows considerably

high variability than other two methods. This might be

due to model bias towards selection of patterns for

training.

Further, it is clear that except few, most of the

parameters in PI method have less values of standard

deviation, which indicates minimum uncertainty as

compared to other methods. Figure 4 illustrates the range

of ANN parameters estimated using different methods.

Overall, the results indicate that the bootstrap method

has consistently high variability and other two methods

have low variability (Fig. 4). The reason for less vari-

ability of parameter in PI method could be the objective

function formulated in such way that tries to minimize

the uncertainty through the best possible combination of

weights and biases.

Prediction uncertainty

The prediction uncertainty of each method estimated in terms

of AW and POC is presented in Table 3. It may be noted that

the presented results correspond to validation data only,

however a consistent performancewas obtained in calibration.

In order to assess the uncertainty on different magnitude of

flow, the flow values were statistically categorized as low,

medium and high (Nayak et al. 2005). Out of 1025 patterns in

validation, low flow values contain 843 patterns and 167, 15

patterns fall in medium, high flow, respectively. A better

model will have less AW with more number of observed

Table 1 Comparison of model performance by different method

Category Calibration Validation

Statistical indices CC NSE (%) RMSE (m3/s) MBE (m3/s) CC NSE (%) RMSE (m3/s) MBE (m3/s)

Bootstrap method 0.96 92.62 50.64 5.77 0.96 91.00 56.64 3.05

Bayesian method 0.99 97.04 32.02 0.98 0.99 98.27 24.78 0.79

Prediction interval method 0.99 97.13 31.55 0.33 0.99 98.64 23.04 -0.83

Table 2 Standard deviation of ANNs’ 100 parameter sets obtained

through different methods

Parameter Bootstrap Bayesian PI

WI1H1 0.8434 0.0205 0.0015

WI1H2 0.7735 0.0549 0.0013

WI1H3 0.6531 0.0812 0.0061

WI2H1 0.8288 0.0203 0.0454

WI2H2 0.6895 0.0540 0.0026

WI2H3 0.8573 0.0432 0.0279

WI3H1 0.9242 0.0218 0.0423

WI3H2 0.6771 0.0568 0.0012

WI3H3 0.8016 0.1816 0.0194

WI4H1 1.0415 0.1265 0.1584

WI4H2 0.8423 0.2097 0.0136

WI4H3 0.8714 0.3908 0.2870

WI5H1 1.0852 0.0972 0.5259

WI5H2 0.9529 0.2443 0.1280

WI5H3 0.9542 0.4549 0.2543

BH1 1.4880 0.0332 0.0131

BH2 1.4265 0.0413 0.1441

BH3 1.4175 0.2657 0.2550

WH1O1 0.6843 0.1073 0.0715

WH2O1 0.7063 0.0585 0.0152

WH3O1 0.7425 0.1507 0.4846

BO1 0.5628 0.1578 0.0117

The nomenclature of the parameter is explained in the text

The parameter with less uncertainty is denoted as bold
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Fig. 4 Parameter uncertainty

quantified from the presented

methods

Table 3 Comparison of predictive uncertainty by different method

Category Complete flow Series Low flow (x\l) Medium flow (l B x B ? 2r) High flow (x[l ? 2r)

No of patterns 1025 843 167 15

Statistical indices AW (m3/s) POC (%) AW (m3/s) POC (%) AW (m3/s) POC (%) AW (m3/s) POC (%)

Bootstrap method 75.95 98.14 38.06 99.88 198.63 95.81 839.56 20

Bayesian approach 3.42 46.58 0.44 49.46 6.78 33.53 133.49 26.67

Prediction interval 26.49 97.17 16.50 99.17 60.90 92.22 204.54 40
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values falls over the prediction band (i.e. maximum POC). In

other words, quantitatively an ideal prediction band will have

POC of 100 % with AW approaches to low values. The pre-

diction interval obtained throughdifferentmethodhas varying

magnitude of uncertainty in terms of POC and AW estimate

(Fig. 5). In general, theBootstrapmethod has highAWvalues

across different flow domains as illustrated in Fig. 5, which

indicates increased bias in model calibration resulted from

sampling of input–output patterns. Consequently the ensem-

ble simulation leads to high variability from the mean pre-

diction. While comparing, different methods, the bootstrap

method has high POC across different flow series. This is

mainly due to increased width of prediction interval, which

obviously will include more number of observed values. The

minimumAWwas found in ANNmodels that used Bayesian

basedmodel training. It was found that theBayesian approach

produced consistently less AW value across complete, low

and medium flow series with 3.42, 0.44, and 6.78 m3/s,

respectively.The forgoingdiscussionclearly indicates that the

Bayesian method is good in terms of less AW and bootstrap

method is good with better estimate of maximum POC.

However, the selection of particular method should not be

biased by considering only either POC or AW as these mea-

sures conflict each others. In this regard, it was identified that

PI method has better estimate of uncertainty with compro-

mised values of AW and POC. Consequently PI method has

acceptable values of POC such as 97.17, 99.17, 92.22 and

40 % in complete, low, medium and high flow, respectively.

TheAWvalues of PI in complete, low,medium and high flow

were 26.49, 16.50, 60.90 and 204.54 m3/s, respectively.

Though the AW values were slightly higher than Bayesian

method across different flow series, the method can be con-

sidered as a better estimate of uncertainty with improved

confidence as it contains more number of observed values

within the prediction interval (Fig. 5).

Uncertainty in peak flow prediction

Accurate estimation of peak flow helps in better decision

making with improved reliability for developing the sys-

tems of flood warnings and flood protection measures.

However in most of the cases, it was reported that the poor

peak flow estimation is a general concern in ANN (Sri-

vastav et al. 2007). One of the major reasons for such

behavior is less number of peak flow patterns available for

training, and that leads to more bias in predicting the values

(mostly under prediction). The histogram (Fig. 6) shows

the peak flow prediction of ensemble by selected methods.

It is clear that none of the method predicts the peak rea-

sonably, except PI method. The potential reason for such

under prediction of other two methods could be the

increased level of parameter uncertainty, where the model

is unable to capture the peak responses of hydrograph. It is

evident from Fig. 6 that the actual peak is 2029.18 m3/s.

However, most of the ensembles of bootstrap were able to

predict the peak flow prediction between 1300 and

1900 m3/s. The potential reason could be inferred that the

sampled input–output patterns may not contain sufficient

peak information for training. Similar findings were

observed in Bayesian approach, where the peak flow pre-

diction falls between 1700 and 1900 m3/s. In this case, the

reason for not predicting peak appropriately may be

attributed to the assumption about prior probability distri-

bution of ANN’s parameter. However, the peak prediction

of PI method was substantially good while comparing other

two methods. This reinforces the discussion that perform-

ing uncertainty analysis under optimization framework

leads to an improved result in all domains of flow with

reduction in uncertainty. Still, understanding and modeling

of hydrologic processes are far beyond the reality that

needs considerable level of attention while quantifying the

uncertainty.

Qualitative assessment of uncertainty

Based on the quantitative assessment of uncertainty across

different methods, the qualitative classification is made and

presented in Table 4. It is categorized as low, medium and

high depends on the uncertainty evaluation method such as

the formulation, computational burden, assumptions,

validity of preserving probabilistic and statistical proper-

ties, convergence and accuracy in estimating peak flow. It

Fig. 5 Prediction interval

quantified from the presented

methods during model

validation
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is evident from Table 4 that the PI method relatively sat-

isfies all the listed conditions besides quantitative estimate.

This gives an indication of superiority of the PI method

while quantifying the prediction uncertainty.

Summary and conclusions

The meaningful quantification of uncertainty in ANN

models improves the reliability while making decisions.

However, no clear evidence that show a specific method,

which outperforms while estimating the uncertainty of

hydrologic models compared to other methods. Hence, each

method differs by its own complexity, principle and com-

putational efficiency. This study presented three different

uncertainty estimation method applied in ANN models. The

whole modeling procedure is demonstrated through flow

forecast model using rainfall—runoff data collected from

Kolar basin, India. The quantitative and qualitative com-

parison was made between the methods in order to show

their potential improvements and shortcomings. The

parameter uncertainty resulted from PI method showed

significant reduction. Consequently, the PI method pro-

duced improved model performance, with narrow predic-

tion interval. In addition, the values of POC across different

flow domains further enhance the confidence of the PI

method in terms of uncertainty. Furthermore, the accurate

estimation of peak flow is a general concern in ANN

models, however the peak estimation of PI method

encourages its potential application in flood forecasting.
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